hugetlb.c 91.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25

D
David Gibson 已提交
26 27
#include <asm/page.h>
#include <asm/pgtable.h>
28
#include <asm/tlb.h>
D
David Gibson 已提交
29

30
#include <linux/io.h>
D
David Gibson 已提交
31
#include <linux/hugetlb.h>
32
#include <linux/hugetlb_cgroup.h>
33
#include <linux/node.h>
34
#include "internal.h"
L
Linus Torvalds 已提交
35 36

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50
/*
51 52
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
53
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
131
	return subpool_inode(file_inode(vma->vm_file));
132 133
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137 138
 *
 * The region data structures are protected by a combination of the mmap_sem
139
 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140
 * must either hold the mmap_sem for write, or the mmap_sem for read and
141
 * the hugetlb_instantiation_mutex:
142
 *
143
 *	down_write(&mm->mmap_sem);
144
 * or
145 146
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
227
		/* We overlap with this area, if it extends further than
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

269 270 271 272 273 274 275
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
276 277
		long seg_from;
		long seg_to;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

293 294 295 296
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
297 298
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
299
{
300 301
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
302 303
}

304 305 306 307 308 309
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

323
	return 1UL << huge_page_shift(hstate);
324
}
325
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326

327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

340 341 342 343 344 345 346
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
347
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348

349 350 351 352 353 354 355 356 357
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
358 359 360 361 362 363 364 365 366
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
367
 */
368 369 370 371 372 373 374 375 376 377 378
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

379 380 381 382 383
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

384
static struct resv_map *resv_map_alloc(void)
385 386 387 388 389 390 391 392 393 394 395
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

396
static void resv_map_release(struct kref *ref)
397 398 399 400 401 402 403 404 405
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 407
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408
	if (!(vma->vm_flags & VM_MAYSHARE))
409 410
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
411
	return NULL;
412 413
}

414
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 416
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418

419 420
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
421 422 423 424 425
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 428

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 430 431 432 433
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 435

	return (get_vma_private_data(vma) & flag) != 0;
436 437
}

438
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 440 441
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442
	if (!(vma->vm_flags & VM_MAYSHARE))
443 444 445 446
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
447
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448
{
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
464 465

	/* Shared mappings always use reserves */
466
	if (vma->vm_flags & VM_MAYSHARE)
467
		return 1;
468 469 470 471 472

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
473 474
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
475

476
	return 0;
477 478
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

513
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
514 515
{
	int nid = page_to_nid(page);
516
	list_move(&page->lru, &h->hugepage_freelists[nid]);
517 518
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
519 520
}

521 522 523 524
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

525 526 527 528 529 530 531 532
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
533
		return NULL;
534
	list_move(&page->lru, &h->hugepage_activelist);
535
	set_page_refcounted(page);
536 537 538 539 540
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

541 542 543 544 545 546 547 548 549
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_support(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

550 551
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
552 553
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
554
{
555
	struct page *page = NULL;
556
	struct mempolicy *mpol;
557
	nodemask_t *nodemask;
558
	struct zonelist *zonelist;
559 560
	struct zone *zone;
	struct zoneref *z;
561
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
562

563 564 565 566 567
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
568
	if (!vma_has_reserves(vma, chg) &&
569
			h->free_huge_pages - h->resv_huge_pages == 0)
570
		goto err;
571

572
	/* If reserves cannot be used, ensure enough pages are in the pool */
573
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
574
		goto err;
575

576 577 578
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
579
					htlb_alloc_mask(h), &mpol, &nodemask);
580

581 582
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
583
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
584 585
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
586 587 588 589 590
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

591
				SetPagePrivate(page);
592
				h->resv_huge_pages--;
593 594
				break;
			}
A
Andrew Morton 已提交
595
		}
L
Linus Torvalds 已提交
596
	}
597

598
	mpol_cond_put(mpol);
599 600
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
601
	return page;
602 603 604

err:
	return NULL;
L
Linus Torvalds 已提交
605 606
}

607
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
608 609
{
	int i;
610

611 612
	VM_BUG_ON(h->order >= MAX_ORDER);

613 614 615
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
616 617 618 619
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
620
	}
621
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
622 623
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
624
	arch_release_hugepage(page);
625
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
626 627
}

628 629 630 631 632 633 634 635 636 637 638
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

639 640
static void free_huge_page(struct page *page)
{
641 642 643 644
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
645
	struct hstate *h = page_hstate(page);
646
	int nid = page_to_nid(page);
647 648
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
649
	bool restore_reserve;
650

651
	set_page_private(page, 0);
652
	page->mapping = NULL;
653
	BUG_ON(page_count(page));
654
	BUG_ON(page_mapcount(page));
655
	restore_reserve = PagePrivate(page);
656
	ClearPagePrivate(page);
657 658

	spin_lock(&hugetlb_lock);
659 660
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
661 662 663
	if (restore_reserve)
		h->resv_huge_pages++;

664
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
665 666
		/* remove the page from active list */
		list_del(&page->lru);
667 668 669
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
670
	} else {
671
		arch_clear_hugepage_flags(page);
672
		enqueue_huge_page(h, page);
673
	}
674
	spin_unlock(&hugetlb_lock);
675
	hugepage_subpool_put_pages(spool, 1);
676 677
}

678
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
679
{
680
	INIT_LIST_HEAD(&page->lru);
681 682
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
683
	set_hugetlb_cgroup(page, NULL);
684 685
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
686 687 688 689
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

690 691 692 693 694 695 696 697 698 699 700
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
701
		set_page_count(p, 0);
702 703 704 705
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
706 707 708 709 710
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
711 712 713 714 715 716 717 718 719 720 721 722
int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
723 724
EXPORT_SYMBOL_GPL(PageHuge);

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

742
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
743 744
{
	struct page *page;
745

746 747 748
	if (h->order >= MAX_ORDER)
		return NULL;

749
	page = alloc_pages_exact_node(nid,
750
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
751
						__GFP_REPEAT|__GFP_NOWARN,
752
		huge_page_order(h));
L
Linus Torvalds 已提交
753
	if (page) {
754
		if (arch_prepare_hugepage(page)) {
755
			__free_pages(page, huge_page_order(h));
756
			return NULL;
757
		}
758
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
759
	}
760 761 762 763

	return page;
}

764
/*
765 766 767 768 769
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
770
 */
771
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
772
{
773
	nid = next_node(nid, *nodes_allowed);
774
	if (nid == MAX_NUMNODES)
775
		nid = first_node(*nodes_allowed);
776 777 778 779 780
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

781 782 783 784 785 786 787
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

788
/*
789 790 791 792
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
793
 */
794 795
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
796
{
797 798 799 800 801 802
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
803 804

	return nid;
805 806
}

807
/*
808 809 810 811
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
812
 */
813
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
814
{
815 816 817 818 819 820
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
821 822

	return nid;
823 824
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

859 860 861 862 863 864
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
865 866
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
867
{
868
	int nr_nodes, node;
869 870
	int ret = 0;

871
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
872 873 874 875
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
876 877
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
878
			struct page *page =
879
				list_entry(h->hugepage_freelists[node].next,
880 881 882
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
883
			h->free_huge_pages_node[node]--;
884 885
			if (acct_surplus) {
				h->surplus_huge_pages--;
886
				h->surplus_huge_pages_node[node]--;
887
			}
888 889
			update_and_free_page(h, page);
			ret = 1;
890
			break;
891
		}
892
	}
893 894 895 896

	return ret;
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

935
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
936 937
{
	struct page *page;
938
	unsigned int r_nid;
939

940 941 942
	if (h->order >= MAX_ORDER)
		return NULL;

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
967
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
968 969 970
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
971 972
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
973 974 975
	}
	spin_unlock(&hugetlb_lock);

976
	if (nid == NUMA_NO_NODE)
977
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
978 979 980 981
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
982
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
983
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
984

985 986
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
987
		page = NULL;
988 989
	}

990
	spin_lock(&hugetlb_lock);
991
	if (page) {
992
		INIT_LIST_HEAD(&page->lru);
993
		r_nid = page_to_nid(page);
994
		set_compound_page_dtor(page, free_huge_page);
995
		set_hugetlb_cgroup(page, NULL);
996 997 998
		/*
		 * We incremented the global counters already
		 */
999 1000
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1001
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1002
	} else {
1003 1004
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1005
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1006
	}
1007
	spin_unlock(&hugetlb_lock);
1008 1009 1010 1011

	return page;
}

1012 1013 1014 1015 1016 1017 1018
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1019
	struct page *page = NULL;
1020 1021

	spin_lock(&hugetlb_lock);
1022 1023
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1024 1025
	spin_unlock(&hugetlb_lock);

1026
	if (!page)
1027 1028 1029 1030 1031
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1032
/*
L
Lucas De Marchi 已提交
1033
 * Increase the hugetlb pool such that it can accommodate a reservation
1034 1035
 * of size 'delta'.
 */
1036
static int gather_surplus_pages(struct hstate *h, int delta)
1037 1038 1039 1040 1041
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1042
	bool alloc_ok = true;
1043

1044
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1045
	if (needed <= 0) {
1046
		h->resv_huge_pages += delta;
1047
		return 0;
1048
	}
1049 1050 1051 1052 1053 1054 1055 1056

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1057
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1058 1059 1060 1061
		if (!page) {
			alloc_ok = false;
			break;
		}
1062 1063
		list_add(&page->lru, &surplus_list);
	}
1064
	allocated += i;
1065 1066 1067 1068 1069 1070

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1071 1072
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1083 1084
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1085
	 * needed to accommodate the reservation.  Add the appropriate number
1086
	 * of pages to the hugetlb pool and free the extras back to the buddy
1087 1088 1089
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1090 1091
	 */
	needed += allocated;
1092
	h->resv_huge_pages += delta;
1093
	ret = 0;
1094

1095
	/* Free the needed pages to the hugetlb pool */
1096
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1097 1098
		if ((--needed) < 0)
			break;
1099 1100 1101 1102 1103 1104
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1105
		enqueue_huge_page(h, page);
1106
	}
1107
free:
1108
	spin_unlock(&hugetlb_lock);
1109 1110

	/* Free unnecessary surplus pages to the buddy allocator */
1111 1112
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1113
	spin_lock(&hugetlb_lock);
1114 1115 1116 1117 1118 1119 1120 1121

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1122
 * Called with hugetlb_lock held.
1123
 */
1124 1125
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1126 1127 1128
{
	unsigned long nr_pages;

1129
	/* Uncommit the reservation */
1130
	h->resv_huge_pages -= unused_resv_pages;
1131

1132 1133 1134 1135
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1136
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1137

1138 1139
	/*
	 * We want to release as many surplus pages as possible, spread
1140 1141 1142 1143 1144
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1145 1146
	 */
	while (nr_pages--) {
1147
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1148
			break;
1149 1150 1151
	}
}

1152 1153 1154
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1155 1156 1157 1158 1159 1160
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1161
 */
1162
static long vma_needs_reservation(struct hstate *h,
1163
			struct vm_area_struct *vma, unsigned long addr)
1164 1165 1166 1167
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1168
	if (vma->vm_flags & VM_MAYSHARE) {
1169
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1170 1171 1172
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1173 1174
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1175

1176
	} else  {
1177
		long err;
1178
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1179
		struct resv_map *resv = vma_resv_map(vma);
1180

1181
		err = region_chg(&resv->regions, idx, idx + 1);
1182 1183 1184 1185
		if (err < 0)
			return err;
		return 0;
	}
1186
}
1187 1188
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1189 1190 1191 1192
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1193
	if (vma->vm_flags & VM_MAYSHARE) {
1194
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1195
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1196 1197

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1198
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1199
		struct resv_map *resv = vma_resv_map(vma);
1200 1201

		/* Mark this page used in the map. */
1202
		region_add(&resv->regions, idx, idx + 1);
1203 1204 1205
	}
}

1206
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1207
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1208
{
1209
	struct hugepage_subpool *spool = subpool_vma(vma);
1210
	struct hstate *h = hstate_vma(vma);
1211
	struct page *page;
1212
	long chg;
1213 1214
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1215

1216
	idx = hstate_index(h);
1217
	/*
1218 1219 1220 1221 1222 1223
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1224
	 */
1225
	chg = vma_needs_reservation(h, vma, addr);
1226
	if (chg < 0)
1227
		return ERR_PTR(-ENOMEM);
1228 1229
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1230
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1231

1232 1233
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1234 1235
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1236 1237
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1238
	spin_lock(&hugetlb_lock);
1239
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1240
	if (!page) {
1241
		spin_unlock(&hugetlb_lock);
1242
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1243
		if (!page) {
1244 1245 1246
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1247 1248
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1249
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1250
		}
1251 1252
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1253
		/* Fall through */
K
Ken Chen 已提交
1254
	}
1255 1256
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1257

1258
	set_page_private(page, (unsigned long)spool);
1259

1260
	vma_commit_reservation(h, vma, addr);
1261
	return page;
1262 1263
}

1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1278
int __weak alloc_bootmem_huge_page(struct hstate *h)
1279 1280
{
	struct huge_bootmem_page *m;
1281
	int nr_nodes, node;
1282

1283
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1284 1285
		void *addr;

1286
		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1287 1288 1289 1290 1291 1292 1293 1294 1295
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1296
			goto found;
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1309 1310 1311 1312 1313 1314 1315 1316
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1317 1318 1319 1320 1321 1322 1323
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1324 1325 1326 1327 1328 1329 1330 1331 1332
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1333 1334
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1335
		prep_compound_huge_page(page, h->order);
1336
		prep_new_huge_page(h, page, page_to_nid(page));
1337 1338 1339 1340 1341 1342 1343
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1344
			adjust_managed_page_count(page, 1 << h->order);
1345 1346 1347
	}
}

1348
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1349 1350
{
	unsigned long i;
1351

1352
	for (i = 0; i < h->max_huge_pages; ++i) {
1353 1354 1355
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1356
		} else if (!alloc_fresh_huge_page(h,
1357
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1358 1359
			break;
	}
1360
	h->max_huge_pages = i;
1361 1362 1363 1364 1365 1366 1367
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1368 1369 1370
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1371 1372 1373
	}
}

A
Andi Kleen 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1385 1386 1387 1388 1389
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1390
		char buf[32];
1391
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1392 1393
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1394 1395 1396
	}
}

L
Linus Torvalds 已提交
1397
#ifdef CONFIG_HIGHMEM
1398 1399
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1400
{
1401 1402
	int i;

1403 1404 1405
	if (h->order >= MAX_ORDER)
		return;

1406
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1407
		struct page *page, *next;
1408 1409 1410
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1411
				return;
L
Linus Torvalds 已提交
1412 1413 1414
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1415
			update_and_free_page(h, page);
1416 1417
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1418 1419 1420 1421
		}
	}
}
#else
1422 1423
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1424 1425 1426 1427
{
}
#endif

1428 1429 1430 1431 1432
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1433 1434
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1435
{
1436
	int nr_nodes, node;
1437 1438 1439

	VM_BUG_ON(delta != -1 && delta != 1);

1440 1441 1442 1443
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1444
		}
1445 1446 1447 1448 1449
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1450
		}
1451 1452
	}
	return 0;
1453

1454 1455 1456 1457
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1458 1459
}

1460
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1461 1462
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1463
{
1464
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1465

1466 1467 1468
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1469 1470 1471 1472
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1473 1474 1475 1476 1477 1478
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1479
	 */
L
Linus Torvalds 已提交
1480
	spin_lock(&hugetlb_lock);
1481
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1482
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1483 1484 1485
			break;
	}

1486
	while (count > persistent_huge_pages(h)) {
1487 1488 1489 1490 1491 1492
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1493
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1494 1495 1496 1497
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1498 1499 1500
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1501 1502 1503 1504 1505 1506 1507 1508
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1509 1510 1511 1512 1513 1514 1515 1516
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1517
	 */
1518
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1519
	min_count = max(count, min_count);
1520
	try_to_free_low(h, min_count, nodes_allowed);
1521
	while (min_count < persistent_huge_pages(h)) {
1522
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1523 1524
			break;
	}
1525
	while (count < persistent_huge_pages(h)) {
1526
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1527 1528 1529
			break;
	}
out:
1530
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1531
	spin_unlock(&hugetlb_lock);
1532
	return ret;
L
Linus Torvalds 已提交
1533 1534
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1545 1546 1547
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1548 1549
{
	int i;
1550

1551
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1552 1553 1554
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1555
			return &hstates[i];
1556 1557 1558
		}

	return kobj_to_node_hstate(kobj, nidp);
1559 1560
}

1561
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1562 1563
					struct kobj_attribute *attr, char *buf)
{
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1575
}
1576

1577 1578 1579
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1580 1581
{
	int err;
1582
	int nid;
1583
	unsigned long count;
1584
	struct hstate *h;
1585
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1586

1587
	err = kstrtoul(buf, 10, &count);
1588
	if (err)
1589
		goto out;
1590

1591
	h = kobj_to_hstate(kobj, &nid);
1592 1593 1594 1595 1596
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1597 1598 1599 1600 1601 1602 1603
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1604
			nodes_allowed = &node_states[N_MEMORY];
1605 1606 1607 1608 1609 1610 1611 1612 1613
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1614
		nodes_allowed = &node_states[N_MEMORY];
1615

1616
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1617

1618
	if (nodes_allowed != &node_states[N_MEMORY])
1619 1620 1621
		NODEMASK_FREE(nodes_allowed);

	return len;
1622 1623 1624
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1637 1638 1639
}
HSTATE_ATTR(nr_hugepages);

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1661 1662 1663
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1664
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1665 1666
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1667

1668 1669 1670 1671 1672
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1673
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1674

1675 1676 1677
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1678
	err = kstrtoul(buf, 10, &input);
1679
	if (err)
1680
		return err;
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1704 1705 1706 1707 1708 1709
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1710
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1711 1712 1713 1714 1715 1716 1717
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1729 1730 1731 1732 1733 1734 1735 1736 1737
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1738 1739 1740
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1741 1742 1743 1744 1745 1746 1747
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1748 1749 1750
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1751 1752
{
	int retval;
1753
	int hi = hstate_index(h);
1754

1755 1756
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1757 1758
		return -ENOMEM;

1759
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1760
	if (retval)
1761
		kobject_put(hstate_kobjs[hi]);
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1776 1777
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1778
		if (err)
1779
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1780 1781 1782
	}
}

1783 1784 1785 1786
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1787 1788 1789
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1790 1791 1792 1793 1794 1795 1796 1797 1798
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1799
 * A subset of global hstate attributes for node devices
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1813
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1836
 * Unregister hstate attributes from a single node device.
1837 1838
 * No-op if no hstate attributes attached.
 */
1839
static void hugetlb_unregister_node(struct node *node)
1840 1841
{
	struct hstate *h;
1842
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1843 1844

	if (!nhs->hugepages_kobj)
1845
		return;		/* no hstate attributes */
1846

1847 1848 1849 1850 1851
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1852
		}
1853
	}
1854 1855 1856 1857 1858 1859

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1860
 * hugetlb module exit:  unregister hstate attributes from node devices
1861 1862 1863 1864 1865 1866 1867
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1868
	 * disable node device registrations.
1869 1870 1871 1872 1873 1874 1875
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1876
		hugetlb_unregister_node(node_devices[nid]);
1877 1878 1879
}

/*
1880
 * Register hstate attributes for a single node device.
1881 1882
 * No-op if attributes already registered.
 */
1883
static void hugetlb_register_node(struct node *node)
1884 1885
{
	struct hstate *h;
1886
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1887 1888 1889 1890 1891 1892
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1893
							&node->dev.kobj);
1894 1895 1896 1897 1898 1899 1900 1901
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1902 1903
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1904 1905 1906 1907 1908 1909 1910
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1911
 * hugetlb init time:  register hstate attributes for all registered node
1912 1913
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1914 1915 1916 1917 1918
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1919
	for_each_node_state(nid, N_MEMORY) {
1920
		struct node *node = node_devices[nid];
1921
		if (node->dev.id == nid)
1922 1923 1924 1925
			hugetlb_register_node(node);
	}

	/*
1926
	 * Let the node device driver know we're here so it can
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1948 1949 1950 1951
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1952 1953
	hugetlb_unregister_all_nodes();

1954
	for_each_hstate(h) {
1955
		kobject_put(hstate_kobjs[hstate_index(h)]);
1956 1957 1958 1959 1960 1961 1962 1963
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1964 1965 1966 1967 1968 1969
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1970

1971 1972 1973 1974
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1975
	}
1976
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1977 1978
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1979 1980

	hugetlb_init_hstates();
1981
	gather_bootmem_prealloc();
1982 1983 1984
	report_hugepages();

	hugetlb_sysfs_init();
1985
	hugetlb_register_all_nodes();
1986
	hugetlb_cgroup_file_init();
1987

1988 1989 1990 1991 1992 1993 1994 1995
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1996 1997
	unsigned long i;

1998
	if (size_to_hstate(PAGE_SIZE << order)) {
1999
		pr_warning("hugepagesz= specified twice, ignoring\n");
2000 2001
		return;
	}
2002
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2003
	BUG_ON(order == 0);
2004
	h = &hstates[hugetlb_max_hstate++];
2005 2006
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2007 2008 2009 2010
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2011
	INIT_LIST_HEAD(&h->hugepage_activelist);
2012 2013
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2014 2015
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2016

2017 2018 2019
	parsed_hstate = h;
}

2020
static int __init hugetlb_nrpages_setup(char *s)
2021 2022
{
	unsigned long *mhp;
2023
	static unsigned long *last_mhp;
2024 2025

	/*
2026
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2027 2028
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2029
	if (!hugetlb_max_hstate)
2030 2031 2032 2033
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2034
	if (mhp == last_mhp) {
2035 2036
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2037 2038 2039
		return 1;
	}

2040 2041 2042
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2043 2044 2045 2046 2047
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2048
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2049 2050 2051 2052
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2053 2054
	return 1;
}
2055 2056 2057 2058 2059 2060 2061 2062
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2063

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2076 2077 2078
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2079
{
2080 2081
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2082
	int ret;
2083

2084
	tmp = h->max_huge_pages;
2085

2086 2087 2088
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2089 2090
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2091 2092 2093
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2094

2095
	if (write) {
2096 2097
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2098 2099 2100
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2101
			nodes_allowed = &node_states[N_MEMORY];
2102 2103 2104
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2105
		if (nodes_allowed != &node_states[N_MEMORY])
2106 2107
			NODEMASK_FREE(nodes_allowed);
	}
2108 2109
out:
	return ret;
L
Linus Torvalds 已提交
2110
}
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2129
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2130
			void __user *buffer,
2131 2132
			size_t *length, loff_t *ppos)
{
2133
	struct hstate *h = &default_hstate;
2134
	unsigned long tmp;
2135
	int ret;
2136

2137
	tmp = h->nr_overcommit_huge_pages;
2138

2139 2140 2141
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2142 2143
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2144 2145 2146
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2147 2148 2149 2150 2151 2152

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2153 2154
out:
	return ret;
2155 2156
}

L
Linus Torvalds 已提交
2157 2158
#endif /* CONFIG_SYSCTL */

2159
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2160
{
2161
	struct hstate *h = &default_hstate;
2162
	seq_printf(m,
2163 2164 2165 2166 2167
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2168 2169 2170 2171 2172
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2173 2174 2175 2176
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2177
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2178 2179
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2180 2181
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2182 2183 2184
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2185 2186
}

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2202 2203 2204
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2205 2206 2207 2208 2209 2210
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2211 2212
}

2213
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2236
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2237 2238
			goto out;

2239 2240
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2241 2242 2243 2244 2245 2246
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2247
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2248 2249 2250 2251 2252 2253

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2254 2255
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2256
	struct resv_map *resv = vma_resv_map(vma);
2257 2258 2259 2260 2261

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2262
	 * has a reference to the reservation map it cannot disappear until
2263 2264 2265
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2266 2267
	if (resv)
		kref_get(&resv->refs);
2268 2269
}

2270 2271
static void resv_map_put(struct vm_area_struct *vma)
{
2272
	struct resv_map *resv = vma_resv_map(vma);
2273

2274
	if (!resv)
2275
		return;
2276
	kref_put(&resv->refs, resv_map_release);
2277 2278
}

2279 2280
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2281
	struct hstate *h = hstate_vma(vma);
2282
	struct resv_map *resv = vma_resv_map(vma);
2283
	struct hugepage_subpool *spool = subpool_vma(vma);
2284 2285 2286 2287
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

2288
	if (resv) {
2289 2290
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2291 2292

		reserve = (end - start) -
2293
			region_count(&resv->regions, start, end);
2294

2295
		resv_map_put(vma);
2296

2297
		if (reserve) {
2298
			hugetlb_acct_memory(h, -reserve);
2299
			hugepage_subpool_put_pages(spool, reserve);
2300
		}
2301
	}
2302 2303
}

L
Linus Torvalds 已提交
2304 2305 2306 2307 2308 2309
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2310
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2311 2312
{
	BUG();
N
Nick Piggin 已提交
2313
	return 0;
L
Linus Torvalds 已提交
2314 2315
}

2316
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2317
	.fault = hugetlb_vm_op_fault,
2318
	.open = hugetlb_vm_op_open,
2319
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2320 2321
};

2322 2323
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2324 2325 2326
{
	pte_t entry;

2327
	if (writable) {
2328 2329
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2330
	} else {
2331 2332
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2333 2334 2335
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2336
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2337 2338 2339 2340

	return entry;
}

2341 2342 2343 2344 2345
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2346
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2347
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2348
		update_mmu_cache(vma, address, ptep);
2349 2350 2351
}


D
David Gibson 已提交
2352 2353 2354 2355 2356
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2357
	unsigned long addr;
2358
	int cow;
2359 2360
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2361 2362

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2363

2364
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2365 2366 2367
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2368
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2369 2370
		if (!dst_pte)
			goto nomem;
2371 2372 2373 2374 2375

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2376
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2377
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2378
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2379
			if (cow)
2380 2381
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2382 2383
			ptepage = pte_page(entry);
			get_page(ptepage);
2384
			page_dup_rmap(ptepage);
2385 2386 2387
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2388
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2389 2390 2391 2392 2393 2394 2395
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2396 2397 2398 2399 2400 2401 2402
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2403
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2404
		return 1;
2405
	else
N
Naoya Horiguchi 已提交
2406 2407 2408
		return 0;
}

2409 2410 2411 2412 2413 2414 2415
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2416
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2417
		return 1;
2418
	else
2419 2420 2421
		return 0;
}

2422 2423 2424
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2425
{
2426
	int force_flush = 0;
D
David Gibson 已提交
2427 2428
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2429
	pte_t *ptep;
D
David Gibson 已提交
2430 2431
	pte_t pte;
	struct page *page;
2432 2433
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2434 2435
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2436

D
David Gibson 已提交
2437
	WARN_ON(!is_vm_hugetlb_page(vma));
2438 2439
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2440

2441
	tlb_start_vma(tlb, vma);
2442
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2443
again:
2444
	spin_lock(&mm->page_table_lock);
2445
	for (address = start; address < end; address += sz) {
2446
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2447
		if (!ptep)
2448 2449
			continue;

2450 2451 2452
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2453 2454 2455 2456 2457 2458 2459
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2460
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2461
			huge_pte_clear(mm, address, ptep);
2462
			continue;
2463
		}
2464 2465

		page = pte_page(pte);
2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2483
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2484
		tlb_remove_tlb_entry(tlb, ptep, address);
2485
		if (huge_pte_dirty(pte))
2486
			set_page_dirty(page);
2487

2488 2489 2490 2491
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2492 2493 2494
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2495
	}
2496
	spin_unlock(&mm->page_table_lock);
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2507
	}
2508
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2509
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2510
}
D
David Gibson 已提交
2511

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2531
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2532
			  unsigned long end, struct page *ref_page)
2533
{
2534 2535 2536 2537 2538
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2539
	tlb_gather_mmu(&tlb, mm, start, end);
2540 2541
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2542 2543
}

2544 2545 2546 2547 2548 2549
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2550 2551
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2552
{
2553
	struct hstate *h = hstate_vma(vma);
2554 2555 2556 2557 2558 2559 2560 2561
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2562
	address = address & huge_page_mask(h);
2563 2564
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2565
	mapping = file_inode(vma->vm_file)->i_mapping;
2566

2567 2568 2569 2570 2571
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2572
	mutex_lock(&mapping->i_mmap_mutex);
2573
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2586 2587
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2588
	}
2589
	mutex_unlock(&mapping->i_mmap_mutex);
2590 2591 2592 2593

	return 1;
}

2594 2595
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2596 2597 2598
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2599
 */
2600
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2601 2602
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2603
{
2604
	struct hstate *h = hstate_vma(vma);
2605
	struct page *old_page, *new_page;
2606
	int outside_reserve = 0;
2607 2608
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2609 2610 2611

	old_page = pte_page(pte);

2612
retry_avoidcopy:
2613 2614
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2615 2616
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2617
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2618
		return 0;
2619 2620
	}

2621 2622 2623 2624 2625 2626 2627 2628 2629
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2630
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2631 2632 2633
			old_page != pagecache_page)
		outside_reserve = 1;

2634
	page_cache_get(old_page);
2635 2636 2637

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2638
	new_page = alloc_huge_page(vma, address, outside_reserve);
2639

2640
	if (IS_ERR(new_page)) {
2641
		long err = PTR_ERR(new_page);
2642
		page_cache_release(old_page);
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2655
				spin_lock(&mm->page_table_lock);
2656 2657 2658 2659 2660 2661 2662 2663
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2664 2665 2666 2667
			}
			WARN_ON_ONCE(1);
		}

2668 2669
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2670 2671 2672 2673
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2674 2675
	}

2676 2677 2678 2679
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2680
	if (unlikely(anon_vma_prepare(vma))) {
2681 2682
		page_cache_release(new_page);
		page_cache_release(old_page);
2683 2684
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2685
		return VM_FAULT_OOM;
2686
	}
2687

A
Andrea Arcangeli 已提交
2688 2689
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2690
	__SetPageUptodate(new_page);
2691

2692 2693 2694
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2695 2696 2697 2698 2699
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2700
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2701
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2702 2703
		ClearPagePrivate(new_page);

2704
		/* Break COW */
2705
		huge_ptep_clear_flush(vma, address, ptep);
2706 2707
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2708
		page_remove_rmap(old_page);
2709
		hugepage_add_new_anon_rmap(new_page, vma, address);
2710 2711 2712
		/* Make the old page be freed below */
		new_page = old_page;
	}
2713 2714
	spin_unlock(&mm->page_table_lock);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2715 2716
	page_cache_release(new_page);
	page_cache_release(old_page);
2717 2718 2719

	/* Caller expects lock to be held */
	spin_lock(&mm->page_table_lock);
N
Nick Piggin 已提交
2720
	return 0;
2721 2722
}

2723
/* Return the pagecache page at a given address within a VMA */
2724 2725
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2726 2727
{
	struct address_space *mapping;
2728
	pgoff_t idx;
2729 2730

	mapping = vma->vm_file->f_mapping;
2731
	idx = vma_hugecache_offset(h, vma, address);
2732 2733 2734 2735

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2736 2737 2738 2739 2740
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2756
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2757
			unsigned long address, pte_t *ptep, unsigned int flags)
2758
{
2759
	struct hstate *h = hstate_vma(vma);
2760
	int ret = VM_FAULT_SIGBUS;
2761
	int anon_rmap = 0;
2762
	pgoff_t idx;
A
Adam Litke 已提交
2763 2764 2765
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2766
	pte_t new_pte;
A
Adam Litke 已提交
2767

2768 2769 2770
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2771
	 * COW. Warn that such a situation has occurred as it may not be obvious
2772 2773
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2774 2775
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2776 2777 2778
		return ret;
	}

A
Adam Litke 已提交
2779
	mapping = vma->vm_file->f_mapping;
2780
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2781 2782 2783 2784 2785

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2786 2787 2788
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2789
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2790 2791
		if (idx >= size)
			goto out;
2792
		page = alloc_huge_page(vma, address, 0);
2793
		if (IS_ERR(page)) {
2794 2795 2796 2797 2798
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2799 2800
			goto out;
		}
A
Andrea Arcangeli 已提交
2801
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2802
		__SetPageUptodate(page);
2803

2804
		if (vma->vm_flags & VM_MAYSHARE) {
2805
			int err;
K
Ken Chen 已提交
2806
			struct inode *inode = mapping->host;
2807 2808 2809 2810 2811 2812 2813 2814

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2815
			ClearPagePrivate(page);
K
Ken Chen 已提交
2816 2817

			spin_lock(&inode->i_lock);
2818
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2819
			spin_unlock(&inode->i_lock);
2820
		} else {
2821
			lock_page(page);
2822 2823 2824 2825
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2826
			anon_rmap = 1;
2827
		}
2828
	} else {
2829 2830 2831 2832 2833 2834
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2835
			ret = VM_FAULT_HWPOISON |
2836
				VM_FAULT_SET_HINDEX(hstate_index(h));
2837 2838
			goto backout_unlocked;
		}
2839
	}
2840

2841 2842 2843 2844 2845 2846
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2847
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2848 2849 2850 2851
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2852

2853
	spin_lock(&mm->page_table_lock);
2854
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2855 2856 2857
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2858
	ret = 0;
2859
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2860 2861
		goto backout;

2862 2863
	if (anon_rmap) {
		ClearPagePrivate(page);
2864
		hugepage_add_new_anon_rmap(page, vma, address);
2865
	}
2866 2867
	else
		page_dup_rmap(page);
2868 2869 2870 2871
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2872
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2873
		/* Optimization, do the COW without a second fault */
2874
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2875 2876
	}

2877
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2878 2879
	unlock_page(page);
out:
2880
	return ret;
A
Adam Litke 已提交
2881 2882 2883

backout:
	spin_unlock(&mm->page_table_lock);
2884
backout_unlocked:
A
Adam Litke 已提交
2885 2886 2887
	unlock_page(page);
	put_page(page);
	goto out;
2888 2889
}

2890
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2891
			unsigned long address, unsigned int flags)
2892 2893 2894
{
	pte_t *ptep;
	pte_t entry;
2895
	int ret;
2896
	struct page *page = NULL;
2897
	struct page *pagecache_page = NULL;
2898
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2899
	struct hstate *h = hstate_vma(vma);
2900

2901 2902
	address &= huge_page_mask(h);

2903 2904 2905
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2906
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2907
			migration_entry_wait_huge(mm, ptep);
N
Naoya Horiguchi 已提交
2908 2909
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2910
			return VM_FAULT_HWPOISON_LARGE |
2911
				VM_FAULT_SET_HINDEX(hstate_index(h));
2912 2913
	}

2914
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2915 2916 2917
	if (!ptep)
		return VM_FAULT_OOM;

2918 2919 2920 2921 2922 2923
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2924 2925
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2926
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2927
		goto out_mutex;
2928
	}
2929

N
Nick Piggin 已提交
2930
	ret = 0;
2931

2932 2933 2934 2935 2936 2937 2938 2939
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2940
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2941 2942
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2943
			goto out_mutex;
2944
		}
2945

2946
		if (!(vma->vm_flags & VM_MAYSHARE))
2947 2948 2949 2950
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2951 2952 2953 2954 2955 2956 2957 2958
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2959
	get_page(page);
2960
	if (page != pagecache_page)
2961 2962
		lock_page(page);

2963 2964
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2965 2966 2967 2968
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2969
	if (flags & FAULT_FLAG_WRITE) {
2970
		if (!huge_pte_write(entry)) {
2971 2972
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2973 2974
			goto out_page_table_lock;
		}
2975
		entry = huge_pte_mkdirty(entry);
2976 2977
	}
	entry = pte_mkyoung(entry);
2978 2979
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2980
		update_mmu_cache(vma, address, ptep);
2981 2982

out_page_table_lock:
2983
	spin_unlock(&mm->page_table_lock);
2984 2985 2986 2987 2988

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2989 2990
	if (page != pagecache_page)
		unlock_page(page);
2991
	put_page(page);
2992

2993
out_mutex:
2994
	mutex_unlock(&hugetlb_instantiation_mutex);
2995 2996

	return ret;
2997 2998
}

2999 3000 3001 3002
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3003
{
3004 3005
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3006
	unsigned long remainder = *nr_pages;
3007
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3008

3009
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
3010
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3011
		pte_t *pte;
H
Hugh Dickins 已提交
3012
		int absent;
A
Adam Litke 已提交
3013
		struct page *page;
D
David Gibson 已提交
3014

A
Adam Litke 已提交
3015 3016
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3017
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3018 3019
		 * first, for the page indexing below to work.
		 */
3020
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
3021 3022 3023 3024
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3025 3026 3027 3028
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3029
		 */
H
Hugh Dickins 已提交
3030 3031
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
3032 3033 3034
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3035

3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3047 3048
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3049
			int ret;
D
David Gibson 已提交
3050

A
Adam Litke 已提交
3051
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
3052 3053
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
3054
			spin_lock(&mm->page_table_lock);
3055
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3056
				continue;
D
David Gibson 已提交
3057

A
Adam Litke 已提交
3058 3059 3060 3061
			remainder = 0;
			break;
		}

3062
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3063
		page = pte_page(huge_ptep_get(pte));
3064
same_page:
3065
		if (pages) {
H
Hugh Dickins 已提交
3066
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
3067
			get_page(pages[i]);
3068
		}
D
David Gibson 已提交
3069 3070 3071 3072 3073

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3074
		++pfn_offset;
D
David Gibson 已提交
3075 3076
		--remainder;
		++i;
3077
		if (vaddr < vma->vm_end && remainder &&
3078
				pfn_offset < pages_per_huge_page(h)) {
3079 3080 3081 3082 3083 3084
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
3085
	}
3086
	spin_unlock(&mm->page_table_lock);
3087
	*nr_pages = remainder;
D
David Gibson 已提交
3088 3089
	*position = vaddr;

H
Hugh Dickins 已提交
3090
	return i ? i : -EFAULT;
D
David Gibson 已提交
3091
}
3092

3093
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3094 3095 3096 3097 3098 3099
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3100
	struct hstate *h = hstate_vma(vma);
3101
	unsigned long pages = 0;
3102 3103 3104 3105

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3106
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3107
	spin_lock(&mm->page_table_lock);
3108
	for (; address < end; address += huge_page_size(h)) {
3109 3110 3111
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3112 3113
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3114
			continue;
3115
		}
3116
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3117
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3118
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3119
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3120
			set_huge_pte_at(mm, address, ptep, pte);
3121
			pages++;
3122 3123 3124
		}
	}
	spin_unlock(&mm->page_table_lock);
3125 3126 3127 3128 3129 3130
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3131
	flush_tlb_range(vma, start, end);
3132
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3133 3134

	return pages << h->order;
3135 3136
}

3137 3138
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3139
					struct vm_area_struct *vma,
3140
					vm_flags_t vm_flags)
3141
{
3142
	long ret, chg;
3143
	struct hstate *h = hstate_inode(inode);
3144
	struct hugepage_subpool *spool = subpool_inode(inode);
3145

3146 3147 3148
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3149
	 * without using reserves
3150
	 */
3151
	if (vm_flags & VM_NORESERVE)
3152 3153
		return 0;

3154 3155 3156 3157 3158 3159
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3160
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3161
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3162 3163 3164 3165 3166
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3167
		chg = to - from;
3168

3169 3170 3171 3172
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3173 3174 3175 3176
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3177

3178
	/* There must be enough pages in the subpool for the mapping */
3179 3180 3181 3182
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3183 3184

	/*
3185
	 * Check enough hugepages are available for the reservation.
3186
	 * Hand the pages back to the subpool if there are not
3187
	 */
3188
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3189
	if (ret < 0) {
3190
		hugepage_subpool_put_pages(spool, chg);
3191
		goto out_err;
K
Ken Chen 已提交
3192
	}
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3205
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3206
		region_add(&inode->i_mapping->private_list, from, to);
3207
	return 0;
3208
out_err:
3209 3210
	if (vma)
		resv_map_put(vma);
3211
	return ret;
3212 3213 3214 3215
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3216
	struct hstate *h = hstate_inode(inode);
3217
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3218
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3219 3220

	spin_lock(&inode->i_lock);
3221
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3222 3223
	spin_unlock(&inode->i_lock);

3224
	hugepage_subpool_put_pages(spool, (chg - freed));
3225
	hugetlb_acct_memory(h, -(chg - freed));
3226
}
3227

3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

	spin_lock(&mm->page_table_lock);
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
	spin_unlock(&mm->page_table_lock);
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
 * called with vma->vm_mm->page_table_lock held.
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3348 3349 3350 3351 3352 3353 3354
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3355 3356
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3438 3439
#ifdef CONFIG_MEMORY_FAILURE

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3454 3455 3456 3457
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3458
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3459 3460 3461
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3462
	int ret = -EBUSY;
3463 3464

	spin_lock(&hugetlb_lock);
3465
	if (is_hugepage_on_freelist(hpage)) {
3466 3467 3468 3469 3470 3471 3472
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3473
		set_page_refcounted(hpage);
3474 3475 3476 3477
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3478
	spin_unlock(&hugetlb_lock);
3479
	return ret;
3480
}
3481
#endif
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501

bool isolate_huge_page(struct page *page, struct list_head *list)
{
	VM_BUG_ON(!PageHead(page));
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
	VM_BUG_ON(!PageHead(page));
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523

bool is_hugepage_active(struct page *page)
{
	VM_BUG_ON(!PageHuge(page));
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}