hugetlb.c 92.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25

D
David Gibson 已提交
26 27
#include <asm/page.h>
#include <asm/pgtable.h>
28
#include <asm/tlb.h>
D
David Gibson 已提交
29

30
#include <linux/io.h>
D
David Gibson 已提交
31
#include <linux/hugetlb.h>
32
#include <linux/hugetlb_cgroup.h>
33
#include <linux/node.h>
34
#include "internal.h"
L
Linus Torvalds 已提交
35 36

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50
/*
51 52
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
53
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
131
	return subpool_inode(file_inode(vma->vm_file));
132 133
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137 138
 *
 * The region data structures are protected by a combination of the mmap_sem
139
 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140
 * must either hold the mmap_sem for write, or the mmap_sem for read and
141
 * the hugetlb_instantiation_mutex:
142
 *
143
 *	down_write(&mm->mmap_sem);
144
 * or
145 146
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
227
		/* We overlap with this area, if it extends further than
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

269 270 271 272 273 274 275
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
276 277
		long seg_from;
		long seg_to;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

293 294 295 296
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
297 298
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
299
{
300 301
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
302 303
}

304 305 306 307 308 309
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

323
	return 1UL << huge_page_shift(hstate);
324
}
325
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326

327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

340 341 342 343 344 345 346
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
347
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348

349 350 351 352 353 354 355 356 357
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
358 359 360 361 362 363 364 365 366
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
367
 */
368 369 370 371 372 373 374 375 376 377 378
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

379
struct resv_map *resv_map_alloc(void)
380 381 382 383 384 385 386 387 388 389 390
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

391
void resv_map_release(struct kref *ref)
392 393 394 395 396 397 398 399 400
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
401 402
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
403
	if (!(vma->vm_flags & VM_MAYSHARE))
404 405
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
406
	return NULL;
407 408
}

409
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
410 411
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
412
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
413

414 415
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
416 417 418 419 420
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
421
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
422 423

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
424 425 426 427 428
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
429 430

	return (get_vma_private_data(vma) & flag) != 0;
431 432
}

433
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
434 435 436
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
437
	if (!(vma->vm_flags & VM_MAYSHARE))
438 439 440 441
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
442
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
443
{
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
459 460

	/* Shared mappings always use reserves */
461
	if (vma->vm_flags & VM_MAYSHARE)
462
		return 1;
463 464 465 466 467

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
468 469
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
470

471
	return 0;
472 473
}

474
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
475 476
{
	int nid = page_to_nid(page);
477
	list_move(&page->lru, &h->hugepage_freelists[nid]);
478 479
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
480 481
}

482 483 484 485
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

486 487 488 489 490 491 492 493
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
494
		return NULL;
495
	list_move(&page->lru, &h->hugepage_activelist);
496
	set_page_refcounted(page);
497 498 499 500 501
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

502 503 504 505 506 507 508 509 510
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_support(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

511 512
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
513 514
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
515
{
516
	struct page *page = NULL;
517
	struct mempolicy *mpol;
518
	nodemask_t *nodemask;
519
	struct zonelist *zonelist;
520 521
	struct zone *zone;
	struct zoneref *z;
522
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
523

524 525 526 527 528
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
529
	if (!vma_has_reserves(vma, chg) &&
530
			h->free_huge_pages - h->resv_huge_pages == 0)
531
		goto err;
532

533
	/* If reserves cannot be used, ensure enough pages are in the pool */
534
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
535
		goto err;
536

537
retry_cpuset:
538
	cpuset_mems_cookie = read_mems_allowed_begin();
539
	zonelist = huge_zonelist(vma, address,
540
					htlb_alloc_mask(h), &mpol, &nodemask);
541

542 543
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
544
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
545 546
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
547 548 549 550 551
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

552
				SetPagePrivate(page);
553
				h->resv_huge_pages--;
554 555
				break;
			}
A
Andrew Morton 已提交
556
		}
L
Linus Torvalds 已提交
557
	}
558

559
	mpol_cond_put(mpol);
560
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
561
		goto retry_cpuset;
L
Linus Torvalds 已提交
562
	return page;
563 564 565

err:
	return NULL;
L
Linus Torvalds 已提交
566 567
}

568
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
569 570
{
	int i;
571

572 573
	VM_BUG_ON(h->order >= MAX_ORDER);

574 575 576
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
577 578 579 580
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
581
	}
582
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
583 584
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
585
	arch_release_hugepage(page);
586
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
587 588
}

589 590 591 592 593 594 595 596 597 598 599
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

600 601
static void free_huge_page(struct page *page)
{
602 603 604 605
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
606
	struct hstate *h = page_hstate(page);
607
	int nid = page_to_nid(page);
608 609
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
610
	bool restore_reserve;
611

612
	set_page_private(page, 0);
613
	page->mapping = NULL;
614
	BUG_ON(page_count(page));
615
	BUG_ON(page_mapcount(page));
616
	restore_reserve = PagePrivate(page);
617
	ClearPagePrivate(page);
618 619

	spin_lock(&hugetlb_lock);
620 621
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
622 623 624
	if (restore_reserve)
		h->resv_huge_pages++;

625
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
626 627
		/* remove the page from active list */
		list_del(&page->lru);
628 629 630
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
631
	} else {
632
		arch_clear_hugepage_flags(page);
633
		enqueue_huge_page(h, page);
634
	}
635
	spin_unlock(&hugetlb_lock);
636
	hugepage_subpool_put_pages(spool, 1);
637 638
}

639
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
640
{
641
	INIT_LIST_HEAD(&page->lru);
642 643
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
644
	set_hugetlb_cgroup(page, NULL);
645 646
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
647 648 649 650
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

651 652 653 654 655 656 657 658 659
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
660
	__ClearPageReserved(page);
661 662
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
663 664 665 666 667 668 669 670 671 672 673 674 675
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
676
		set_page_count(p, 0);
677 678 679 680
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
681 682 683 684 685
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
686 687 688 689 690 691
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
692
	return get_compound_page_dtor(page) == free_huge_page;
693
}
694 695
EXPORT_SYMBOL_GPL(PageHuge);

696 697 698 699 700 701 702 703 704
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

705
	return get_compound_page_dtor(page_head) == free_huge_page;
706 707
}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

725
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
726 727
{
	struct page *page;
728

729 730 731
	if (h->order >= MAX_ORDER)
		return NULL;

732
	page = alloc_pages_exact_node(nid,
733
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
734
						__GFP_REPEAT|__GFP_NOWARN,
735
		huge_page_order(h));
L
Linus Torvalds 已提交
736
	if (page) {
737
		if (arch_prepare_hugepage(page)) {
738
			__free_pages(page, huge_page_order(h));
739
			return NULL;
740
		}
741
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
742
	}
743 744 745 746

	return page;
}

747
/*
748 749 750 751 752
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
753
 */
754
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
755
{
756
	nid = next_node(nid, *nodes_allowed);
757
	if (nid == MAX_NUMNODES)
758
		nid = first_node(*nodes_allowed);
759 760 761 762 763
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

764 765 766 767 768 769 770
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

771
/*
772 773 774 775
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
776
 */
777 778
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
779
{
780 781 782 783 784 785
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
786 787

	return nid;
788 789
}

790
/*
791 792 793 794
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
795
 */
796
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
797
{
798 799 800 801 802 803
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
804 805

	return nid;
806 807
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

842 843 844 845 846 847
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
848 849
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
850
{
851
	int nr_nodes, node;
852 853
	int ret = 0;

854
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
855 856 857 858
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
859 860
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
861
			struct page *page =
862
				list_entry(h->hugepage_freelists[node].next,
863 864 865
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
866
			h->free_huge_pages_node[node]--;
867 868
			if (acct_surplus) {
				h->surplus_huge_pages--;
869
				h->surplus_huge_pages_node[node]--;
870
			}
871 872
			update_and_free_page(h, page);
			ret = 1;
873
			break;
874
		}
875
	}
876 877 878 879

	return ret;
}

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

918
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
919 920
{
	struct page *page;
921
	unsigned int r_nid;
922

923 924 925
	if (h->order >= MAX_ORDER)
		return NULL;

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
950
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
951 952 953
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
954 955
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
956 957 958
	}
	spin_unlock(&hugetlb_lock);

959
	if (nid == NUMA_NO_NODE)
960
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
961 962 963 964
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
965
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
966
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
967

968 969
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
970
		page = NULL;
971 972
	}

973
	spin_lock(&hugetlb_lock);
974
	if (page) {
975
		INIT_LIST_HEAD(&page->lru);
976
		r_nid = page_to_nid(page);
977
		set_compound_page_dtor(page, free_huge_page);
978
		set_hugetlb_cgroup(page, NULL);
979 980 981
		/*
		 * We incremented the global counters already
		 */
982 983
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
984
		__count_vm_event(HTLB_BUDDY_PGALLOC);
985
	} else {
986 987
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
988
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
989
	}
990
	spin_unlock(&hugetlb_lock);
991 992 993 994

	return page;
}

995 996 997 998 999 1000 1001
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1002
	struct page *page = NULL;
1003 1004

	spin_lock(&hugetlb_lock);
1005 1006
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1007 1008
	spin_unlock(&hugetlb_lock);

1009
	if (!page)
1010 1011 1012 1013 1014
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1015
/*
L
Lucas De Marchi 已提交
1016
 * Increase the hugetlb pool such that it can accommodate a reservation
1017 1018
 * of size 'delta'.
 */
1019
static int gather_surplus_pages(struct hstate *h, int delta)
1020 1021 1022 1023 1024
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1025
	bool alloc_ok = true;
1026

1027
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1028
	if (needed <= 0) {
1029
		h->resv_huge_pages += delta;
1030
		return 0;
1031
	}
1032 1033 1034 1035 1036 1037 1038 1039

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1040
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1041 1042 1043 1044
		if (!page) {
			alloc_ok = false;
			break;
		}
1045 1046
		list_add(&page->lru, &surplus_list);
	}
1047
	allocated += i;
1048 1049 1050 1051 1052 1053

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1054 1055
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1066 1067
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1068
	 * needed to accommodate the reservation.  Add the appropriate number
1069
	 * of pages to the hugetlb pool and free the extras back to the buddy
1070 1071 1072
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1073 1074
	 */
	needed += allocated;
1075
	h->resv_huge_pages += delta;
1076
	ret = 0;
1077

1078
	/* Free the needed pages to the hugetlb pool */
1079
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1080 1081
		if ((--needed) < 0)
			break;
1082 1083 1084 1085 1086
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1087
		VM_BUG_ON_PAGE(page_count(page), page);
1088
		enqueue_huge_page(h, page);
1089
	}
1090
free:
1091
	spin_unlock(&hugetlb_lock);
1092 1093

	/* Free unnecessary surplus pages to the buddy allocator */
1094 1095
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1096
	spin_lock(&hugetlb_lock);
1097 1098 1099 1100 1101 1102 1103 1104

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1105
 * Called with hugetlb_lock held.
1106
 */
1107 1108
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1109 1110 1111
{
	unsigned long nr_pages;

1112
	/* Uncommit the reservation */
1113
	h->resv_huge_pages -= unused_resv_pages;
1114

1115 1116 1117 1118
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1119
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1120

1121 1122
	/*
	 * We want to release as many surplus pages as possible, spread
1123 1124 1125 1126 1127
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1128 1129
	 */
	while (nr_pages--) {
1130
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1131
			break;
1132 1133 1134
	}
}

1135 1136 1137
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1138 1139 1140 1141 1142 1143
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1144
 */
1145
static long vma_needs_reservation(struct hstate *h,
1146
			struct vm_area_struct *vma, unsigned long addr)
1147 1148 1149 1150
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1151
	if (vma->vm_flags & VM_MAYSHARE) {
1152
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1153 1154 1155
		struct resv_map *resv = inode->i_mapping->private_data;

		return region_chg(&resv->regions, idx, idx + 1);
1156

1157 1158
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1159

1160
	} else  {
1161
		long err;
1162
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1163
		struct resv_map *resv = vma_resv_map(vma);
1164

1165
		err = region_chg(&resv->regions, idx, idx + 1);
1166 1167 1168 1169
		if (err < 0)
			return err;
		return 0;
	}
1170
}
1171 1172
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1173 1174 1175 1176
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1177
	if (vma->vm_flags & VM_MAYSHARE) {
1178
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1179 1180 1181
		struct resv_map *resv = inode->i_mapping->private_data;

		region_add(&resv->regions, idx, idx + 1);
1182 1183

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1184
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1185
		struct resv_map *resv = vma_resv_map(vma);
1186 1187

		/* Mark this page used in the map. */
1188
		region_add(&resv->regions, idx, idx + 1);
1189 1190 1191
	}
}

1192
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1193
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1194
{
1195
	struct hugepage_subpool *spool = subpool_vma(vma);
1196
	struct hstate *h = hstate_vma(vma);
1197
	struct page *page;
1198
	long chg;
1199 1200
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1201

1202
	idx = hstate_index(h);
1203
	/*
1204 1205 1206 1207 1208 1209
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1210
	 */
1211
	chg = vma_needs_reservation(h, vma, addr);
1212
	if (chg < 0)
1213
		return ERR_PTR(-ENOMEM);
1214 1215
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1216
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1217

1218 1219
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1220 1221
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1222 1223
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1224
	spin_lock(&hugetlb_lock);
1225
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1226
	if (!page) {
1227
		spin_unlock(&hugetlb_lock);
1228
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1229
		if (!page) {
1230 1231 1232
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1233 1234
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1235
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1236
		}
1237 1238
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1239
		/* Fall through */
K
Ken Chen 已提交
1240
	}
1241 1242
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1243

1244
	set_page_private(page, (unsigned long)spool);
1245

1246
	vma_commit_reservation(h, vma, addr);
1247
	return page;
1248 1249
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1264
int __weak alloc_bootmem_huge_page(struct hstate *h)
1265 1266
{
	struct huge_bootmem_page *m;
1267
	int nr_nodes, node;
1268

1269
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1270 1271
		void *addr;

1272 1273 1274
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1275 1276 1277 1278 1279 1280 1281
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1282
			goto found;
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1295 1296 1297 1298 1299 1300 1301 1302
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1303 1304 1305 1306 1307 1308 1309
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1310 1311 1312 1313
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1314 1315
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1316 1317 1318
#else
		page = virt_to_page(m);
#endif
1319
		WARN_ON(page_count(page) != 1);
1320
		prep_compound_huge_page(page, h->order);
1321
		WARN_ON(PageReserved(page));
1322
		prep_new_huge_page(h, page, page_to_nid(page));
1323 1324 1325 1326 1327 1328 1329
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1330
			adjust_managed_page_count(page, 1 << h->order);
1331 1332 1333
	}
}

1334
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1335 1336
{
	unsigned long i;
1337

1338
	for (i = 0; i < h->max_huge_pages; ++i) {
1339 1340 1341
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1342
		} else if (!alloc_fresh_huge_page(h,
1343
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1344 1345
			break;
	}
1346
	h->max_huge_pages = i;
1347 1348 1349 1350 1351 1352 1353
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1354 1355 1356
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1357 1358 1359
	}
}

A
Andi Kleen 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1371 1372 1373 1374 1375
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1376
		char buf[32];
1377
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1378 1379
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1380 1381 1382
	}
}

L
Linus Torvalds 已提交
1383
#ifdef CONFIG_HIGHMEM
1384 1385
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1386
{
1387 1388
	int i;

1389 1390 1391
	if (h->order >= MAX_ORDER)
		return;

1392
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1393
		struct page *page, *next;
1394 1395 1396
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1397
				return;
L
Linus Torvalds 已提交
1398 1399 1400
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1401
			update_and_free_page(h, page);
1402 1403
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1404 1405 1406 1407
		}
	}
}
#else
1408 1409
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1410 1411 1412 1413
{
}
#endif

1414 1415 1416 1417 1418
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1419 1420
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1421
{
1422
	int nr_nodes, node;
1423 1424 1425

	VM_BUG_ON(delta != -1 && delta != 1);

1426 1427 1428 1429
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1430
		}
1431 1432 1433 1434 1435
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1436
		}
1437 1438
	}
	return 0;
1439

1440 1441 1442 1443
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1444 1445
}

1446
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1447 1448
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1449
{
1450
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1451

1452 1453 1454
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1455 1456 1457 1458
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1459 1460 1461 1462 1463 1464
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1465
	 */
L
Linus Torvalds 已提交
1466
	spin_lock(&hugetlb_lock);
1467
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1468
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1469 1470 1471
			break;
	}

1472
	while (count > persistent_huge_pages(h)) {
1473 1474 1475 1476 1477 1478
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1479
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1480 1481 1482 1483
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1484 1485 1486
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1487 1488 1489 1490 1491 1492 1493 1494
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1495 1496 1497 1498 1499 1500 1501 1502
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1503
	 */
1504
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1505
	min_count = max(count, min_count);
1506
	try_to_free_low(h, min_count, nodes_allowed);
1507
	while (min_count < persistent_huge_pages(h)) {
1508
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1509 1510
			break;
	}
1511
	while (count < persistent_huge_pages(h)) {
1512
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1513 1514 1515
			break;
	}
out:
1516
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1517
	spin_unlock(&hugetlb_lock);
1518
	return ret;
L
Linus Torvalds 已提交
1519 1520
}

1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1531 1532 1533
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1534 1535
{
	int i;
1536

1537
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1538 1539 1540
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1541
			return &hstates[i];
1542 1543 1544
		}

	return kobj_to_node_hstate(kobj, nidp);
1545 1546
}

1547
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1548 1549
					struct kobj_attribute *attr, char *buf)
{
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1561
}
1562

1563 1564 1565
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1566 1567
{
	int err;
1568
	int nid;
1569
	unsigned long count;
1570
	struct hstate *h;
1571
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1572

1573
	err = kstrtoul(buf, 10, &count);
1574
	if (err)
1575
		goto out;
1576

1577
	h = kobj_to_hstate(kobj, &nid);
1578 1579 1580 1581 1582
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1583 1584 1585 1586 1587 1588 1589
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1590
			nodes_allowed = &node_states[N_MEMORY];
1591 1592 1593 1594 1595 1596 1597 1598 1599
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1600
		nodes_allowed = &node_states[N_MEMORY];
1601

1602
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1603

1604
	if (nodes_allowed != &node_states[N_MEMORY])
1605 1606 1607
		NODEMASK_FREE(nodes_allowed);

	return len;
1608 1609 1610
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1623 1624 1625
}
HSTATE_ATTR(nr_hugepages);

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1647 1648 1649
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1650
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1651 1652
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1653

1654 1655 1656 1657 1658
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1659
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1660

1661 1662 1663
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1664
	err = kstrtoul(buf, 10, &input);
1665
	if (err)
1666
		return err;
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1690 1691 1692 1693 1694 1695
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1696
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1697 1698 1699 1700 1701 1702 1703
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1715 1716 1717 1718 1719 1720 1721 1722 1723
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1724 1725 1726
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1727 1728 1729 1730 1731 1732 1733
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1734 1735 1736
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1737 1738
{
	int retval;
1739
	int hi = hstate_index(h);
1740

1741 1742
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1743 1744
		return -ENOMEM;

1745
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1746
	if (retval)
1747
		kobject_put(hstate_kobjs[hi]);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1762 1763
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1764
		if (err)
1765
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1766 1767 1768
	}
}

1769 1770 1771 1772
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1773 1774 1775
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1776 1777 1778 1779 1780 1781 1782 1783 1784
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1785
 * A subset of global hstate attributes for node devices
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1799
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1822
 * Unregister hstate attributes from a single node device.
1823 1824
 * No-op if no hstate attributes attached.
 */
1825
static void hugetlb_unregister_node(struct node *node)
1826 1827
{
	struct hstate *h;
1828
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1829 1830

	if (!nhs->hugepages_kobj)
1831
		return;		/* no hstate attributes */
1832

1833 1834 1835 1836 1837
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1838
		}
1839
	}
1840 1841 1842 1843 1844 1845

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1846
 * hugetlb module exit:  unregister hstate attributes from node devices
1847 1848 1849 1850 1851 1852 1853
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1854
	 * disable node device registrations.
1855 1856 1857 1858 1859 1860 1861
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1862
		hugetlb_unregister_node(node_devices[nid]);
1863 1864 1865
}

/*
1866
 * Register hstate attributes for a single node device.
1867 1868
 * No-op if attributes already registered.
 */
1869
static void hugetlb_register_node(struct node *node)
1870 1871
{
	struct hstate *h;
1872
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1873 1874 1875 1876 1877 1878
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1879
							&node->dev.kobj);
1880 1881 1882 1883 1884 1885 1886 1887
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1888 1889
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1890 1891 1892 1893 1894 1895 1896
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1897
 * hugetlb init time:  register hstate attributes for all registered node
1898 1899
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1900 1901 1902 1903 1904
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1905
	for_each_node_state(nid, N_MEMORY) {
1906
		struct node *node = node_devices[nid];
1907
		if (node->dev.id == nid)
1908 1909 1910 1911
			hugetlb_register_node(node);
	}

	/*
1912
	 * Let the node device driver know we're here so it can
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1934 1935 1936 1937
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1938 1939
	hugetlb_unregister_all_nodes();

1940
	for_each_hstate(h) {
1941
		kobject_put(hstate_kobjs[hstate_index(h)]);
1942 1943 1944 1945 1946 1947 1948 1949
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1950 1951 1952 1953 1954 1955
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1956

1957 1958 1959 1960
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1961
	}
1962
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1963 1964
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1965 1966

	hugetlb_init_hstates();
1967
	gather_bootmem_prealloc();
1968 1969 1970
	report_hugepages();

	hugetlb_sysfs_init();
1971
	hugetlb_register_all_nodes();
1972
	hugetlb_cgroup_file_init();
1973

1974 1975 1976 1977 1978 1979 1980 1981
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1982 1983
	unsigned long i;

1984
	if (size_to_hstate(PAGE_SIZE << order)) {
1985
		pr_warning("hugepagesz= specified twice, ignoring\n");
1986 1987
		return;
	}
1988
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1989
	BUG_ON(order == 0);
1990
	h = &hstates[hugetlb_max_hstate++];
1991 1992
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1993 1994 1995 1996
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1997
	INIT_LIST_HEAD(&h->hugepage_activelist);
1998 1999
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2000 2001
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2002

2003 2004 2005
	parsed_hstate = h;
}

2006
static int __init hugetlb_nrpages_setup(char *s)
2007 2008
{
	unsigned long *mhp;
2009
	static unsigned long *last_mhp;
2010 2011

	/*
2012
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2013 2014
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2015
	if (!hugetlb_max_hstate)
2016 2017 2018 2019
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2020
	if (mhp == last_mhp) {
2021 2022
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2023 2024 2025
		return 1;
	}

2026 2027 2028
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2029 2030 2031 2032 2033
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2034
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2035 2036 2037 2038
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2039 2040
	return 1;
}
2041 2042 2043 2044 2045 2046 2047 2048
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2049

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2062 2063 2064
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2065
{
2066 2067
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2068
	int ret;
2069

2070
	tmp = h->max_huge_pages;
2071

2072 2073 2074
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2075 2076
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2077 2078 2079
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2080

2081
	if (write) {
2082 2083
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2084 2085 2086
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2087
			nodes_allowed = &node_states[N_MEMORY];
2088 2089 2090
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2091
		if (nodes_allowed != &node_states[N_MEMORY])
2092 2093
			NODEMASK_FREE(nodes_allowed);
	}
2094 2095
out:
	return ret;
L
Linus Torvalds 已提交
2096
}
2097

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2115
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2116
			void __user *buffer,
2117 2118
			size_t *length, loff_t *ppos)
{
2119
	struct hstate *h = &default_hstate;
2120
	unsigned long tmp;
2121
	int ret;
2122

2123
	tmp = h->nr_overcommit_huge_pages;
2124

2125 2126 2127
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2128 2129
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2130 2131 2132
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2133 2134 2135 2136 2137 2138

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2139 2140
out:
	return ret;
2141 2142
}

L
Linus Torvalds 已提交
2143 2144
#endif /* CONFIG_SYSCTL */

2145
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2146
{
2147
	struct hstate *h = &default_hstate;
2148
	seq_printf(m,
2149 2150 2151 2152 2153
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2154 2155 2156 2157 2158
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2159 2160 2161 2162
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2163
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2164 2165
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2166 2167
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2168 2169 2170
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2171 2172
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2188 2189 2190
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2191 2192 2193 2194 2195 2196
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2197 2198
}

2199
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2222
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2223 2224
			goto out;

2225 2226
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2227 2228 2229 2230 2231 2232
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2233
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2234 2235 2236 2237 2238 2239

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2240 2241
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2242
	struct resv_map *resv = vma_resv_map(vma);
2243 2244 2245 2246 2247

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2248
	 * has a reference to the reservation map it cannot disappear until
2249 2250 2251
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2252 2253
	if (resv)
		kref_get(&resv->refs);
2254 2255
}

2256 2257
static void resv_map_put(struct vm_area_struct *vma)
{
2258
	struct resv_map *resv = vma_resv_map(vma);
2259

2260
	if (!resv)
2261
		return;
2262
	kref_put(&resv->refs, resv_map_release);
2263 2264
}

2265 2266
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2267
	struct hstate *h = hstate_vma(vma);
2268
	struct resv_map *resv = vma_resv_map(vma);
2269
	struct hugepage_subpool *spool = subpool_vma(vma);
2270 2271 2272 2273
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

2274
	if (resv) {
2275 2276
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2277 2278

		reserve = (end - start) -
2279
			region_count(&resv->regions, start, end);
2280

2281
		resv_map_put(vma);
2282

2283
		if (reserve) {
2284
			hugetlb_acct_memory(h, -reserve);
2285
			hugepage_subpool_put_pages(spool, reserve);
2286
		}
2287
	}
2288 2289
}

L
Linus Torvalds 已提交
2290 2291 2292 2293 2294 2295
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2296
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2297 2298
{
	BUG();
N
Nick Piggin 已提交
2299
	return 0;
L
Linus Torvalds 已提交
2300 2301
}

2302
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2303
	.fault = hugetlb_vm_op_fault,
2304
	.open = hugetlb_vm_op_open,
2305
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2306 2307
};

2308 2309
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2310 2311 2312
{
	pte_t entry;

2313
	if (writable) {
2314 2315
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2316
	} else {
2317 2318
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2319 2320 2321
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2322
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2323 2324 2325 2326

	return entry;
}

2327 2328 2329 2330 2331
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2332
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2333
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2334
		update_mmu_cache(vma, address, ptep);
2335 2336 2337
}


D
David Gibson 已提交
2338 2339 2340 2341 2342
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2343
	unsigned long addr;
2344
	int cow;
2345 2346
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2347 2348 2349
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2350 2351

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2352

2353 2354 2355 2356 2357
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2358
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2359
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2360 2361 2362
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2363
		dst_pte = huge_pte_alloc(dst, addr, sz);
2364 2365 2366 2367
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2368 2369 2370 2371 2372

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2373 2374 2375
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2376
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2377
			if (cow)
2378 2379
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2380 2381
			ptepage = pte_page(entry);
			get_page(ptepage);
2382
			page_dup_rmap(ptepage);
2383 2384
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2385 2386
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2387 2388
	}

2389 2390 2391 2392
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2393 2394
}

N
Naoya Horiguchi 已提交
2395 2396 2397 2398 2399 2400 2401
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2402
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2403
		return 1;
2404
	else
N
Naoya Horiguchi 已提交
2405 2406 2407
		return 0;
}

2408 2409 2410 2411 2412 2413 2414
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2415
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2416
		return 1;
2417
	else
2418 2419 2420
		return 0;
}

2421 2422 2423
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2424
{
2425
	int force_flush = 0;
D
David Gibson 已提交
2426 2427
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2428
	pte_t *ptep;
D
David Gibson 已提交
2429
	pte_t pte;
2430
	spinlock_t *ptl;
D
David Gibson 已提交
2431
	struct page *page;
2432 2433
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2434 2435
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2436

D
David Gibson 已提交
2437
	WARN_ON(!is_vm_hugetlb_page(vma));
2438 2439
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2440

2441
	tlb_start_vma(tlb, vma);
2442
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2443
again:
2444
	for (address = start; address < end; address += sz) {
2445
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2446
		if (!ptep)
2447 2448
			continue;

2449
		ptl = huge_pte_lock(h, mm, ptep);
2450
		if (huge_pmd_unshare(mm, &address, ptep))
2451
			goto unlock;
2452

2453 2454
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2455
			goto unlock;
2456 2457 2458 2459

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2460
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2461
			huge_pte_clear(mm, address, ptep);
2462
			goto unlock;
2463
		}
2464 2465

		page = pte_page(pte);
2466 2467 2468 2469 2470 2471 2472
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2473
				goto unlock;
2474 2475 2476 2477 2478 2479 2480 2481 2482

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2483
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2484
		tlb_remove_tlb_entry(tlb, ptep, address);
2485
		if (huge_pte_dirty(pte))
2486
			set_page_dirty(page);
2487

2488 2489
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2490 2491
		if (force_flush) {
			spin_unlock(ptl);
2492
			break;
2493
		}
2494
		/* Bail out after unmapping reference page if supplied */
2495 2496
		if (ref_page) {
			spin_unlock(ptl);
2497
			break;
2498 2499 2500
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2501
	}
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2512
	}
2513
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2514
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2515
}
D
David Gibson 已提交
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2536
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2537
			  unsigned long end, struct page *ref_page)
2538
{
2539 2540 2541 2542 2543
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2544
	tlb_gather_mmu(&tlb, mm, start, end);
2545 2546
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2547 2548
}

2549 2550 2551 2552 2553 2554
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2555 2556
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2557
{
2558
	struct hstate *h = hstate_vma(vma);
2559 2560 2561 2562 2563 2564 2565 2566
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2567
	address = address & huge_page_mask(h);
2568 2569
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2570
	mapping = file_inode(vma->vm_file)->i_mapping;
2571

2572 2573 2574 2575 2576
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2577
	mutex_lock(&mapping->i_mmap_mutex);
2578
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2591 2592
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2593
	}
2594
	mutex_unlock(&mapping->i_mmap_mutex);
2595 2596 2597 2598

	return 1;
}

2599 2600
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2601 2602 2603
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2604
 */
2605
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2606
			unsigned long address, pte_t *ptep, pte_t pte,
2607
			struct page *pagecache_page, spinlock_t *ptl)
2608
{
2609
	struct hstate *h = hstate_vma(vma);
2610
	struct page *old_page, *new_page;
2611
	int outside_reserve = 0;
2612 2613
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2614 2615 2616

	old_page = pte_page(pte);

2617
retry_avoidcopy:
2618 2619
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2620 2621
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2622
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2623
		return 0;
2624 2625
	}

2626 2627 2628 2629 2630 2631 2632 2633 2634
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2635
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2636 2637 2638
			old_page != pagecache_page)
		outside_reserve = 1;

2639
	page_cache_get(old_page);
2640

2641 2642
	/* Drop page table lock as buddy allocator may be called */
	spin_unlock(ptl);
2643
	new_page = alloc_huge_page(vma, address, outside_reserve);
2644

2645
	if (IS_ERR(new_page)) {
2646
		long err = PTR_ERR(new_page);
2647
		page_cache_release(old_page);
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2660
				spin_lock(ptl);
2661 2662 2663 2664
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
2665 2666
				 * race occurs while re-acquiring page table
				 * lock, and our job is done.
2667 2668
				 */
				return 0;
2669 2670 2671 2672
			}
			WARN_ON_ONCE(1);
		}

2673
		/* Caller expects lock to be held */
2674
		spin_lock(ptl);
2675 2676 2677 2678
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2679 2680
	}

2681 2682 2683 2684
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2685
	if (unlikely(anon_vma_prepare(vma))) {
2686 2687
		page_cache_release(new_page);
		page_cache_release(old_page);
2688
		/* Caller expects lock to be held */
2689
		spin_lock(ptl);
2690
		return VM_FAULT_OOM;
2691
	}
2692

A
Andrea Arcangeli 已提交
2693 2694
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2695
	__SetPageUptodate(new_page);
2696

2697 2698 2699
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2700
	/*
2701
	 * Retake the page table lock to check for racing updates
2702 2703
	 * before the page tables are altered
	 */
2704
	spin_lock(ptl);
2705
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2706
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2707 2708
		ClearPagePrivate(new_page);

2709
		/* Break COW */
2710
		huge_ptep_clear_flush(vma, address, ptep);
2711 2712
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2713
		page_remove_rmap(old_page);
2714
		hugepage_add_new_anon_rmap(new_page, vma, address);
2715 2716 2717
		/* Make the old page be freed below */
		new_page = old_page;
	}
2718
	spin_unlock(ptl);
2719
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2720 2721
	page_cache_release(new_page);
	page_cache_release(old_page);
2722 2723

	/* Caller expects lock to be held */
2724
	spin_lock(ptl);
N
Nick Piggin 已提交
2725
	return 0;
2726 2727
}

2728
/* Return the pagecache page at a given address within a VMA */
2729 2730
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2731 2732
{
	struct address_space *mapping;
2733
	pgoff_t idx;
2734 2735

	mapping = vma->vm_file->f_mapping;
2736
	idx = vma_hugecache_offset(h, vma, address);
2737 2738 2739 2740

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2741 2742 2743 2744 2745
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2761
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2762
			unsigned long address, pte_t *ptep, unsigned int flags)
2763
{
2764
	struct hstate *h = hstate_vma(vma);
2765
	int ret = VM_FAULT_SIGBUS;
2766
	int anon_rmap = 0;
2767
	pgoff_t idx;
A
Adam Litke 已提交
2768 2769 2770
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2771
	pte_t new_pte;
2772
	spinlock_t *ptl;
A
Adam Litke 已提交
2773

2774 2775 2776
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2777
	 * COW. Warn that such a situation has occurred as it may not be obvious
2778 2779
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2780 2781
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2782 2783 2784
		return ret;
	}

A
Adam Litke 已提交
2785
	mapping = vma->vm_file->f_mapping;
2786
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2787 2788 2789 2790 2791

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2792 2793 2794
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2795
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2796 2797
		if (idx >= size)
			goto out;
2798
		page = alloc_huge_page(vma, address, 0);
2799
		if (IS_ERR(page)) {
2800 2801 2802 2803 2804
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2805 2806
			goto out;
		}
A
Andrea Arcangeli 已提交
2807
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2808
		__SetPageUptodate(page);
2809

2810
		if (vma->vm_flags & VM_MAYSHARE) {
2811
			int err;
K
Ken Chen 已提交
2812
			struct inode *inode = mapping->host;
2813 2814 2815 2816 2817 2818 2819 2820

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2821
			ClearPagePrivate(page);
K
Ken Chen 已提交
2822 2823

			spin_lock(&inode->i_lock);
2824
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2825
			spin_unlock(&inode->i_lock);
2826
		} else {
2827
			lock_page(page);
2828 2829 2830 2831
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2832
			anon_rmap = 1;
2833
		}
2834
	} else {
2835 2836 2837 2838 2839 2840
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2841
			ret = VM_FAULT_HWPOISON |
2842
				VM_FAULT_SET_HINDEX(hstate_index(h));
2843 2844
			goto backout_unlocked;
		}
2845
	}
2846

2847 2848 2849 2850 2851 2852
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2853
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2854 2855 2856 2857
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2858

2859 2860
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2861
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2862 2863 2864
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2865
	ret = 0;
2866
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2867 2868
		goto backout;

2869 2870
	if (anon_rmap) {
		ClearPagePrivate(page);
2871
		hugepage_add_new_anon_rmap(page, vma, address);
2872
	}
2873 2874
	else
		page_dup_rmap(page);
2875 2876 2877 2878
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2879
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2880
		/* Optimization, do the COW without a second fault */
2881
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2882 2883
	}

2884
	spin_unlock(ptl);
A
Adam Litke 已提交
2885 2886
	unlock_page(page);
out:
2887
	return ret;
A
Adam Litke 已提交
2888 2889

backout:
2890
	spin_unlock(ptl);
2891
backout_unlocked:
A
Adam Litke 已提交
2892 2893 2894
	unlock_page(page);
	put_page(page);
	goto out;
2895 2896
}

2897
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2898
			unsigned long address, unsigned int flags)
2899 2900 2901
{
	pte_t *ptep;
	pte_t entry;
2902
	spinlock_t *ptl;
2903
	int ret;
2904
	struct page *page = NULL;
2905
	struct page *pagecache_page = NULL;
2906
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2907
	struct hstate *h = hstate_vma(vma);
2908

2909 2910
	address &= huge_page_mask(h);

2911 2912 2913
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2914
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2915
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
2916 2917
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2918
			return VM_FAULT_HWPOISON_LARGE |
2919
				VM_FAULT_SET_HINDEX(hstate_index(h));
2920 2921
	}

2922
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2923 2924 2925
	if (!ptep)
		return VM_FAULT_OOM;

2926 2927 2928 2929 2930 2931
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2932 2933
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2934
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2935
		goto out_mutex;
2936
	}
2937

N
Nick Piggin 已提交
2938
	ret = 0;
2939

2940 2941 2942 2943 2944 2945 2946 2947
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2948
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2949 2950
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2951
			goto out_mutex;
2952
		}
2953

2954
		if (!(vma->vm_flags & VM_MAYSHARE))
2955 2956 2957 2958
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2959 2960 2961 2962 2963 2964 2965 2966
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2967
	get_page(page);
2968
	if (page != pagecache_page)
2969 2970
		lock_page(page);

2971 2972
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2973
	/* Check for a racing update before calling hugetlb_cow */
2974
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2975
		goto out_ptl;
2976 2977


2978
	if (flags & FAULT_FLAG_WRITE) {
2979
		if (!huge_pte_write(entry)) {
2980
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2981 2982
					pagecache_page, ptl);
			goto out_ptl;
2983
		}
2984
		entry = huge_pte_mkdirty(entry);
2985 2986
	}
	entry = pte_mkyoung(entry);
2987 2988
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2989
		update_mmu_cache(vma, address, ptep);
2990

2991 2992
out_ptl:
	spin_unlock(ptl);
2993 2994 2995 2996 2997

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2998 2999
	if (page != pagecache_page)
		unlock_page(page);
3000
	put_page(page);
3001

3002
out_mutex:
3003
	mutex_unlock(&hugetlb_instantiation_mutex);
3004 3005

	return ret;
3006 3007
}

3008 3009 3010 3011
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3012
{
3013 3014
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3015
	unsigned long remainder = *nr_pages;
3016
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3017 3018

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3019
		pte_t *pte;
3020
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3021
		int absent;
A
Adam Litke 已提交
3022
		struct page *page;
D
David Gibson 已提交
3023

A
Adam Litke 已提交
3024 3025
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3026
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3027
		 * first, for the page indexing below to work.
3028 3029
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3030
		 */
3031
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3032 3033
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3034 3035 3036 3037
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3038 3039 3040 3041
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3042
		 */
H
Hugh Dickins 已提交
3043 3044
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3045 3046
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3047 3048 3049
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3050

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3062 3063
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3064
			int ret;
D
David Gibson 已提交
3065

3066 3067
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3068 3069
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3070
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3071
				continue;
D
David Gibson 已提交
3072

A
Adam Litke 已提交
3073 3074 3075 3076
			remainder = 0;
			break;
		}

3077
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3078
		page = pte_page(huge_ptep_get(pte));
3079
same_page:
3080
		if (pages) {
H
Hugh Dickins 已提交
3081
			pages[i] = mem_map_offset(page, pfn_offset);
3082
			get_page_foll(pages[i]);
3083
		}
D
David Gibson 已提交
3084 3085 3086 3087 3088

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3089
		++pfn_offset;
D
David Gibson 已提交
3090 3091
		--remainder;
		++i;
3092
		if (vaddr < vma->vm_end && remainder &&
3093
				pfn_offset < pages_per_huge_page(h)) {
3094 3095 3096 3097 3098 3099
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3100
		spin_unlock(ptl);
D
David Gibson 已提交
3101
	}
3102
	*nr_pages = remainder;
D
David Gibson 已提交
3103 3104
	*position = vaddr;

H
Hugh Dickins 已提交
3105
	return i ? i : -EFAULT;
D
David Gibson 已提交
3106
}
3107

3108
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3109 3110 3111 3112 3113 3114
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3115
	struct hstate *h = hstate_vma(vma);
3116
	unsigned long pages = 0;
3117 3118 3119 3120

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3121
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3122
	for (; address < end; address += huge_page_size(h)) {
3123
		spinlock_t *ptl;
3124 3125 3126
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3127
		ptl = huge_pte_lock(h, mm, ptep);
3128 3129
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3130
			spin_unlock(ptl);
3131
			continue;
3132
		}
3133
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3134
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3135
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3136
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3137
			set_huge_pte_at(mm, address, ptep, pte);
3138
			pages++;
3139
		}
3140
		spin_unlock(ptl);
3141
	}
3142 3143 3144 3145 3146 3147
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3148
	flush_tlb_range(vma, start, end);
3149
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3150 3151

	return pages << h->order;
3152 3153
}

3154 3155
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3156
					struct vm_area_struct *vma,
3157
					vm_flags_t vm_flags)
3158
{
3159
	long ret, chg;
3160
	struct hstate *h = hstate_inode(inode);
3161
	struct hugepage_subpool *spool = subpool_inode(inode);
3162
	struct resv_map *resv_map;
3163

3164 3165 3166
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3167
	 * without using reserves
3168
	 */
3169
	if (vm_flags & VM_NORESERVE)
3170 3171
		return 0;

3172 3173 3174 3175 3176 3177
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3178 3179 3180 3181 3182 3183 3184
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		resv_map = inode->i_mapping->private_data;

		chg = region_chg(&resv_map->regions, from, to);

	} else {
		resv_map = resv_map_alloc();
3185 3186 3187
		if (!resv_map)
			return -ENOMEM;

3188
		chg = to - from;
3189

3190 3191 3192 3193
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3194 3195 3196 3197
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3198

3199
	/* There must be enough pages in the subpool for the mapping */
3200 3201 3202 3203
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3204 3205

	/*
3206
	 * Check enough hugepages are available for the reservation.
3207
	 * Hand the pages back to the subpool if there are not
3208
	 */
3209
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3210
	if (ret < 0) {
3211
		hugepage_subpool_put_pages(spool, chg);
3212
		goto out_err;
K
Ken Chen 已提交
3213
	}
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3226
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3227
		region_add(&resv_map->regions, from, to);
3228
	return 0;
3229
out_err:
3230 3231
	if (vma)
		resv_map_put(vma);
3232
	return ret;
3233 3234 3235 3236
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3237
	struct hstate *h = hstate_inode(inode);
3238 3239
	struct resv_map *resv_map = inode->i_mapping->private_data;
	long chg = 0;
3240
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3241

3242 3243
	if (resv_map)
		chg = region_truncate(&resv_map->regions, offset);
K
Ken Chen 已提交
3244
	spin_lock(&inode->i_lock);
3245
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3246 3247
	spin_unlock(&inode->i_lock);

3248
	hugepage_subpool_put_pages(spool, (chg - freed));
3249
	hugetlb_acct_memory(h, -(chg - freed));
3250
}
3251

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3311
	spinlock_t *ptl;
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3334 3335
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3336 3337 3338 3339 3340
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
3341
	spin_unlock(ptl);
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3355
 * called with page table lock held.
3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3374 3375 3376 3377 3378 3379 3380
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3381 3382
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3464 3465
#ifdef CONFIG_MEMORY_FAILURE

3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3480 3481 3482 3483
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3484
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3485 3486 3487
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3488
	int ret = -EBUSY;
3489 3490

	spin_lock(&hugetlb_lock);
3491
	if (is_hugepage_on_freelist(hpage)) {
3492 3493 3494 3495 3496 3497 3498
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3499
		set_page_refcounted(hpage);
3500 3501 3502 3503
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3504
	spin_unlock(&hugetlb_lock);
3505
	return ret;
3506
}
3507
#endif
3508 3509 3510

bool isolate_huge_page(struct page *page, struct list_head *list)
{
3511
	VM_BUG_ON_PAGE(!PageHead(page), page);
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
3522
	VM_BUG_ON_PAGE(!PageHead(page), page);
3523 3524 3525 3526 3527
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3528 3529 3530

bool is_hugepage_active(struct page *page)
{
3531
	VM_BUG_ON_PAGE(!PageHuge(page), page);
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}