perf_event.c 142.7 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

37 38 39 40
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
41

P
Peter Zijlstra 已提交
42 43 44 45
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

46
/*
47
 * perf event paranoia level:
48 49
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
50
 *   1 - disallow cpu events for unpriv
51
 *   2 - disallow kernel profiling for unpriv
52
 */
53
int sysctl_perf_event_paranoid __read_mostly = 1;
54

55
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56 57

/*
58
 * max perf event sample rate
59
 */
60
int sysctl_perf_event_sample_rate __read_mostly = 100000;
61

62
static atomic64_t perf_event_id;
63

64
void __weak perf_event_print_debug(void)	{ }
65

66 67 68 69 70
extern __weak const char *perf_pmu_name(void)
{
	return "pmu";
}

P
Peter Zijlstra 已提交
71
void perf_pmu_disable(struct pmu *pmu)
72
{
P
Peter Zijlstra 已提交
73 74 75
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
76 77
}

P
Peter Zijlstra 已提交
78
void perf_pmu_enable(struct pmu *pmu)
79
{
P
Peter Zijlstra 已提交
80 81 82
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
83 84
}

85 86 87 88 89 90 91
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
92
static void perf_pmu_rotate_start(struct pmu *pmu)
93
{
P
Peter Zijlstra 已提交
94
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95
	struct list_head *head = &__get_cpu_var(rotation_list);
96

97
	WARN_ON(!irqs_disabled());
98

99 100
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
101 102
}

103
static void get_ctx(struct perf_event_context *ctx)
104
{
105
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
106 107
}

108 109
static void free_ctx(struct rcu_head *head)
{
110
	struct perf_event_context *ctx;
111

112
	ctx = container_of(head, struct perf_event_context, rcu_head);
113 114 115
	kfree(ctx);
}

116
static void put_ctx(struct perf_event_context *ctx)
117
{
118 119 120
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
121 122 123
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
124
	}
125 126
}

127
static void unclone_ctx(struct perf_event_context *ctx)
128 129 130 131 132 133 134
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

135
/*
136
 * If we inherit events we want to return the parent event id
137 138
 * to userspace.
 */
139
static u64 primary_event_id(struct perf_event *event)
140
{
141
	u64 id = event->id;
142

143 144
	if (event->parent)
		id = event->parent->id;
145 146 147 148

	return id;
}

149
/*
150
 * Get the perf_event_context for a task and lock it.
151 152 153
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
154
static struct perf_event_context *
P
Peter Zijlstra 已提交
155
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
156
{
157
	struct perf_event_context *ctx;
158 159

	rcu_read_lock();
P
Peter Zijlstra 已提交
160
retry:
P
Peter Zijlstra 已提交
161
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
162 163 164 165
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
166
		 * perf_event_task_sched_out, though the
167 168 169 170 171 172
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
173
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
174
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
175
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176 177
			goto retry;
		}
178 179

		if (!atomic_inc_not_zero(&ctx->refcount)) {
180
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 182
			ctx = NULL;
		}
183 184 185 186 187 188 189 190 191 192
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
193 194
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
195
{
196
	struct perf_event_context *ctx;
197 198
	unsigned long flags;

P
Peter Zijlstra 已提交
199
	ctx = perf_lock_task_context(task, ctxn, &flags);
200 201
	if (ctx) {
		++ctx->pin_count;
202
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
203 204 205 206
	}
	return ctx;
}

207
static void perf_unpin_context(struct perf_event_context *ctx)
208 209 210
{
	unsigned long flags;

211
	raw_spin_lock_irqsave(&ctx->lock, flags);
212
	--ctx->pin_count;
213
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
214 215 216
	put_ctx(ctx);
}

217 218
static inline u64 perf_clock(void)
{
219
	return local_clock();
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

245 246 247 248 249 250
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
251 252 253 254 255 256 257 258 259

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

260 261 262 263 264 265 266 267 268 269 270 271
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

272 273 274 275 276 277 278 279 280
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

281
/*
282
 * Add a event from the lists for its context.
283 284
 * Must be called with ctx->mutex and ctx->lock held.
 */
285
static void
286
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
287
{
288 289
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
290 291

	/*
292 293 294
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
295
	 */
296
	if (event->group_leader == event) {
297 298
		struct list_head *list;

299 300 301
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

302 303
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
304
	}
P
Peter Zijlstra 已提交
305

306
	list_add_rcu(&event->event_entry, &ctx->event_list);
307
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
308
		perf_pmu_rotate_start(ctx->pmu);
309 310
	ctx->nr_events++;
	if (event->attr.inherit_stat)
311
		ctx->nr_stat++;
312 313
}

314 315 316 317
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

P
Peter Zijlstra 已提交
318 319 320 321 322 323
	/*
	 * We can have double attach due to group movement in perf_event_open.
	 */
	if (event->attach_state & PERF_ATTACH_GROUP)
		return;

324 325 326 327 328 329 330 331 332 333 334 335 336
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

337
/*
338
 * Remove a event from the lists for its context.
339
 * Must be called with ctx->mutex and ctx->lock held.
340
 */
341
static void
342
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
343
{
344 345 346 347
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
348
		return;
349 350 351

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

352 353
	ctx->nr_events--;
	if (event->attr.inherit_stat)
354
		ctx->nr_stat--;
355

356
	list_del_rcu(&event->event_entry);
357

358 359
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
360

361
	update_group_times(event);
362 363 364 365 366 367 368 369 370 371

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
372 373
}

374
static void perf_group_detach(struct perf_event *event)
375 376
{
	struct perf_event *sibling, *tmp;
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
398

399
	/*
400 401
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
402
	 * to whatever list we are on.
403
	 */
404
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
405 406
		if (list)
			list_move_tail(&sibling->group_entry, list);
407
		sibling->group_leader = sibling;
408 409 410

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
411 412 413
	}
}

414 415 416 417 418 419
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

420 421
static int
__event_sched_out(struct perf_event *event,
422
		  struct perf_cpu_context *cpuctx,
423
		  struct perf_event_context *ctx)
424
{
425 426 427 428 429 430 431 432 433 434 435 436 437 438
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

439
	if (event->state != PERF_EVENT_STATE_ACTIVE)
440
		return 0;
441

442 443 444 445
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
446
	}
P
Peter Zijlstra 已提交
447
	event->pmu->del(event, 0);
448
	event->oncpu = -1;
449

450
	if (!is_software_event(event))
451 452
		cpuctx->active_oncpu--;
	ctx->nr_active--;
453
	if (event->attr.exclusive || !cpuctx->active_oncpu)
454
		cpuctx->exclusive = 0;
455 456 457 458 459 460 461 462 463 464 465 466 467
	return 1;
}

static void
event_sched_out(struct perf_event *event,
		  struct perf_cpu_context *cpuctx,
		  struct perf_event_context *ctx)
{
	int ret;

	ret = __event_sched_out(event, cpuctx, ctx);
	if (ret)
		event->tstamp_stopped = ctx->time;
468 469
}

470
static void
471
group_sched_out(struct perf_event *group_event,
472
		struct perf_cpu_context *cpuctx,
473
		struct perf_event_context *ctx)
474
{
475
	struct perf_event *event;
476
	int state = group_event->state;
477

478
	event_sched_out(group_event, cpuctx, ctx);
479 480 481 482

	/*
	 * Schedule out siblings (if any):
	 */
483 484
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
485

486
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
487 488 489
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
490 491 492 493 494 495
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
496
/*
497
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
498
 *
499
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
500 501
 * remove it from the context list.
 */
502
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
503
{
504 505
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
506
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
507 508 509 510 511 512

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
513
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
514 515
		return;

516
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
517

518
	event_sched_out(event, cpuctx, ctx);
519

520
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
521

522
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
523 524 525 526
}


/*
527
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
528
 *
529
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
530
 *
531
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
532
 * call when the task is on a CPU.
533
 *
534 535
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
536 537
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
538
 * When called from perf_event_exit_task, it's OK because the
539
 * context has been detached from its task.
T
Thomas Gleixner 已提交
540
 */
541
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
542
{
543
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
544 545 546 547
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
548
		 * Per cpu events are removed via an smp call and
549
		 * the removal is always successful.
T
Thomas Gleixner 已提交
550
		 */
551 552 553
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
554 555 556 557
		return;
	}

retry:
558 559
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
560

561
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
562 563 564
	/*
	 * If the context is active we need to retry the smp call.
	 */
565
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
566
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
567 568 569 570 571
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
572
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
573 574
	 * succeed.
	 */
P
Peter Zijlstra 已提交
575
	if (!list_empty(&event->group_entry))
576
		list_del_event(event, ctx);
577
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
578 579
}

580
/*
581
 * Cross CPU call to disable a performance event
582
 */
583
static void __perf_event_disable(void *info)
584
{
585 586
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
587
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
588 589

	/*
590 591
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
592
	 */
593
	if (ctx->task && cpuctx->task_ctx != ctx)
594 595
		return;

596
	raw_spin_lock(&ctx->lock);
597 598

	/*
599
	 * If the event is on, turn it off.
600 601
	 * If it is in error state, leave it in error state.
	 */
602
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
603
		update_context_time(ctx);
604 605 606
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
607
		else
608 609
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
610 611
	}

612
	raw_spin_unlock(&ctx->lock);
613 614 615
}

/*
616
 * Disable a event.
617
 *
618 619
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
620
 * remains valid.  This condition is satisifed when called through
621 622 623 624
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
625
 * is the current context on this CPU and preemption is disabled,
626
 * hence we can't get into perf_event_task_sched_out for this context.
627
 */
628
void perf_event_disable(struct perf_event *event)
629
{
630
	struct perf_event_context *ctx = event->ctx;
631 632 633 634
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
635
		 * Disable the event on the cpu that it's on
636
		 */
637 638
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
639 640 641
		return;
	}

P
Peter Zijlstra 已提交
642
retry:
643
	task_oncpu_function_call(task, __perf_event_disable, event);
644

645
	raw_spin_lock_irq(&ctx->lock);
646
	/*
647
	 * If the event is still active, we need to retry the cross-call.
648
	 */
649
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
650
		raw_spin_unlock_irq(&ctx->lock);
651 652 653 654 655 656 657
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
658 659 660
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
661
	}
662

663
	raw_spin_unlock_irq(&ctx->lock);
664 665
}

666
static int
667
__event_sched_in(struct perf_event *event,
668
		 struct perf_cpu_context *cpuctx,
669
		 struct perf_event_context *ctx)
670
{
671
	if (event->state <= PERF_EVENT_STATE_OFF)
672 673
		return 0;

674
	event->state = PERF_EVENT_STATE_ACTIVE;
675
	event->oncpu = smp_processor_id();
676 677 678 679 680
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
681
	if (event->pmu->add(event, PERF_EF_START)) {
682 683
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
684 685 686
		return -EAGAIN;
	}

687
	if (!is_software_event(event))
688
		cpuctx->active_oncpu++;
689 690
	ctx->nr_active++;

691
	if (event->attr.exclusive)
692 693
		cpuctx->exclusive = 1;

694 695 696
	return 0;
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
static inline int
event_sched_in(struct perf_event *event,
		 struct perf_cpu_context *cpuctx,
		 struct perf_event_context *ctx)
{
	int ret = __event_sched_in(event, cpuctx, ctx);
	if (ret)
		return ret;
	event->tstamp_running += ctx->time - event->tstamp_stopped;
	return 0;
}

static void
group_commit_event_sched_in(struct perf_event *group_event,
	       struct perf_cpu_context *cpuctx,
	       struct perf_event_context *ctx)
{
	struct perf_event *event;
	u64 now = ctx->time;

	group_event->tstamp_running += now - group_event->tstamp_stopped;
	/*
	 * Schedule in siblings as one group (if any):
	 */
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		event->tstamp_running += now - event->tstamp_stopped;
	}
}

726
static int
727
group_sched_in(struct perf_event *group_event,
728
	       struct perf_cpu_context *cpuctx,
729
	       struct perf_event_context *ctx)
730
{
731
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
732
	struct pmu *pmu = group_event->pmu;
733

734
	if (group_event->state == PERF_EVENT_STATE_OFF)
735 736
		return 0;

P
Peter Zijlstra 已提交
737
	pmu->start_txn(pmu);
738

739 740 741 742 743 744 745
	/*
	 * use __event_sched_in() to delay updating tstamp_running
	 * until the transaction is committed. In case of failure
	 * we will keep an unmodified tstamp_running which is a
	 * requirement to get correct timing information
	 */
	if (__event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
746
		pmu->cancel_txn(pmu);
747
		return -EAGAIN;
748
	}
749 750 751 752

	/*
	 * Schedule in siblings as one group (if any):
	 */
753
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
754
		if (__event_sched_in(event, cpuctx, ctx)) {
755
			partial_group = event;
756 757 758 759
			goto group_error;
		}
	}

760 761 762
	if (!pmu->commit_txn(pmu)) {
		/* commit tstamp_running */
		group_commit_event_sched_in(group_event, cpuctx, ctx);
763
		return 0;
764
	}
765 766 767 768
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
769 770 771
	 *
	 * use __event_sched_out() to avoid updating tstamp_stopped
	 * because the event never actually ran
772
	 */
773 774
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
775
			break;
776
		__event_sched_out(event, cpuctx, ctx);
777
	}
778
	__event_sched_out(group_event, cpuctx, ctx);
779

P
Peter Zijlstra 已提交
780
	pmu->cancel_txn(pmu);
781

782 783 784
	return -EAGAIN;
}

785
/*
786
 * Work out whether we can put this event group on the CPU now.
787
 */
788
static int group_can_go_on(struct perf_event *event,
789 790 791 792
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
793
	 * Groups consisting entirely of software events can always go on.
794
	 */
795
	if (event->group_flags & PERF_GROUP_SOFTWARE)
796 797 798
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
799
	 * events can go on.
800 801 802 803 804
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
805
	 * events on the CPU, it can't go on.
806
	 */
807
	if (event->attr.exclusive && cpuctx->active_oncpu)
808 809 810 811 812 813 814 815
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

816 817
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
818
{
819
	list_add_event(event, ctx);
820
	perf_group_attach(event);
821 822 823
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
824 825
}

T
Thomas Gleixner 已提交
826
/*
827
 * Cross CPU call to install and enable a performance event
828 829
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
830 831 832
 */
static void __perf_install_in_context(void *info)
{
833 834 835
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
836
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
837
	int err;
T
Thomas Gleixner 已提交
838 839 840 841 842

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
843
	 * Or possibly this is the right context but it isn't
844
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
845
	 */
846
	if (ctx->task && cpuctx->task_ctx != ctx) {
847
		if (cpuctx->task_ctx || ctx->task != current)
848 849 850
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
851

852
	raw_spin_lock(&ctx->lock);
853
	ctx->is_active = 1;
854
	update_context_time(ctx);
T
Thomas Gleixner 已提交
855

856
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
857

858 859 860
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

861
	/*
862
	 * Don't put the event on if it is disabled or if
863 864
	 * it is in a group and the group isn't on.
	 */
865 866
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
867 868
		goto unlock;

869
	/*
870 871 872
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
873
	 */
874
	if (!group_can_go_on(event, cpuctx, 1))
875 876
		err = -EEXIST;
	else
877
		err = event_sched_in(event, cpuctx, ctx);
878

879 880
	if (err) {
		/*
881
		 * This event couldn't go on.  If it is in a group
882
		 * then we have to pull the whole group off.
883
		 * If the event group is pinned then put it in error state.
884
		 */
885
		if (leader != event)
886
			group_sched_out(leader, cpuctx, ctx);
887
		if (leader->attr.pinned) {
888
			update_group_times(leader);
889
			leader->state = PERF_EVENT_STATE_ERROR;
890
		}
891
	}
T
Thomas Gleixner 已提交
892

P
Peter Zijlstra 已提交
893
unlock:
894
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
895 896 897
}

/*
898
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
899
 *
900 901
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
902
 *
903
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
904 905
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
906 907
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
908 909
 */
static void
910 911
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
912 913 914 915
			int cpu)
{
	struct task_struct *task = ctx->task;

916 917
	event->ctx = ctx;

T
Thomas Gleixner 已提交
918 919
	if (!task) {
		/*
920
		 * Per cpu events are installed via an smp call and
921
		 * the install is always successful.
T
Thomas Gleixner 已提交
922 923
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
924
					 event, 1);
T
Thomas Gleixner 已提交
925 926 927 928 929
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
930
				 event);
T
Thomas Gleixner 已提交
931

932
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
933 934 935
	/*
	 * we need to retry the smp call.
	 */
936
	if (ctx->is_active && list_empty(&event->group_entry)) {
937
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
938 939 940 941 942
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
943
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
944 945
	 * succeed.
	 */
946 947
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
948
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
949 950
}

951
/*
952
 * Put a event into inactive state and update time fields.
953 954 955 956 957 958
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
959 960
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
961
{
962
	struct perf_event *sub;
963

964 965
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
966 967
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
968 969
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
970 971
		}
	}
972 973
}

974
/*
975
 * Cross CPU call to enable a performance event
976
 */
977
static void __perf_event_enable(void *info)
978
{
979 980 981
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
982
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
983
	int err;
984

985
	/*
986 987
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
988
	 */
989
	if (ctx->task && cpuctx->task_ctx != ctx) {
990
		if (cpuctx->task_ctx || ctx->task != current)
991 992 993
			return;
		cpuctx->task_ctx = ctx;
	}
994

995
	raw_spin_lock(&ctx->lock);
996
	ctx->is_active = 1;
997
	update_context_time(ctx);
998

999
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1000
		goto unlock;
1001
	__perf_event_mark_enabled(event, ctx);
1002

1003 1004 1005
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

1006
	/*
1007
	 * If the event is in a group and isn't the group leader,
1008
	 * then don't put it on unless the group is on.
1009
	 */
1010
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1011
		goto unlock;
1012

1013
	if (!group_can_go_on(event, cpuctx, 1)) {
1014
		err = -EEXIST;
1015
	} else {
1016
		if (event == leader)
1017
			err = group_sched_in(event, cpuctx, ctx);
1018
		else
1019
			err = event_sched_in(event, cpuctx, ctx);
1020
	}
1021 1022 1023

	if (err) {
		/*
1024
		 * If this event can't go on and it's part of a
1025 1026
		 * group, then the whole group has to come off.
		 */
1027
		if (leader != event)
1028
			group_sched_out(leader, cpuctx, ctx);
1029
		if (leader->attr.pinned) {
1030
			update_group_times(leader);
1031
			leader->state = PERF_EVENT_STATE_ERROR;
1032
		}
1033 1034
	}

P
Peter Zijlstra 已提交
1035
unlock:
1036
	raw_spin_unlock(&ctx->lock);
1037 1038 1039
}

/*
1040
 * Enable a event.
1041
 *
1042 1043
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1044
 * remains valid.  This condition is satisfied when called through
1045 1046
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1047
 */
1048
void perf_event_enable(struct perf_event *event)
1049
{
1050
	struct perf_event_context *ctx = event->ctx;
1051 1052 1053 1054
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1055
		 * Enable the event on the cpu that it's on
1056
		 */
1057 1058
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1059 1060 1061
		return;
	}

1062
	raw_spin_lock_irq(&ctx->lock);
1063
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1064 1065 1066
		goto out;

	/*
1067 1068
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1069 1070 1071 1072
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1073 1074
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1075

P
Peter Zijlstra 已提交
1076
retry:
1077
	raw_spin_unlock_irq(&ctx->lock);
1078
	task_oncpu_function_call(task, __perf_event_enable, event);
1079

1080
	raw_spin_lock_irq(&ctx->lock);
1081 1082

	/*
1083
	 * If the context is active and the event is still off,
1084 1085
	 * we need to retry the cross-call.
	 */
1086
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1087 1088 1089 1090 1091 1092
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1093 1094
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1095

P
Peter Zijlstra 已提交
1096
out:
1097
	raw_spin_unlock_irq(&ctx->lock);
1098 1099
}

1100
static int perf_event_refresh(struct perf_event *event, int refresh)
1101
{
1102
	/*
1103
	 * not supported on inherited events
1104
	 */
1105
	if (event->attr.inherit)
1106 1107
		return -EINVAL;

1108 1109
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1110 1111

	return 0;
1112 1113
}

1114 1115 1116 1117 1118 1119 1120 1121 1122
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1123
{
1124
	struct perf_event *event;
1125

1126
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1127
	perf_pmu_disable(ctx->pmu);
1128
	ctx->is_active = 0;
1129
	if (likely(!ctx->nr_events))
1130
		goto out;
1131
	update_context_time(ctx);
1132

1133
	if (!ctx->nr_active)
1134
		goto out;
1135

P
Peter Zijlstra 已提交
1136
	if (event_type & EVENT_PINNED) {
1137 1138
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1139
	}
1140

P
Peter Zijlstra 已提交
1141
	if (event_type & EVENT_FLEXIBLE) {
1142
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1143
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1144 1145
	}
out:
P
Peter Zijlstra 已提交
1146
	perf_pmu_enable(ctx->pmu);
1147
	raw_spin_unlock(&ctx->lock);
1148 1149
}

1150 1151 1152
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1153 1154 1155 1156
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1157
 * in them directly with an fd; we can only enable/disable all
1158
 * events via prctl, or enable/disable all events in a family
1159 1160
 * via ioctl, which will have the same effect on both contexts.
 */
1161 1162
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1163 1164
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1165
		&& ctx1->parent_gen == ctx2->parent_gen
1166
		&& !ctx1->pin_count && !ctx2->pin_count;
1167 1168
}

1169 1170
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1171 1172 1173
{
	u64 value;

1174
	if (!event->attr.inherit_stat)
1175 1176 1177
		return;

	/*
1178
	 * Update the event value, we cannot use perf_event_read()
1179 1180
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1181
	 * we know the event must be on the current CPU, therefore we
1182 1183
	 * don't need to use it.
	 */
1184 1185
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1186 1187
		event->pmu->read(event);
		/* fall-through */
1188

1189 1190
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1191 1192 1193 1194 1195 1196 1197
		break;

	default:
		break;
	}

	/*
1198
	 * In order to keep per-task stats reliable we need to flip the event
1199 1200
	 * values when we flip the contexts.
	 */
1201 1202 1203
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1204

1205 1206
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1207

1208
	/*
1209
	 * Since we swizzled the values, update the user visible data too.
1210
	 */
1211 1212
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1213 1214 1215 1216 1217
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1218 1219
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1220
{
1221
	struct perf_event *event, *next_event;
1222 1223 1224 1225

	if (!ctx->nr_stat)
		return;

1226 1227
	update_context_time(ctx);

1228 1229
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1230

1231 1232
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1233

1234 1235
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1236

1237
		__perf_event_sync_stat(event, next_event);
1238

1239 1240
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1241 1242 1243
	}
}

P
Peter Zijlstra 已提交
1244 1245
void perf_event_context_sched_out(struct task_struct *task, int ctxn,
				  struct task_struct *next)
T
Thomas Gleixner 已提交
1246
{
P
Peter Zijlstra 已提交
1247
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1248 1249
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1250
	struct perf_cpu_context *cpuctx;
1251
	int do_switch = 1;
T
Thomas Gleixner 已提交
1252

P
Peter Zijlstra 已提交
1253 1254
	if (likely(!ctx))
		return;
1255

P
Peter Zijlstra 已提交
1256 1257
	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1258 1259
		return;

1260 1261
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1262
	next_ctx = next->perf_event_ctxp[ctxn];
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1274 1275
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1276
		if (context_equiv(ctx, next_ctx)) {
1277 1278
			/*
			 * XXX do we need a memory barrier of sorts
1279
			 * wrt to rcu_dereference() of perf_event_ctxp
1280
			 */
P
Peter Zijlstra 已提交
1281 1282
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1283 1284 1285
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1286

1287
			perf_event_sync_stat(ctx, next_ctx);
1288
		}
1289 1290
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1291
	}
1292
	rcu_read_unlock();
1293

1294
	if (do_switch) {
1295
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1296 1297
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1298 1299
}

P
Peter Zijlstra 已提交
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
void perf_event_task_sched_out(struct task_struct *task,
			       struct task_struct *next)
{
	int ctxn;

	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
}

1325 1326
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1327
{
P
Peter Zijlstra 已提交
1328
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1329

1330 1331
	if (!cpuctx->task_ctx)
		return;
1332 1333 1334 1335

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1336
	ctx_sched_out(ctx, cpuctx, event_type);
1337 1338 1339
	cpuctx->task_ctx = NULL;
}

1340 1341 1342
/*
 * Called with IRQs disabled
 */
1343
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1344
{
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1355 1356
}

1357
static void
1358
ctx_pinned_sched_in(struct perf_event_context *ctx,
1359
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1360
{
1361
	struct perf_event *event;
T
Thomas Gleixner 已提交
1362

1363 1364
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1365
			continue;
1366
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1367 1368
			continue;

1369
		if (group_can_go_on(event, cpuctx, 1))
1370
			group_sched_in(event, cpuctx, ctx);
1371 1372 1373 1374 1375

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1376 1377 1378
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1379
		}
1380
	}
1381 1382 1383 1384
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1385
		      struct perf_cpu_context *cpuctx)
1386 1387 1388
{
	struct perf_event *event;
	int can_add_hw = 1;
1389

1390 1391 1392
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1393
			continue;
1394 1395
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1396
		 * of events:
1397
		 */
1398
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1399 1400
			continue;

P
Peter Zijlstra 已提交
1401
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1402
			if (group_sched_in(event, cpuctx, ctx))
1403
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1404
		}
T
Thomas Gleixner 已提交
1405
	}
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1425
		ctx_pinned_sched_in(ctx, cpuctx);
1426 1427 1428

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1429
		ctx_flexible_sched_in(ctx, cpuctx);
1430

P
Peter Zijlstra 已提交
1431
out:
1432
	raw_spin_unlock(&ctx->lock);
1433 1434
}

1435 1436 1437 1438 1439 1440 1441 1442
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

P
Peter Zijlstra 已提交
1443
static void task_ctx_sched_in(struct perf_event_context *ctx,
1444 1445
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
1446
	struct perf_cpu_context *cpuctx;
1447

P
Peter Zijlstra 已提交
1448
       	cpuctx = __get_cpu_context(ctx);
1449 1450
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
1451

1452 1453 1454
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
T
Thomas Gleixner 已提交
1455

P
Peter Zijlstra 已提交
1456
void perf_event_context_sched_in(struct perf_event_context *ctx)
1457
{
P
Peter Zijlstra 已提交
1458
	struct perf_cpu_context *cpuctx;
1459

P
Peter Zijlstra 已提交
1460
	cpuctx = __get_cpu_context(ctx);
1461 1462 1463
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
1464
	perf_pmu_disable(ctx->pmu);
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1477

1478 1479 1480 1481
	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1482
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
1483
	perf_pmu_enable(ctx->pmu);
1484 1485
}

P
Peter Zijlstra 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
void perf_event_task_sched_in(struct task_struct *task)
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

		perf_event_context_sched_in(ctx);
	}
1509 1510
}

1511 1512
#define MAX_INTERRUPTS (~0ULL)

1513
static void perf_log_throttle(struct perf_event *event, int enable);
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1582 1583 1584
	if (!divisor)
		return dividend;

1585 1586 1587 1588
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1589
{
1590
	struct hw_perf_event *hwc = &event->hw;
1591
	s64 period, sample_period;
1592 1593
	s64 delta;

1594
	period = perf_calculate_period(event, nsec, count);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1605

1606
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1607
		event->pmu->stop(event, PERF_EF_UPDATE);
1608
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1609
		event->pmu->start(event, PERF_EF_RELOAD);
1610
	}
1611 1612
}

1613
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1614
{
1615 1616
	struct perf_event *event;
	struct hw_perf_event *hwc;
1617 1618
	u64 interrupts, now;
	s64 delta;
1619

1620
	raw_spin_lock(&ctx->lock);
1621
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1622
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1623 1624
			continue;

1625 1626 1627
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1628
		hwc = &event->hw;
1629 1630 1631

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1632

1633
		/*
1634
		 * unthrottle events on the tick
1635
		 */
1636
		if (interrupts == MAX_INTERRUPTS) {
1637
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1638
			event->pmu->start(event, 0);
1639 1640
		}

1641
		if (!event->attr.freq || !event->attr.sample_freq)
1642 1643
			continue;

1644
		event->pmu->read(event);
1645
		now = local64_read(&event->count);
1646 1647
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1648

1649
		if (delta > 0)
1650
			perf_adjust_period(event, period, delta);
1651
	}
1652
	raw_spin_unlock(&ctx->lock);
1653 1654
}

1655
/*
1656
 * Round-robin a context's events:
1657
 */
1658
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1659
{
1660
	raw_spin_lock(&ctx->lock);
1661 1662 1663 1664

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1665
	raw_spin_unlock(&ctx->lock);
1666 1667
}

1668
/*
1669 1670 1671
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
1672
 */
1673
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1674
{
1675
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
1676
	struct perf_event_context *ctx = NULL;
1677
	int rotate = 0, remove = 1;
1678

1679
	if (cpuctx->ctx.nr_events) {
1680
		remove = 0;
1681 1682 1683
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1684

P
Peter Zijlstra 已提交
1685
	ctx = cpuctx->task_ctx;
1686
	if (ctx && ctx->nr_events) {
1687
		remove = 0;
1688 1689 1690
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1691

P
Peter Zijlstra 已提交
1692
	perf_pmu_disable(cpuctx->ctx.pmu);
1693
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1694
	if (ctx)
1695
		perf_ctx_adjust_freq(ctx, interval);
1696

1697
	if (!rotate)
1698
		goto done;
1699

1700
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1701
	if (ctx)
1702
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1703

1704
	rotate_ctx(&cpuctx->ctx);
1705 1706
	if (ctx)
		rotate_ctx(ctx);
1707

1708
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1709
	if (ctx)
P
Peter Zijlstra 已提交
1710
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1711 1712

done:
1713 1714 1715
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
1716
	perf_pmu_enable(cpuctx->ctx.pmu);
1717 1718 1719 1720 1721 1722
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
1723

1724 1725 1726 1727 1728 1729 1730
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
1731 1732
}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1748
/*
1749
 * Enable all of a task's events that have been marked enable-on-exec.
1750 1751
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
1752
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1753
{
1754
	struct perf_event *event;
1755 1756
	unsigned long flags;
	int enabled = 0;
1757
	int ret;
1758 1759

	local_irq_save(flags);
1760
	if (!ctx || !ctx->nr_events)
1761 1762
		goto out;

P
Peter Zijlstra 已提交
1763
	task_ctx_sched_out(ctx, EVENT_ALL);
1764

1765
	raw_spin_lock(&ctx->lock);
1766

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1777 1778 1779
	}

	/*
1780
	 * Unclone this context if we enabled any event.
1781
	 */
1782 1783
	if (enabled)
		unclone_ctx(ctx);
1784

1785
	raw_spin_unlock(&ctx->lock);
1786

P
Peter Zijlstra 已提交
1787
	perf_event_context_sched_in(ctx);
P
Peter Zijlstra 已提交
1788
out:
1789 1790 1791
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1792
/*
1793
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1794
 */
1795
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1796
{
1797 1798
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1799
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1800

1801 1802 1803 1804
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1805 1806
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1807 1808 1809 1810
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1811
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1812
	update_context_time(ctx);
1813
	update_event_times(event);
1814
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1815

P
Peter Zijlstra 已提交
1816
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1817 1818
}

P
Peter Zijlstra 已提交
1819 1820
static inline u64 perf_event_count(struct perf_event *event)
{
1821
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1822 1823
}

1824
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1825 1826
{
	/*
1827 1828
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1829
	 */
1830 1831 1832 1833
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1834 1835 1836
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1837
		raw_spin_lock_irqsave(&ctx->lock, flags);
1838 1839 1840 1841 1842 1843 1844
		/*
		 * may read while context is not active
		 * (e.g., thread is blocked), in that case
		 * we cannot update context time
		 */
		if (ctx->is_active)
			update_context_time(ctx);
1845
		update_event_times(event);
1846
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1847 1848
	}

P
Peter Zijlstra 已提交
1849
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1850 1851
}

1852
/*
1853
 * Callchain support
1854
 */
1855 1856 1857 1858 1859 1860

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1861
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1862 1863 1864 1865 1866 1867 1868
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
1869 1870 1871
{
}

1872 1873
__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
T
Thomas Gleixner 已提交
1874
{
1875
}
T
Thomas Gleixner 已提交
1876

1877 1878 1879 1880
static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;
T
Thomas Gleixner 已提交
1881

1882
	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
T
Thomas Gleixner 已提交
1883

1884 1885
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
T
Thomas Gleixner 已提交
1886

1887 1888
	kfree(entries);
}
T
Thomas Gleixner 已提交
1889

1890 1891 1892
static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1893

1894 1895 1896 1897
	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}
T
Thomas Gleixner 已提交
1898

1899 1900 1901 1902 1903
static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;
T
Thomas Gleixner 已提交
1904

1905
	/*
1906 1907 1908
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
1909
	 */
1910 1911
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();
1912

1913 1914 1915
	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;
1916

1917
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
T
Thomas Gleixner 已提交
1918

1919 1920 1921 1922 1923
	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
1924 1925
	}

1926
	rcu_assign_pointer(callchain_cpus_entries, entries);
T
Thomas Gleixner 已提交
1927

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

2062
/*
2063
 * Initialize the perf_event context in a task_struct:
2064
 */
2065
static void __perf_event_init_context(struct perf_event_context *ctx)
2066
{
2067
	raw_spin_lock_init(&ctx->lock);
2068
	mutex_init(&ctx->mutex);
2069 2070
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2071 2072
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
	}
	ctx->pmu = pmu;

	return ctx;
2092 2093
}

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;

	rcu_read_lock();
	if (!vpid)
		task = current;
	else
		task = find_task_by_vpid(vpid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/*
	 * Can't attach events to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

	/* Reuse ptrace permission checks for now. */
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

P
Peter Zijlstra 已提交
2131
static struct perf_event_context *
M
Matt Helsley 已提交
2132
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2133
{
2134
	struct perf_event_context *ctx;
2135
	struct perf_cpu_context *cpuctx;
2136
	unsigned long flags;
P
Peter Zijlstra 已提交
2137
	int ctxn, err;
T
Thomas Gleixner 已提交
2138

M
Matt Helsley 已提交
2139
	if (!task && cpu != -1) {
2140
		/* Must be root to operate on a CPU event: */
2141
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2142 2143
			return ERR_PTR(-EACCES);

2144
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2145 2146 2147
			return ERR_PTR(-EINVAL);

		/*
2148
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2149 2150 2151
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2152
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2153 2154
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2155
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2156
		ctx = &cpuctx->ctx;
2157
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2158 2159 2160 2161

		return ctx;
	}

P
Peter Zijlstra 已提交
2162 2163 2164 2165 2166
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2167
retry:
P
Peter Zijlstra 已提交
2168
	ctx = perf_lock_task_context(task, ctxn, &flags);
2169
	if (ctx) {
2170
		unclone_ctx(ctx);
2171
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2172 2173
	}

2174
	if (!ctx) {
2175
		ctx = alloc_perf_context(pmu, task);
2176 2177 2178
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2179

2180
		get_ctx(ctx);
2181

P
Peter Zijlstra 已提交
2182
		if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2183 2184 2185 2186
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
2187
			put_task_struct(task);
2188
			kfree(ctx);
2189
			goto retry;
2190 2191 2192
		}
	}

T
Thomas Gleixner 已提交
2193
	return ctx;
2194

P
Peter Zijlstra 已提交
2195
errout:
2196
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2197 2198
}

L
Li Zefan 已提交
2199 2200
static void perf_event_free_filter(struct perf_event *event);

2201
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2202
{
2203
	struct perf_event *event;
P
Peter Zijlstra 已提交
2204

2205 2206 2207
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2208
	perf_event_free_filter(event);
2209
	kfree(event);
P
Peter Zijlstra 已提交
2210 2211
}

2212
static void perf_buffer_put(struct perf_buffer *buffer);
2213

2214
static void free_event(struct perf_event *event)
2215
{
2216
	irq_work_sync(&event->pending);
2217

2218 2219
	if (!event->parent) {
		atomic_dec(&nr_events);
2220
		if (event->attr.mmap || event->attr.mmap_data)
2221 2222 2223 2224 2225
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2226 2227
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2228
	}
2229

2230 2231 2232
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2233 2234
	}

2235 2236
	if (event->destroy)
		event->destroy(event);
2237

P
Peter Zijlstra 已提交
2238 2239 2240
	if (event->ctx)
		put_ctx(event->ctx);

2241
	call_rcu(&event->rcu_head, free_event_rcu);
2242 2243
}

2244
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2245
{
2246
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2247

2248 2249 2250 2251 2252 2253
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2254
	WARN_ON_ONCE(ctx->parent_ctx);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2268
	raw_spin_lock_irq(&ctx->lock);
2269
	perf_group_detach(event);
2270 2271
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2272
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2273

2274 2275 2276 2277
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2278

2279
	free_event(event);
T
Thomas Gleixner 已提交
2280 2281 2282

	return 0;
}
2283
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2284

2285 2286 2287 2288
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2289
{
2290
	struct perf_event *event = file->private_data;
2291

2292
	file->private_data = NULL;
2293

2294
	return perf_event_release_kernel(event);
2295 2296
}

2297
static int perf_event_read_size(struct perf_event *event)
2298 2299 2300 2301 2302
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2303
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2304 2305
		size += sizeof(u64);

2306
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2307 2308
		size += sizeof(u64);

2309
	if (event->attr.read_format & PERF_FORMAT_ID)
2310 2311
		entry += sizeof(u64);

2312 2313
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2314 2315 2316 2317 2318 2319 2320 2321
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2322
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2323
{
2324
	struct perf_event *child;
2325 2326
	u64 total = 0;

2327 2328 2329
	*enabled = 0;
	*running = 0;

2330
	mutex_lock(&event->child_mutex);
2331
	total += perf_event_read(event);
2332 2333 2334 2335 2336 2337
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2338
		total += perf_event_read(child);
2339 2340 2341
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2342
	mutex_unlock(&event->child_mutex);
2343 2344 2345

	return total;
}
2346
EXPORT_SYMBOL_GPL(perf_event_read_value);
2347

2348
static int perf_event_read_group(struct perf_event *event,
2349 2350
				   u64 read_format, char __user *buf)
{
2351
	struct perf_event *leader = event->group_leader, *sub;
2352 2353
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2354
	u64 values[5];
2355
	u64 count, enabled, running;
2356

2357
	mutex_lock(&ctx->mutex);
2358
	count = perf_event_read_value(leader, &enabled, &running);
2359 2360

	values[n++] = 1 + leader->nr_siblings;
2361 2362 2363 2364
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2365 2366 2367
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2368 2369 2370 2371

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2372
		goto unlock;
2373

2374
	ret = size;
2375

2376
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2377
		n = 0;
2378

2379
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2380 2381 2382 2383 2384
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2385
		if (copy_to_user(buf + ret, values, size)) {
2386 2387 2388
			ret = -EFAULT;
			goto unlock;
		}
2389 2390

		ret += size;
2391
	}
2392 2393
unlock:
	mutex_unlock(&ctx->mutex);
2394

2395
	return ret;
2396 2397
}

2398
static int perf_event_read_one(struct perf_event *event,
2399 2400
				 u64 read_format, char __user *buf)
{
2401
	u64 enabled, running;
2402 2403 2404
	u64 values[4];
	int n = 0;

2405 2406 2407 2408 2409
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2410
	if (read_format & PERF_FORMAT_ID)
2411
		values[n++] = primary_event_id(event);
2412 2413 2414 2415 2416 2417 2418

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2419
/*
2420
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2421 2422
 */
static ssize_t
2423
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2424
{
2425
	u64 read_format = event->attr.read_format;
2426
	int ret;
T
Thomas Gleixner 已提交
2427

2428
	/*
2429
	 * Return end-of-file for a read on a event that is in
2430 2431 2432
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2433
	if (event->state == PERF_EVENT_STATE_ERROR)
2434 2435
		return 0;

2436
	if (count < perf_event_read_size(event))
2437 2438
		return -ENOSPC;

2439
	WARN_ON_ONCE(event->ctx->parent_ctx);
2440
	if (read_format & PERF_FORMAT_GROUP)
2441
		ret = perf_event_read_group(event, read_format, buf);
2442
	else
2443
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2444

2445
	return ret;
T
Thomas Gleixner 已提交
2446 2447 2448 2449 2450
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2451
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2452

2453
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2454 2455 2456 2457
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2458
	struct perf_event *event = file->private_data;
2459
	struct perf_buffer *buffer;
2460
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2461 2462

	rcu_read_lock();
2463 2464 2465
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2466
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2467

2468
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2469 2470 2471 2472

	return events;
}

2473
static void perf_event_reset(struct perf_event *event)
2474
{
2475
	(void)perf_event_read(event);
2476
	local64_set(&event->count, 0);
2477
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2478 2479
}

2480
/*
2481 2482 2483 2484
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2485
 */
2486 2487
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2488
{
2489
	struct perf_event *child;
P
Peter Zijlstra 已提交
2490

2491 2492 2493 2494
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2495
		func(child);
2496
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2497 2498
}

2499 2500
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2501
{
2502 2503
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2504

2505 2506
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2507
	event = event->group_leader;
2508

2509 2510 2511 2512
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2513
	mutex_unlock(&ctx->mutex);
2514 2515
}

2516
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2517
{
2518
	struct perf_event_context *ctx = event->ctx;
2519 2520 2521 2522
	unsigned long size;
	int ret = 0;
	u64 value;

2523
	if (!event->attr.sample_period)
2524 2525 2526 2527 2528 2529 2530 2531 2532
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2533
	raw_spin_lock_irq(&ctx->lock);
2534 2535
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2536 2537 2538 2539
			ret = -EINVAL;
			goto unlock;
		}

2540
		event->attr.sample_freq = value;
2541
	} else {
2542 2543
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2544 2545
	}
unlock:
2546
	raw_spin_unlock_irq(&ctx->lock);
2547 2548 2549 2550

	return ret;
}

2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2572
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2573

2574 2575
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2576 2577
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2578
	u32 flags = arg;
2579 2580

	switch (cmd) {
2581 2582
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2583
		break;
2584 2585
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2586
		break;
2587 2588
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2589
		break;
P
Peter Zijlstra 已提交
2590

2591 2592
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2593

2594 2595
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2596

2597
	case PERF_EVENT_IOC_SET_OUTPUT:
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2615

L
Li Zefan 已提交
2616 2617 2618
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2619
	default:
P
Peter Zijlstra 已提交
2620
		return -ENOTTY;
2621
	}
P
Peter Zijlstra 已提交
2622 2623

	if (flags & PERF_IOC_FLAG_GROUP)
2624
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2625
	else
2626
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2627 2628

	return 0;
2629 2630
}

2631
int perf_event_task_enable(void)
2632
{
2633
	struct perf_event *event;
2634

2635 2636 2637 2638
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2639 2640 2641 2642

	return 0;
}

2643
int perf_event_task_disable(void)
2644
{
2645
	struct perf_event *event;
2646

2647 2648 2649 2650
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2651 2652 2653 2654

	return 0;
}

2655 2656
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2657 2658
#endif

2659
static int perf_event_index(struct perf_event *event)
2660
{
P
Peter Zijlstra 已提交
2661 2662 2663
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2664
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2665 2666
		return 0;

2667
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2668 2669
}

2670 2671 2672 2673 2674
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2675
void perf_event_update_userpage(struct perf_event *event)
2676
{
2677
	struct perf_event_mmap_page *userpg;
2678
	struct perf_buffer *buffer;
2679 2680

	rcu_read_lock();
2681 2682
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2683 2684
		goto unlock;

2685
	userpg = buffer->user_page;
2686

2687 2688 2689 2690 2691
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2692
	++userpg->lock;
2693
	barrier();
2694
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2695
	userpg->offset = perf_event_count(event);
2696
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2697
		userpg->offset -= local64_read(&event->hw.prev_count);
2698

2699 2700
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2701

2702 2703
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2704

2705
	barrier();
2706
	++userpg->lock;
2707
	preempt_enable();
2708
unlock:
2709
	rcu_read_unlock();
2710 2711
}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2731
#ifndef CONFIG_PERF_USE_VMALLOC
2732

2733 2734 2735
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2736

2737
static struct page *
2738
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2739
{
2740
	if (pgoff > buffer->nr_pages)
2741
		return NULL;
2742

2743
	if (pgoff == 0)
2744
		return virt_to_page(buffer->user_page);
2745

2746
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2747 2748
}

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2762
static struct perf_buffer *
2763
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2764
{
2765
	struct perf_buffer *buffer;
2766 2767 2768
	unsigned long size;
	int i;

2769
	size = sizeof(struct perf_buffer);
2770 2771
	size += nr_pages * sizeof(void *);

2772 2773
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2774 2775
		goto fail;

2776
	buffer->user_page = perf_mmap_alloc_page(cpu);
2777
	if (!buffer->user_page)
2778 2779 2780
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2781
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2782
		if (!buffer->data_pages[i])
2783 2784 2785
			goto fail_data_pages;
	}

2786
	buffer->nr_pages = nr_pages;
2787

2788 2789
	perf_buffer_init(buffer, watermark, flags);

2790
	return buffer;
2791 2792 2793

fail_data_pages:
	for (i--; i >= 0; i--)
2794
		free_page((unsigned long)buffer->data_pages[i]);
2795

2796
	free_page((unsigned long)buffer->user_page);
2797 2798

fail_user_page:
2799
	kfree(buffer);
2800 2801

fail:
2802
	return NULL;
2803 2804
}

2805 2806
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2807
	struct page *page = virt_to_page((void *)addr);
2808 2809 2810 2811 2812

	page->mapping = NULL;
	__free_page(page);
}

2813
static void perf_buffer_free(struct perf_buffer *buffer)
2814 2815 2816
{
	int i;

2817 2818 2819 2820
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2821 2822
}

2823
static inline int page_order(struct perf_buffer *buffer)
2824 2825 2826 2827
{
	return 0;
}

2828 2829 2830 2831 2832 2833 2834 2835
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2836
static inline int page_order(struct perf_buffer *buffer)
2837
{
2838
	return buffer->page_order;
2839 2840
}

2841
static struct page *
2842
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2843
{
2844
	if (pgoff > (1UL << page_order(buffer)))
2845 2846
		return NULL;

2847
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2848 2849 2850 2851 2852 2853 2854 2855 2856
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2857
static void perf_buffer_free_work(struct work_struct *work)
2858
{
2859
	struct perf_buffer *buffer;
2860 2861 2862
	void *base;
	int i, nr;

2863 2864
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2865

2866
	base = buffer->user_page;
2867 2868 2869 2870
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2871
	kfree(buffer);
2872 2873
}

2874
static void perf_buffer_free(struct perf_buffer *buffer)
2875
{
2876
	schedule_work(&buffer->work);
2877 2878
}

2879
static struct perf_buffer *
2880
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2881
{
2882
	struct perf_buffer *buffer;
2883 2884 2885
	unsigned long size;
	void *all_buf;

2886
	size = sizeof(struct perf_buffer);
2887 2888
	size += sizeof(void *);

2889 2890
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2891 2892
		goto fail;

2893
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2894 2895 2896 2897 2898

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2899 2900 2901 2902
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2903

2904 2905
	perf_buffer_init(buffer, watermark, flags);

2906
	return buffer;
2907 2908

fail_all_buf:
2909
	kfree(buffer);
2910 2911 2912 2913 2914 2915 2916

fail:
	return NULL;
}

#endif

2917
static unsigned long perf_data_size(struct perf_buffer *buffer)
2918
{
2919
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2920 2921
}

2922 2923 2924
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2925
	struct perf_buffer *buffer;
2926 2927 2928 2929 2930 2931 2932 2933 2934
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2935 2936
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2937 2938 2939 2940 2941
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2942
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2957
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2958
{
2959
	struct perf_buffer *buffer;
2960

2961 2962
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2963 2964
}

2965
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2966
{
2967
	struct perf_buffer *buffer;
2968

2969
	rcu_read_lock();
2970 2971 2972 2973
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2974 2975 2976
	}
	rcu_read_unlock();

2977
	return buffer;
2978 2979
}

2980
static void perf_buffer_put(struct perf_buffer *buffer)
2981
{
2982
	if (!atomic_dec_and_test(&buffer->refcount))
2983
		return;
2984

2985
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2986 2987 2988 2989
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2990
	struct perf_event *event = vma->vm_file->private_data;
2991

2992
	atomic_inc(&event->mmap_count);
2993 2994 2995 2996
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2997
	struct perf_event *event = vma->vm_file->private_data;
2998

2999
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3000
		unsigned long size = perf_data_size(event->buffer);
3001
		struct user_struct *user = event->mmap_user;
3002
		struct perf_buffer *buffer = event->buffer;
3003

3004
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3005
		vma->vm_mm->locked_vm -= event->mmap_locked;
3006
		rcu_assign_pointer(event->buffer, NULL);
3007
		mutex_unlock(&event->mmap_mutex);
3008

3009
		perf_buffer_put(buffer);
3010
		free_uid(user);
3011
	}
3012 3013
}

3014
static const struct vm_operations_struct perf_mmap_vmops = {
3015 3016 3017 3018
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
3019 3020 3021 3022
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
3023
	struct perf_event *event = file->private_data;
3024
	unsigned long user_locked, user_lock_limit;
3025
	struct user_struct *user = current_user();
3026
	unsigned long locked, lock_limit;
3027
	struct perf_buffer *buffer;
3028 3029
	unsigned long vma_size;
	unsigned long nr_pages;
3030
	long user_extra, extra;
3031
	int ret = 0, flags = 0;
3032

3033 3034 3035 3036 3037 3038 3039 3040
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

3041
	if (!(vma->vm_flags & VM_SHARED))
3042
		return -EINVAL;
3043 3044 3045 3046

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

3047
	/*
3048
	 * If we have buffer pages ensure they're a power-of-two number, so we
3049 3050 3051
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3052 3053
		return -EINVAL;

3054
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3055 3056
		return -EINVAL;

3057 3058
	if (vma->vm_pgoff != 0)
		return -EINVAL;
3059

3060 3061
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
3062 3063 3064
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3065
		else
3066 3067 3068 3069
			ret = -EINVAL;
		goto unlock;
	}

3070
	user_extra = nr_pages + 1;
3071
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3072 3073 3074 3075 3076 3077

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3078
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3079

3080 3081 3082
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3083

3084
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3085
	lock_limit >>= PAGE_SHIFT;
3086
	locked = vma->vm_mm->locked_vm + extra;
3087

3088 3089
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3090 3091 3092
		ret = -EPERM;
		goto unlock;
	}
3093

3094
	WARN_ON(event->buffer);
3095

3096 3097 3098 3099 3100
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3101
	if (!buffer) {
3102
		ret = -ENOMEM;
3103
		goto unlock;
3104
	}
3105
	rcu_assign_pointer(event->buffer, buffer);
3106

3107 3108 3109 3110 3111
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3112
unlock:
3113 3114
	if (!ret)
		atomic_inc(&event->mmap_count);
3115
	mutex_unlock(&event->mmap_mutex);
3116 3117 3118

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3119 3120

	return ret;
3121 3122
}

P
Peter Zijlstra 已提交
3123 3124 3125
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3126
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3127 3128 3129
	int retval;

	mutex_lock(&inode->i_mutex);
3130
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3131 3132 3133 3134 3135 3136 3137 3138
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3139
static const struct file_operations perf_fops = {
3140
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3141 3142 3143
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3144 3145
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3146
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3147
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3148 3149
};

3150
/*
3151
 * Perf event wakeup
3152 3153 3154 3155 3156
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3157
void perf_event_wakeup(struct perf_event *event)
3158
{
3159
	wake_up_all(&event->waitq);
3160

3161 3162 3163
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3164
	}
3165 3166
}

3167
static void perf_pending_event(struct irq_work *entry)
3168
{
3169 3170
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3171

3172 3173 3174
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3175 3176
	}

3177 3178 3179
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3180 3181 3182
	}
}

3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3204 3205 3206
/*
 * Output
 */
3207
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3208
			      unsigned long offset, unsigned long head)
3209 3210 3211
{
	unsigned long mask;

3212
	if (!buffer->writable)
3213 3214
		return true;

3215
	mask = perf_data_size(buffer) - 1;
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3226
static void perf_output_wakeup(struct perf_output_handle *handle)
3227
{
3228
	atomic_set(&handle->buffer->poll, POLL_IN);
3229

3230
	if (handle->nmi) {
3231
		handle->event->pending_wakeup = 1;
3232
		irq_work_queue(&handle->event->pending);
3233
	} else
3234
		perf_event_wakeup(handle->event);
3235 3236
}

3237
/*
3238
 * We need to ensure a later event_id doesn't publish a head when a former
3239
 * event isn't done writing. However since we need to deal with NMIs we
3240 3241 3242
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3243
 * event completes.
3244
 */
3245
static void perf_output_get_handle(struct perf_output_handle *handle)
3246
{
3247
	struct perf_buffer *buffer = handle->buffer;
3248

3249
	preempt_disable();
3250 3251
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3252 3253
}

3254
static void perf_output_put_handle(struct perf_output_handle *handle)
3255
{
3256
	struct perf_buffer *buffer = handle->buffer;
3257
	unsigned long head;
3258 3259

again:
3260
	head = local_read(&buffer->head);
3261 3262

	/*
3263
	 * IRQ/NMI can happen here, which means we can miss a head update.
3264 3265
	 */

3266
	if (!local_dec_and_test(&buffer->nest))
3267
		goto out;
3268 3269

	/*
3270
	 * Publish the known good head. Rely on the full barrier implied
3271
	 * by atomic_dec_and_test() order the buffer->head read and this
3272
	 * write.
3273
	 */
3274
	buffer->user_page->data_head = head;
3275

3276 3277
	/*
	 * Now check if we missed an update, rely on the (compiler)
3278
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3279
	 */
3280 3281
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3282 3283 3284
		goto again;
	}

3285
	if (handle->wakeup != local_read(&buffer->wakeup))
3286
		perf_output_wakeup(handle);
3287

P
Peter Zijlstra 已提交
3288
out:
3289
	preempt_enable();
3290 3291
}

3292
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3293
		      const void *buf, unsigned int len)
3294
{
3295
	do {
3296
		unsigned long size = min_t(unsigned long, handle->size, len);
3297 3298 3299 3300 3301

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3302
		buf += size;
3303 3304
		handle->size -= size;
		if (!handle->size) {
3305
			struct perf_buffer *buffer = handle->buffer;
3306

3307
			handle->page++;
3308 3309 3310
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3311 3312
		}
	} while (len);
3313 3314
}

3315
int perf_output_begin(struct perf_output_handle *handle,
3316
		      struct perf_event *event, unsigned int size,
3317
		      int nmi, int sample)
3318
{
3319
	struct perf_buffer *buffer;
3320
	unsigned long tail, offset, head;
3321 3322 3323 3324 3325 3326
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3327

3328
	rcu_read_lock();
3329
	/*
3330
	 * For inherited events we send all the output towards the parent.
3331
	 */
3332 3333
	if (event->parent)
		event = event->parent;
3334

3335 3336
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3337 3338
		goto out;

3339
	handle->buffer	= buffer;
3340
	handle->event	= event;
3341 3342
	handle->nmi	= nmi;
	handle->sample	= sample;
3343

3344
	if (!buffer->nr_pages)
3345
		goto out;
3346

3347
	have_lost = local_read(&buffer->lost);
3348 3349 3350
	if (have_lost)
		size += sizeof(lost_event);

3351
	perf_output_get_handle(handle);
3352

3353
	do {
3354 3355 3356 3357 3358
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3359
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3360
		smp_rmb();
3361
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3362
		head += size;
3363
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3364
			goto fail;
3365
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3366

3367 3368
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3369

3370 3371 3372 3373
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3374
	handle->addr += handle->size;
3375
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3376

3377
	if (have_lost) {
3378
		lost_event.header.type = PERF_RECORD_LOST;
3379 3380
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3381
		lost_event.id          = event->id;
3382
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3383 3384 3385 3386

		perf_output_put(handle, lost_event);
	}

3387
	return 0;
3388

3389
fail:
3390
	local_inc(&buffer->lost);
3391
	perf_output_put_handle(handle);
3392 3393
out:
	rcu_read_unlock();
3394

3395 3396
	return -ENOSPC;
}
3397

3398
void perf_output_end(struct perf_output_handle *handle)
3399
{
3400
	struct perf_event *event = handle->event;
3401
	struct perf_buffer *buffer = handle->buffer;
3402

3403
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3404

3405
	if (handle->sample && wakeup_events) {
3406
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3407
		if (events >= wakeup_events) {
3408 3409
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3410
		}
3411 3412
	}

3413
	perf_output_put_handle(handle);
3414
	rcu_read_unlock();
3415 3416
}

3417
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3418 3419
{
	/*
3420
	 * only top level events have the pid namespace they were created in
3421
	 */
3422 3423
	if (event->parent)
		event = event->parent;
3424

3425
	return task_tgid_nr_ns(p, event->ns);
3426 3427
}

3428
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3429 3430
{
	/*
3431
	 * only top level events have the pid namespace they were created in
3432
	 */
3433 3434
	if (event->parent)
		event = event->parent;
3435

3436
	return task_pid_nr_ns(p, event->ns);
3437 3438
}

3439
static void perf_output_read_one(struct perf_output_handle *handle,
3440
				 struct perf_event *event)
3441
{
3442
	u64 read_format = event->attr.read_format;
3443 3444 3445
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3446
	values[n++] = perf_event_count(event);
3447
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3448 3449
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3450 3451
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3452 3453
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3454 3455
	}
	if (read_format & PERF_FORMAT_ID)
3456
		values[n++] = primary_event_id(event);
3457 3458 3459 3460 3461

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3462
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3463 3464
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3465
			    struct perf_event *event)
3466
{
3467 3468
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3480
	if (leader != event)
3481 3482
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3483
	values[n++] = perf_event_count(leader);
3484
	if (read_format & PERF_FORMAT_ID)
3485
		values[n++] = primary_event_id(leader);
3486 3487 3488

	perf_output_copy(handle, values, n * sizeof(u64));

3489
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3490 3491
		n = 0;

3492
		if (sub != event)
3493 3494
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3495
		values[n++] = perf_event_count(sub);
3496
		if (read_format & PERF_FORMAT_ID)
3497
			values[n++] = primary_event_id(sub);
3498 3499 3500 3501 3502 3503

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3504
			     struct perf_event *event)
3505
{
3506 3507
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3508
	else
3509
		perf_output_read_one(handle, event);
3510 3511
}

3512 3513 3514
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3515
			struct perf_event *event)
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3546
		perf_output_read(handle, event);
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3584
			 struct perf_event *event,
3585
			 struct pt_regs *regs)
3586
{
3587
	u64 sample_type = event->attr.sample_type;
3588

3589
	data->type = sample_type;
3590

3591
	header->type = PERF_RECORD_SAMPLE;
3592 3593 3594 3595
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3596

3597
	if (sample_type & PERF_SAMPLE_IP) {
3598 3599 3600
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3601
	}
3602

3603
	if (sample_type & PERF_SAMPLE_TID) {
3604
		/* namespace issues */
3605 3606
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3607

3608
		header->size += sizeof(data->tid_entry);
3609 3610
	}

3611
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3612
		data->time = perf_clock();
3613

3614
		header->size += sizeof(data->time);
3615 3616
	}

3617
	if (sample_type & PERF_SAMPLE_ADDR)
3618
		header->size += sizeof(data->addr);
3619

3620
	if (sample_type & PERF_SAMPLE_ID) {
3621
		data->id = primary_event_id(event);
3622

3623 3624 3625 3626
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3627
		data->stream_id = event->id;
3628 3629 3630

		header->size += sizeof(data->stream_id);
	}
3631

3632
	if (sample_type & PERF_SAMPLE_CPU) {
3633 3634
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3635

3636
		header->size += sizeof(data->cpu_entry);
3637 3638
	}

3639
	if (sample_type & PERF_SAMPLE_PERIOD)
3640
		header->size += sizeof(data->period);
3641

3642
	if (sample_type & PERF_SAMPLE_READ)
3643
		header->size += perf_event_read_size(event);
3644

3645
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3646
		int size = 1;
3647

3648 3649 3650 3651 3652 3653
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3654 3655
	}

3656
	if (sample_type & PERF_SAMPLE_RAW) {
3657 3658 3659 3660 3661 3662 3663 3664
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3665
		header->size += size;
3666
	}
3667
}
3668

3669
static void perf_event_output(struct perf_event *event, int nmi,
3670 3671 3672 3673 3674
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3675

3676 3677 3678
	/* protect the callchain buffers */
	rcu_read_lock();

3679
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3680

3681
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3682
		goto exit;
3683

3684
	perf_output_sample(&handle, &header, data, event);
3685

3686
	perf_output_end(&handle);
3687 3688 3689

exit:
	rcu_read_unlock();
3690 3691
}

3692
/*
3693
 * read event_id
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3704
perf_event_read_event(struct perf_event *event,
3705 3706 3707
			struct task_struct *task)
{
	struct perf_output_handle handle;
3708
	struct perf_read_event read_event = {
3709
		.header = {
3710
			.type = PERF_RECORD_READ,
3711
			.misc = 0,
3712
			.size = sizeof(read_event) + perf_event_read_size(event),
3713
		},
3714 3715
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3716
	};
3717
	int ret;
3718

3719
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3720 3721 3722
	if (ret)
		return;

3723
	perf_output_put(&handle, read_event);
3724
	perf_output_read(&handle, event);
3725

3726 3727 3728
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3729
/*
P
Peter Zijlstra 已提交
3730 3731
 * task tracking -- fork/exit
 *
3732
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3733 3734
 */

P
Peter Zijlstra 已提交
3735
struct perf_task_event {
3736
	struct task_struct		*task;
3737
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3738 3739 3740 3741 3742 3743

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3744 3745
		u32				tid;
		u32				ptid;
3746
		u64				time;
3747
	} event_id;
P
Peter Zijlstra 已提交
3748 3749
};

3750
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3751
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3752 3753
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3754
	struct task_struct *task = task_event->task;
3755 3756
	int size, ret;

3757 3758
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3759

3760
	if (ret)
P
Peter Zijlstra 已提交
3761 3762
		return;

3763 3764
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3765

3766 3767
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3768

3769
	perf_output_put(&handle, task_event->event_id);
3770

P
Peter Zijlstra 已提交
3771 3772 3773
	perf_output_end(&handle);
}

3774
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3775
{
P
Peter Zijlstra 已提交
3776
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3777 3778
		return 0;

3779 3780 3781
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3782 3783
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3784 3785 3786 3787 3788
		return 1;

	return 0;
}

3789
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3790
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3791
{
3792
	struct perf_event *event;
P
Peter Zijlstra 已提交
3793

3794 3795 3796
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3797 3798 3799
	}
}

3800
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3801 3802
{
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
3803
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3804
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3805
	int ctxn;
P
Peter Zijlstra 已提交
3806

3807
	rcu_read_lock();
P
Peter Zijlstra 已提交
3808
	list_for_each_entry_rcu(pmu, &pmus, entry) {
3809
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3810
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3811 3812 3813 3814 3815

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
3816
				goto next;
P
Peter Zijlstra 已提交
3817 3818 3819 3820
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
3821 3822
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3823
	}
P
Peter Zijlstra 已提交
3824 3825 3826
	rcu_read_unlock();
}

3827 3828
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3829
			      int new)
P
Peter Zijlstra 已提交
3830
{
P
Peter Zijlstra 已提交
3831
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3832

3833 3834 3835
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3836 3837
		return;

P
Peter Zijlstra 已提交
3838
	task_event = (struct perf_task_event){
3839 3840
		.task	  = task,
		.task_ctx = task_ctx,
3841
		.event_id    = {
P
Peter Zijlstra 已提交
3842
			.header = {
3843
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3844
				.misc = 0,
3845
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3846
			},
3847 3848
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3849 3850
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3851
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3852 3853 3854
		},
	};

3855
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3856 3857
}

3858
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3859
{
3860
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3861 3862
}

3863 3864 3865 3866 3867
/*
 * comm tracking
 */

struct perf_comm_event {
3868 3869
	struct task_struct	*task;
	char			*comm;
3870 3871 3872 3873 3874 3875 3876
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3877
	} event_id;
3878 3879
};

3880
static void perf_event_comm_output(struct perf_event *event,
3881 3882 3883
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3884 3885
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3886 3887 3888 3889

	if (ret)
		return;

3890 3891
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3892

3893
	perf_output_put(&handle, comm_event->event_id);
3894 3895 3896 3897 3898
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3899
static int perf_event_comm_match(struct perf_event *event)
3900
{
P
Peter Zijlstra 已提交
3901
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3902 3903
		return 0;

3904 3905 3906
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3907
	if (event->attr.comm)
3908 3909 3910 3911 3912
		return 1;

	return 0;
}

3913
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3914 3915
				  struct perf_comm_event *comm_event)
{
3916
	struct perf_event *event;
3917

3918 3919 3920
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3921 3922 3923
	}
}

3924
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3925 3926
{
	struct perf_cpu_context *cpuctx;
3927
	struct perf_event_context *ctx;
3928
	char comm[TASK_COMM_LEN];
3929
	unsigned int size;
P
Peter Zijlstra 已提交
3930
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3931
	int ctxn;
3932

3933
	memset(comm, 0, sizeof(comm));
3934
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3935
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3936 3937 3938 3939

	comm_event->comm = comm;
	comm_event->comm_size = size;

3940
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3941

3942
	rcu_read_lock();
P
Peter Zijlstra 已提交
3943
	list_for_each_entry_rcu(pmu, &pmus, entry) {
3944
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3945
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
3946 3947 3948

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
3949
			goto next;
P
Peter Zijlstra 已提交
3950 3951 3952 3953

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
3954 3955
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
3956
	}
3957
	rcu_read_unlock();
3958 3959
}

3960
void perf_event_comm(struct task_struct *task)
3961
{
3962
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
3963 3964
	struct perf_event_context *ctx;
	int ctxn;
3965

P
Peter Zijlstra 已提交
3966 3967 3968 3969
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
3970

P
Peter Zijlstra 已提交
3971 3972
		perf_event_enable_on_exec(ctx);
	}
3973

3974
	if (!atomic_read(&nr_comm_events))
3975
		return;
3976

3977
	comm_event = (struct perf_comm_event){
3978
		.task	= task,
3979 3980
		/* .comm      */
		/* .comm_size */
3981
		.event_id  = {
3982
			.header = {
3983
				.type = PERF_RECORD_COMM,
3984 3985 3986 3987 3988
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3989 3990 3991
		},
	};

3992
	perf_event_comm_event(&comm_event);
3993 3994
}

3995 3996 3997 3998 3999
/*
 * mmap tracking
 */

struct perf_mmap_event {
4000 4001 4002 4003
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4004 4005 4006 4007 4008 4009 4010 4011 4012

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4013
	} event_id;
4014 4015
};

4016
static void perf_event_mmap_output(struct perf_event *event,
4017 4018 4019
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4020 4021
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
4022 4023 4024 4025

	if (ret)
		return;

4026 4027
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4028

4029
	perf_output_put(&handle, mmap_event->event_id);
4030 4031
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4032
	perf_output_end(&handle);
4033 4034
}

4035
static int perf_event_mmap_match(struct perf_event *event,
4036 4037
				   struct perf_mmap_event *mmap_event,
				   int executable)
4038
{
P
Peter Zijlstra 已提交
4039
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4040 4041
		return 0;

4042 4043 4044
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4045 4046
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4047 4048 4049 4050 4051
		return 1;

	return 0;
}

4052
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4053 4054
				  struct perf_mmap_event *mmap_event,
				  int executable)
4055
{
4056
	struct perf_event *event;
4057

4058
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4059
		if (perf_event_mmap_match(event, mmap_event, executable))
4060
			perf_event_mmap_output(event, mmap_event);
4061 4062 4063
	}
}

4064
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4065 4066
{
	struct perf_cpu_context *cpuctx;
4067
	struct perf_event_context *ctx;
4068 4069
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4070 4071 4072
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4073
	const char *name;
P
Peter Zijlstra 已提交
4074
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4075
	int ctxn;
4076

4077 4078
	memset(tmp, 0, sizeof(tmp));

4079
	if (file) {
4080 4081 4082 4083 4084 4085
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4086 4087 4088 4089
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4090
		name = d_path(&file->f_path, buf, PATH_MAX);
4091 4092 4093 4094 4095
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4096 4097 4098
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4099
			goto got_name;
4100
		}
4101 4102 4103 4104

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4105 4106 4107 4108 4109 4110 4111 4112
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4113 4114
		}

4115 4116 4117 4118 4119
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4120
	size = ALIGN(strlen(name)+1, sizeof(u64));
4121 4122 4123 4124

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4125
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4126

4127
	rcu_read_lock();
P
Peter Zijlstra 已提交
4128
	list_for_each_entry_rcu(pmu, &pmus, entry) {
4129
		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4130 4131
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4132 4133 4134

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
4135
			goto next;
P
Peter Zijlstra 已提交
4136 4137 4138 4139 4140 4141

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
4142 4143
next:
		put_cpu_ptr(pmu->pmu_cpu_context);
P
Peter Zijlstra 已提交
4144
	}
4145 4146
	rcu_read_unlock();

4147 4148 4149
	kfree(buf);
}

4150
void perf_event_mmap(struct vm_area_struct *vma)
4151
{
4152 4153
	struct perf_mmap_event mmap_event;

4154
	if (!atomic_read(&nr_mmap_events))
4155 4156 4157
		return;

	mmap_event = (struct perf_mmap_event){
4158
		.vma	= vma,
4159 4160
		/* .file_name */
		/* .file_size */
4161
		.event_id  = {
4162
			.header = {
4163
				.type = PERF_RECORD_MMAP,
4164
				.misc = PERF_RECORD_MISC_USER,
4165 4166 4167 4168
				/* .size */
			},
			/* .pid */
			/* .tid */
4169 4170
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4171
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4172 4173 4174
		},
	};

4175
	perf_event_mmap_event(&mmap_event);
4176 4177
}

4178 4179 4180 4181
/*
 * IRQ throttle logging
 */

4182
static void perf_log_throttle(struct perf_event *event, int enable)
4183 4184 4185 4186 4187 4188 4189
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4190
		u64				id;
4191
		u64				stream_id;
4192 4193
	} throttle_event = {
		.header = {
4194
			.type = PERF_RECORD_THROTTLE,
4195 4196 4197
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4198
		.time		= perf_clock(),
4199 4200
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4201 4202
	};

4203
	if (enable)
4204
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4205

4206
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4207 4208 4209 4210 4211 4212 4213
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4214
/*
4215
 * Generic event overflow handling, sampling.
4216 4217
 */

4218
static int __perf_event_overflow(struct perf_event *event, int nmi,
4219 4220
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4221
{
4222 4223
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4224 4225
	int ret = 0;

4226
	if (!throttle) {
4227
		hwc->interrupts++;
4228
	} else {
4229 4230
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4231
			if (HZ * hwc->interrupts >
4232
					(u64)sysctl_perf_event_sample_rate) {
4233
				hwc->interrupts = MAX_INTERRUPTS;
4234
				perf_log_throttle(event, 0);
4235 4236 4237 4238
				ret = 1;
			}
		} else {
			/*
4239
			 * Keep re-disabling events even though on the previous
4240
			 * pass we disabled it - just in case we raced with a
4241
			 * sched-in and the event got enabled again:
4242
			 */
4243 4244 4245
			ret = 1;
		}
	}
4246

4247
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4248
		u64 now = perf_clock();
4249
		s64 delta = now - hwc->freq_time_stamp;
4250

4251
		hwc->freq_time_stamp = now;
4252

4253 4254
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4255 4256
	}

4257 4258
	/*
	 * XXX event_limit might not quite work as expected on inherited
4259
	 * events
4260 4261
	 */

4262 4263
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4264
		ret = 1;
4265
		event->pending_kill = POLL_HUP;
4266
		if (nmi) {
4267
			event->pending_disable = 1;
4268
			irq_work_queue(&event->pending);
4269
		} else
4270
			perf_event_disable(event);
4271 4272
	}

4273 4274 4275 4276 4277
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4278
	return ret;
4279 4280
}

4281
int perf_event_overflow(struct perf_event *event, int nmi,
4282 4283
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4284
{
4285
	return __perf_event_overflow(event, nmi, 1, data, regs);
4286 4287
}

4288
/*
4289
 * Generic software event infrastructure
4290 4291
 */

4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4303
/*
4304 4305
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4306 4307 4308 4309
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4310
static u64 perf_swevent_set_period(struct perf_event *event)
4311
{
4312
	struct hw_perf_event *hwc = &event->hw;
4313 4314 4315 4316 4317
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4318 4319

again:
4320
	old = val = local64_read(&hwc->period_left);
4321 4322
	if (val < 0)
		return 0;
4323

4324 4325 4326
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4327
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4328
		goto again;
4329

4330
	return nr;
4331 4332
}

4333
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4334 4335
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4336
{
4337
	struct hw_perf_event *hwc = &event->hw;
4338
	int throttle = 0;
4339

4340
	data->period = event->hw.last_period;
4341 4342
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4343

4344 4345
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4346

4347
	for (; overflow; overflow--) {
4348
		if (__perf_event_overflow(event, nmi, throttle,
4349
					    data, regs)) {
4350 4351 4352 4353 4354 4355
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4356
		throttle = 1;
4357
	}
4358 4359
}

P
Peter Zijlstra 已提交
4360
static void perf_swevent_event(struct perf_event *event, u64 nr,
4361 4362
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4363
{
4364
	struct hw_perf_event *hwc = &event->hw;
4365

4366
	local64_add(nr, &event->count);
4367

4368 4369 4370
	if (!regs)
		return;

4371 4372
	if (!hwc->sample_period)
		return;
4373

4374 4375 4376
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4377
	if (local64_add_negative(nr, &hwc->period_left))
4378
		return;
4379

4380
	perf_swevent_overflow(event, 0, nmi, data, regs);
4381 4382
}

4383 4384 4385
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4386 4387 4388
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4400
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4401
				enum perf_type_id type,
L
Li Zefan 已提交
4402 4403 4404
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4405
{
4406
	if (event->attr.type != type)
4407
		return 0;
4408

4409
	if (event->attr.config != event_id)
4410 4411
		return 0;

4412 4413
	if (perf_exclude_event(event, regs))
		return 0;
4414 4415 4416 4417

	return 1;
}

4418 4419 4420 4421 4422 4423 4424
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4425 4426
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4427
{
4428 4429 4430 4431
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4432

4433 4434
/* For the read side: events when they trigger */
static inline struct hlist_head *
4435
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4436 4437
{
	struct swevent_hlist *hlist;
4438

4439
	hlist = rcu_dereference(swhash->swevent_hlist);
4440 4441 4442
	if (!hlist)
		return NULL;

4443 4444 4445 4446 4447
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4448
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4459
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4460 4461 4462 4463 4464
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4465 4466 4467 4468 4469 4470
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4471
{
4472
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4473
	struct perf_event *event;
4474 4475
	struct hlist_node *node;
	struct hlist_head *head;
4476

4477
	rcu_read_lock();
4478
	head = find_swevent_head_rcu(swhash, type, event_id);
4479 4480 4481 4482
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4483
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4484
			perf_swevent_event(event, nr, nmi, data, regs);
4485
	}
4486 4487
end:
	rcu_read_unlock();
4488 4489
}

4490
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4491
{
4492
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
P
Peter Zijlstra 已提交
4493

4494
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4495
}
I
Ingo Molnar 已提交
4496
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4497

4498
void inline perf_swevent_put_recursion_context(int rctx)
4499
{
4500
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4501

4502
	put_recursion_context(swhash->recursion, rctx);
4503
}
4504

4505
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4506
			    struct pt_regs *regs, u64 addr)
4507
{
4508
	struct perf_sample_data data;
4509 4510
	int rctx;

4511
	preempt_disable_notrace();
4512 4513 4514
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4515

4516
	perf_sample_data_init(&data, addr);
4517

4518
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4519 4520

	perf_swevent_put_recursion_context(rctx);
4521
	preempt_enable_notrace();
4522 4523
}

4524
static void perf_swevent_read(struct perf_event *event)
4525 4526 4527
{
}

P
Peter Zijlstra 已提交
4528
static int perf_swevent_add(struct perf_event *event, int flags)
4529
{
4530
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4531
	struct hw_perf_event *hwc = &event->hw;
4532 4533
	struct hlist_head *head;

4534 4535
	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4536
		perf_swevent_set_period(event);
4537
	}
4538

P
Peter Zijlstra 已提交
4539 4540
	hwc->state = !(flags & PERF_EF_START);

4541
	head = find_swevent_head(swhash, event);
4542 4543 4544 4545 4546
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4547 4548 4549
	return 0;
}

P
Peter Zijlstra 已提交
4550
static void perf_swevent_del(struct perf_event *event, int flags)
4551
{
4552
	hlist_del_rcu(&event->hlist_entry);
4553 4554
}

P
Peter Zijlstra 已提交
4555
static void perf_swevent_start(struct perf_event *event, int flags)
4556
{
P
Peter Zijlstra 已提交
4557
	event->hw.state = 0;
4558 4559
}

P
Peter Zijlstra 已提交
4560
static void perf_swevent_stop(struct perf_event *event, int flags)
4561
{
P
Peter Zijlstra 已提交
4562
	event->hw.state = PERF_HES_STOPPED;
4563 4564
}

4565 4566
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4567
swevent_hlist_deref(struct swevent_htable *swhash)
4568
{
4569 4570
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4571 4572
}

4573 4574 4575 4576 4577 4578 4579 4580
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4581
static void swevent_hlist_release(struct swevent_htable *swhash)
4582
{
4583
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4584

4585
	if (!hlist)
4586 4587
		return;

4588
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4589 4590 4591 4592 4593
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4594
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4595

4596
	mutex_lock(&swhash->hlist_mutex);
4597

4598 4599
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4600

4601
	mutex_unlock(&swhash->hlist_mutex);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4619
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4620 4621
	int err = 0;

4622
	mutex_lock(&swhash->hlist_mutex);
4623

4624
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4625 4626 4627 4628 4629 4630 4631
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4632
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4633
	}
4634
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4635
exit:
4636
	mutex_unlock(&swhash->hlist_mutex);
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4660
fail:
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4671
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4672

4673 4674 4675
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;
4676

4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716
	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
4717 4718
	.task_ctx_nr	= perf_sw_context,

4719
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4720 4721 4722 4723
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4724 4725 4726
	.read		= perf_swevent_read,
};

4727 4728
#ifdef CONFIG_EVENT_TRACING

4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4743 4744 4745 4746
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4747 4748 4749 4750 4751 4752 4753 4754 4755
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4756
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4757 4758
{
	struct perf_sample_data data;
4759 4760 4761
	struct perf_event *event;
	struct hlist_node *node;

4762 4763 4764 4765 4766 4767 4768 4769
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4770 4771
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4772
			perf_swevent_event(event, count, 1, &data, regs);
4773
	}
4774 4775

	perf_swevent_put_recursion_context(rctx);
4776 4777 4778
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4779
static void tp_perf_event_destroy(struct perf_event *event)
4780
{
4781
	perf_trace_destroy(event);
4782 4783
}

4784
static int perf_tp_event_init(struct perf_event *event)
4785
{
4786 4787
	int err;

4788 4789 4790
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4791 4792 4793 4794
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4795
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4796
			perf_paranoid_tracepoint_raw() &&
4797
			!capable(CAP_SYS_ADMIN))
4798
		return -EPERM;
4799

4800 4801
	err = perf_trace_init(event);
	if (err)
4802
		return err;
4803

4804
	event->destroy = tp_perf_event_destroy;
4805

4806 4807 4808 4809
	return 0;
}

static struct pmu perf_tracepoint = {
4810 4811
	.task_ctx_nr	= perf_sw_context,

4812
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4813 4814 4815 4816
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4817 4818 4819 4820 4821 4822
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4823
}
L
Li Zefan 已提交
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4848
#else
L
Li Zefan 已提交
4849

4850
static inline void perf_tp_register(void)
4851 4852
{
}
L
Li Zefan 已提交
4853 4854 4855 4856 4857 4858 4859 4860 4861 4862

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4863
#endif /* CONFIG_EVENT_TRACING */
4864

4865
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4866
void perf_bp_event(struct perf_event *bp, void *data)
4867
{
4868 4869 4870 4871 4872
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

P
Peter Zijlstra 已提交
4873 4874
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4875
}
4876 4877 4878 4879 4880
#endif

/*
 * hrtimer based swevent callback
 */
4881

4882
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4883
{
4884 4885 4886 4887 4888
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4889

4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4902

4903 4904
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4905

4906
	return ret;
4907 4908
}

4909
static void perf_swevent_start_hrtimer(struct perf_event *event)
4910
{
4911
	struct hw_perf_event *hwc = &event->hw;
4912

4913 4914 4915
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4916
		s64 period = local64_read(&hwc->period_left);
4917

P
Peter Zijlstra 已提交
4918 4919
		if (period) {
			if (period < 0)
4920
				period = 10000;
P
Peter Zijlstra 已提交
4921 4922

			local64_set(&hwc->period_left, 0);
4923 4924 4925 4926 4927
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
4928
				HRTIMER_MODE_REL_PINNED, 0);
4929
	}
4930
}
4931 4932

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4933
{
4934 4935 4936 4937
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4938
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4939 4940 4941

		hrtimer_cancel(&hwc->hrtimer);
	}
4942 4943
}

4944 4945 4946 4947 4948
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4949
{
4950 4951 4952
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4953
	now = local_clock();
4954 4955
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4956 4957
}

P
Peter Zijlstra 已提交
4958
static void cpu_clock_event_start(struct perf_event *event, int flags)
4959
{
P
Peter Zijlstra 已提交
4960
	local64_set(&event->hw.prev_count, local_clock());
4961 4962 4963
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4964
static void cpu_clock_event_stop(struct perf_event *event, int flags)
4965
{
4966 4967 4968
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4969

P
Peter Zijlstra 已提交
4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

4983 4984 4985 4986
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4987

4988 4989 4990 4991 4992 4993 4994 4995 4996
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
4997 4998
}

4999
static struct pmu perf_cpu_clock = {
5000 5001
	.task_ctx_nr	= perf_sw_context,

5002
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5003 5004 5005 5006
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5007 5008 5009 5010 5011 5012 5013 5014
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5015
{
5016 5017
	u64 prev;
	s64 delta;
5018

5019 5020 5021 5022
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5023

P
Peter Zijlstra 已提交
5024
static void task_clock_event_start(struct perf_event *event, int flags)
5025
{
P
Peter Zijlstra 已提交
5026
	local64_set(&event->hw.prev_count, event->ctx->time);
5027 5028 5029
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5030
static void task_clock_event_stop(struct perf_event *event, int flags)
5031 5032 5033
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5034 5035 5036 5037 5038 5039
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5040

P
Peter Zijlstra 已提交
5041 5042 5043 5044 5045 5046
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
L
Li Zefan 已提交
5066
{
5067 5068 5069 5070 5071 5072 5073
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
L
Li Zefan 已提交
5074 5075
}

5076
static struct pmu perf_task_clock = {
5077 5078
	.task_ctx_nr	= perf_sw_context,

5079
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5080 5081 5082 5083
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5084 5085
	.read		= task_clock_event_read,
};
L
Li Zefan 已提交
5086

P
Peter Zijlstra 已提交
5087
static void perf_pmu_nop_void(struct pmu *pmu)
5088 5089
{
}
L
Li Zefan 已提交
5090

P
Peter Zijlstra 已提交
5091
static int perf_pmu_nop_int(struct pmu *pmu)
L
Li Zefan 已提交
5092
{
P
Peter Zijlstra 已提交
5093
	return 0;
L
Li Zefan 已提交
5094 5095
}

P
Peter Zijlstra 已提交
5096
static void perf_pmu_start_txn(struct pmu *pmu)
L
Li Zefan 已提交
5097
{
P
Peter Zijlstra 已提交
5098
	perf_pmu_disable(pmu);
L
Li Zefan 已提交
5099 5100
}

P
Peter Zijlstra 已提交
5101 5102 5103 5104 5105
static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}
5106

P
Peter Zijlstra 已提交
5107
static void perf_pmu_cancel_txn(struct pmu *pmu)
5108
{
P
Peter Zijlstra 已提交
5109
	perf_pmu_enable(pmu);
5110 5111
}

P
Peter Zijlstra 已提交
5112 5113 5114 5115 5116
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
5117
{
P
Peter Zijlstra 已提交
5118
	struct pmu *pmu;
5119

P
Peter Zijlstra 已提交
5120 5121
	if (ctxn < 0)
		return NULL;
5122

P
Peter Zijlstra 已提交
5123 5124 5125 5126
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}
5127

P
Peter Zijlstra 已提交
5128
	return NULL;
5129 5130
}

P
Peter Zijlstra 已提交
5131
static void free_pmu_context(void * __percpu cpu_context)
5132
{
P
Peter Zijlstra 已提交
5133
	struct pmu *pmu;
5134

P
Peter Zijlstra 已提交
5135 5136 5137 5138 5139 5140 5141 5142
	mutex_lock(&pmus_lock);
	/*
	 * Like a real lame refcount.
	 */
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->pmu_cpu_context == cpu_context)
			goto out;
	}
5143

P
Peter Zijlstra 已提交
5144 5145 5146
	free_percpu(cpu_context);
out:
	mutex_unlock(&pmus_lock);
5147 5148
}

5149
int perf_pmu_register(struct pmu *pmu)
5150
{
P
Peter Zijlstra 已提交
5151
	int cpu, ret;
5152

5153
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5154 5155 5156 5157
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
5158

P
Peter Zijlstra 已提交
5159 5160 5161
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;
5162

P
Peter Zijlstra 已提交
5163 5164 5165
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
		goto free_pdc;
5166

P
Peter Zijlstra 已提交
5167 5168 5169 5170
	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5171
		__perf_event_init_context(&cpuctx->ctx);
5172
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5173
		cpuctx->ctx.pmu = pmu;
5174 5175
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
P
Peter Zijlstra 已提交
5176 5177
	}

P
Peter Zijlstra 已提交
5178
got_cpu_context:
P
Peter Zijlstra 已提交
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
		}
	}

	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5201
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5202 5203
	ret = 0;
unlock:
5204 5205
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5206
	return ret;
P
Peter Zijlstra 已提交
5207 5208 5209 5210

free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5211 5212
}

5213
void perf_pmu_unregister(struct pmu *pmu)
5214
{
5215 5216 5217
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);
5218

5219
	/*
P
Peter Zijlstra 已提交
5220 5221
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
5222
	 */
5223
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5224
	synchronize_rcu();
5225

P
Peter Zijlstra 已提交
5226
	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5227
	free_pmu_context(pmu->pmu_cpu_context);
5228
}
5229

5230 5231 5232 5233 5234 5235 5236 5237 5238
struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
P
Peter Zijlstra 已提交
5239
			goto unlock;
5240

5241 5242
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5243
			goto unlock;
5244
		}
5245
	}
P
Peter Zijlstra 已提交
5246 5247
	pmu = ERR_PTR(-ENOENT);
unlock:
5248
	srcu_read_unlock(&pmus_srcu, idx);
5249

5250
	return pmu;
5251 5252
}

T
Thomas Gleixner 已提交
5253
/*
5254
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5255
 */
5256
static struct perf_event *
5257
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5258 5259
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5260
		   perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5261
{
P
Peter Zijlstra 已提交
5262
	struct pmu *pmu;
5263 5264
	struct perf_event *event;
	struct hw_perf_event *hwc;
5265
	long err;
T
Thomas Gleixner 已提交
5266

5267
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5268
	if (!event)
5269
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5270

5271
	/*
5272
	 * Single events are their own group leaders, with an
5273 5274 5275
	 * empty sibling list:
	 */
	if (!group_leader)
5276
		group_leader = event;
5277

5278 5279
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5280

5281 5282 5283 5284
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
5285
	init_irq_work(&event->pending, perf_pending_event);
T
Thomas Gleixner 已提交
5286

5287
	mutex_init(&event->mmap_mutex);
5288

5289 5290 5291 5292 5293
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5294

5295
	event->parent		= parent_event;
5296

5297 5298
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5299

5300
	event->state		= PERF_EVENT_STATE_INACTIVE;
5301

5302 5303
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5304
	
5305
	event->overflow_handler	= overflow_handler;
5306

5307
	if (attr->disabled)
5308
		event->state = PERF_EVENT_STATE_OFF;
5309

5310
	pmu = NULL;
5311

5312
	hwc = &event->hw;
5313
	hwc->sample_period = attr->sample_period;
5314
	if (attr->freq && attr->sample_freq)
5315
		hwc->sample_period = 1;
5316
	hwc->last_period = hwc->sample_period;
5317

5318
	local64_set(&hwc->period_left, hwc->sample_period);
5319

5320
	/*
5321
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5322
	 */
5323
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5324 5325
		goto done;

5326
	pmu = perf_init_event(event);
5327

5328 5329
done:
	err = 0;
5330
	if (!pmu)
5331
		err = -EINVAL;
5332 5333
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5334

5335
	if (err) {
5336 5337 5338
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5339
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5340
	}
5341

5342
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5343

5344 5345
	if (!event->parent) {
		atomic_inc(&nr_events);
5346
		if (event->attr.mmap || event->attr.mmap_data)
5347 5348 5349 5350 5351
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5352 5353 5354 5355 5356 5357 5358
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5359
	}
5360

5361
	return event;
T
Thomas Gleixner 已提交
5362 5363
}

5364 5365
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5366 5367
{
	u32 size;
5368
	int ret;
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5393 5394 5395
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5396 5397
	 */
	if (size > sizeof(*attr)) {
5398 5399 5400
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5401

5402 5403
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5404

5405
		for (; addr < end; addr++) {
5406 5407 5408 5409 5410 5411
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5412
		size = sizeof(*attr);
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5426
	if (attr->__reserved_1)
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5444 5445
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5446
{
5447
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5448 5449
	int ret = -EINVAL;

5450
	if (!output_event)
5451 5452
		goto set;

5453 5454
	/* don't allow circular references */
	if (event == output_event)
5455 5456
		goto out;

5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5469
set:
5470
	mutex_lock(&event->mmap_mutex);
5471 5472 5473
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5474

5475 5476
	if (output_event) {
		/* get the buffer we want to redirect to */
5477 5478
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5479
			goto unlock;
5480 5481
	}

5482 5483
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5484
	ret = 0;
5485 5486 5487
unlock:
	mutex_unlock(&event->mmap_mutex);

5488 5489
	if (old_buffer)
		perf_buffer_put(old_buffer);
5490 5491 5492 5493
out:
	return ret;
}

T
Thomas Gleixner 已提交
5494
/**
5495
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5496
 *
5497
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5498
 * @pid:		target pid
I
Ingo Molnar 已提交
5499
 * @cpu:		target cpu
5500
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5501
 */
5502 5503
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5504
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5505
{
5506 5507
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5508 5509 5510
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5511
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5512
	struct task_struct *task = NULL;
5513
	struct pmu *pmu;
5514
	int event_fd;
5515
	int move_group = 0;
5516
	int fput_needed = 0;
5517
	int err;
T
Thomas Gleixner 已提交
5518

5519
	/* for future expandability... */
5520
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5521 5522
		return -EINVAL;

5523 5524 5525
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5526

5527 5528 5529 5530 5531
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5532
	if (attr.freq) {
5533
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5534 5535 5536
			return -EINVAL;
	}

5537 5538 5539 5540
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5541 5542 5543 5544
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5545
			goto err_fd;
5546 5547 5548 5549 5550 5551 5552 5553
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

5554 5555 5556 5557 5558 5559
	event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err_fd;
	}

5560 5561 5562 5563 5564
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
5588

5589
	if (pid != -1) {
M
Matt Helsley 已提交
5590
		task = find_lively_task_by_vpid(pid);
5591 5592 5593 5594 5595
		if (IS_ERR(task)) {
			err = PTR_ERR(task);
			goto err_group_fd;
		}
	}
M
Matt Helsley 已提交
5596

5597 5598 5599
	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
5600
	ctx = find_get_context(pmu, task, cpu);
5601 5602
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
P
Peter Zijlstra 已提交
5603
		goto err_task;
5604 5605
	}

I
Ingo Molnar 已提交
5606
	/*
5607
	 * Look up the group leader (we will attach this event to it):
5608
	 */
5609
	if (group_leader) {
5610
		err = -EINVAL;
5611 5612

		/*
I
Ingo Molnar 已提交
5613 5614 5615 5616
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5617
			goto err_context;
I
Ingo Molnar 已提交
5618 5619 5620
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5621
		 */
5622 5623 5624 5625 5626 5627 5628 5629
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

5630 5631 5632
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5633
		if (attr.exclusive || attr.pinned)
5634
			goto err_context;
5635 5636 5637 5638 5639
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5640
			goto err_context;
5641
	}
T
Thomas Gleixner 已提交
5642

5643 5644 5645
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5646
		goto err_context;
5647
	}
5648

5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
		perf_event_remove_from_context(group_leader);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_event_remove_from_context(sibling);
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
5661
	}
5662

5663
	event->filp = event_file;
5664
	WARN_ON_ONCE(ctx->parent_ctx);
5665
	mutex_lock(&ctx->mutex);
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

5677
	perf_install_in_context(ctx, event, cpu);
5678
	++ctx->generation;
5679
	mutex_unlock(&ctx->mutex);
5680

5681
	event->owner = current;
5682
	get_task_struct(current);
5683 5684 5685
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5686

5687 5688 5689 5690 5691 5692
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5693 5694 5695
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5696

5697
err_context:
5698
	put_ctx(ctx);
P
Peter Zijlstra 已提交
5699 5700 5701
err_task:
	if (task)
		put_task_struct(task);
5702 5703
err_group_fd:
	fput_light(group_file, fput_needed);
5704
	free_event(event);
5705 5706
err_fd:
	put_unused_fd(event_fd);
5707
	return err;
T
Thomas Gleixner 已提交
5708 5709
}

5710 5711 5712 5713 5714
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
5715
 * @task: task to profile (NULL for percpu)
5716 5717 5718
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
5719
				 struct task_struct *task,
5720
				 perf_overflow_handler_t overflow_handler)
5721 5722
{
	struct perf_event_context *ctx;
5723
	struct perf_event *event;
5724
	int err;
5725

5726 5727 5728
	/*
	 * Get the target context (task or percpu):
	 */
5729

5730 5731 5732 5733 5734
	event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}
5735

M
Matt Helsley 已提交
5736
	ctx = find_get_context(event->pmu, task, cpu);
5737 5738
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5739
		goto err_free;
5740
	}
5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5757 5758 5759
err_free:
	free_event(event);
err:
5760
	return ERR_PTR(err);
5761
}
5762
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5763

5764
static void sync_child_event(struct perf_event *child_event,
5765
			       struct task_struct *child)
5766
{
5767
	struct perf_event *parent_event = child_event->parent;
5768
	u64 child_val;
5769

5770 5771
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5772

P
Peter Zijlstra 已提交
5773
	child_val = perf_event_count(child_event);
5774 5775 5776 5777

	/*
	 * Add back the child's count to the parent's count:
	 */
5778
	atomic64_add(child_val, &parent_event->child_count);
5779 5780 5781 5782
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5783 5784

	/*
5785
	 * Remove this event from the parent's list
5786
	 */
5787 5788 5789 5790
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5791 5792

	/*
5793
	 * Release the parent event, if this was the last
5794 5795
	 * reference to it.
	 */
5796
	fput(parent_event->filp);
5797 5798
}

5799
static void
5800 5801
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5802
			 struct task_struct *child)
5803
{
5804
	struct perf_event *parent_event;
5805

5806
	perf_event_remove_from_context(child_event);
5807

5808
	parent_event = child_event->parent;
5809
	/*
5810
	 * It can happen that parent exits first, and has events
5811
	 * that are still around due to the child reference. These
5812
	 * events need to be zapped - but otherwise linger.
5813
	 */
5814 5815 5816
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5817
	}
5818 5819
}

P
Peter Zijlstra 已提交
5820
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5821
{
5822 5823
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5824
	unsigned long flags;
5825

P
Peter Zijlstra 已提交
5826
	if (likely(!child->perf_event_ctxp[ctxn])) {
5827
		perf_event_task(child, NULL, 0);
5828
		return;
P
Peter Zijlstra 已提交
5829
	}
5830

5831
	local_irq_save(flags);
5832 5833 5834 5835 5836 5837
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
P
Peter Zijlstra 已提交
5838
	child_ctx = child->perf_event_ctxp[ctxn];
5839
	__perf_event_task_sched_out(child_ctx);
5840 5841 5842

	/*
	 * Take the context lock here so that if find_get_context is
5843
	 * reading child->perf_event_ctxp, we wait until it has
5844 5845
	 * incremented the context's refcount before we do put_ctx below.
	 */
5846
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
5847
	child->perf_event_ctxp[ctxn] = NULL;
5848 5849 5850
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5851
	 * the events from it.
5852 5853
	 */
	unclone_ctx(child_ctx);
5854
	update_context_time(child_ctx);
5855
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5856 5857

	/*
5858 5859 5860
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5861
	 */
5862
	perf_event_task(child, child_ctx, 0);
5863

5864 5865 5866
	/*
	 * We can recurse on the same lock type through:
	 *
5867 5868 5869
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5870 5871 5872 5873 5874
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5875
	mutex_lock(&child_ctx->mutex);
5876

5877
again:
5878 5879 5880 5881 5882
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5883
				 group_entry)
5884
		__perf_event_exit_task(child_event, child_ctx, child);
5885 5886

	/*
5887
	 * If the last event was a group event, it will have appended all
5888 5889 5890
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5891 5892
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5893
		goto again;
5894 5895 5896 5897

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5898 5899
}

P
Peter Zijlstra 已提交
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5925
	perf_group_detach(event);
5926 5927 5928 5929
	list_del_event(event, ctx);
	free_event(event);
}

5930 5931
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
5932
 * perf_event_init_task below, used by fork() in case of fail.
5933
 */
5934
void perf_event_free_task(struct task_struct *task)
5935
{
P
Peter Zijlstra 已提交
5936
	struct perf_event_context *ctx;
5937
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
5938
	int ctxn;
5939

P
Peter Zijlstra 已提交
5940 5941 5942 5943
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5944

P
Peter Zijlstra 已提交
5945
		mutex_lock(&ctx->mutex);
5946
again:
P
Peter Zijlstra 已提交
5947 5948 5949
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
5950

P
Peter Zijlstra 已提交
5951 5952 5953
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
5954

P
Peter Zijlstra 已提交
5955 5956 5957
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
5958

P
Peter Zijlstra 已提交
5959
		mutex_unlock(&ctx->mutex);
5960

P
Peter Zijlstra 已提交
5961 5962
		put_ctx(ctx);
	}
5963 5964
}

5965 5966 5967 5968 5969 5970 5971 5972
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
5985
	unsigned long flags;
P
Peter Zijlstra 已提交
5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

	/*
	 * Link it up in the child's context:
	 */
6030
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6031
	add_event_to_ctx(child_event, child_ctx);
6032
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
6074 6075 6076 6077 6078
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6079
		   struct task_struct *child, int ctxn,
6080 6081 6082
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6083
	struct perf_event_context *child_ctx;
6084 6085 6086 6087

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6088 6089
	}

P
Peter Zijlstra 已提交
6090
       	child_ctx = child->perf_event_ctxp[ctxn];
6091 6092 6093 6094 6095 6096 6097
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6098

6099
		child_ctx = alloc_perf_context(event->pmu, child);
6100 6101
		if (!child_ctx)
			return -ENOMEM;
6102

P
Peter Zijlstra 已提交
6103
		child->perf_event_ctxp[ctxn] = child_ctx;
6104 6105 6106 6107 6108 6109 6110 6111 6112
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6113 6114
}

6115
/*
6116
 * Initialize the perf_event context in task_struct
6117
 */
P
Peter Zijlstra 已提交
6118
int perf_event_init_context(struct task_struct *child, int ctxn)
6119
{
6120
	struct perf_event_context *child_ctx, *parent_ctx;
6121 6122
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6123
	struct task_struct *parent = current;
6124
	int inherited_all = 1;
6125
	int ret = 0;
6126

P
Peter Zijlstra 已提交
6127
	child->perf_event_ctxp[ctxn] = NULL;
6128

6129 6130
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
6131

P
Peter Zijlstra 已提交
6132
	if (likely(!parent->perf_event_ctxp[ctxn]))
6133 6134
		return 0;

6135
	/*
6136 6137
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6138
	 */
P
Peter Zijlstra 已提交
6139
	parent_ctx = perf_pin_task_context(parent, ctxn);
6140

6141 6142 6143 6144 6145 6146 6147
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6148 6149 6150 6151
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6152
	mutex_lock(&parent_ctx->mutex);
6153 6154 6155 6156 6157

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6158
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6159 6160
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6161 6162 6163
		if (ret)
			break;
	}
6164

6165
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6166 6167
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6168
		if (ret)
6169
			break;
6170 6171
	}

P
Peter Zijlstra 已提交
6172
	child_ctx = child->perf_event_ctxp[ctxn];
6173

6174
	if (child_ctx && inherited_all) {
6175 6176 6177
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
6178 6179
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
6180
		 * because the list of events and the generation
6181
		 * count can't have changed since we took the mutex.
6182
		 */
6183 6184 6185
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6186
			child_ctx->parent_gen = parent_ctx->parent_gen;
6187 6188 6189 6190 6191
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6192 6193
	}

6194
	mutex_unlock(&parent_ctx->mutex);
6195

6196
	perf_unpin_context(parent_ctx);
6197

6198
	return ret;
6199 6200
}

P
Peter Zijlstra 已提交
6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6217 6218
static void __init perf_event_init_all_cpus(void)
{
6219
	struct swevent_htable *swhash;
6220 6221 6222
	int cpu;

	for_each_possible_cpu(cpu) {
6223 6224
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6225
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6226 6227 6228
	}
}

6229
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6230
{
P
Peter Zijlstra 已提交
6231
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
T
Thomas Gleixner 已提交
6232

6233 6234
	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6235 6236
		struct swevent_hlist *hlist;

6237 6238 6239
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6240
	}
6241
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6242 6243 6244
}

#ifdef CONFIG_HOTPLUG_CPU
6245
static void perf_pmu_rotate_stop(struct pmu *pmu)
T
Thomas Gleixner 已提交
6246
{
6247 6248 6249 6250 6251 6252 6253
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6254
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6255
{
P
Peter Zijlstra 已提交
6256
	struct perf_event_context *ctx = __info;
6257
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6258

P
Peter Zijlstra 已提交
6259
	perf_pmu_rotate_stop(ctx->pmu);
6260

6261 6262 6263
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6264
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6265
}
P
Peter Zijlstra 已提交
6266 6267 6268 6269 6270 6271 6272 6273 6274

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6275
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6276 6277 6278 6279 6280 6281 6282 6283

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6284
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6285
{
6286
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6287

6288 6289 6290
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6291

P
Peter Zijlstra 已提交
6292
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6293 6294
}
#else
6295
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6296 6297 6298 6299 6300 6301 6302
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6303
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6304 6305

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6306
	case CPU_DOWN_FAILED:
6307
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6308 6309
		break;

P
Peter Zijlstra 已提交
6310
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6311
	case CPU_DOWN_PREPARE:
6312
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6313 6314 6315 6316 6317 6318 6319 6320 6321
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6322
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6323
{
6324
	perf_event_init_all_cpus();
6325 6326 6327 6328 6329 6330
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
6331
}