perf_event.c 137.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

37 38 39 40
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
41

P
Peter Zijlstra 已提交
42 43 44 45
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

46
/*
47
 * perf event paranoia level:
48 49
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
50
 *   1 - disallow cpu events for unpriv
51
 *   2 - disallow kernel profiling for unpriv
52
 */
53
int sysctl_perf_event_paranoid __read_mostly = 1;
54

55
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56 57

/*
58
 * max perf event sample rate
59
 */
60
int sysctl_perf_event_sample_rate __read_mostly = 100000;
61

62
static atomic64_t perf_event_id;
63

64
void __weak perf_event_print_debug(void)	{ }
65

P
Peter Zijlstra 已提交
66
void perf_pmu_disable(struct pmu *pmu)
67
{
P
Peter Zijlstra 已提交
68 69 70
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
71 72
}

P
Peter Zijlstra 已提交
73
void perf_pmu_enable(struct pmu *pmu)
74
{
P
Peter Zijlstra 已提交
75 76 77
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
78 79
}

P
Peter Zijlstra 已提交
80
static void perf_pmu_rotate_start(struct pmu *pmu)
81
{
P
Peter Zijlstra 已提交
82
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
83 84 85 86 87 88 89 90 91

	if (hrtimer_active(&cpuctx->timer))
		return;

	__hrtimer_start_range_ns(&cpuctx->timer,
			ns_to_ktime(cpuctx->timer_interval), 0,
			HRTIMER_MODE_REL_PINNED, 0);
}

P
Peter Zijlstra 已提交
92
static void perf_pmu_rotate_stop(struct pmu *pmu)
93
{
P
Peter Zijlstra 已提交
94
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95 96 97 98

	hrtimer_cancel(&cpuctx->timer);
}

99
static void get_ctx(struct perf_event_context *ctx)
100
{
101
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
102 103
}

104 105
static void free_ctx(struct rcu_head *head)
{
106
	struct perf_event_context *ctx;
107

108
	ctx = container_of(head, struct perf_event_context, rcu_head);
109 110 111
	kfree(ctx);
}

112
static void put_ctx(struct perf_event_context *ctx)
113
{
114 115 116
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
117 118 119
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
120
	}
121 122
}

123
static void unclone_ctx(struct perf_event_context *ctx)
124 125 126 127 128 129 130
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

131
/*
132
 * If we inherit events we want to return the parent event id
133 134
 * to userspace.
 */
135
static u64 primary_event_id(struct perf_event *event)
136
{
137
	u64 id = event->id;
138

139 140
	if (event->parent)
		id = event->parent->id;
141 142 143 144

	return id;
}

145
/*
146
 * Get the perf_event_context for a task and lock it.
147 148 149
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
150
static struct perf_event_context *
151
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
152
{
153
	struct perf_event_context *ctx;
154 155

	rcu_read_lock();
P
Peter Zijlstra 已提交
156
retry:
157
	ctx = rcu_dereference(task->perf_event_ctxp);
158 159 160 161
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
162
		 * perf_event_task_sched_out, though the
163 164 165 166 167 168
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
169
		raw_spin_lock_irqsave(&ctx->lock, *flags);
170
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
171
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
172 173
			goto retry;
		}
174 175

		if (!atomic_inc_not_zero(&ctx->refcount)) {
176
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
177 178
			ctx = NULL;
		}
179 180 181 182 183 184 185 186 187 188
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
189
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
190
{
191
	struct perf_event_context *ctx;
192 193 194 195 196
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
197
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
198 199 200 201
	}
	return ctx;
}

202
static void perf_unpin_context(struct perf_event_context *ctx)
203 204 205
{
	unsigned long flags;

206
	raw_spin_lock_irqsave(&ctx->lock, flags);
207
	--ctx->pin_count;
208
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
209 210 211
	put_ctx(ctx);
}

212 213
static inline u64 perf_clock(void)
{
214
	return local_clock();
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

240 241 242 243 244 245
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
246 247 248 249 250 251 252 253 254

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

255 256 257 258 259 260 261 262 263 264 265 266
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

267 268 269 270 271 272 273 274 275
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

276
/*
277
 * Add a event from the lists for its context.
278 279
 * Must be called with ctx->mutex and ctx->lock held.
 */
280
static void
281
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
282
{
283 284
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
285 286

	/*
287 288 289
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
290
	 */
291
	if (event->group_leader == event) {
292 293
		struct list_head *list;

294 295 296
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

297 298
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
299
	}
P
Peter Zijlstra 已提交
300

301
	list_add_rcu(&event->event_entry, &ctx->event_list);
302
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
303
		perf_pmu_rotate_start(ctx->pmu);
304 305
	ctx->nr_events++;
	if (event->attr.inherit_stat)
306
		ctx->nr_stat++;
307 308
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

327
/*
328
 * Remove a event from the lists for its context.
329
 * Must be called with ctx->mutex and ctx->lock held.
330
 */
331
static void
332
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
333
{
334 335 336 337
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
338
		return;
339 340 341

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

342 343
	ctx->nr_events--;
	if (event->attr.inherit_stat)
344
		ctx->nr_stat--;
345

346
	list_del_rcu(&event->event_entry);
347

348 349
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
350

351
	update_group_times(event);
352 353 354 355 356 357 358 359 360 361

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
362 363
}

364
static void perf_group_detach(struct perf_event *event)
365 366
{
	struct perf_event *sibling, *tmp;
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
388

389
	/*
390 391
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
392
	 * to whatever list we are on.
393
	 */
394
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
395 396
		if (list)
			list_move_tail(&sibling->group_entry, list);
397
		sibling->group_leader = sibling;
398 399 400

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
401 402 403
	}
}

404 405 406 407 408 409
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

410
static void
411
event_sched_out(struct perf_event *event,
412
		  struct perf_cpu_context *cpuctx,
413
		  struct perf_event_context *ctx)
414
{
415 416 417 418 419 420 421 422 423 424 425 426 427 428
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

429
	if (event->state != PERF_EVENT_STATE_ACTIVE)
430 431
		return;

432 433 434 435
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
436
	}
437
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
438
	event->pmu->del(event, 0);
439
	event->oncpu = -1;
440

441
	if (!is_software_event(event))
442 443
		cpuctx->active_oncpu--;
	ctx->nr_active--;
444
	if (event->attr.exclusive || !cpuctx->active_oncpu)
445 446 447
		cpuctx->exclusive = 0;
}

448
static void
449
group_sched_out(struct perf_event *group_event,
450
		struct perf_cpu_context *cpuctx,
451
		struct perf_event_context *ctx)
452
{
453
	struct perf_event *event;
454
	int state = group_event->state;
455

456
	event_sched_out(group_event, cpuctx, ctx);
457 458 459 460

	/*
	 * Schedule out siblings (if any):
	 */
461 462
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
463

464
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
465 466 467
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
468 469 470 471 472 473
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
474
/*
475
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
476
 *
477
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
478 479
 * remove it from the context list.
 */
480
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
481
{
482 483
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
484
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
485 486 487 488 489 490

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
491
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
492 493
		return;

494
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
495

496
	event_sched_out(event, cpuctx, ctx);
497

498
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
499

500
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
501 502 503 504
}


/*
505
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
506
 *
507
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
508
 *
509
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
510
 * call when the task is on a CPU.
511
 *
512 513
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
514 515
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
516
 * When called from perf_event_exit_task, it's OK because the
517
 * context has been detached from its task.
T
Thomas Gleixner 已提交
518
 */
519
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
520
{
521
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
522 523 524 525
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
526
		 * Per cpu events are removed via an smp call and
527
		 * the removal is always successful.
T
Thomas Gleixner 已提交
528
		 */
529 530 531
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
532 533 534 535
		return;
	}

retry:
536 537
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
538

539
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
540 541 542
	/*
	 * If the context is active we need to retry the smp call.
	 */
543
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
544
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
545 546 547 548 549
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
550
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
551 552
	 * succeed.
	 */
P
Peter Zijlstra 已提交
553
	if (!list_empty(&event->group_entry))
554
		list_del_event(event, ctx);
555
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
556 557
}

558
/*
559
 * Cross CPU call to disable a performance event
560
 */
561
static void __perf_event_disable(void *info)
562
{
563 564
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
565
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
566 567

	/*
568 569
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
570
	 */
571
	if (ctx->task && cpuctx->task_ctx != ctx)
572 573
		return;

574
	raw_spin_lock(&ctx->lock);
575 576

	/*
577
	 * If the event is on, turn it off.
578 579
	 * If it is in error state, leave it in error state.
	 */
580
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
581
		update_context_time(ctx);
582 583 584
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
585
		else
586 587
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
588 589
	}

590
	raw_spin_unlock(&ctx->lock);
591 592 593
}

/*
594
 * Disable a event.
595
 *
596 597
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
598
 * remains valid.  This condition is satisifed when called through
599 600 601 602
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
603
 * is the current context on this CPU and preemption is disabled,
604
 * hence we can't get into perf_event_task_sched_out for this context.
605
 */
606
void perf_event_disable(struct perf_event *event)
607
{
608
	struct perf_event_context *ctx = event->ctx;
609 610 611 612
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
613
		 * Disable the event on the cpu that it's on
614
		 */
615 616
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
617 618 619
		return;
	}

P
Peter Zijlstra 已提交
620
retry:
621
	task_oncpu_function_call(task, __perf_event_disable, event);
622

623
	raw_spin_lock_irq(&ctx->lock);
624
	/*
625
	 * If the event is still active, we need to retry the cross-call.
626
	 */
627
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
628
		raw_spin_unlock_irq(&ctx->lock);
629 630 631 632 633 634 635
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
636 637 638
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
639
	}
640

641
	raw_spin_unlock_irq(&ctx->lock);
642 643
}

644
static int
645
event_sched_in(struct perf_event *event,
646
		 struct perf_cpu_context *cpuctx,
647
		 struct perf_event_context *ctx)
648
{
649
	if (event->state <= PERF_EVENT_STATE_OFF)
650 651
		return 0;

652
	event->state = PERF_EVENT_STATE_ACTIVE;
653
	event->oncpu = smp_processor_id();
654 655 656 657 658
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
659
	if (event->pmu->add(event, PERF_EF_START)) {
660 661
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
662 663 664
		return -EAGAIN;
	}

665
	event->tstamp_running += ctx->time - event->tstamp_stopped;
666

667
	if (!is_software_event(event))
668
		cpuctx->active_oncpu++;
669 670
	ctx->nr_active++;

671
	if (event->attr.exclusive)
672 673
		cpuctx->exclusive = 1;

674 675 676
	return 0;
}

677
static int
678
group_sched_in(struct perf_event *group_event,
679
	       struct perf_cpu_context *cpuctx,
680
	       struct perf_event_context *ctx)
681
{
682
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
683
	struct pmu *pmu = group_event->pmu;
684

685
	if (group_event->state == PERF_EVENT_STATE_OFF)
686 687
		return 0;

P
Peter Zijlstra 已提交
688
	pmu->start_txn(pmu);
689

690
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
691
		pmu->cancel_txn(pmu);
692
		return -EAGAIN;
693
	}
694 695 696 697

	/*
	 * Schedule in siblings as one group (if any):
	 */
698
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699
		if (event_sched_in(event, cpuctx, ctx)) {
700
			partial_group = event;
701 702 703 704
			goto group_error;
		}
	}

P
Peter Zijlstra 已提交
705
	if (!pmu->commit_txn(pmu))
706
		return 0;
707

708 709 710 711 712
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
713 714
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
715
			break;
716
		event_sched_out(event, cpuctx, ctx);
717
	}
718
	event_sched_out(group_event, cpuctx, ctx);
719

P
Peter Zijlstra 已提交
720
	pmu->cancel_txn(pmu);
721

722 723 724
	return -EAGAIN;
}

725
/*
726
 * Work out whether we can put this event group on the CPU now.
727
 */
728
static int group_can_go_on(struct perf_event *event,
729 730 731 732
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
733
	 * Groups consisting entirely of software events can always go on.
734
	 */
735
	if (event->group_flags & PERF_GROUP_SOFTWARE)
736 737 738
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
739
	 * events can go on.
740 741 742 743 744
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
745
	 * events on the CPU, it can't go on.
746
	 */
747
	if (event->attr.exclusive && cpuctx->active_oncpu)
748 749 750 751 752 753 754 755
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

756 757
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
758
{
759
	list_add_event(event, ctx);
760
	perf_group_attach(event);
761 762 763
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
764 765
}

T
Thomas Gleixner 已提交
766
/*
767
 * Cross CPU call to install and enable a performance event
768 769
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
770 771 772
 */
static void __perf_install_in_context(void *info)
{
773 774 775
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
776
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
777
	int err;
T
Thomas Gleixner 已提交
778 779 780 781 782

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
783
	 * Or possibly this is the right context but it isn't
784
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
785
	 */
786
	if (ctx->task && cpuctx->task_ctx != ctx) {
787
		if (cpuctx->task_ctx || ctx->task != current)
788 789 790
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
791

792
	raw_spin_lock(&ctx->lock);
793
	ctx->is_active = 1;
794
	update_context_time(ctx);
T
Thomas Gleixner 已提交
795

796
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
797

798 799 800
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

801
	/*
802
	 * Don't put the event on if it is disabled or if
803 804
	 * it is in a group and the group isn't on.
	 */
805 806
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
807 808
		goto unlock;

809
	/*
810 811 812
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
813
	 */
814
	if (!group_can_go_on(event, cpuctx, 1))
815 816
		err = -EEXIST;
	else
817
		err = event_sched_in(event, cpuctx, ctx);
818

819 820
	if (err) {
		/*
821
		 * This event couldn't go on.  If it is in a group
822
		 * then we have to pull the whole group off.
823
		 * If the event group is pinned then put it in error state.
824
		 */
825
		if (leader != event)
826
			group_sched_out(leader, cpuctx, ctx);
827
		if (leader->attr.pinned) {
828
			update_group_times(leader);
829
			leader->state = PERF_EVENT_STATE_ERROR;
830
		}
831
	}
T
Thomas Gleixner 已提交
832

P
Peter Zijlstra 已提交
833
unlock:
834
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
835 836 837
}

/*
838
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
839
 *
840 841
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
842
 *
843
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
844 845
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
846 847
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
848 849
 */
static void
850 851
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
852 853 854 855
			int cpu)
{
	struct task_struct *task = ctx->task;

856 857
	event->ctx = ctx;

T
Thomas Gleixner 已提交
858 859
	if (!task) {
		/*
860
		 * Per cpu events are installed via an smp call and
861
		 * the install is always successful.
T
Thomas Gleixner 已提交
862 863
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
864
					 event, 1);
T
Thomas Gleixner 已提交
865 866 867 868 869
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
870
				 event);
T
Thomas Gleixner 已提交
871

872
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
873 874 875
	/*
	 * we need to retry the smp call.
	 */
876
	if (ctx->is_active && list_empty(&event->group_entry)) {
877
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
878 879 880 881 882
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
883
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
884 885
	 * succeed.
	 */
886 887
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
888
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
889 890
}

891
/*
892
 * Put a event into inactive state and update time fields.
893 894 895 896 897 898
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
899 900
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
901
{
902
	struct perf_event *sub;
903

904 905
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
906 907
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
908 909
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
910 911
		}
	}
912 913
}

914
/*
915
 * Cross CPU call to enable a performance event
916
 */
917
static void __perf_event_enable(void *info)
918
{
919 920 921
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
922
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
923
	int err;
924

925
	/*
926 927
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
928
	 */
929
	if (ctx->task && cpuctx->task_ctx != ctx) {
930
		if (cpuctx->task_ctx || ctx->task != current)
931 932 933
			return;
		cpuctx->task_ctx = ctx;
	}
934

935
	raw_spin_lock(&ctx->lock);
936
	ctx->is_active = 1;
937
	update_context_time(ctx);
938

939
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
940
		goto unlock;
941
	__perf_event_mark_enabled(event, ctx);
942

943 944 945
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

946
	/*
947
	 * If the event is in a group and isn't the group leader,
948
	 * then don't put it on unless the group is on.
949
	 */
950
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
951
		goto unlock;
952

953
	if (!group_can_go_on(event, cpuctx, 1)) {
954
		err = -EEXIST;
955
	} else {
956
		if (event == leader)
957
			err = group_sched_in(event, cpuctx, ctx);
958
		else
959
			err = event_sched_in(event, cpuctx, ctx);
960
	}
961 962 963

	if (err) {
		/*
964
		 * If this event can't go on and it's part of a
965 966
		 * group, then the whole group has to come off.
		 */
967
		if (leader != event)
968
			group_sched_out(leader, cpuctx, ctx);
969
		if (leader->attr.pinned) {
970
			update_group_times(leader);
971
			leader->state = PERF_EVENT_STATE_ERROR;
972
		}
973 974
	}

P
Peter Zijlstra 已提交
975
unlock:
976
	raw_spin_unlock(&ctx->lock);
977 978 979
}

/*
980
 * Enable a event.
981
 *
982 983
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
984
 * remains valid.  This condition is satisfied when called through
985 986
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
987
 */
988
void perf_event_enable(struct perf_event *event)
989
{
990
	struct perf_event_context *ctx = event->ctx;
991 992 993 994
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
995
		 * Enable the event on the cpu that it's on
996
		 */
997 998
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
999 1000 1001
		return;
	}

1002
	raw_spin_lock_irq(&ctx->lock);
1003
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1004 1005 1006
		goto out;

	/*
1007 1008
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1009 1010 1011 1012
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1013 1014
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1015

P
Peter Zijlstra 已提交
1016
retry:
1017
	raw_spin_unlock_irq(&ctx->lock);
1018
	task_oncpu_function_call(task, __perf_event_enable, event);
1019

1020
	raw_spin_lock_irq(&ctx->lock);
1021 1022

	/*
1023
	 * If the context is active and the event is still off,
1024 1025
	 * we need to retry the cross-call.
	 */
1026
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1027 1028 1029 1030 1031 1032
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1033 1034
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1035

P
Peter Zijlstra 已提交
1036
out:
1037
	raw_spin_unlock_irq(&ctx->lock);
1038 1039
}

1040
static int perf_event_refresh(struct perf_event *event, int refresh)
1041
{
1042
	/*
1043
	 * not supported on inherited events
1044
	 */
1045
	if (event->attr.inherit)
1046 1047
		return -EINVAL;

1048 1049
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1050 1051

	return 0;
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061 1062
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1063
{
1064
	struct perf_event *event;
1065

1066
	raw_spin_lock(&ctx->lock);
1067
	ctx->is_active = 0;
1068
	if (likely(!ctx->nr_events))
1069
		goto out;
1070
	update_context_time(ctx);
1071

1072
	if (!ctx->nr_active)
1073
		goto out;
1074

P
Peter Zijlstra 已提交
1075
	if (event_type & EVENT_PINNED) {
1076 1077
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1078
	}
1079

P
Peter Zijlstra 已提交
1080
	if (event_type & EVENT_FLEXIBLE) {
1081
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1082
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1083 1084
	}
out:
1085
	raw_spin_unlock(&ctx->lock);
1086 1087
}

1088 1089 1090
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1091 1092 1093 1094
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1095
 * in them directly with an fd; we can only enable/disable all
1096
 * events via prctl, or enable/disable all events in a family
1097 1098
 * via ioctl, which will have the same effect on both contexts.
 */
1099 1100
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1101 1102
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1103
		&& ctx1->parent_gen == ctx2->parent_gen
1104
		&& !ctx1->pin_count && !ctx2->pin_count;
1105 1106
}

1107 1108
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1109 1110 1111
{
	u64 value;

1112
	if (!event->attr.inherit_stat)
1113 1114 1115
		return;

	/*
1116
	 * Update the event value, we cannot use perf_event_read()
1117 1118
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1119
	 * we know the event must be on the current CPU, therefore we
1120 1121
	 * don't need to use it.
	 */
1122 1123
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1124 1125
		event->pmu->read(event);
		/* fall-through */
1126

1127 1128
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1129 1130 1131 1132 1133 1134 1135
		break;

	default:
		break;
	}

	/*
1136
	 * In order to keep per-task stats reliable we need to flip the event
1137 1138
	 * values when we flip the contexts.
	 */
1139 1140 1141
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1142

1143 1144
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1145

1146
	/*
1147
	 * Since we swizzled the values, update the user visible data too.
1148
	 */
1149 1150
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1151 1152 1153 1154 1155
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1156 1157
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1158
{
1159
	struct perf_event *event, *next_event;
1160 1161 1162 1163

	if (!ctx->nr_stat)
		return;

1164 1165
	update_context_time(ctx);

1166 1167
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1168

1169 1170
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1171

1172 1173
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1174

1175
		__perf_event_sync_stat(event, next_event);
1176

1177 1178
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1179 1180 1181
	}
}

T
Thomas Gleixner 已提交
1182
/*
1183
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1184 1185
 * with interrupts disabled.
 *
1186
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1187
 *
I
Ingo Molnar 已提交
1188
 * This does not protect us against NMI, but disable()
1189 1190 1191
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1192
 */
1193
void perf_event_task_sched_out(struct task_struct *task,
1194
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1195
{
1196 1197 1198
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1199
	struct perf_cpu_context *cpuctx;
1200
	int do_switch = 1;
T
Thomas Gleixner 已提交
1201

1202
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1203

P
Peter Zijlstra 已提交
1204 1205 1206 1207 1208
	if (likely(!ctx))
		return;

	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1209 1210
		return;

1211 1212
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1213
	next_ctx = next->perf_event_ctxp;
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1225 1226
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1227
		if (context_equiv(ctx, next_ctx)) {
1228 1229
			/*
			 * XXX do we need a memory barrier of sorts
1230
			 * wrt to rcu_dereference() of perf_event_ctxp
1231
			 */
1232 1233
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1234 1235 1236
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1237

1238
			perf_event_sync_stat(ctx, next_ctx);
1239
		}
1240 1241
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1242
	}
1243
	rcu_read_unlock();
1244

1245
	if (do_switch) {
1246
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1247 1248
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1249 1250
}

1251 1252
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1253
{
P
Peter Zijlstra 已提交
1254
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1255

1256 1257
	if (!cpuctx->task_ctx)
		return;
1258 1259 1260 1261

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1262
	ctx_sched_out(ctx, cpuctx, event_type);
1263 1264 1265
	cpuctx->task_ctx = NULL;
}

1266 1267 1268
/*
 * Called with IRQs disabled
 */
1269
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1270
{
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1281 1282
}

1283
static void
1284
ctx_pinned_sched_in(struct perf_event_context *ctx,
1285
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1286
{
1287
	struct perf_event *event;
T
Thomas Gleixner 已提交
1288

1289 1290
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1291
			continue;
1292
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1293 1294
			continue;

1295
		if (group_can_go_on(event, cpuctx, 1))
1296
			group_sched_in(event, cpuctx, ctx);
1297 1298 1299 1300 1301

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1302 1303 1304
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1305
		}
1306
	}
1307 1308 1309 1310
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1311
		      struct perf_cpu_context *cpuctx)
1312 1313 1314
{
	struct perf_event *event;
	int can_add_hw = 1;
1315

1316 1317 1318
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1319
			continue;
1320 1321
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1322
		 * of events:
1323
		 */
1324
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1325 1326
			continue;

P
Peter Zijlstra 已提交
1327
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1328
			if (group_sched_in(event, cpuctx, ctx))
1329
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1330
		}
T
Thomas Gleixner 已提交
1331
	}
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1351
		ctx_pinned_sched_in(ctx, cpuctx);
1352 1353 1354

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1355
		ctx_flexible_sched_in(ctx, cpuctx);
1356

P
Peter Zijlstra 已提交
1357
out:
1358
	raw_spin_unlock(&ctx->lock);
1359 1360
}

1361 1362 1363 1364 1365 1366 1367 1368
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1369 1370 1371 1372
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_event_context *ctx = task->perf_event_ctxp;
P
Peter Zijlstra 已提交
1373
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1374 1375 1376 1377 1378 1379 1380 1381

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1382
/*
1383
 * Called from scheduler to add the events of the current task
1384 1385
 * with interrupts disabled.
 *
1386
 * We restore the event value and then enable it.
1387 1388
 *
 * This does not protect us against NMI, but enable()
1389 1390 1391
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1392
 */
1393
void perf_event_task_sched_in(struct task_struct *task)
1394
{
1395
	struct perf_event_context *ctx = task->perf_event_ctxp;
P
Peter Zijlstra 已提交
1396
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1397

1398 1399
	if (likely(!ctx))
		return;
1400

P
Peter Zijlstra 已提交
1401
	cpuctx = __get_cpu_context(ctx);
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	if (cpuctx->task_ctx == ctx)
		return;

	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1417 1418 1419 1420 1421

	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1422
	perf_pmu_rotate_start(ctx->pmu);
1423 1424
}

1425 1426
#define MAX_INTERRUPTS (~0ULL)

1427
static void perf_log_throttle(struct perf_event *event, int enable);
1428

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1496 1497 1498
	if (!divisor)
		return dividend;

1499 1500 1501 1502
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1503
{
1504
	struct hw_perf_event *hwc = &event->hw;
1505
	s64 period, sample_period;
1506 1507
	s64 delta;

1508
	period = perf_calculate_period(event, nsec, count);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1519

1520
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1521
		event->pmu->stop(event, PERF_EF_UPDATE);
1522
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1523
		event->pmu->start(event, PERF_EF_RELOAD);
1524
	}
1525 1526
}

1527
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1528
{
1529 1530
	struct perf_event *event;
	struct hw_perf_event *hwc;
1531 1532
	u64 interrupts, now;
	s64 delta;
1533

1534
	raw_spin_lock(&ctx->lock);
1535
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1536
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1537 1538
			continue;

1539 1540 1541
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1542
		hwc = &event->hw;
1543 1544 1545

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1546

1547
		/*
1548
		 * unthrottle events on the tick
1549
		 */
1550
		if (interrupts == MAX_INTERRUPTS) {
1551
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1552
			event->pmu->start(event, 0);
1553 1554
		}

1555
		if (!event->attr.freq || !event->attr.sample_freq)
1556 1557
			continue;

1558
		event->pmu->read(event);
1559
		now = local64_read(&event->count);
1560 1561
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1562

1563
		if (delta > 0)
1564
			perf_adjust_period(event, period, delta);
1565
	}
1566
	raw_spin_unlock(&ctx->lock);
1567 1568
}

1569
/*
1570
 * Round-robin a context's events:
1571
 */
1572
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1573
{
1574
	raw_spin_lock(&ctx->lock);
1575 1576 1577 1578

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1579
	raw_spin_unlock(&ctx->lock);
1580 1581
}

1582 1583 1584 1585 1586 1587
/*
 * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
 * context, and ->pmu_rotate_start() is called with irqs disabled (both are
 * cpu affine, so there are no SMP races).
 */
static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1588
{
1589
	enum hrtimer_restart restart = HRTIMER_NORESTART;
1590
	struct perf_cpu_context *cpuctx;
1591
	struct perf_event_context *ctx;
1592
	int rotate = 0;
1593

1594
	cpuctx = container_of(timer, struct perf_cpu_context, timer);
1595

1596 1597 1598 1599 1600
	if (cpuctx->ctx.nr_events) {
		restart = HRTIMER_RESTART;
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1601

1602 1603 1604 1605 1606 1607
	ctx = current->perf_event_ctxp;
	if (ctx && ctx->nr_events) {
		restart = HRTIMER_RESTART;
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1608

1609
	perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1610
	if (ctx)
1611
		perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1612

1613
	if (!rotate)
1614
		goto done;
1615

1616
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1617
	if (ctx)
1618
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1619

1620
	rotate_ctx(&cpuctx->ctx);
1621 1622
	if (ctx)
		rotate_ctx(ctx);
1623

1624
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1625
	if (ctx)
1626 1627 1628 1629 1630 1631
		task_ctx_sched_in(current, EVENT_FLEXIBLE);

done:
	hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));

	return restart;
T
Thomas Gleixner 已提交
1632 1633
}

1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1649
/*
1650
 * Enable all of a task's events that have been marked enable-on-exec.
1651 1652
 * This expects task == current.
 */
1653
static void perf_event_enable_on_exec(struct task_struct *task)
1654
{
1655 1656
	struct perf_event_context *ctx;
	struct perf_event *event;
1657 1658
	unsigned long flags;
	int enabled = 0;
1659
	int ret;
1660 1661

	local_irq_save(flags);
1662 1663
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1664 1665
		goto out;

1666
	__perf_event_task_sched_out(ctx);
1667

1668
	raw_spin_lock(&ctx->lock);
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1680 1681 1682
	}

	/*
1683
	 * Unclone this context if we enabled any event.
1684
	 */
1685 1686
	if (enabled)
		unclone_ctx(ctx);
1687

1688
	raw_spin_unlock(&ctx->lock);
1689

1690
	perf_event_task_sched_in(task);
P
Peter Zijlstra 已提交
1691
out:
1692 1693 1694
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1695
/*
1696
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1697
 */
1698
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1699
{
1700 1701
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1702
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1703

1704 1705 1706 1707
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1708 1709
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1710 1711 1712 1713
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1714
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1715
	update_context_time(ctx);
1716
	update_event_times(event);
1717
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1718

P
Peter Zijlstra 已提交
1719
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1720 1721
}

P
Peter Zijlstra 已提交
1722 1723
static inline u64 perf_event_count(struct perf_event *event)
{
1724
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1725 1726
}

1727
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1728 1729
{
	/*
1730 1731
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1732
	 */
1733 1734 1735 1736
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1737 1738 1739
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1740
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1741
		update_context_time(ctx);
1742
		update_event_times(event);
1743
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1744 1745
	}

P
Peter Zijlstra 已提交
1746
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1747 1748
}

1749 1750 1751 1752 1753 1754 1755 1756 1757
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1758
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1814
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1959
/*
1960
 * Initialize the perf_event context in a task_struct:
1961
 */
1962
static void __perf_event_init_context(struct perf_event_context *ctx)
1963
{
1964
	raw_spin_lock_init(&ctx->lock);
1965
	mutex_init(&ctx->mutex);
1966 1967
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1968 1969
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
	}
	ctx->pmu = pmu;

	return ctx;
1989 1990
}

P
Peter Zijlstra 已提交
1991 1992
static struct perf_event_context *
find_get_context(struct pmu *pmu, pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1993
{
1994
	struct perf_event_context *ctx;
1995
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1996
	struct task_struct *task;
1997
	unsigned long flags;
1998
	int err;
T
Thomas Gleixner 已提交
1999

2000
	if (pid == -1 && cpu != -1) {
2001
		/* Must be root to operate on a CPU event: */
2002
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2003 2004
			return ERR_PTR(-EACCES);

2005
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2006 2007 2008
			return ERR_PTR(-EINVAL);

		/*
2009
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2010 2011 2012
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2013
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2014 2015
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2016
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2017
		ctx = &cpuctx->ctx;
2018
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2035
	/*
2036
	 * Can't attach events to a dying task.
2037 2038 2039 2040 2041
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2042
	/* Reuse ptrace permission checks for now. */
2043 2044 2045 2046
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

P
Peter Zijlstra 已提交
2047
retry:
2048
	ctx = perf_lock_task_context(task, &flags);
2049
	if (ctx) {
2050
		unclone_ctx(ctx);
2051
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2052 2053
	}

2054
	if (!ctx) {
2055
		ctx = alloc_perf_context(pmu, task);
2056 2057 2058
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2059

2060
		get_ctx(ctx);
2061

2062
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2063 2064 2065 2066
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
2067
			put_task_struct(task);
2068
			kfree(ctx);
2069
			goto retry;
2070 2071 2072
		}
	}

2073
	put_task_struct(task);
T
Thomas Gleixner 已提交
2074
	return ctx;
2075

P
Peter Zijlstra 已提交
2076
errout:
2077 2078
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2079 2080
}

L
Li Zefan 已提交
2081 2082
static void perf_event_free_filter(struct perf_event *event);

2083
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2084
{
2085
	struct perf_event *event;
P
Peter Zijlstra 已提交
2086

2087 2088 2089
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2090
	perf_event_free_filter(event);
2091
	kfree(event);
P
Peter Zijlstra 已提交
2092 2093
}

2094
static void perf_pending_sync(struct perf_event *event);
2095
static void perf_buffer_put(struct perf_buffer *buffer);
2096

2097
static void free_event(struct perf_event *event)
2098
{
2099
	perf_pending_sync(event);
2100

2101 2102
	if (!event->parent) {
		atomic_dec(&nr_events);
2103
		if (event->attr.mmap || event->attr.mmap_data)
2104 2105 2106 2107 2108
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2109 2110
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2111
	}
2112

2113 2114 2115
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2116 2117
	}

2118 2119
	if (event->destroy)
		event->destroy(event);
2120

2121 2122
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
2123 2124
}

2125
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2126
{
2127
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2128

2129 2130 2131 2132 2133 2134
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2135
	WARN_ON_ONCE(ctx->parent_ctx);
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2149
	raw_spin_lock_irq(&ctx->lock);
2150
	perf_group_detach(event);
2151 2152
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2153
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2154

2155 2156 2157 2158
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2159

2160
	free_event(event);
T
Thomas Gleixner 已提交
2161 2162 2163

	return 0;
}
2164
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2165

2166 2167 2168 2169
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2170
{
2171
	struct perf_event *event = file->private_data;
2172

2173
	file->private_data = NULL;
2174

2175
	return perf_event_release_kernel(event);
2176 2177
}

2178
static int perf_event_read_size(struct perf_event *event)
2179 2180 2181 2182 2183
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2184
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2185 2186
		size += sizeof(u64);

2187
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2188 2189
		size += sizeof(u64);

2190
	if (event->attr.read_format & PERF_FORMAT_ID)
2191 2192
		entry += sizeof(u64);

2193 2194
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2195 2196 2197 2198 2199 2200 2201 2202
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2203
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2204
{
2205
	struct perf_event *child;
2206 2207
	u64 total = 0;

2208 2209 2210
	*enabled = 0;
	*running = 0;

2211
	mutex_lock(&event->child_mutex);
2212
	total += perf_event_read(event);
2213 2214 2215 2216 2217 2218
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2219
		total += perf_event_read(child);
2220 2221 2222
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2223
	mutex_unlock(&event->child_mutex);
2224 2225 2226

	return total;
}
2227
EXPORT_SYMBOL_GPL(perf_event_read_value);
2228

2229
static int perf_event_read_group(struct perf_event *event,
2230 2231
				   u64 read_format, char __user *buf)
{
2232
	struct perf_event *leader = event->group_leader, *sub;
2233 2234
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2235
	u64 values[5];
2236
	u64 count, enabled, running;
2237

2238
	mutex_lock(&ctx->mutex);
2239
	count = perf_event_read_value(leader, &enabled, &running);
2240 2241

	values[n++] = 1 + leader->nr_siblings;
2242 2243 2244 2245
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2246 2247 2248
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2249 2250 2251 2252

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2253
		goto unlock;
2254

2255
	ret = size;
2256

2257
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2258
		n = 0;
2259

2260
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2261 2262 2263 2264 2265
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2266
		if (copy_to_user(buf + ret, values, size)) {
2267 2268 2269
			ret = -EFAULT;
			goto unlock;
		}
2270 2271

		ret += size;
2272
	}
2273 2274
unlock:
	mutex_unlock(&ctx->mutex);
2275

2276
	return ret;
2277 2278
}

2279
static int perf_event_read_one(struct perf_event *event,
2280 2281
				 u64 read_format, char __user *buf)
{
2282
	u64 enabled, running;
2283 2284 2285
	u64 values[4];
	int n = 0;

2286 2287 2288 2289 2290
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2291
	if (read_format & PERF_FORMAT_ID)
2292
		values[n++] = primary_event_id(event);
2293 2294 2295 2296 2297 2298 2299

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2300
/*
2301
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2302 2303
 */
static ssize_t
2304
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2305
{
2306
	u64 read_format = event->attr.read_format;
2307
	int ret;
T
Thomas Gleixner 已提交
2308

2309
	/*
2310
	 * Return end-of-file for a read on a event that is in
2311 2312 2313
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2314
	if (event->state == PERF_EVENT_STATE_ERROR)
2315 2316
		return 0;

2317
	if (count < perf_event_read_size(event))
2318 2319
		return -ENOSPC;

2320
	WARN_ON_ONCE(event->ctx->parent_ctx);
2321
	if (read_format & PERF_FORMAT_GROUP)
2322
		ret = perf_event_read_group(event, read_format, buf);
2323
	else
2324
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2325

2326
	return ret;
T
Thomas Gleixner 已提交
2327 2328 2329 2330 2331
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2332
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2333

2334
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2335 2336 2337 2338
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2339
	struct perf_event *event = file->private_data;
2340
	struct perf_buffer *buffer;
2341
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2342 2343

	rcu_read_lock();
2344 2345 2346
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2347
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2348

2349
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2350 2351 2352 2353

	return events;
}

2354
static void perf_event_reset(struct perf_event *event)
2355
{
2356
	(void)perf_event_read(event);
2357
	local64_set(&event->count, 0);
2358
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2359 2360
}

2361
/*
2362 2363 2364 2365
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2366
 */
2367 2368
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2369
{
2370
	struct perf_event *child;
P
Peter Zijlstra 已提交
2371

2372 2373 2374 2375
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2376
		func(child);
2377
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2378 2379
}

2380 2381
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2382
{
2383 2384
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2385

2386 2387
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2388
	event = event->group_leader;
2389

2390 2391 2392 2393
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2394
	mutex_unlock(&ctx->mutex);
2395 2396
}

2397
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2398
{
2399
	struct perf_event_context *ctx = event->ctx;
2400 2401 2402 2403
	unsigned long size;
	int ret = 0;
	u64 value;

2404
	if (!event->attr.sample_period)
2405 2406 2407 2408 2409 2410 2411 2412 2413
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2414
	raw_spin_lock_irq(&ctx->lock);
2415 2416
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2417 2418 2419 2420
			ret = -EINVAL;
			goto unlock;
		}

2421
		event->attr.sample_freq = value;
2422
	} else {
2423 2424
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2425 2426
	}
unlock:
2427
	raw_spin_unlock_irq(&ctx->lock);
2428 2429 2430 2431

	return ret;
}

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2453
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2454

2455 2456
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2457 2458
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2459
	u32 flags = arg;
2460 2461

	switch (cmd) {
2462 2463
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2464
		break;
2465 2466
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2467
		break;
2468 2469
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2470
		break;
P
Peter Zijlstra 已提交
2471

2472 2473
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2474

2475 2476
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2477

2478
	case PERF_EVENT_IOC_SET_OUTPUT:
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2496

L
Li Zefan 已提交
2497 2498 2499
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2500
	default:
P
Peter Zijlstra 已提交
2501
		return -ENOTTY;
2502
	}
P
Peter Zijlstra 已提交
2503 2504

	if (flags & PERF_IOC_FLAG_GROUP)
2505
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2506
	else
2507
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2508 2509

	return 0;
2510 2511
}

2512
int perf_event_task_enable(void)
2513
{
2514
	struct perf_event *event;
2515

2516 2517 2518 2519
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2520 2521 2522 2523

	return 0;
}

2524
int perf_event_task_disable(void)
2525
{
2526
	struct perf_event *event;
2527

2528 2529 2530 2531
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2532 2533 2534 2535

	return 0;
}

2536 2537
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2538 2539
#endif

2540
static int perf_event_index(struct perf_event *event)
2541
{
P
Peter Zijlstra 已提交
2542 2543 2544
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2545
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2546 2547
		return 0;

2548
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2549 2550
}

2551 2552 2553 2554 2555
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2556
void perf_event_update_userpage(struct perf_event *event)
2557
{
2558
	struct perf_event_mmap_page *userpg;
2559
	struct perf_buffer *buffer;
2560 2561

	rcu_read_lock();
2562 2563
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2564 2565
		goto unlock;

2566
	userpg = buffer->user_page;
2567

2568 2569 2570 2571 2572
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2573
	++userpg->lock;
2574
	barrier();
2575
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2576
	userpg->offset = perf_event_count(event);
2577
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2578
		userpg->offset -= local64_read(&event->hw.prev_count);
2579

2580 2581
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2582

2583 2584
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2585

2586
	barrier();
2587
	++userpg->lock;
2588
	preempt_enable();
2589
unlock:
2590
	rcu_read_unlock();
2591 2592
}

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2612
#ifndef CONFIG_PERF_USE_VMALLOC
2613

2614 2615 2616
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2617

2618
static struct page *
2619
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2620
{
2621
	if (pgoff > buffer->nr_pages)
2622
		return NULL;
2623

2624
	if (pgoff == 0)
2625
		return virt_to_page(buffer->user_page);
2626

2627
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2628 2629
}

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2643
static struct perf_buffer *
2644
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2645
{
2646
	struct perf_buffer *buffer;
2647 2648 2649
	unsigned long size;
	int i;

2650
	size = sizeof(struct perf_buffer);
2651 2652
	size += nr_pages * sizeof(void *);

2653 2654
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2655 2656
		goto fail;

2657
	buffer->user_page = perf_mmap_alloc_page(cpu);
2658
	if (!buffer->user_page)
2659 2660 2661
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2662
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2663
		if (!buffer->data_pages[i])
2664 2665 2666
			goto fail_data_pages;
	}

2667
	buffer->nr_pages = nr_pages;
2668

2669 2670
	perf_buffer_init(buffer, watermark, flags);

2671
	return buffer;
2672 2673 2674

fail_data_pages:
	for (i--; i >= 0; i--)
2675
		free_page((unsigned long)buffer->data_pages[i]);
2676

2677
	free_page((unsigned long)buffer->user_page);
2678 2679

fail_user_page:
2680
	kfree(buffer);
2681 2682

fail:
2683
	return NULL;
2684 2685
}

2686 2687
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2688
	struct page *page = virt_to_page((void *)addr);
2689 2690 2691 2692 2693

	page->mapping = NULL;
	__free_page(page);
}

2694
static void perf_buffer_free(struct perf_buffer *buffer)
2695 2696 2697
{
	int i;

2698 2699 2700 2701
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2702 2703
}

2704
static inline int page_order(struct perf_buffer *buffer)
2705 2706 2707 2708
{
	return 0;
}

2709 2710 2711 2712 2713 2714 2715 2716
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2717
static inline int page_order(struct perf_buffer *buffer)
2718
{
2719
	return buffer->page_order;
2720 2721
}

2722
static struct page *
2723
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2724
{
2725
	if (pgoff > (1UL << page_order(buffer)))
2726 2727
		return NULL;

2728
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2729 2730 2731 2732 2733 2734 2735 2736 2737
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2738
static void perf_buffer_free_work(struct work_struct *work)
2739
{
2740
	struct perf_buffer *buffer;
2741 2742 2743
	void *base;
	int i, nr;

2744 2745
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2746

2747
	base = buffer->user_page;
2748 2749 2750 2751
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2752
	kfree(buffer);
2753 2754
}

2755
static void perf_buffer_free(struct perf_buffer *buffer)
2756
{
2757
	schedule_work(&buffer->work);
2758 2759
}

2760
static struct perf_buffer *
2761
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2762
{
2763
	struct perf_buffer *buffer;
2764 2765 2766
	unsigned long size;
	void *all_buf;

2767
	size = sizeof(struct perf_buffer);
2768 2769
	size += sizeof(void *);

2770 2771
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2772 2773
		goto fail;

2774
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2775 2776 2777 2778 2779

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2780 2781 2782 2783
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2784

2785 2786
	perf_buffer_init(buffer, watermark, flags);

2787
	return buffer;
2788 2789

fail_all_buf:
2790
	kfree(buffer);
2791 2792 2793 2794 2795 2796 2797

fail:
	return NULL;
}

#endif

2798
static unsigned long perf_data_size(struct perf_buffer *buffer)
2799
{
2800
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2801 2802
}

2803 2804 2805
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2806
	struct perf_buffer *buffer;
2807 2808 2809 2810 2811 2812 2813 2814 2815
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2816 2817
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2818 2819 2820 2821 2822
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2823
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2838
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2839
{
2840
	struct perf_buffer *buffer;
2841

2842 2843
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2844 2845
}

2846
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2847
{
2848
	struct perf_buffer *buffer;
2849

2850
	rcu_read_lock();
2851 2852 2853 2854
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2855 2856 2857
	}
	rcu_read_unlock();

2858
	return buffer;
2859 2860
}

2861
static void perf_buffer_put(struct perf_buffer *buffer)
2862
{
2863
	if (!atomic_dec_and_test(&buffer->refcount))
2864
		return;
2865

2866
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2867 2868 2869 2870
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2871
	struct perf_event *event = vma->vm_file->private_data;
2872

2873
	atomic_inc(&event->mmap_count);
2874 2875 2876 2877
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2878
	struct perf_event *event = vma->vm_file->private_data;
2879

2880
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2881
		unsigned long size = perf_data_size(event->buffer);
2882
		struct user_struct *user = event->mmap_user;
2883
		struct perf_buffer *buffer = event->buffer;
2884

2885
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2886
		vma->vm_mm->locked_vm -= event->mmap_locked;
2887
		rcu_assign_pointer(event->buffer, NULL);
2888
		mutex_unlock(&event->mmap_mutex);
2889

2890
		perf_buffer_put(buffer);
2891
		free_uid(user);
2892
	}
2893 2894
}

2895
static const struct vm_operations_struct perf_mmap_vmops = {
2896 2897 2898 2899
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2900 2901 2902 2903
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2904
	struct perf_event *event = file->private_data;
2905
	unsigned long user_locked, user_lock_limit;
2906
	struct user_struct *user = current_user();
2907
	unsigned long locked, lock_limit;
2908
	struct perf_buffer *buffer;
2909 2910
	unsigned long vma_size;
	unsigned long nr_pages;
2911
	long user_extra, extra;
2912
	int ret = 0, flags = 0;
2913

2914 2915 2916 2917 2918 2919 2920 2921
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2922
	if (!(vma->vm_flags & VM_SHARED))
2923
		return -EINVAL;
2924 2925 2926 2927

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2928
	/*
2929
	 * If we have buffer pages ensure they're a power-of-two number, so we
2930 2931 2932
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2933 2934
		return -EINVAL;

2935
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2936 2937
		return -EINVAL;

2938 2939
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2940

2941 2942
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2943 2944 2945
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2946
		else
2947 2948 2949 2950
			ret = -EINVAL;
		goto unlock;
	}

2951
	user_extra = nr_pages + 1;
2952
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2953 2954 2955 2956 2957 2958

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2959
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2960

2961 2962 2963
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2964

2965
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2966
	lock_limit >>= PAGE_SHIFT;
2967
	locked = vma->vm_mm->locked_vm + extra;
2968

2969 2970
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2971 2972 2973
		ret = -EPERM;
		goto unlock;
	}
2974

2975
	WARN_ON(event->buffer);
2976

2977 2978 2979 2980 2981
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
2982
	if (!buffer) {
2983
		ret = -ENOMEM;
2984
		goto unlock;
2985
	}
2986
	rcu_assign_pointer(event->buffer, buffer);
2987

2988 2989 2990 2991 2992
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

2993
unlock:
2994 2995
	if (!ret)
		atomic_inc(&event->mmap_count);
2996
	mutex_unlock(&event->mmap_mutex);
2997 2998 2999

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3000 3001

	return ret;
3002 3003
}

P
Peter Zijlstra 已提交
3004 3005 3006
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3007
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3008 3009 3010
	int retval;

	mutex_lock(&inode->i_mutex);
3011
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3012 3013 3014 3015 3016 3017 3018 3019
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3020
static const struct file_operations perf_fops = {
3021
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3022 3023 3024
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3025 3026
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3027
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3028
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3029 3030
};

3031
/*
3032
 * Perf event wakeup
3033 3034 3035 3036 3037
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3038
void perf_event_wakeup(struct perf_event *event)
3039
{
3040
	wake_up_all(&event->waitq);
3041

3042 3043 3044
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3045
	}
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3057
static void perf_pending_event(struct perf_pending_entry *entry)
3058
{
3059 3060
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3061

3062 3063 3064
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3065 3066
	}

3067 3068 3069
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3070 3071 3072
	}
}

3073
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3074

3075
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3076 3077 3078
	PENDING_TAIL,
};

3079 3080
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3081
{
3082
	struct perf_pending_entry **head;
3083

3084
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3085 3086
		return;

3087 3088 3089
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3090 3091

	do {
3092 3093
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3094

3095
	set_perf_event_pending();
3096

3097
	put_cpu_var(perf_pending_head);
3098 3099 3100 3101
}

static int __perf_pending_run(void)
{
3102
	struct perf_pending_entry *list;
3103 3104
	int nr = 0;

3105
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3106
	while (list != PENDING_TAIL) {
3107 3108
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3109 3110 3111

		list = list->next;

3112 3113
		func = entry->func;
		entry->next = NULL;
3114 3115 3116 3117 3118 3119 3120
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3121
		func(entry);
3122 3123 3124 3125 3126 3127
		nr++;
	}

	return nr;
}

3128
static inline int perf_not_pending(struct perf_event *event)
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3143
	return event->pending.next == NULL;
3144 3145
}

3146
static void perf_pending_sync(struct perf_event *event)
3147
{
3148
	wait_event(event->waitq, perf_not_pending(event));
3149 3150
}

3151
void perf_event_do_pending(void)
3152 3153 3154 3155
{
	__perf_pending_run();
}

3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3177 3178 3179
/*
 * Output
 */
3180
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3181
			      unsigned long offset, unsigned long head)
3182 3183 3184
{
	unsigned long mask;

3185
	if (!buffer->writable)
3186 3187
		return true;

3188
	mask = perf_data_size(buffer) - 1;
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3199
static void perf_output_wakeup(struct perf_output_handle *handle)
3200
{
3201
	atomic_set(&handle->buffer->poll, POLL_IN);
3202

3203
	if (handle->nmi) {
3204 3205 3206
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3207
	} else
3208
		perf_event_wakeup(handle->event);
3209 3210
}

3211
/*
3212
 * We need to ensure a later event_id doesn't publish a head when a former
3213
 * event isn't done writing. However since we need to deal with NMIs we
3214 3215 3216
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3217
 * event completes.
3218
 */
3219
static void perf_output_get_handle(struct perf_output_handle *handle)
3220
{
3221
	struct perf_buffer *buffer = handle->buffer;
3222

3223
	preempt_disable();
3224 3225
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3226 3227
}

3228
static void perf_output_put_handle(struct perf_output_handle *handle)
3229
{
3230
	struct perf_buffer *buffer = handle->buffer;
3231
	unsigned long head;
3232 3233

again:
3234
	head = local_read(&buffer->head);
3235 3236

	/*
3237
	 * IRQ/NMI can happen here, which means we can miss a head update.
3238 3239
	 */

3240
	if (!local_dec_and_test(&buffer->nest))
3241
		goto out;
3242 3243

	/*
3244
	 * Publish the known good head. Rely on the full barrier implied
3245
	 * by atomic_dec_and_test() order the buffer->head read and this
3246
	 * write.
3247
	 */
3248
	buffer->user_page->data_head = head;
3249

3250 3251
	/*
	 * Now check if we missed an update, rely on the (compiler)
3252
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3253
	 */
3254 3255
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3256 3257 3258
		goto again;
	}

3259
	if (handle->wakeup != local_read(&buffer->wakeup))
3260
		perf_output_wakeup(handle);
3261

P
Peter Zijlstra 已提交
3262
out:
3263
	preempt_enable();
3264 3265
}

3266
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3267
		      const void *buf, unsigned int len)
3268
{
3269
	do {
3270
		unsigned long size = min_t(unsigned long, handle->size, len);
3271 3272 3273 3274 3275

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3276
		buf += size;
3277 3278
		handle->size -= size;
		if (!handle->size) {
3279
			struct perf_buffer *buffer = handle->buffer;
3280

3281
			handle->page++;
3282 3283 3284
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3285 3286
		}
	} while (len);
3287 3288
}

3289
int perf_output_begin(struct perf_output_handle *handle,
3290
		      struct perf_event *event, unsigned int size,
3291
		      int nmi, int sample)
3292
{
3293
	struct perf_buffer *buffer;
3294
	unsigned long tail, offset, head;
3295 3296 3297 3298 3299 3300
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3301

3302
	rcu_read_lock();
3303
	/*
3304
	 * For inherited events we send all the output towards the parent.
3305
	 */
3306 3307
	if (event->parent)
		event = event->parent;
3308

3309 3310
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3311 3312
		goto out;

3313
	handle->buffer	= buffer;
3314
	handle->event	= event;
3315 3316
	handle->nmi	= nmi;
	handle->sample	= sample;
3317

3318
	if (!buffer->nr_pages)
3319
		goto out;
3320

3321
	have_lost = local_read(&buffer->lost);
3322 3323 3324
	if (have_lost)
		size += sizeof(lost_event);

3325
	perf_output_get_handle(handle);
3326

3327
	do {
3328 3329 3330 3331 3332
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3333
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3334
		smp_rmb();
3335
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3336
		head += size;
3337
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3338
			goto fail;
3339
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3340

3341 3342
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3343

3344 3345 3346 3347
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3348
	handle->addr += handle->size;
3349
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3350

3351
	if (have_lost) {
3352
		lost_event.header.type = PERF_RECORD_LOST;
3353 3354
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3355
		lost_event.id          = event->id;
3356
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3357 3358 3359 3360

		perf_output_put(handle, lost_event);
	}

3361
	return 0;
3362

3363
fail:
3364
	local_inc(&buffer->lost);
3365
	perf_output_put_handle(handle);
3366 3367
out:
	rcu_read_unlock();
3368

3369 3370
	return -ENOSPC;
}
3371

3372
void perf_output_end(struct perf_output_handle *handle)
3373
{
3374
	struct perf_event *event = handle->event;
3375
	struct perf_buffer *buffer = handle->buffer;
3376

3377
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3378

3379
	if (handle->sample && wakeup_events) {
3380
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3381
		if (events >= wakeup_events) {
3382 3383
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3384
		}
3385 3386
	}

3387
	perf_output_put_handle(handle);
3388
	rcu_read_unlock();
3389 3390
}

3391
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3392 3393
{
	/*
3394
	 * only top level events have the pid namespace they were created in
3395
	 */
3396 3397
	if (event->parent)
		event = event->parent;
3398

3399
	return task_tgid_nr_ns(p, event->ns);
3400 3401
}

3402
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3403 3404
{
	/*
3405
	 * only top level events have the pid namespace they were created in
3406
	 */
3407 3408
	if (event->parent)
		event = event->parent;
3409

3410
	return task_pid_nr_ns(p, event->ns);
3411 3412
}

3413
static void perf_output_read_one(struct perf_output_handle *handle,
3414
				 struct perf_event *event)
3415
{
3416
	u64 read_format = event->attr.read_format;
3417 3418 3419
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3420
	values[n++] = perf_event_count(event);
3421
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3422 3423
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3424 3425
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3426 3427
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3428 3429
	}
	if (read_format & PERF_FORMAT_ID)
3430
		values[n++] = primary_event_id(event);
3431 3432 3433 3434 3435

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3436
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3437 3438
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3439
			    struct perf_event *event)
3440
{
3441 3442
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3454
	if (leader != event)
3455 3456
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3457
	values[n++] = perf_event_count(leader);
3458
	if (read_format & PERF_FORMAT_ID)
3459
		values[n++] = primary_event_id(leader);
3460 3461 3462

	perf_output_copy(handle, values, n * sizeof(u64));

3463
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3464 3465
		n = 0;

3466
		if (sub != event)
3467 3468
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3469
		values[n++] = perf_event_count(sub);
3470
		if (read_format & PERF_FORMAT_ID)
3471
			values[n++] = primary_event_id(sub);
3472 3473 3474 3475 3476 3477

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3478
			     struct perf_event *event)
3479
{
3480 3481
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3482
	else
3483
		perf_output_read_one(handle, event);
3484 3485
}

3486 3487 3488
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3489
			struct perf_event *event)
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3520
		perf_output_read(handle, event);
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3558
			 struct perf_event *event,
3559
			 struct pt_regs *regs)
3560
{
3561
	u64 sample_type = event->attr.sample_type;
3562

3563
	data->type = sample_type;
3564

3565
	header->type = PERF_RECORD_SAMPLE;
3566 3567 3568 3569
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3570

3571
	if (sample_type & PERF_SAMPLE_IP) {
3572 3573 3574
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3575
	}
3576

3577
	if (sample_type & PERF_SAMPLE_TID) {
3578
		/* namespace issues */
3579 3580
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3581

3582
		header->size += sizeof(data->tid_entry);
3583 3584
	}

3585
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3586
		data->time = perf_clock();
3587

3588
		header->size += sizeof(data->time);
3589 3590
	}

3591
	if (sample_type & PERF_SAMPLE_ADDR)
3592
		header->size += sizeof(data->addr);
3593

3594
	if (sample_type & PERF_SAMPLE_ID) {
3595
		data->id = primary_event_id(event);
3596

3597 3598 3599 3600
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3601
		data->stream_id = event->id;
3602 3603 3604

		header->size += sizeof(data->stream_id);
	}
3605

3606
	if (sample_type & PERF_SAMPLE_CPU) {
3607 3608
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3609

3610
		header->size += sizeof(data->cpu_entry);
3611 3612
	}

3613
	if (sample_type & PERF_SAMPLE_PERIOD)
3614
		header->size += sizeof(data->period);
3615

3616
	if (sample_type & PERF_SAMPLE_READ)
3617
		header->size += perf_event_read_size(event);
3618

3619
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3620
		int size = 1;
3621

3622 3623 3624 3625 3626 3627
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3628 3629
	}

3630
	if (sample_type & PERF_SAMPLE_RAW) {
3631 3632 3633 3634 3635 3636 3637 3638
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3639
		header->size += size;
3640
	}
3641
}
3642

3643
static void perf_event_output(struct perf_event *event, int nmi,
3644 3645 3646 3647 3648
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3649

3650 3651 3652
	/* protect the callchain buffers */
	rcu_read_lock();

3653
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3654

3655
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3656
		goto exit;
3657

3658
	perf_output_sample(&handle, &header, data, event);
3659

3660
	perf_output_end(&handle);
3661 3662 3663

exit:
	rcu_read_unlock();
3664 3665
}

3666
/*
3667
 * read event_id
3668 3669 3670 3671 3672 3673 3674 3675 3676 3677
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3678
perf_event_read_event(struct perf_event *event,
3679 3680 3681
			struct task_struct *task)
{
	struct perf_output_handle handle;
3682
	struct perf_read_event read_event = {
3683
		.header = {
3684
			.type = PERF_RECORD_READ,
3685
			.misc = 0,
3686
			.size = sizeof(read_event) + perf_event_read_size(event),
3687
		},
3688 3689
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3690
	};
3691
	int ret;
3692

3693
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3694 3695 3696
	if (ret)
		return;

3697
	perf_output_put(&handle, read_event);
3698
	perf_output_read(&handle, event);
3699

3700 3701 3702
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3703
/*
P
Peter Zijlstra 已提交
3704 3705
 * task tracking -- fork/exit
 *
3706
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3707 3708
 */

P
Peter Zijlstra 已提交
3709
struct perf_task_event {
3710
	struct task_struct		*task;
3711
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3712 3713 3714 3715 3716 3717

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3718 3719
		u32				tid;
		u32				ptid;
3720
		u64				time;
3721
	} event_id;
P
Peter Zijlstra 已提交
3722 3723
};

3724
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3725
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3726 3727
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3728
	struct task_struct *task = task_event->task;
3729 3730
	int size, ret;

3731 3732
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3733

3734
	if (ret)
P
Peter Zijlstra 已提交
3735 3736
		return;

3737 3738
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3739

3740 3741
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3742

3743
	perf_output_put(&handle, task_event->event_id);
3744

P
Peter Zijlstra 已提交
3745 3746 3747
	perf_output_end(&handle);
}

3748
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3749
{
P
Peter Zijlstra 已提交
3750
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3751 3752
		return 0;

3753 3754 3755
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3756 3757
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3758 3759 3760 3761 3762
		return 1;

	return 0;
}

3763
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3764
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3765
{
3766
	struct perf_event *event;
P
Peter Zijlstra 已提交
3767

3768 3769 3770
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3771 3772 3773
	}
}

3774
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3775
{
3776
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3777 3778
	struct perf_cpu_context *cpuctx;
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3779

P
Peter Zijlstra 已提交
3780 3781 3782 3783 3784
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_task_ctx(&cpuctx->ctx, task_event);
	}
3785
	if (!ctx)
P
Peter Zijlstra 已提交
3786
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3787
	if (ctx)
3788
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3789
	rcu_read_unlock_sched();
P
Peter Zijlstra 已提交
3790 3791
}

3792 3793
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3794
			      int new)
P
Peter Zijlstra 已提交
3795
{
P
Peter Zijlstra 已提交
3796
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3797

3798 3799 3800
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3801 3802
		return;

P
Peter Zijlstra 已提交
3803
	task_event = (struct perf_task_event){
3804 3805
		.task	  = task,
		.task_ctx = task_ctx,
3806
		.event_id    = {
P
Peter Zijlstra 已提交
3807
			.header = {
3808
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3809
				.misc = 0,
3810
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3811
			},
3812 3813
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3814 3815
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3816
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3817 3818 3819
		},
	};

3820
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3821 3822
}

3823
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3824
{
3825
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3826 3827
}

3828 3829 3830 3831 3832
/*
 * comm tracking
 */

struct perf_comm_event {
3833 3834
	struct task_struct	*task;
	char			*comm;
3835 3836 3837 3838 3839 3840 3841
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3842
	} event_id;
3843 3844
};

3845
static void perf_event_comm_output(struct perf_event *event,
3846 3847 3848
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3849 3850
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3851 3852 3853 3854

	if (ret)
		return;

3855 3856
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3857

3858
	perf_output_put(&handle, comm_event->event_id);
3859 3860 3861 3862 3863
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3864
static int perf_event_comm_match(struct perf_event *event)
3865
{
P
Peter Zijlstra 已提交
3866
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3867 3868
		return 0;

3869 3870 3871
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3872
	if (event->attr.comm)
3873 3874 3875 3876 3877
		return 1;

	return 0;
}

3878
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3879 3880
				  struct perf_comm_event *comm_event)
{
3881
	struct perf_event *event;
3882

3883 3884 3885
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3886 3887 3888
	}
}

3889
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3890 3891
{
	struct perf_cpu_context *cpuctx;
3892
	struct perf_event_context *ctx;
3893
	unsigned int size;
P
Peter Zijlstra 已提交
3894
	struct pmu *pmu;
3895
	char comm[TASK_COMM_LEN];
3896

3897
	memset(comm, 0, sizeof(comm));
3898
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3899
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3900 3901 3902 3903

	comm_event->comm = comm;
	comm_event->comm_size = size;

3904
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3905

P
Peter Zijlstra 已提交
3906 3907 3908 3909 3910
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	}
3911
	ctx = rcu_dereference(current->perf_event_ctxp);
3912
	if (ctx)
3913
		perf_event_comm_ctx(ctx, comm_event);
P
Peter Zijlstra 已提交
3914
	rcu_read_unlock_sched();
3915 3916
}

3917
void perf_event_comm(struct task_struct *task)
3918
{
3919 3920
	struct perf_comm_event comm_event;

3921 3922
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3923

3924
	if (!atomic_read(&nr_comm_events))
3925
		return;
3926

3927
	comm_event = (struct perf_comm_event){
3928
		.task	= task,
3929 3930
		/* .comm      */
		/* .comm_size */
3931
		.event_id  = {
3932
			.header = {
3933
				.type = PERF_RECORD_COMM,
3934 3935 3936 3937 3938
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3939 3940 3941
		},
	};

3942
	perf_event_comm_event(&comm_event);
3943 3944
}

3945 3946 3947 3948 3949
/*
 * mmap tracking
 */

struct perf_mmap_event {
3950 3951 3952 3953
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3954 3955 3956 3957 3958 3959 3960 3961 3962

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3963
	} event_id;
3964 3965
};

3966
static void perf_event_mmap_output(struct perf_event *event,
3967 3968 3969
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3970 3971
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3972 3973 3974 3975

	if (ret)
		return;

3976 3977
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3978

3979
	perf_output_put(&handle, mmap_event->event_id);
3980 3981
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3982
	perf_output_end(&handle);
3983 3984
}

3985
static int perf_event_mmap_match(struct perf_event *event,
3986 3987
				   struct perf_mmap_event *mmap_event,
				   int executable)
3988
{
P
Peter Zijlstra 已提交
3989
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3990 3991
		return 0;

3992 3993 3994
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3995 3996
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
3997 3998 3999 4000 4001
		return 1;

	return 0;
}

4002
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4003 4004
				  struct perf_mmap_event *mmap_event,
				  int executable)
4005
{
4006
	struct perf_event *event;
4007

4008
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4009
		if (perf_event_mmap_match(event, mmap_event, executable))
4010
			perf_event_mmap_output(event, mmap_event);
4011 4012 4013
	}
}

4014
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4015 4016
{
	struct perf_cpu_context *cpuctx;
4017
	struct perf_event_context *ctx;
4018 4019
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4020 4021 4022
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4023
	const char *name;
P
Peter Zijlstra 已提交
4024
	struct pmu *pmu;
4025

4026 4027
	memset(tmp, 0, sizeof(tmp));

4028
	if (file) {
4029 4030 4031 4032 4033 4034
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4035 4036 4037 4038
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4039
		name = d_path(&file->f_path, buf, PATH_MAX);
4040 4041 4042 4043 4044
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4045 4046 4047
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4048
			goto got_name;
4049
		}
4050 4051 4052 4053

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4054 4055 4056 4057 4058 4059 4060 4061
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4062 4063
		}

4064 4065 4066 4067 4068
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4069
	size = ALIGN(strlen(name)+1, sizeof(u64));
4070 4071 4072 4073

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4074
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4075

P
Peter Zijlstra 已提交
4076 4077 4078 4079 4080 4081
	rcu_read_lock_sched();
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
	}
4082
	ctx = rcu_dereference(current->perf_event_ctxp);
4083
	if (ctx)
4084
		perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4085
	rcu_read_unlock_sched();
4086

4087 4088 4089
	kfree(buf);
}

4090
void perf_event_mmap(struct vm_area_struct *vma)
4091
{
4092 4093
	struct perf_mmap_event mmap_event;

4094
	if (!atomic_read(&nr_mmap_events))
4095 4096 4097
		return;

	mmap_event = (struct perf_mmap_event){
4098
		.vma	= vma,
4099 4100
		/* .file_name */
		/* .file_size */
4101
		.event_id  = {
4102
			.header = {
4103
				.type = PERF_RECORD_MMAP,
4104
				.misc = PERF_RECORD_MISC_USER,
4105 4106 4107 4108
				/* .size */
			},
			/* .pid */
			/* .tid */
4109 4110
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4111
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4112 4113 4114
		},
	};

4115
	perf_event_mmap_event(&mmap_event);
4116 4117
}

4118 4119 4120 4121
/*
 * IRQ throttle logging
 */

4122
static void perf_log_throttle(struct perf_event *event, int enable)
4123 4124 4125 4126 4127 4128 4129
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4130
		u64				id;
4131
		u64				stream_id;
4132 4133
	} throttle_event = {
		.header = {
4134
			.type = PERF_RECORD_THROTTLE,
4135 4136 4137
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4138
		.time		= perf_clock(),
4139 4140
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4141 4142
	};

4143
	if (enable)
4144
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4145

4146
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4147 4148 4149 4150 4151 4152 4153
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4154
/*
4155
 * Generic event overflow handling, sampling.
4156 4157
 */

4158
static int __perf_event_overflow(struct perf_event *event, int nmi,
4159 4160
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4161
{
4162 4163
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4164 4165
	int ret = 0;

4166
	if (!throttle) {
4167
		hwc->interrupts++;
4168
	} else {
4169 4170
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4171
			if (HZ * hwc->interrupts >
4172
					(u64)sysctl_perf_event_sample_rate) {
4173
				hwc->interrupts = MAX_INTERRUPTS;
4174
				perf_log_throttle(event, 0);
4175 4176 4177 4178
				ret = 1;
			}
		} else {
			/*
4179
			 * Keep re-disabling events even though on the previous
4180
			 * pass we disabled it - just in case we raced with a
4181
			 * sched-in and the event got enabled again:
4182
			 */
4183 4184 4185
			ret = 1;
		}
	}
4186

4187
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4188
		u64 now = perf_clock();
4189
		s64 delta = now - hwc->freq_time_stamp;
4190

4191
		hwc->freq_time_stamp = now;
4192

4193 4194
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4195 4196
	}

4197 4198
	/*
	 * XXX event_limit might not quite work as expected on inherited
4199
	 * events
4200 4201
	 */

4202 4203
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4204
		ret = 1;
4205
		event->pending_kill = POLL_HUP;
4206
		if (nmi) {
4207 4208 4209
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4210
		} else
4211
			perf_event_disable(event);
4212 4213
	}

4214 4215 4216 4217 4218
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4219
	return ret;
4220 4221
}

4222
int perf_event_overflow(struct perf_event *event, int nmi,
4223 4224
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4225
{
4226
	return __perf_event_overflow(event, nmi, 1, data, regs);
4227 4228
}

4229
/*
4230
 * Generic software event infrastructure
4231 4232
 */

4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4244
/*
4245 4246
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4247 4248 4249 4250
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4251
static u64 perf_swevent_set_period(struct perf_event *event)
4252
{
4253
	struct hw_perf_event *hwc = &event->hw;
4254 4255 4256 4257 4258
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4259 4260

again:
4261
	old = val = local64_read(&hwc->period_left);
4262 4263
	if (val < 0)
		return 0;
4264

4265 4266 4267
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4268
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4269
		goto again;
4270

4271
	return nr;
4272 4273
}

4274
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4275 4276
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4277
{
4278
	struct hw_perf_event *hwc = &event->hw;
4279
	int throttle = 0;
4280

4281
	data->period = event->hw.last_period;
4282 4283
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4284

4285 4286
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4287

4288
	for (; overflow; overflow--) {
4289
		if (__perf_event_overflow(event, nmi, throttle,
4290
					    data, regs)) {
4291 4292 4293 4294 4295 4296
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4297
		throttle = 1;
4298
	}
4299 4300
}

P
Peter Zijlstra 已提交
4301
static void perf_swevent_event(struct perf_event *event, u64 nr,
4302 4303
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4304
{
4305
	struct hw_perf_event *hwc = &event->hw;
4306

4307
	local64_add(nr, &event->count);
4308

4309 4310 4311
	if (!regs)
		return;

4312 4313
	if (!hwc->sample_period)
		return;
4314

4315 4316 4317
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4318
	if (local64_add_negative(nr, &hwc->period_left))
4319
		return;
4320

4321
	perf_swevent_overflow(event, 0, nmi, data, regs);
4322 4323
}

4324 4325 4326
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4327 4328 4329
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4341
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4342
				enum perf_type_id type,
L
Li Zefan 已提交
4343 4344 4345
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4346
{
4347
	if (event->attr.type != type)
4348
		return 0;
4349

4350
	if (event->attr.config != event_id)
4351 4352
		return 0;

4353 4354
	if (perf_exclude_event(event, regs))
		return 0;
4355 4356 4357 4358

	return 1;
}

4359 4360 4361 4362 4363 4364 4365
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4366 4367
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4368
{
4369 4370 4371 4372
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4373

4374 4375
/* For the read side: events when they trigger */
static inline struct hlist_head *
4376
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4377 4378
{
	struct swevent_hlist *hlist;
4379

4380
	hlist = rcu_dereference(swhash->swevent_hlist);
4381 4382 4383
	if (!hlist)
		return NULL;

4384 4385 4386 4387 4388
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4389
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4400
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4401 4402 4403 4404 4405
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4406 4407 4408 4409 4410 4411
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4412
{
4413
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4414
	struct perf_event *event;
4415 4416
	struct hlist_node *node;
	struct hlist_head *head;
4417

4418
	rcu_read_lock();
4419
	head = find_swevent_head_rcu(swhash, type, event_id);
4420 4421 4422 4423
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4424
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4425
			perf_swevent_event(event, nr, nmi, data, regs);
4426
	}
4427 4428
end:
	rcu_read_unlock();
4429 4430
}

4431
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4432
{
4433
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4434

4435
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4436
}
I
Ingo Molnar 已提交
4437
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4438

4439
void inline perf_swevent_put_recursion_context(int rctx)
4440
{
4441
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4442

4443
	put_recursion_context(swhash->recursion, rctx);
4444
}
4445

4446
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4447
			    struct pt_regs *regs, u64 addr)
4448
{
4449
	struct perf_sample_data data;
4450 4451
	int rctx;

4452
	preempt_disable_notrace();
4453 4454 4455
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4456

4457
	perf_sample_data_init(&data, addr);
4458

4459
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4460 4461

	perf_swevent_put_recursion_context(rctx);
4462
	preempt_enable_notrace();
4463 4464
}

4465
static void perf_swevent_read(struct perf_event *event)
4466 4467 4468
{
}

P
Peter Zijlstra 已提交
4469
static int perf_swevent_add(struct perf_event *event, int flags)
4470
{
4471
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4472
	struct hw_perf_event *hwc = &event->hw;
4473 4474
	struct hlist_head *head;

4475 4476
	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4477
		perf_swevent_set_period(event);
4478
	}
4479

P
Peter Zijlstra 已提交
4480 4481
	hwc->state = !(flags & PERF_EF_START);

4482
	head = find_swevent_head(swhash, event);
4483 4484 4485 4486 4487
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4488 4489 4490
	return 0;
}

P
Peter Zijlstra 已提交
4491
static void perf_swevent_del(struct perf_event *event, int flags)
4492
{
4493
	hlist_del_rcu(&event->hlist_entry);
4494 4495
}

P
Peter Zijlstra 已提交
4496
static void perf_swevent_start(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4497
{
P
Peter Zijlstra 已提交
4498
	event->hw.state = 0;
P
Peter Zijlstra 已提交
4499 4500
}

P
Peter Zijlstra 已提交
4501
static void perf_swevent_stop(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4502
{
P
Peter Zijlstra 已提交
4503
	event->hw.state = PERF_HES_STOPPED;
P
Peter Zijlstra 已提交
4504 4505
}

4506 4507
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4508
swevent_hlist_deref(struct swevent_htable *swhash)
4509
{
4510 4511
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4512 4513
}

4514 4515 4516 4517 4518 4519 4520 4521
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4522
static void swevent_hlist_release(struct swevent_htable *swhash)
4523
{
4524
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4525

4526
	if (!hlist)
4527 4528
		return;

4529
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4530 4531 4532 4533 4534
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4535
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4536

4537
	mutex_lock(&swhash->hlist_mutex);
4538

4539 4540
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4541

4542
	mutex_unlock(&swhash->hlist_mutex);
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4560
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4561 4562
	int err = 0;

4563
	mutex_lock(&swhash->hlist_mutex);
4564

4565
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4566 4567 4568 4569 4570 4571 4572
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4573
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4574
	}
4575
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4576
exit:
4577
	mutex_unlock(&swhash->hlist_mutex);
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4601
fail:
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4612
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4613

4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;

	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4659 4660 4661 4662
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4663 4664 4665
	.read		= perf_swevent_read,
};

4666 4667
#ifdef CONFIG_EVENT_TRACING

4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4682 4683 4684 4685
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4686 4687 4688 4689 4690 4691 4692 4693 4694
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4695
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4696 4697
{
	struct perf_sample_data data;
4698 4699 4700
	struct perf_event *event;
	struct hlist_node *node;

4701 4702 4703 4704 4705 4706 4707 4708
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4709 4710
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4711
			perf_swevent_event(event, count, 1, &data, regs);
4712
	}
4713 4714

	perf_swevent_put_recursion_context(rctx);
4715 4716 4717
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4718
static void tp_perf_event_destroy(struct perf_event *event)
4719
{
4720
	perf_trace_destroy(event);
4721 4722
}

4723
static int perf_tp_event_init(struct perf_event *event)
4724
{
4725 4726
	int err;

4727 4728 4729
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4730 4731 4732 4733
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4734
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4735
			perf_paranoid_tracepoint_raw() &&
4736
			!capable(CAP_SYS_ADMIN))
4737
		return -EPERM;
4738

4739 4740
	err = perf_trace_init(event);
	if (err)
4741
		return err;
4742

4743
	event->destroy = tp_perf_event_destroy;
4744

4745 4746 4747 4748 4749
	return 0;
}

static struct pmu perf_tracepoint = {
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4750 4751 4752 4753
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4754 4755 4756 4757 4758 4759
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4760
}
L
Li Zefan 已提交
4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4785
#else
L
Li Zefan 已提交
4786

4787
static inline void perf_tp_register(void)
4788 4789
{
}
L
Li Zefan 已提交
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4800
#endif /* CONFIG_EVENT_TRACING */
4801

4802
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4803
void perf_bp_event(struct perf_event *bp, void *data)
4804
{
4805 4806 4807 4808 4809
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

P
Peter Zijlstra 已提交
4810 4811
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4812
}
4813 4814 4815 4816 4817
#endif

/*
 * hrtimer based swevent callback
 */
4818

4819
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4820
{
4821 4822 4823 4824 4825
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4826

4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4839

4840 4841
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4842

4843
	return ret;
4844 4845
}

4846
static void perf_swevent_start_hrtimer(struct perf_event *event)
4847
{
4848
	struct hw_perf_event *hwc = &event->hw;
4849

4850 4851 4852
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4853
		s64 period = local64_read(&hwc->period_left);
4854

P
Peter Zijlstra 已提交
4855 4856
		if (period) {
			if (period < 0)
4857
				period = 10000;
P
Peter Zijlstra 已提交
4858 4859

			local64_set(&hwc->period_left, 0);
4860 4861 4862 4863 4864
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
4865
				HRTIMER_MODE_REL_PINNED, 0);
4866
	}
4867
}
4868 4869

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4870
{
4871 4872 4873 4874
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4875
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4876 4877 4878

		hrtimer_cancel(&hwc->hrtimer);
	}
4879 4880
}

4881 4882 4883 4884 4885
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4886
{
4887 4888 4889
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4890
	now = local_clock();
4891 4892
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4893 4894
}

P
Peter Zijlstra 已提交
4895
static void cpu_clock_event_start(struct perf_event *event, int flags)
4896
{
P
Peter Zijlstra 已提交
4897
	local64_set(&event->hw.prev_count, local_clock());
4898 4899 4900
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4901
static void cpu_clock_event_stop(struct perf_event *event, int flags)
4902
{
4903 4904 4905
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4906

P
Peter Zijlstra 已提交
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

4920 4921 4922 4923
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4924

4925 4926 4927 4928 4929 4930 4931 4932 4933
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
4934 4935
}

4936 4937
static struct pmu perf_cpu_clock = {
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
4938 4939 4940 4941
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
4942 4943 4944 4945 4946 4947 4948 4949
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
4950
{
4951 4952
	u64 prev;
	s64 delta;
4953

4954 4955 4956 4957
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
4958

P
Peter Zijlstra 已提交
4959
static void task_clock_event_start(struct perf_event *event, int flags)
4960
{
P
Peter Zijlstra 已提交
4961
	local64_set(&event->hw.prev_count, event->ctx->time);
4962 4963 4964
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4965
static void task_clock_event_stop(struct perf_event *event, int flags)
4966 4967 4968
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
4969 4970 4971 4972 4973 4974
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
4975

P
Peter Zijlstra 已提交
4976 4977 4978 4979 4980 4981
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
}

static struct pmu perf_task_clock = {
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5013 5014 5015 5016
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5017 5018 5019
	.read		= task_clock_event_read,
};

P
Peter Zijlstra 已提交
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044
static void perf_pmu_nop_void(struct pmu *pmu)
{
}

static int perf_pmu_nop_int(struct pmu *pmu)
{
	return 0;
}

static void perf_pmu_start_txn(struct pmu *pmu)
{
	perf_pmu_disable(pmu);
}

static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}

static void perf_pmu_cancel_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
}

5045 5046
int perf_pmu_register(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
5047
	int cpu, ret;
P
Peter Zijlstra 已提交
5048

5049
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5050 5051 5052 5053
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
P
Peter Zijlstra 已提交
5054

P
Peter Zijlstra 已提交
5055 5056 5057 5058 5059 5060 5061 5062
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
		goto free_pdc;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5063
		__perf_event_init_context(&cpuctx->ctx);
P
Peter Zijlstra 已提交
5064 5065 5066 5067 5068 5069
		cpuctx->ctx.pmu = pmu;
		cpuctx->timer_interval = TICK_NSEC;
		hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		cpuctx->timer.function = perf_event_context_tick;
	}

P
Peter Zijlstra 已提交
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
		}
	}

	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5092
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5093 5094
	ret = 0;
unlock:
5095 5096
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5097
	return ret;
P
Peter Zijlstra 已提交
5098 5099 5100 5101

free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5102 5103 5104 5105 5106 5107 5108 5109
}

void perf_pmu_unregister(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5110 5111 5112 5113
	/*
	 * We use the pmu list either under SRCU or preempt_disable,
	 * synchronize_srcu() implies synchronize_sched() so we're good.
	 */
5114
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5115 5116

	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5117
	free_percpu(pmu->pmu_cpu_context);
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132
}

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
			break;
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
			break;
5133
		}
5134
	}
5135
	srcu_read_unlock(&pmus_srcu, idx);
5136

5137
	return pmu;
5138 5139
}

T
Thomas Gleixner 已提交
5140
/*
5141
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5142
 */
5143
static struct perf_event *
5144
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5145 5146
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5147
		   perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5148
{
P
Peter Zijlstra 已提交
5149
	struct pmu *pmu;
5150 5151
	struct perf_event *event;
	struct hw_perf_event *hwc;
5152
	long err;
T
Thomas Gleixner 已提交
5153

5154
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5155
	if (!event)
5156
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5157

5158
	/*
5159
	 * Single events are their own group leaders, with an
5160 5161 5162
	 * empty sibling list:
	 */
	if (!group_leader)
5163
		group_leader = event;
5164

5165 5166
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5167

5168 5169 5170 5171
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5172

5173
	mutex_init(&event->mmap_mutex);
5174

5175 5176 5177 5178 5179
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5180

5181
	event->parent		= parent_event;
5182

5183 5184
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5185

5186
	event->state		= PERF_EVENT_STATE_INACTIVE;
5187

5188 5189
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5190
	
5191
	event->overflow_handler	= overflow_handler;
5192

5193
	if (attr->disabled)
5194
		event->state = PERF_EVENT_STATE_OFF;
5195

5196
	pmu = NULL;
5197

5198
	hwc = &event->hw;
5199
	hwc->sample_period = attr->sample_period;
5200
	if (attr->freq && attr->sample_freq)
5201
		hwc->sample_period = 1;
5202
	hwc->last_period = hwc->sample_period;
5203

5204
	local64_set(&hwc->period_left, hwc->sample_period);
5205

5206
	/*
5207
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5208
	 */
5209
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5210 5211
		goto done;

5212
	pmu = perf_init_event(event);
5213

5214 5215
done:
	err = 0;
5216
	if (!pmu)
5217
		err = -EINVAL;
5218 5219
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5220

5221
	if (err) {
5222 5223 5224
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5225
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5226
	}
5227

5228
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5229

5230 5231
	if (!event->parent) {
		atomic_inc(&nr_events);
5232
		if (event->attr.mmap || event->attr.mmap_data)
5233 5234 5235 5236 5237
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5238 5239 5240 5241 5242 5243 5244
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5245
	}
5246

5247
	return event;
T
Thomas Gleixner 已提交
5248 5249
}

5250 5251
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5252 5253
{
	u32 size;
5254
	int ret;
5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5279 5280 5281
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5282 5283
	 */
	if (size > sizeof(*attr)) {
5284 5285 5286
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5287

5288 5289
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5290

5291
		for (; addr < end; addr++) {
5292 5293 5294 5295 5296 5297
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5298
		size = sizeof(*attr);
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5312
	if (attr->__reserved_1)
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5330 5331
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5332
{
5333
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5334 5335
	int ret = -EINVAL;

5336
	if (!output_event)
5337 5338
		goto set;

5339 5340
	/* don't allow circular references */
	if (event == output_event)
5341 5342
		goto out;

5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5355
set:
5356
	mutex_lock(&event->mmap_mutex);
5357 5358 5359
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5360

5361 5362
	if (output_event) {
		/* get the buffer we want to redirect to */
5363 5364
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5365
			goto unlock;
5366 5367
	}

5368 5369
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5370
	ret = 0;
5371 5372 5373
unlock:
	mutex_unlock(&event->mmap_mutex);

5374 5375
	if (old_buffer)
		perf_buffer_put(old_buffer);
5376 5377 5378 5379
out:
	return ret;
}

T
Thomas Gleixner 已提交
5380
/**
5381
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5382
 *
5383
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5384
 * @pid:		target pid
I
Ingo Molnar 已提交
5385
 * @cpu:		target cpu
5386
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5387
 */
5388 5389
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5390
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5391
{
5392
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5393 5394 5395
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5396
	struct file *group_file = NULL;
5397
	int event_fd;
5398
	int fput_needed = 0;
5399
	int err;
T
Thomas Gleixner 已提交
5400

5401
	/* for future expandability... */
5402
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5403 5404
		return -EINVAL;

5405 5406 5407
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5408

5409 5410 5411 5412 5413
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5414
	if (attr.freq) {
5415
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5416 5417 5418
			return -EINVAL;
	}

5419 5420 5421 5422
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5423 5424 5425 5426 5427 5428
	event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err_fd;
	}

5429
	/*
I
Ingo Molnar 已提交
5430 5431
	 * Get the target context (task or percpu):
	 */
P
Peter Zijlstra 已提交
5432
	ctx = find_get_context(event->pmu, pid, cpu);
5433 5434
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5435
		goto err_alloc;
5436
	}
I
Ingo Molnar 已提交
5437

5438 5439 5440 5441
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5442
			goto err_context;
5443 5444 5445 5446 5447 5448 5449 5450
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5451
	/*
5452
	 * Look up the group leader (we will attach this event to it):
5453
	 */
5454
	if (group_leader) {
5455
		err = -EINVAL;
5456 5457

		/*
I
Ingo Molnar 已提交
5458 5459 5460 5461
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5462
			goto err_context;
I
Ingo Molnar 已提交
5463 5464 5465
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5466
		 */
I
Ingo Molnar 已提交
5467
		if (group_leader->ctx != ctx)
5468
			goto err_context;
5469 5470 5471
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5472
		if (attr.exclusive || attr.pinned)
5473
			goto err_context;
5474 5475 5476 5477 5478
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5479
			goto err_context;
5480
	}
T
Thomas Gleixner 已提交
5481

5482 5483 5484
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5485
		goto err_context;
5486
	}
5487

5488
	event->filp = event_file;
5489
	WARN_ON_ONCE(ctx->parent_ctx);
5490
	mutex_lock(&ctx->mutex);
5491
	perf_install_in_context(ctx, event, cpu);
5492
	++ctx->generation;
5493
	mutex_unlock(&ctx->mutex);
5494

5495
	event->owner = current;
5496
	get_task_struct(current);
5497 5498 5499
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5500

5501 5502 5503 5504 5505 5506
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5507 5508 5509
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5510

5511
err_context:
5512
	fput_light(group_file, fput_needed);
5513
	put_ctx(ctx);
5514 5515
err_alloc:
	free_event(event);
5516 5517
err_fd:
	put_unused_fd(event_fd);
5518
	return err;
T
Thomas Gleixner 已提交
5519 5520
}

5521 5522 5523 5524 5525 5526 5527 5528 5529
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5530 5531
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5532 5533
{
	struct perf_event_context *ctx;
5534
	struct perf_event *event;
5535 5536 5537 5538 5539 5540
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

5541 5542 5543 5544 5545 5546
	event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}

P
Peter Zijlstra 已提交
5547
	ctx = find_get_context(event->pmu, pid, cpu);
5548 5549
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5550
		goto err_free;
5551
	}
5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5568 5569 5570
err_free:
	free_event(event);
err:
5571
	return ERR_PTR(err);
5572 5573 5574
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5575
static void sync_child_event(struct perf_event *child_event,
5576
			       struct task_struct *child)
5577
{
5578
	struct perf_event *parent_event = child_event->parent;
5579
	u64 child_val;
5580

5581 5582
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5583

P
Peter Zijlstra 已提交
5584
	child_val = perf_event_count(child_event);
5585 5586 5587 5588

	/*
	 * Add back the child's count to the parent's count:
	 */
5589
	atomic64_add(child_val, &parent_event->child_count);
5590 5591 5592 5593
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5594 5595

	/*
5596
	 * Remove this event from the parent's list
5597
	 */
5598 5599 5600 5601
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5602 5603

	/*
5604
	 * Release the parent event, if this was the last
5605 5606
	 * reference to it.
	 */
5607
	fput(parent_event->filp);
5608 5609
}

5610
static void
5611 5612
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5613
			 struct task_struct *child)
5614
{
5615
	struct perf_event *parent_event;
5616

5617
	perf_event_remove_from_context(child_event);
5618

5619
	parent_event = child_event->parent;
5620
	/*
5621
	 * It can happen that parent exits first, and has events
5622
	 * that are still around due to the child reference. These
5623
	 * events need to be zapped - but otherwise linger.
5624
	 */
5625 5626 5627
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5628
	}
5629 5630 5631
}

/*
5632
 * When a child task exits, feed back event values to parent events.
5633
 */
5634
void perf_event_exit_task(struct task_struct *child)
5635
{
5636 5637
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5638
	unsigned long flags;
5639

5640 5641
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5642
		return;
P
Peter Zijlstra 已提交
5643
	}
5644

5645
	local_irq_save(flags);
5646 5647 5648 5649 5650 5651
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5652 5653
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5654 5655 5656

	/*
	 * Take the context lock here so that if find_get_context is
5657
	 * reading child->perf_event_ctxp, we wait until it has
5658 5659
	 * incremented the context's refcount before we do put_ctx below.
	 */
5660
	raw_spin_lock(&child_ctx->lock);
5661
	child->perf_event_ctxp = NULL;
5662 5663 5664
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5665
	 * the events from it.
5666 5667
	 */
	unclone_ctx(child_ctx);
5668
	update_context_time(child_ctx);
5669
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5670 5671

	/*
5672 5673 5674
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5675
	 */
5676
	perf_event_task(child, child_ctx, 0);
5677

5678 5679 5680
	/*
	 * We can recurse on the same lock type through:
	 *
5681 5682 5683
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5684 5685 5686 5687 5688
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5689
	mutex_lock(&child_ctx->mutex);
5690

5691
again:
5692 5693 5694 5695 5696
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5697
				 group_entry)
5698
		__perf_event_exit_task(child_event, child_ctx, child);
5699 5700

	/*
5701
	 * If the last event was a group event, it will have appended all
5702 5703 5704
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5705 5706
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5707
		goto again;
5708 5709 5710 5711

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5712 5713
}

5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5728
	perf_group_detach(event);
5729 5730 5731 5732
	list_del_event(event, ctx);
	free_event(event);
}

5733 5734 5735 5736
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5737
void perf_event_free_task(struct task_struct *task)
5738
{
5739 5740
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5741 5742 5743 5744 5745 5746

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5747 5748
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5749

5750 5751 5752
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5753

5754 5755 5756
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5757

5758
	mutex_unlock(&ctx->mutex);
5759

5760 5761 5762
	put_ctx(ctx);
}

P
Peter Zijlstra 已提交
5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

	/*
	 * Link it up in the child's context:
	 */
	add_event_to_ctx(child_event, child_ctx);

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
}

5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5875 5876
	}

5877 5878 5879 5880 5881 5882 5883
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5884

5885
		child_ctx = alloc_perf_context(event->pmu, child);
5886 5887
		if (!child_ctx)
			return -ENOMEM;
5888

5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
		child->perf_event_ctxp = child_ctx;
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5899 5900
}

5901
/*
5902
 * Initialize the perf_event context in task_struct
5903
 */
5904
int perf_event_init_task(struct task_struct *child)
5905
{
5906
	struct perf_event_context *child_ctx, *parent_ctx;
5907 5908
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5909
	struct task_struct *parent = current;
5910
	int inherited_all = 1;
5911
	int ret = 0;
5912

5913
	child->perf_event_ctxp = NULL;
5914

5915 5916
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5917

5918
	if (likely(!parent->perf_event_ctxp))
5919 5920
		return 0;

5921
	/*
5922 5923
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5924
	 */
5925 5926
	parent_ctx = perf_pin_task_context(parent);

5927 5928 5929 5930 5931 5932 5933
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5934 5935 5936 5937
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5938
	mutex_lock(&parent_ctx->mutex);
5939 5940 5941 5942 5943

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5944 5945 5946 5947 5948 5949
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5950

5951 5952 5953 5954
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5955
			break;
5956 5957
	}

5958 5959
	child_ctx = child->perf_event_ctxp;

5960
	if (child_ctx && inherited_all) {
5961 5962 5963
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5964 5965
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5966
		 * because the list of events and the generation
5967
		 * count can't have changed since we took the mutex.
5968
		 */
5969 5970 5971
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5972
			child_ctx->parent_gen = parent_ctx->parent_gen;
5973 5974 5975 5976 5977
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5978 5979
	}

5980
	mutex_unlock(&parent_ctx->mutex);
5981

5982
	perf_unpin_context(parent_ctx);
5983

5984
	return ret;
5985 5986
}

5987 5988
static void __init perf_event_init_all_cpus(void)
{
5989 5990
	struct swevent_htable *swhash;
	int cpu;
5991 5992

	for_each_possible_cpu(cpu) {
5993 5994
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
5995 5996 5997
	}
}

5998
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5999
{
P
Peter Zijlstra 已提交
6000
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6001 6002 6003

	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6004 6005
		struct swevent_hlist *hlist;

6006 6007 6008
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6009
	}
6010
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6011 6012 6013
}

#ifdef CONFIG_HOTPLUG_CPU
P
Peter Zijlstra 已提交
6014
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6015
{
P
Peter Zijlstra 已提交
6016
	struct perf_event_context *ctx = __info;
6017
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6018

P
Peter Zijlstra 已提交
6019
	perf_pmu_rotate_stop(ctx->pmu);
6020

6021 6022 6023
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6024
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6025
}
P
Peter Zijlstra 已提交
6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		ctx = &this_cpu_ptr(pmu->pmu_cpu_context)->ctx;

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);

}

6045
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6046
{
6047
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6048

6049 6050 6051
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6052

P
Peter Zijlstra 已提交
6053
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6054 6055
}
#else
6056
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6057 6058 6059 6060 6061 6062 6063
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6064
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6065 6066

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6067
	case CPU_DOWN_FAILED:
6068
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6069 6070
		break;

P
Peter Zijlstra 已提交
6071
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6072
	case CPU_DOWN_PREPARE:
6073
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6074 6075 6076 6077 6078 6079 6080 6081 6082
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6083
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6084
{
6085
	perf_event_init_all_cpus();
6086 6087 6088 6089 6090 6091
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
6092
}