perf_event.c 133.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
38
/*
39
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
40
 */
41
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
42

43
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
44 45 46
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

47 48 49 50
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
51

52
/*
53
 * perf event paranoia level:
54 55
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
56
 *   1 - disallow cpu events for unpriv
57
 *   2 - disallow kernel profiling for unpriv
58
 */
59
int sysctl_perf_event_paranoid __read_mostly = 1;
60

61
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 63

/*
64
 * max perf event sample rate
65
 */
66
int sysctl_perf_event_sample_rate __read_mostly = 100000;
67

68
static atomic64_t perf_event_id;
69

T
Thomas Gleixner 已提交
70
/*
71
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
72
 */
73
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
74 75 76 77

/*
 * Architecture provided APIs - weak aliases:
 */
78
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
79
{
80
	return NULL;
T
Thomas Gleixner 已提交
81 82
}

83 84 85
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

86
void __weak perf_event_print_debug(void)	{ }
87

88
static DEFINE_PER_CPU(int, perf_disable_count);
89 90 91

void perf_disable(void)
{
P
Peter Zijlstra 已提交
92 93
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
94 95 96 97
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
98
	if (!--__get_cpu_var(perf_disable_count))
99 100 101
		hw_perf_enable();
}

102
static void get_ctx(struct perf_event_context *ctx)
103
{
104
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 106
}

107 108
static void free_ctx(struct rcu_head *head)
{
109
	struct perf_event_context *ctx;
110

111
	ctx = container_of(head, struct perf_event_context, rcu_head);
112 113 114
	kfree(ctx);
}

115
static void put_ctx(struct perf_event_context *ctx)
116
{
117 118 119
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
120 121 122
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
123
	}
124 125
}

126
static void unclone_ctx(struct perf_event_context *ctx)
127 128 129 130 131 132 133
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

134
/*
135
 * If we inherit events we want to return the parent event id
136 137
 * to userspace.
 */
138
static u64 primary_event_id(struct perf_event *event)
139
{
140
	u64 id = event->id;
141

142 143
	if (event->parent)
		id = event->parent->id;
144 145 146 147

	return id;
}

148
/*
149
 * Get the perf_event_context for a task and lock it.
150 151 152
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
153
static struct perf_event_context *
154
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155
{
156
	struct perf_event_context *ctx;
157 158 159

	rcu_read_lock();
 retry:
160
	ctx = rcu_dereference(task->perf_event_ctxp);
161 162 163 164
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
165
		 * perf_event_task_sched_out, though the
166 167 168 169 170 171
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
172
		raw_spin_lock_irqsave(&ctx->lock, *flags);
173
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 176
			goto retry;
		}
177 178

		if (!atomic_inc_not_zero(&ctx->refcount)) {
179
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 181
			ctx = NULL;
		}
182 183 184 185 186 187 188 189 190 191
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
192
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193
{
194
	struct perf_event_context *ctx;
195 196 197 198 199
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
200
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 202 203 204
	}
	return ctx;
}

205
static void perf_unpin_context(struct perf_event_context *ctx)
206 207 208
{
	unsigned long flags;

209
	raw_spin_lock_irqsave(&ctx->lock, flags);
210
	--ctx->pin_count;
211
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 213 214
	put_ctx(ctx);
}

215 216
static inline u64 perf_clock(void)
{
217
	return cpu_clock(raw_smp_processor_id());
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

243 244 245 246 247 248
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
249 250 251 252 253 254 255 256 257

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

270 271 272 273 274 275 276 277 278
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

279
/*
280
 * Add a event from the lists for its context.
281 282
 * Must be called with ctx->mutex and ctx->lock held.
 */
283
static void
284
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285
{
286 287
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
288 289

	/*
290 291 292
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
293
	 */
294
	if (event->group_leader == event) {
295 296
		struct list_head *list;

297 298 299
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

300 301
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
302
	}
P
Peter Zijlstra 已提交
303

304 305 306
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

328
/*
329
 * Remove a event from the lists for its context.
330
 * Must be called with ctx->mutex and ctx->lock held.
331
 */
332
static void
333
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334
{
335 336 337 338
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339
		return;
340 341 342

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

343 344
	ctx->nr_events--;
	if (event->attr.inherit_stat)
345
		ctx->nr_stat--;
346

347
	list_del_rcu(&event->event_entry);
348

349 350
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
351

352
	update_group_times(event);
353 354 355 356 357 358 359 360 361 362

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
363 364
}

365
static void perf_group_detach(struct perf_event *event)
366 367
{
	struct perf_event *sibling, *tmp;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
389

390
	/*
391 392
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
393
	 * to whatever list we are on.
394
	 */
395
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 397
		if (list)
			list_move_tail(&sibling->group_entry, list);
398
		sibling->group_leader = sibling;
399 400 401

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
402 403 404
	}
}

405
static void
406
event_sched_out(struct perf_event *event,
407
		  struct perf_cpu_context *cpuctx,
408
		  struct perf_event_context *ctx)
409
{
410
	if (event->state != PERF_EVENT_STATE_ACTIVE)
411 412
		return;

413 414 415 416
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
417
	}
418 419 420
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
421

422
	if (!is_software_event(event))
423 424
		cpuctx->active_oncpu--;
	ctx->nr_active--;
425
	if (event->attr.exclusive || !cpuctx->active_oncpu)
426 427 428
		cpuctx->exclusive = 0;
}

429
static void
430
group_sched_out(struct perf_event *group_event,
431
		struct perf_cpu_context *cpuctx,
432
		struct perf_event_context *ctx)
433
{
434
	struct perf_event *event;
435

436
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437 438
		return;

439
	event_sched_out(group_event, cpuctx, ctx);
440 441 442 443

	/*
	 * Schedule out siblings (if any):
	 */
444 445
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
446

447
	if (group_event->attr.exclusive)
448 449 450
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
451
/*
452
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
453
 *
454
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
455 456
 * remove it from the context list.
 */
457
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
458 459
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460 461
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
462 463 464 465 466 467

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
468
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
469 470
		return;

471
	raw_spin_lock(&ctx->lock);
472 473
	/*
	 * Protect the list operation against NMI by disabling the
474
	 * events on a global level.
475 476
	 */
	perf_disable();
T
Thomas Gleixner 已提交
477

478
	event_sched_out(event, cpuctx, ctx);
479

480
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
481 482 483

	if (!ctx->task) {
		/*
484
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
485 486 487
		 * reservation:
		 */
		cpuctx->max_pertask =
488 489
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
490 491
	}

492
	perf_enable();
493
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
494 495 496 497
}


/*
498
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
499
 *
500
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
501
 *
502
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
503
 * call when the task is on a CPU.
504
 *
505 506
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
507 508
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
509
 * When called from perf_event_exit_task, it's OK because the
510
 * context has been detached from its task.
T
Thomas Gleixner 已提交
511
 */
512
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
513
{
514
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
515 516 517 518
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
519
		 * Per cpu events are removed via an smp call and
520
		 * the removal is always successful.
T
Thomas Gleixner 已提交
521
		 */
522 523 524
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
525 526 527 528
		return;
	}

retry:
529 530
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
531

532
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
533 534 535
	/*
	 * If the context is active we need to retry the smp call.
	 */
536
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
537
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
538 539 540 541 542
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
543
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
544 545
	 * succeed.
	 */
P
Peter Zijlstra 已提交
546
	if (!list_empty(&event->group_entry))
547
		list_del_event(event, ctx);
548
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
549 550
}

551
/*
552
 * Cross CPU call to disable a performance event
553
 */
554
static void __perf_event_disable(void *info)
555
{
556
	struct perf_event *event = info;
557
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558
	struct perf_event_context *ctx = event->ctx;
559 560

	/*
561 562
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
563
	 */
564
	if (ctx->task && cpuctx->task_ctx != ctx)
565 566
		return;

567
	raw_spin_lock(&ctx->lock);
568 569

	/*
570
	 * If the event is on, turn it off.
571 572
	 * If it is in error state, leave it in error state.
	 */
573
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574
		update_context_time(ctx);
575 576 577
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
578
		else
579 580
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
581 582
	}

583
	raw_spin_unlock(&ctx->lock);
584 585 586
}

/*
587
 * Disable a event.
588
 *
589 590
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
591
 * remains valid.  This condition is satisifed when called through
592 593 594 595
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
596
 * is the current context on this CPU and preemption is disabled,
597
 * hence we can't get into perf_event_task_sched_out for this context.
598
 */
599
void perf_event_disable(struct perf_event *event)
600
{
601
	struct perf_event_context *ctx = event->ctx;
602 603 604 605
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
606
		 * Disable the event on the cpu that it's on
607
		 */
608 609
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
610 611 612 613
		return;
	}

 retry:
614
	task_oncpu_function_call(task, __perf_event_disable, event);
615

616
	raw_spin_lock_irq(&ctx->lock);
617
	/*
618
	 * If the event is still active, we need to retry the cross-call.
619
	 */
620
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
621
		raw_spin_unlock_irq(&ctx->lock);
622 623 624 625 626 627 628
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
629 630 631
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
632
	}
633

634
	raw_spin_unlock_irq(&ctx->lock);
635 636
}

637
static int
638
event_sched_in(struct perf_event *event,
639
		 struct perf_cpu_context *cpuctx,
640
		 struct perf_event_context *ctx)
641
{
642
	if (event->state <= PERF_EVENT_STATE_OFF)
643 644
		return 0;

645
	event->state = PERF_EVENT_STATE_ACTIVE;
646
	event->oncpu = smp_processor_id();
647 648 649 650 651
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

652 653 654
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
655 656 657
		return -EAGAIN;
	}

658
	event->tstamp_running += ctx->time - event->tstamp_stopped;
659

660
	if (!is_software_event(event))
661
		cpuctx->active_oncpu++;
662 663
	ctx->nr_active++;

664
	if (event->attr.exclusive)
665 666
		cpuctx->exclusive = 1;

667 668 669
	return 0;
}

670
static int
671
group_sched_in(struct perf_event *group_event,
672
	       struct perf_cpu_context *cpuctx,
673
	       struct perf_event_context *ctx)
674
{
675 676 677
	struct perf_event *event, *partial_group = NULL;
	const struct pmu *pmu = group_event->pmu;
	bool txn = false;
678

679
	if (group_event->state == PERF_EVENT_STATE_OFF)
680 681
		return 0;

682 683 684 685 686 687
	/* Check if group transaction availabe */
	if (pmu->start_txn)
		txn = true;

	if (txn)
		pmu->start_txn(pmu);
688

689 690 691
	if (event_sched_in(group_event, cpuctx, ctx)) {
		if (txn)
			pmu->cancel_txn(pmu);
692
		return -EAGAIN;
693
	}
694 695 696 697

	/*
	 * Schedule in siblings as one group (if any):
	 */
698
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699
		if (event_sched_in(event, cpuctx, ctx)) {
700
			partial_group = event;
701 702 703 704
			goto group_error;
		}
	}

705
	if (!txn || !pmu->commit_txn(pmu))
706
		return 0;
707

708 709 710 711 712
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
713 714
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
715
			break;
716
		event_sched_out(event, cpuctx, ctx);
717
	}
718
	event_sched_out(group_event, cpuctx, ctx);
719

720 721 722
	if (txn)
		pmu->cancel_txn(pmu);

723 724 725
	return -EAGAIN;
}

726
/*
727
 * Work out whether we can put this event group on the CPU now.
728
 */
729
static int group_can_go_on(struct perf_event *event,
730 731 732 733
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
734
	 * Groups consisting entirely of software events can always go on.
735
	 */
736
	if (event->group_flags & PERF_GROUP_SOFTWARE)
737 738 739
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
740
	 * events can go on.
741 742 743 744 745
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
746
	 * events on the CPU, it can't go on.
747
	 */
748
	if (event->attr.exclusive && cpuctx->active_oncpu)
749 750 751 752 753 754 755 756
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

757 758
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
759
{
760
	list_add_event(event, ctx);
761
	perf_group_attach(event);
762 763 764
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
765 766
}

T
Thomas Gleixner 已提交
767
/*
768
 * Cross CPU call to install and enable a performance event
769 770
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
771 772 773 774
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
775 776 777
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
778
	int err;
T
Thomas Gleixner 已提交
779 780 781 782 783

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
784
	 * Or possibly this is the right context but it isn't
785
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
786
	 */
787
	if (ctx->task && cpuctx->task_ctx != ctx) {
788
		if (cpuctx->task_ctx || ctx->task != current)
789 790 791
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
792

793
	raw_spin_lock(&ctx->lock);
794
	ctx->is_active = 1;
795
	update_context_time(ctx);
T
Thomas Gleixner 已提交
796 797 798

	/*
	 * Protect the list operation against NMI by disabling the
799
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
800
	 */
801
	perf_disable();
T
Thomas Gleixner 已提交
802

803
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
804

805 806 807
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

808
	/*
809
	 * Don't put the event on if it is disabled or if
810 811
	 * it is in a group and the group isn't on.
	 */
812 813
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
814 815
		goto unlock;

816
	/*
817 818 819
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
820
	 */
821
	if (!group_can_go_on(event, cpuctx, 1))
822 823
		err = -EEXIST;
	else
824
		err = event_sched_in(event, cpuctx, ctx);
825

826 827
	if (err) {
		/*
828
		 * This event couldn't go on.  If it is in a group
829
		 * then we have to pull the whole group off.
830
		 * If the event group is pinned then put it in error state.
831
		 */
832
		if (leader != event)
833
			group_sched_out(leader, cpuctx, ctx);
834
		if (leader->attr.pinned) {
835
			update_group_times(leader);
836
			leader->state = PERF_EVENT_STATE_ERROR;
837
		}
838
	}
T
Thomas Gleixner 已提交
839

840
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
841 842
		cpuctx->max_pertask--;

843
 unlock:
844
	perf_enable();
845

846
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
847 848 849
}

/*
850
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
851
 *
852 853
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
854
 *
855
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
856 857
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
858 859
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
860 861
 */
static void
862 863
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
864 865 866 867 868 869
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
870
		 * Per cpu events are installed via an smp call and
871
		 * the install is always successful.
T
Thomas Gleixner 已提交
872 873
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
874
					 event, 1);
T
Thomas Gleixner 已提交
875 876 877 878 879
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
880
				 event);
T
Thomas Gleixner 已提交
881

882
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
883 884 885
	/*
	 * we need to retry the smp call.
	 */
886
	if (ctx->is_active && list_empty(&event->group_entry)) {
887
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
888 889 890 891 892
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
893
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
894 895
	 * succeed.
	 */
896 897
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
898
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
899 900
}

901
/*
902
 * Put a event into inactive state and update time fields.
903 904 905 906 907 908
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
909 910
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
911
{
912
	struct perf_event *sub;
913

914 915 916 917
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
918 919 920 921
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

922
/*
923
 * Cross CPU call to enable a performance event
924
 */
925
static void __perf_event_enable(void *info)
926
{
927
	struct perf_event *event = info;
928
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
929 930
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
931
	int err;
932

933
	/*
934 935
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
936
	 */
937
	if (ctx->task && cpuctx->task_ctx != ctx) {
938
		if (cpuctx->task_ctx || ctx->task != current)
939 940 941
			return;
		cpuctx->task_ctx = ctx;
	}
942

943
	raw_spin_lock(&ctx->lock);
944
	ctx->is_active = 1;
945
	update_context_time(ctx);
946

947
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
948
		goto unlock;
949
	__perf_event_mark_enabled(event, ctx);
950

951 952 953
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

954
	/*
955
	 * If the event is in a group and isn't the group leader,
956
	 * then don't put it on unless the group is on.
957
	 */
958
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
959
		goto unlock;
960

961
	if (!group_can_go_on(event, cpuctx, 1)) {
962
		err = -EEXIST;
963
	} else {
964
		perf_disable();
965
		if (event == leader)
966
			err = group_sched_in(event, cpuctx, ctx);
967
		else
968
			err = event_sched_in(event, cpuctx, ctx);
969
		perf_enable();
970
	}
971 972 973

	if (err) {
		/*
974
		 * If this event can't go on and it's part of a
975 976
		 * group, then the whole group has to come off.
		 */
977
		if (leader != event)
978
			group_sched_out(leader, cpuctx, ctx);
979
		if (leader->attr.pinned) {
980
			update_group_times(leader);
981
			leader->state = PERF_EVENT_STATE_ERROR;
982
		}
983 984 985
	}

 unlock:
986
	raw_spin_unlock(&ctx->lock);
987 988 989
}

/*
990
 * Enable a event.
991
 *
992 993
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
994
 * remains valid.  This condition is satisfied when called through
995 996
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
997
 */
998
void perf_event_enable(struct perf_event *event)
999
{
1000
	struct perf_event_context *ctx = event->ctx;
1001 1002 1003 1004
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1005
		 * Enable the event on the cpu that it's on
1006
		 */
1007 1008
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1009 1010 1011
		return;
	}

1012
	raw_spin_lock_irq(&ctx->lock);
1013
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1014 1015 1016
		goto out;

	/*
1017 1018
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1019 1020 1021 1022
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1023 1024
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1025 1026

 retry:
1027
	raw_spin_unlock_irq(&ctx->lock);
1028
	task_oncpu_function_call(task, __perf_event_enable, event);
1029

1030
	raw_spin_lock_irq(&ctx->lock);
1031 1032

	/*
1033
	 * If the context is active and the event is still off,
1034 1035
	 * we need to retry the cross-call.
	 */
1036
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1037 1038 1039 1040 1041 1042
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1043 1044
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1045

1046
 out:
1047
	raw_spin_unlock_irq(&ctx->lock);
1048 1049
}

1050
static int perf_event_refresh(struct perf_event *event, int refresh)
1051
{
1052
	/*
1053
	 * not supported on inherited events
1054
	 */
1055
	if (event->attr.inherit)
1056 1057
		return -EINVAL;

1058 1059
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1060 1061

	return 0;
1062 1063
}

1064 1065 1066 1067 1068 1069 1070 1071 1072
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1073
{
1074
	struct perf_event *event;
1075

1076
	raw_spin_lock(&ctx->lock);
1077
	ctx->is_active = 0;
1078
	if (likely(!ctx->nr_events))
1079
		goto out;
1080
	update_context_time(ctx);
1081

1082
	perf_disable();
1083 1084 1085 1086
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1087 1088 1089
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1090
	if (event_type & EVENT_FLEXIBLE)
1091
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1092
			group_sched_out(event, cpuctx, ctx);
1093 1094

 out_enable:
1095
	perf_enable();
1096
 out:
1097
	raw_spin_unlock(&ctx->lock);
1098 1099
}

1100 1101 1102
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1103 1104 1105 1106
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1107
 * in them directly with an fd; we can only enable/disable all
1108
 * events via prctl, or enable/disable all events in a family
1109 1110
 * via ioctl, which will have the same effect on both contexts.
 */
1111 1112
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1113 1114
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1115
		&& ctx1->parent_gen == ctx2->parent_gen
1116
		&& !ctx1->pin_count && !ctx2->pin_count;
1117 1118
}

1119 1120
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1121 1122 1123
{
	u64 value;

1124
	if (!event->attr.inherit_stat)
1125 1126 1127
		return;

	/*
1128
	 * Update the event value, we cannot use perf_event_read()
1129 1130
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1131
	 * we know the event must be on the current CPU, therefore we
1132 1133
	 * don't need to use it.
	 */
1134 1135
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1136 1137
		event->pmu->read(event);
		/* fall-through */
1138

1139 1140
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1141 1142 1143 1144 1145 1146 1147
		break;

	default:
		break;
	}

	/*
1148
	 * In order to keep per-task stats reliable we need to flip the event
1149 1150
	 * values when we flip the contexts.
	 */
1151 1152 1153
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1154

1155 1156
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1157

1158
	/*
1159
	 * Since we swizzled the values, update the user visible data too.
1160
	 */
1161 1162
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1163 1164 1165 1166 1167
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1168 1169
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1170
{
1171
	struct perf_event *event, *next_event;
1172 1173 1174 1175

	if (!ctx->nr_stat)
		return;

1176 1177
	update_context_time(ctx);

1178 1179
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1180

1181 1182
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1183

1184 1185
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1186

1187
		__perf_event_sync_stat(event, next_event);
1188

1189 1190
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1191 1192 1193
	}
}

T
Thomas Gleixner 已提交
1194
/*
1195
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1196 1197
 * with interrupts disabled.
 *
1198
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1199
 *
I
Ingo Molnar 已提交
1200
 * This does not protect us against NMI, but disable()
1201 1202 1203
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1204
 */
1205
void perf_event_task_sched_out(struct task_struct *task,
1206
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1207
{
1208
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1209 1210 1211
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1212
	int do_switch = 1;
T
Thomas Gleixner 已提交
1213

1214
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1215

1216
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1217 1218
		return;

1219 1220
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1221
	next_ctx = next->perf_event_ctxp;
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1233 1234
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1235
		if (context_equiv(ctx, next_ctx)) {
1236 1237
			/*
			 * XXX do we need a memory barrier of sorts
1238
			 * wrt to rcu_dereference() of perf_event_ctxp
1239
			 */
1240 1241
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1242 1243 1244
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1245

1246
			perf_event_sync_stat(ctx, next_ctx);
1247
		}
1248 1249
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1250
	}
1251
	rcu_read_unlock();
1252

1253
	if (do_switch) {
1254
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1255 1256
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1257 1258
}

1259 1260
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1261 1262 1263
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1264 1265
	if (!cpuctx->task_ctx)
		return;
1266 1267 1268 1269

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1270
	ctx_sched_out(ctx, cpuctx, event_type);
1271 1272 1273
	cpuctx->task_ctx = NULL;
}

1274 1275 1276
/*
 * Called with IRQs disabled
 */
1277
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1278
{
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1289 1290
}

1291
static void
1292
ctx_pinned_sched_in(struct perf_event_context *ctx,
1293
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1294
{
1295
	struct perf_event *event;
T
Thomas Gleixner 已提交
1296

1297 1298
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1299
			continue;
1300
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1301 1302
			continue;

1303
		if (group_can_go_on(event, cpuctx, 1))
1304
			group_sched_in(event, cpuctx, ctx);
1305 1306 1307 1308 1309

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1310 1311 1312
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1313
		}
1314
	}
1315 1316 1317 1318
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1319
		      struct perf_cpu_context *cpuctx)
1320 1321 1322
{
	struct perf_event *event;
	int can_add_hw = 1;
1323

1324 1325 1326
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1327
			continue;
1328 1329
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1330
		 * of events:
1331
		 */
1332
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1333 1334
			continue;

1335
		if (group_can_go_on(event, cpuctx, can_add_hw))
1336
			if (group_sched_in(event, cpuctx, ctx))
1337
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1338
	}
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1360
		ctx_pinned_sched_in(ctx, cpuctx);
1361 1362 1363

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1364
		ctx_flexible_sched_in(ctx, cpuctx);
1365

1366
	perf_enable();
1367
 out:
1368
	raw_spin_unlock(&ctx->lock);
1369 1370
}

1371 1372 1373 1374 1375 1376 1377 1378
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1392
/*
1393
 * Called from scheduler to add the events of the current task
1394 1395
 * with interrupts disabled.
 *
1396
 * We restore the event value and then enable it.
1397 1398
 *
 * This does not protect us against NMI, but enable()
1399 1400 1401
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1402
 */
1403
void perf_event_task_sched_in(struct task_struct *task)
1404
{
1405 1406
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1407

1408 1409
	if (likely(!ctx))
		return;
1410

1411 1412 1413
	if (cpuctx->task_ctx == ctx)
		return;

1414 1415
	perf_disable();

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1428 1429

	perf_enable();
1430 1431
}

1432 1433
#define MAX_INTERRUPTS (~0ULL)

1434
static void perf_log_throttle(struct perf_event *event, int enable);
1435

1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1503 1504 1505
	if (!divisor)
		return dividend;

1506 1507 1508
	return div64_u64(dividend, divisor);
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1525
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1526
{
1527
	struct hw_perf_event *hwc = &event->hw;
1528
	s64 period, sample_period;
1529 1530
	s64 delta;

1531
	period = perf_calculate_period(event, nsec, count);
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1542 1543 1544

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1545
		perf_event_stop(event);
1546
		atomic64_set(&hwc->period_left, 0);
1547
		perf_event_start(event);
1548 1549
		perf_enable();
	}
1550 1551
}

1552
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1553
{
1554 1555
	struct perf_event *event;
	struct hw_perf_event *hwc;
1556 1557
	u64 interrupts, now;
	s64 delta;
1558

1559
	raw_spin_lock(&ctx->lock);
1560
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1561
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1562 1563
			continue;

1564 1565 1566
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1567
		hwc = &event->hw;
1568 1569 1570

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1571

1572
		/*
1573
		 * unthrottle events on the tick
1574
		 */
1575
		if (interrupts == MAX_INTERRUPTS) {
1576
			perf_log_throttle(event, 1);
1577
			perf_disable();
1578
			event->pmu->unthrottle(event);
1579
			perf_enable();
1580 1581
		}

1582
		if (!event->attr.freq || !event->attr.sample_freq)
1583 1584
			continue;

1585
		perf_disable();
1586 1587 1588 1589
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1590

1591 1592
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1593
		perf_enable();
1594
	}
1595
	raw_spin_unlock(&ctx->lock);
1596 1597
}

1598
/*
1599
 * Round-robin a context's events:
1600
 */
1601
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1602
{
1603
	raw_spin_lock(&ctx->lock);
1604 1605 1606 1607

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1608
	raw_spin_unlock(&ctx->lock);
1609 1610
}

1611
void perf_event_task_tick(struct task_struct *curr)
1612
{
1613
	struct perf_cpu_context *cpuctx;
1614
	struct perf_event_context *ctx;
1615
	int rotate = 0;
1616

1617
	if (!atomic_read(&nr_events))
1618 1619
		return;

1620
	cpuctx = &__get_cpu_var(perf_cpu_context);
1621 1622 1623
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1624

1625 1626 1627
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1628

1629
	perf_ctx_adjust_freq(&cpuctx->ctx);
1630
	if (ctx)
1631
		perf_ctx_adjust_freq(ctx);
1632

1633 1634 1635 1636
	if (!rotate)
		return;

	perf_disable();
1637
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1638
	if (ctx)
1639
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1640

1641
	rotate_ctx(&cpuctx->ctx);
1642 1643
	if (ctx)
		rotate_ctx(ctx);
1644

1645
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1646
	if (ctx)
1647
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1648
	perf_enable();
T
Thomas Gleixner 已提交
1649 1650
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1666
/*
1667
 * Enable all of a task's events that have been marked enable-on-exec.
1668 1669
 * This expects task == current.
 */
1670
static void perf_event_enable_on_exec(struct task_struct *task)
1671
{
1672 1673
	struct perf_event_context *ctx;
	struct perf_event *event;
1674 1675
	unsigned long flags;
	int enabled = 0;
1676
	int ret;
1677 1678

	local_irq_save(flags);
1679 1680
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1681 1682
		goto out;

1683
	__perf_event_task_sched_out(ctx);
1684

1685
	raw_spin_lock(&ctx->lock);
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1697 1698 1699
	}

	/*
1700
	 * Unclone this context if we enabled any event.
1701
	 */
1702 1703
	if (enabled)
		unclone_ctx(ctx);
1704

1705
	raw_spin_unlock(&ctx->lock);
1706

1707
	perf_event_task_sched_in(task);
1708 1709 1710 1711
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1712
/*
1713
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1714
 */
1715
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1716
{
1717
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1718 1719
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1720

1721 1722 1723 1724
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1725 1726
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1727 1728 1729 1730
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1731
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1732
	update_context_time(ctx);
1733
	update_event_times(event);
1734
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1735

P
Peter Zijlstra 已提交
1736
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1737 1738
}

P
Peter Zijlstra 已提交
1739 1740
static inline u64 perf_event_count(struct perf_event *event)
{
1741
	return atomic64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1742 1743
}

1744
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1745 1746
{
	/*
1747 1748
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1749
	 */
1750 1751 1752 1753
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1754 1755 1756
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1757
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1758
		update_context_time(ctx);
1759
		update_event_times(event);
1760
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1761 1762
	}

P
Peter Zijlstra 已提交
1763
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1764 1765
}

1766
/*
1767
 * Initialize the perf_event context in a task_struct:
1768 1769
 */
static void
1770
__perf_event_init_context(struct perf_event_context *ctx,
1771 1772
			    struct task_struct *task)
{
1773
	raw_spin_lock_init(&ctx->lock);
1774
	mutex_init(&ctx->mutex);
1775 1776
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1777 1778 1779 1780 1781
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1782
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1783
{
1784
	struct perf_event_context *ctx;
1785
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1786
	struct task_struct *task;
1787
	unsigned long flags;
1788
	int err;
T
Thomas Gleixner 已提交
1789

1790
	if (pid == -1 && cpu != -1) {
1791
		/* Must be root to operate on a CPU event: */
1792
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1793 1794
			return ERR_PTR(-EACCES);

1795
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1796 1797 1798
			return ERR_PTR(-EINVAL);

		/*
1799
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1800 1801 1802
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1803
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1804 1805 1806 1807
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1808
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1825
	/*
1826
	 * Can't attach events to a dying task.
1827 1828 1829 1830 1831
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1832
	/* Reuse ptrace permission checks for now. */
1833 1834 1835 1836 1837
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1838
	ctx = perf_lock_task_context(task, &flags);
1839
	if (ctx) {
1840
		unclone_ctx(ctx);
1841
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1842 1843
	}

1844
	if (!ctx) {
1845
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1846 1847 1848
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1849
		__perf_event_init_context(ctx, task);
1850
		get_ctx(ctx);
1851
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1852 1853 1854 1855 1856
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1857
			goto retry;
1858
		}
1859
		get_task_struct(task);
1860 1861
	}

1862
	put_task_struct(task);
T
Thomas Gleixner 已提交
1863
	return ctx;
1864 1865 1866 1867

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1868 1869
}

L
Li Zefan 已提交
1870 1871
static void perf_event_free_filter(struct perf_event *event);

1872
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1873
{
1874
	struct perf_event *event;
P
Peter Zijlstra 已提交
1875

1876 1877 1878
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1879
	perf_event_free_filter(event);
1880
	kfree(event);
P
Peter Zijlstra 已提交
1881 1882
}

1883
static void perf_pending_sync(struct perf_event *event);
1884
static void perf_buffer_put(struct perf_buffer *buffer);
1885

1886
static void free_event(struct perf_event *event)
1887
{
1888
	perf_pending_sync(event);
1889

1890 1891
	if (!event->parent) {
		atomic_dec(&nr_events);
1892
		if (event->attr.mmap || event->attr.mmap_data)
1893 1894 1895 1896 1897
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1898
	}
1899

1900 1901 1902
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
1903 1904
	}

1905 1906
	if (event->destroy)
		event->destroy(event);
1907

1908 1909
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1910 1911
}

1912
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1913
{
1914
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1915

1916 1917 1918 1919 1920 1921
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

1922
	WARN_ON_ONCE(ctx->parent_ctx);
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1936
	raw_spin_lock_irq(&ctx->lock);
1937
	perf_group_detach(event);
1938 1939
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
1940
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1941

1942 1943 1944 1945
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1946

1947
	free_event(event);
T
Thomas Gleixner 已提交
1948 1949 1950

	return 0;
}
1951
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1952

1953 1954 1955 1956
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1957
{
1958
	struct perf_event *event = file->private_data;
1959

1960
	file->private_data = NULL;
1961

1962
	return perf_event_release_kernel(event);
1963 1964
}

1965
static int perf_event_read_size(struct perf_event *event)
1966 1967 1968 1969 1970
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1971
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1972 1973
		size += sizeof(u64);

1974
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1975 1976
		size += sizeof(u64);

1977
	if (event->attr.read_format & PERF_FORMAT_ID)
1978 1979
		entry += sizeof(u64);

1980 1981
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1982 1983 1984 1985 1986 1987 1988 1989
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1990
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1991
{
1992
	struct perf_event *child;
1993 1994
	u64 total = 0;

1995 1996 1997
	*enabled = 0;
	*running = 0;

1998
	mutex_lock(&event->child_mutex);
1999
	total += perf_event_read(event);
2000 2001 2002 2003 2004 2005
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2006
		total += perf_event_read(child);
2007 2008 2009
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2010
	mutex_unlock(&event->child_mutex);
2011 2012 2013

	return total;
}
2014
EXPORT_SYMBOL_GPL(perf_event_read_value);
2015

2016
static int perf_event_read_group(struct perf_event *event,
2017 2018
				   u64 read_format, char __user *buf)
{
2019
	struct perf_event *leader = event->group_leader, *sub;
2020 2021
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2022
	u64 values[5];
2023
	u64 count, enabled, running;
2024

2025
	mutex_lock(&ctx->mutex);
2026
	count = perf_event_read_value(leader, &enabled, &running);
2027 2028

	values[n++] = 1 + leader->nr_siblings;
2029 2030 2031 2032
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2033 2034 2035
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2036 2037 2038 2039

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2040
		goto unlock;
2041

2042
	ret = size;
2043

2044
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2045
		n = 0;
2046

2047
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2048 2049 2050 2051 2052
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2053
		if (copy_to_user(buf + ret, values, size)) {
2054 2055 2056
			ret = -EFAULT;
			goto unlock;
		}
2057 2058

		ret += size;
2059
	}
2060 2061
unlock:
	mutex_unlock(&ctx->mutex);
2062

2063
	return ret;
2064 2065
}

2066
static int perf_event_read_one(struct perf_event *event,
2067 2068
				 u64 read_format, char __user *buf)
{
2069
	u64 enabled, running;
2070 2071 2072
	u64 values[4];
	int n = 0;

2073 2074 2075 2076 2077
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2078
	if (read_format & PERF_FORMAT_ID)
2079
		values[n++] = primary_event_id(event);
2080 2081 2082 2083 2084 2085 2086

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2087
/*
2088
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2089 2090
 */
static ssize_t
2091
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2092
{
2093
	u64 read_format = event->attr.read_format;
2094
	int ret;
T
Thomas Gleixner 已提交
2095

2096
	/*
2097
	 * Return end-of-file for a read on a event that is in
2098 2099 2100
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2101
	if (event->state == PERF_EVENT_STATE_ERROR)
2102 2103
		return 0;

2104
	if (count < perf_event_read_size(event))
2105 2106
		return -ENOSPC;

2107
	WARN_ON_ONCE(event->ctx->parent_ctx);
2108
	if (read_format & PERF_FORMAT_GROUP)
2109
		ret = perf_event_read_group(event, read_format, buf);
2110
	else
2111
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2112

2113
	return ret;
T
Thomas Gleixner 已提交
2114 2115 2116 2117 2118
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2119
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2120

2121
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2122 2123 2124 2125
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2126
	struct perf_event *event = file->private_data;
2127
	struct perf_buffer *buffer;
2128
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2129 2130

	rcu_read_lock();
2131 2132 2133
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2134
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2135

2136
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2137 2138 2139 2140

	return events;
}

2141
static void perf_event_reset(struct perf_event *event)
2142
{
2143 2144 2145
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2146 2147
}

2148
/*
2149 2150 2151 2152
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2153
 */
2154 2155
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2156
{
2157
	struct perf_event *child;
P
Peter Zijlstra 已提交
2158

2159 2160 2161 2162
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2163
		func(child);
2164
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2165 2166
}

2167 2168
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2169
{
2170 2171
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2172

2173 2174
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2175
	event = event->group_leader;
2176

2177 2178 2179 2180
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2181
	mutex_unlock(&ctx->mutex);
2182 2183
}

2184
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2185
{
2186
	struct perf_event_context *ctx = event->ctx;
2187 2188 2189 2190
	unsigned long size;
	int ret = 0;
	u64 value;

2191
	if (!event->attr.sample_period)
2192 2193 2194 2195 2196 2197 2198 2199 2200
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2201
	raw_spin_lock_irq(&ctx->lock);
2202 2203
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2204 2205 2206 2207
			ret = -EINVAL;
			goto unlock;
		}

2208
		event->attr.sample_freq = value;
2209
	} else {
2210 2211
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2212 2213
	}
unlock:
2214
	raw_spin_unlock_irq(&ctx->lock);
2215 2216 2217 2218

	return ret;
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2240
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2241

2242 2243
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2244 2245
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2246
	u32 flags = arg;
2247 2248

	switch (cmd) {
2249 2250
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2251
		break;
2252 2253
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2254
		break;
2255 2256
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2257
		break;
P
Peter Zijlstra 已提交
2258

2259 2260
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2261

2262 2263
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2264

2265
	case PERF_EVENT_IOC_SET_OUTPUT:
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2283

L
Li Zefan 已提交
2284 2285 2286
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2287
	default:
P
Peter Zijlstra 已提交
2288
		return -ENOTTY;
2289
	}
P
Peter Zijlstra 已提交
2290 2291

	if (flags & PERF_IOC_FLAG_GROUP)
2292
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2293
	else
2294
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2295 2296

	return 0;
2297 2298
}

2299
int perf_event_task_enable(void)
2300
{
2301
	struct perf_event *event;
2302

2303 2304 2305 2306
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2307 2308 2309 2310

	return 0;
}

2311
int perf_event_task_disable(void)
2312
{
2313
	struct perf_event *event;
2314

2315 2316 2317 2318
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2319 2320 2321 2322

	return 0;
}

2323 2324
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2325 2326
#endif

2327
static int perf_event_index(struct perf_event *event)
2328
{
2329
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2330 2331
		return 0;

2332
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2333 2334
}

2335 2336 2337 2338 2339
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2340
void perf_event_update_userpage(struct perf_event *event)
2341
{
2342
	struct perf_event_mmap_page *userpg;
2343
	struct perf_buffer *buffer;
2344 2345

	rcu_read_lock();
2346 2347
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2348 2349
		goto unlock;

2350
	userpg = buffer->user_page;
2351

2352 2353 2354 2355 2356
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2357
	++userpg->lock;
2358
	barrier();
2359
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2360
	userpg->offset = perf_event_count(event);
2361 2362
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2363

2364 2365
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2366

2367 2368
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2369

2370
	barrier();
2371
	++userpg->lock;
2372
	preempt_enable();
2373
unlock:
2374
	rcu_read_unlock();
2375 2376
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2396
#ifndef CONFIG_PERF_USE_VMALLOC
2397

2398 2399 2400
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2401

2402
static struct page *
2403
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2404
{
2405
	if (pgoff > buffer->nr_pages)
2406
		return NULL;
2407

2408
	if (pgoff == 0)
2409
		return virt_to_page(buffer->user_page);
2410

2411
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2412 2413
}

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2427
static struct perf_buffer *
2428
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2429
{
2430
	struct perf_buffer *buffer;
2431 2432 2433
	unsigned long size;
	int i;

2434
	size = sizeof(struct perf_buffer);
2435 2436
	size += nr_pages * sizeof(void *);

2437 2438
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2439 2440
		goto fail;

2441
	buffer->user_page = perf_mmap_alloc_page(cpu);
2442
	if (!buffer->user_page)
2443 2444 2445
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2446
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2447
		if (!buffer->data_pages[i])
2448 2449 2450
			goto fail_data_pages;
	}

2451
	buffer->nr_pages = nr_pages;
2452

2453 2454
	perf_buffer_init(buffer, watermark, flags);

2455
	return buffer;
2456 2457 2458

fail_data_pages:
	for (i--; i >= 0; i--)
2459
		free_page((unsigned long)buffer->data_pages[i]);
2460

2461
	free_page((unsigned long)buffer->user_page);
2462 2463

fail_user_page:
2464
	kfree(buffer);
2465 2466

fail:
2467
	return NULL;
2468 2469
}

2470 2471
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2472
	struct page *page = virt_to_page((void *)addr);
2473 2474 2475 2476 2477

	page->mapping = NULL;
	__free_page(page);
}

2478
static void perf_buffer_free(struct perf_buffer *buffer)
2479 2480 2481
{
	int i;

2482 2483 2484 2485
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2486 2487
}

2488
static inline int page_order(struct perf_buffer *buffer)
2489 2490 2491 2492
{
	return 0;
}

2493 2494 2495 2496 2497 2498 2499 2500
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2501
static inline int page_order(struct perf_buffer *buffer)
2502
{
2503
	return buffer->page_order;
2504 2505
}

2506
static struct page *
2507
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2508
{
2509
	if (pgoff > (1UL << page_order(buffer)))
2510 2511
		return NULL;

2512
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2513 2514 2515 2516 2517 2518 2519 2520 2521
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2522
static void perf_buffer_free_work(struct work_struct *work)
2523
{
2524
	struct perf_buffer *buffer;
2525 2526 2527
	void *base;
	int i, nr;

2528 2529
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2530

2531
	base = buffer->user_page;
2532 2533 2534 2535
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2536
	kfree(buffer);
2537 2538
}

2539
static void perf_buffer_free(struct perf_buffer *buffer)
2540
{
2541
	schedule_work(&buffer->work);
2542 2543
}

2544
static struct perf_buffer *
2545
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2546
{
2547
	struct perf_buffer *buffer;
2548 2549 2550
	unsigned long size;
	void *all_buf;

2551
	size = sizeof(struct perf_buffer);
2552 2553
	size += sizeof(void *);

2554 2555
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2556 2557
		goto fail;

2558
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2559 2560 2561 2562 2563

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2564 2565 2566 2567
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2568

2569 2570
	perf_buffer_init(buffer, watermark, flags);

2571
	return buffer;
2572 2573

fail_all_buf:
2574
	kfree(buffer);
2575 2576 2577 2578 2579 2580 2581

fail:
	return NULL;
}

#endif

2582
static unsigned long perf_data_size(struct perf_buffer *buffer)
2583
{
2584
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2585 2586
}

2587 2588 2589
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2590
	struct perf_buffer *buffer;
2591 2592 2593 2594 2595 2596 2597 2598 2599
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2600 2601
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2602 2603 2604 2605 2606
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2607
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2622
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2623
{
2624
	struct perf_buffer *buffer;
2625

2626 2627
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2628 2629
}

2630
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2631
{
2632
	struct perf_buffer *buffer;
2633

2634
	rcu_read_lock();
2635 2636 2637 2638
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2639 2640 2641
	}
	rcu_read_unlock();

2642
	return buffer;
2643 2644
}

2645
static void perf_buffer_put(struct perf_buffer *buffer)
2646
{
2647
	if (!atomic_dec_and_test(&buffer->refcount))
2648
		return;
2649

2650
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2651 2652 2653 2654
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2655
	struct perf_event *event = vma->vm_file->private_data;
2656

2657
	atomic_inc(&event->mmap_count);
2658 2659 2660 2661
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2662
	struct perf_event *event = vma->vm_file->private_data;
2663

2664
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2665
		unsigned long size = perf_data_size(event->buffer);
2666
		struct user_struct *user = event->mmap_user;
2667
		struct perf_buffer *buffer = event->buffer;
2668

2669
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2670
		vma->vm_mm->locked_vm -= event->mmap_locked;
2671
		rcu_assign_pointer(event->buffer, NULL);
2672
		mutex_unlock(&event->mmap_mutex);
2673

2674
		perf_buffer_put(buffer);
2675
		free_uid(user);
2676
	}
2677 2678
}

2679
static const struct vm_operations_struct perf_mmap_vmops = {
2680 2681 2682 2683
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2684 2685 2686 2687
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2688
	struct perf_event *event = file->private_data;
2689
	unsigned long user_locked, user_lock_limit;
2690
	struct user_struct *user = current_user();
2691
	unsigned long locked, lock_limit;
2692
	struct perf_buffer *buffer;
2693 2694
	unsigned long vma_size;
	unsigned long nr_pages;
2695
	long user_extra, extra;
2696
	int ret = 0, flags = 0;
2697

2698 2699 2700 2701 2702 2703 2704 2705
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2706
	if (!(vma->vm_flags & VM_SHARED))
2707
		return -EINVAL;
2708 2709 2710 2711

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2712
	/*
2713
	 * If we have buffer pages ensure they're a power-of-two number, so we
2714 2715 2716
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2717 2718
		return -EINVAL;

2719
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2720 2721
		return -EINVAL;

2722 2723
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2724

2725 2726
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2727 2728 2729
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2730
		else
2731 2732 2733 2734
			ret = -EINVAL;
		goto unlock;
	}

2735
	user_extra = nr_pages + 1;
2736
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2737 2738 2739 2740 2741 2742

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2743
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2744

2745 2746 2747
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2748

2749
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2750
	lock_limit >>= PAGE_SHIFT;
2751
	locked = vma->vm_mm->locked_vm + extra;
2752

2753 2754
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2755 2756 2757
		ret = -EPERM;
		goto unlock;
	}
2758

2759
	WARN_ON(event->buffer);
2760

2761 2762 2763 2764 2765
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
2766
	if (!buffer) {
2767
		ret = -ENOMEM;
2768
		goto unlock;
2769
	}
2770
	rcu_assign_pointer(event->buffer, buffer);
2771

2772 2773 2774 2775 2776
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

2777
unlock:
2778 2779
	if (!ret)
		atomic_inc(&event->mmap_count);
2780
	mutex_unlock(&event->mmap_mutex);
2781 2782 2783

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2784 2785

	return ret;
2786 2787
}

P
Peter Zijlstra 已提交
2788 2789 2790
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2791
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2792 2793 2794
	int retval;

	mutex_lock(&inode->i_mutex);
2795
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2796 2797 2798 2799 2800 2801 2802 2803
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2804
static const struct file_operations perf_fops = {
2805
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2806 2807 2808
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2809 2810
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2811
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2812
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2813 2814
};

2815
/*
2816
 * Perf event wakeup
2817 2818 2819 2820 2821
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2822
void perf_event_wakeup(struct perf_event *event)
2823
{
2824
	wake_up_all(&event->waitq);
2825

2826 2827 2828
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2829
	}
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2841
static void perf_pending_event(struct perf_pending_entry *entry)
2842
{
2843 2844
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2845

2846 2847 2848
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2849 2850
	}

2851 2852 2853
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2854 2855 2856
	}
}

2857
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2858

2859
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2860 2861 2862
	PENDING_TAIL,
};

2863 2864
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2865
{
2866
	struct perf_pending_entry **head;
2867

2868
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2869 2870
		return;

2871 2872 2873
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2874 2875

	do {
2876 2877
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2878

2879
	set_perf_event_pending();
2880

2881
	put_cpu_var(perf_pending_head);
2882 2883 2884 2885
}

static int __perf_pending_run(void)
{
2886
	struct perf_pending_entry *list;
2887 2888
	int nr = 0;

2889
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2890
	while (list != PENDING_TAIL) {
2891 2892
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2893 2894 2895

		list = list->next;

2896 2897
		func = entry->func;
		entry->next = NULL;
2898 2899 2900 2901 2902 2903 2904
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2905
		func(entry);
2906 2907 2908 2909 2910 2911
		nr++;
	}

	return nr;
}

2912
static inline int perf_not_pending(struct perf_event *event)
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2927
	return event->pending.next == NULL;
2928 2929
}

2930
static void perf_pending_sync(struct perf_event *event)
2931
{
2932
	wait_event(event->waitq, perf_not_pending(event));
2933 2934
}

2935
void perf_event_do_pending(void)
2936 2937 2938 2939
{
	__perf_pending_run();
}

2940 2941 2942 2943
/*
 * Callchain support -- arch specific
 */

2944
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2945 2946 2947 2948
{
	return NULL;
}

2949 2950 2951 2952
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}
2953

2954

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

2976 2977 2978
/*
 * Output
 */
2979
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
2980
			      unsigned long offset, unsigned long head)
2981 2982 2983
{
	unsigned long mask;

2984
	if (!buffer->writable)
2985 2986
		return true;

2987
	mask = perf_data_size(buffer) - 1;
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2998
static void perf_output_wakeup(struct perf_output_handle *handle)
2999
{
3000
	atomic_set(&handle->buffer->poll, POLL_IN);
3001

3002
	if (handle->nmi) {
3003 3004 3005
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3006
	} else
3007
		perf_event_wakeup(handle->event);
3008 3009
}

3010
/*
3011
 * We need to ensure a later event_id doesn't publish a head when a former
3012
 * event isn't done writing. However since we need to deal with NMIs we
3013 3014 3015
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3016
 * event completes.
3017
 */
3018
static void perf_output_get_handle(struct perf_output_handle *handle)
3019
{
3020
	struct perf_buffer *buffer = handle->buffer;
3021

3022
	preempt_disable();
3023 3024
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3025 3026
}

3027
static void perf_output_put_handle(struct perf_output_handle *handle)
3028
{
3029
	struct perf_buffer *buffer = handle->buffer;
3030
	unsigned long head;
3031 3032

again:
3033
	head = local_read(&buffer->head);
3034 3035

	/*
3036
	 * IRQ/NMI can happen here, which means we can miss a head update.
3037 3038
	 */

3039
	if (!local_dec_and_test(&buffer->nest))
3040
		goto out;
3041 3042

	/*
3043
	 * Publish the known good head. Rely on the full barrier implied
3044
	 * by atomic_dec_and_test() order the buffer->head read and this
3045
	 * write.
3046
	 */
3047
	buffer->user_page->data_head = head;
3048

3049 3050
	/*
	 * Now check if we missed an update, rely on the (compiler)
3051
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3052
	 */
3053 3054
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3055 3056 3057
		goto again;
	}

3058
	if (handle->wakeup != local_read(&buffer->wakeup))
3059
		perf_output_wakeup(handle);
3060

3061
 out:
3062
	preempt_enable();
3063 3064
}

3065
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3066
		      const void *buf, unsigned int len)
3067
{
3068
	do {
3069
		unsigned long size = min_t(unsigned long, handle->size, len);
3070 3071 3072 3073 3074

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3075
		buf += size;
3076 3077
		handle->size -= size;
		if (!handle->size) {
3078
			struct perf_buffer *buffer = handle->buffer;
3079

3080
			handle->page++;
3081 3082 3083
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3084 3085
		}
	} while (len);
3086 3087
}

3088
int perf_output_begin(struct perf_output_handle *handle,
3089
		      struct perf_event *event, unsigned int size,
3090
		      int nmi, int sample)
3091
{
3092
	struct perf_buffer *buffer;
3093
	unsigned long tail, offset, head;
3094 3095 3096 3097 3098 3099
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3100

3101
	rcu_read_lock();
3102
	/*
3103
	 * For inherited events we send all the output towards the parent.
3104
	 */
3105 3106
	if (event->parent)
		event = event->parent;
3107

3108 3109
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3110 3111
		goto out;

3112
	handle->buffer	= buffer;
3113
	handle->event	= event;
3114 3115
	handle->nmi	= nmi;
	handle->sample	= sample;
3116

3117
	if (!buffer->nr_pages)
3118
		goto out;
3119

3120
	have_lost = local_read(&buffer->lost);
3121 3122 3123
	if (have_lost)
		size += sizeof(lost_event);

3124
	perf_output_get_handle(handle);
3125

3126
	do {
3127 3128 3129 3130 3131
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3132
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3133
		smp_rmb();
3134
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3135
		head += size;
3136
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3137
			goto fail;
3138
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3139

3140 3141
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3142

3143 3144 3145 3146
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3147
	handle->addr += handle->size;
3148
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3149

3150
	if (have_lost) {
3151
		lost_event.header.type = PERF_RECORD_LOST;
3152 3153
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3154
		lost_event.id          = event->id;
3155
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3156 3157 3158 3159

		perf_output_put(handle, lost_event);
	}

3160
	return 0;
3161

3162
fail:
3163
	local_inc(&buffer->lost);
3164
	perf_output_put_handle(handle);
3165 3166
out:
	rcu_read_unlock();
3167

3168 3169
	return -ENOSPC;
}
3170

3171
void perf_output_end(struct perf_output_handle *handle)
3172
{
3173
	struct perf_event *event = handle->event;
3174
	struct perf_buffer *buffer = handle->buffer;
3175

3176
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3177

3178
	if (handle->sample && wakeup_events) {
3179
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3180
		if (events >= wakeup_events) {
3181 3182
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3183
		}
3184 3185
	}

3186
	perf_output_put_handle(handle);
3187
	rcu_read_unlock();
3188 3189
}

3190
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3191 3192
{
	/*
3193
	 * only top level events have the pid namespace they were created in
3194
	 */
3195 3196
	if (event->parent)
		event = event->parent;
3197

3198
	return task_tgid_nr_ns(p, event->ns);
3199 3200
}

3201
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3202 3203
{
	/*
3204
	 * only top level events have the pid namespace they were created in
3205
	 */
3206 3207
	if (event->parent)
		event = event->parent;
3208

3209
	return task_pid_nr_ns(p, event->ns);
3210 3211
}

3212
static void perf_output_read_one(struct perf_output_handle *handle,
3213
				 struct perf_event *event)
3214
{
3215
	u64 read_format = event->attr.read_format;
3216 3217 3218
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3219
	values[n++] = perf_event_count(event);
3220
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3221 3222
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3223 3224
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3225 3226
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3227 3228
	}
	if (read_format & PERF_FORMAT_ID)
3229
		values[n++] = primary_event_id(event);
3230 3231 3232 3233 3234

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3235
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3236 3237
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3238
			    struct perf_event *event)
3239
{
3240 3241
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3253
	if (leader != event)
3254 3255
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3256
	values[n++] = perf_event_count(leader);
3257
	if (read_format & PERF_FORMAT_ID)
3258
		values[n++] = primary_event_id(leader);
3259 3260 3261

	perf_output_copy(handle, values, n * sizeof(u64));

3262
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3263 3264
		n = 0;

3265
		if (sub != event)
3266 3267
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3268
		values[n++] = perf_event_count(sub);
3269
		if (read_format & PERF_FORMAT_ID)
3270
			values[n++] = primary_event_id(sub);
3271 3272 3273 3274 3275 3276

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3277
			     struct perf_event *event)
3278
{
3279 3280
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3281
	else
3282
		perf_output_read_one(handle, event);
3283 3284
}

3285 3286 3287
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3288
			struct perf_event *event)
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3319
		perf_output_read(handle, event);
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3357
			 struct perf_event *event,
3358
			 struct pt_regs *regs)
3359
{
3360
	u64 sample_type = event->attr.sample_type;
3361

3362
	data->type = sample_type;
3363

3364
	header->type = PERF_RECORD_SAMPLE;
3365 3366 3367 3368
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3369

3370
	if (sample_type & PERF_SAMPLE_IP) {
3371 3372 3373
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3374
	}
3375

3376
	if (sample_type & PERF_SAMPLE_TID) {
3377
		/* namespace issues */
3378 3379
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3380

3381
		header->size += sizeof(data->tid_entry);
3382 3383
	}

3384
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3385
		data->time = perf_clock();
3386

3387
		header->size += sizeof(data->time);
3388 3389
	}

3390
	if (sample_type & PERF_SAMPLE_ADDR)
3391
		header->size += sizeof(data->addr);
3392

3393
	if (sample_type & PERF_SAMPLE_ID) {
3394
		data->id = primary_event_id(event);
3395

3396 3397 3398 3399
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3400
		data->stream_id = event->id;
3401 3402 3403

		header->size += sizeof(data->stream_id);
	}
3404

3405
	if (sample_type & PERF_SAMPLE_CPU) {
3406 3407
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3408

3409
		header->size += sizeof(data->cpu_entry);
3410 3411
	}

3412
	if (sample_type & PERF_SAMPLE_PERIOD)
3413
		header->size += sizeof(data->period);
3414

3415
	if (sample_type & PERF_SAMPLE_READ)
3416
		header->size += perf_event_read_size(event);
3417

3418
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3419
		int size = 1;
3420

3421 3422 3423 3424 3425 3426
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3427 3428
	}

3429
	if (sample_type & PERF_SAMPLE_RAW) {
3430 3431 3432 3433 3434 3435 3436 3437
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3438
		header->size += size;
3439
	}
3440
}
3441

3442
static void perf_event_output(struct perf_event *event, int nmi,
3443 3444 3445 3446 3447
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3448

3449
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3450

3451
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3452
		return;
3453

3454
	perf_output_sample(&handle, &header, data, event);
3455

3456
	perf_output_end(&handle);
3457 3458
}

3459
/*
3460
 * read event_id
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3471
perf_event_read_event(struct perf_event *event,
3472 3473 3474
			struct task_struct *task)
{
	struct perf_output_handle handle;
3475
	struct perf_read_event read_event = {
3476
		.header = {
3477
			.type = PERF_RECORD_READ,
3478
			.misc = 0,
3479
			.size = sizeof(read_event) + perf_event_read_size(event),
3480
		},
3481 3482
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3483
	};
3484
	int ret;
3485

3486
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3487 3488 3489
	if (ret)
		return;

3490
	perf_output_put(&handle, read_event);
3491
	perf_output_read(&handle, event);
3492

3493 3494 3495
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3496
/*
P
Peter Zijlstra 已提交
3497 3498
 * task tracking -- fork/exit
 *
3499
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3500 3501
 */

P
Peter Zijlstra 已提交
3502
struct perf_task_event {
3503
	struct task_struct		*task;
3504
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3505 3506 3507 3508 3509 3510

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3511 3512
		u32				tid;
		u32				ptid;
3513
		u64				time;
3514
	} event_id;
P
Peter Zijlstra 已提交
3515 3516
};

3517
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3518
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3519 3520
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3521
	struct task_struct *task = task_event->task;
3522 3523
	int size, ret;

3524 3525
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3526

3527
	if (ret)
P
Peter Zijlstra 已提交
3528 3529
		return;

3530 3531
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3532

3533 3534
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3535

3536
	perf_output_put(&handle, task_event->event_id);
3537

P
Peter Zijlstra 已提交
3538 3539 3540
	perf_output_end(&handle);
}

3541
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3542
{
P
Peter Zijlstra 已提交
3543
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3544 3545
		return 0;

3546 3547 3548
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3549 3550
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3551 3552 3553 3554 3555
		return 1;

	return 0;
}

3556
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3557
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3558
{
3559
	struct perf_event *event;
P
Peter Zijlstra 已提交
3560

3561 3562 3563
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3564 3565 3566
	}
}

3567
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3568 3569
{
	struct perf_cpu_context *cpuctx;
3570
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3571

3572
	rcu_read_lock();
P
Peter Zijlstra 已提交
3573
	cpuctx = &get_cpu_var(perf_cpu_context);
3574
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3575
	if (!ctx)
P
Peter Zijlstra 已提交
3576
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3577
	if (ctx)
3578
		perf_event_task_ctx(ctx, task_event);
3579
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3580 3581 3582
	rcu_read_unlock();
}

3583 3584
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3585
			      int new)
P
Peter Zijlstra 已提交
3586
{
P
Peter Zijlstra 已提交
3587
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3588

3589 3590 3591
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3592 3593
		return;

P
Peter Zijlstra 已提交
3594
	task_event = (struct perf_task_event){
3595 3596
		.task	  = task,
		.task_ctx = task_ctx,
3597
		.event_id    = {
P
Peter Zijlstra 已提交
3598
			.header = {
3599
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3600
				.misc = 0,
3601
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3602
			},
3603 3604
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3605 3606
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3607
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3608 3609 3610
		},
	};

3611
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3612 3613
}

3614
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3615
{
3616
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3617 3618
}

3619 3620 3621 3622 3623
/*
 * comm tracking
 */

struct perf_comm_event {
3624 3625
	struct task_struct	*task;
	char			*comm;
3626 3627 3628 3629 3630 3631 3632
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3633
	} event_id;
3634 3635
};

3636
static void perf_event_comm_output(struct perf_event *event,
3637 3638 3639
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3640 3641
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3642 3643 3644 3645

	if (ret)
		return;

3646 3647
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3648

3649
	perf_output_put(&handle, comm_event->event_id);
3650 3651 3652 3653 3654
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3655
static int perf_event_comm_match(struct perf_event *event)
3656
{
P
Peter Zijlstra 已提交
3657
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3658 3659
		return 0;

3660 3661 3662
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3663
	if (event->attr.comm)
3664 3665 3666 3667 3668
		return 1;

	return 0;
}

3669
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3670 3671
				  struct perf_comm_event *comm_event)
{
3672
	struct perf_event *event;
3673

3674 3675 3676
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3677 3678 3679
	}
}

3680
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3681 3682
{
	struct perf_cpu_context *cpuctx;
3683
	struct perf_event_context *ctx;
3684
	unsigned int size;
3685
	char comm[TASK_COMM_LEN];
3686

3687
	memset(comm, 0, sizeof(comm));
3688
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3689
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3690 3691 3692 3693

	comm_event->comm = comm;
	comm_event->comm_size = size;

3694
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3695

3696
	rcu_read_lock();
3697
	cpuctx = &get_cpu_var(perf_cpu_context);
3698 3699
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3700
	if (ctx)
3701
		perf_event_comm_ctx(ctx, comm_event);
3702
	put_cpu_var(perf_cpu_context);
3703
	rcu_read_unlock();
3704 3705
}

3706
void perf_event_comm(struct task_struct *task)
3707
{
3708 3709
	struct perf_comm_event comm_event;

3710 3711
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3712

3713
	if (!atomic_read(&nr_comm_events))
3714
		return;
3715

3716
	comm_event = (struct perf_comm_event){
3717
		.task	= task,
3718 3719
		/* .comm      */
		/* .comm_size */
3720
		.event_id  = {
3721
			.header = {
3722
				.type = PERF_RECORD_COMM,
3723 3724 3725 3726 3727
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3728 3729 3730
		},
	};

3731
	perf_event_comm_event(&comm_event);
3732 3733
}

3734 3735 3736 3737 3738
/*
 * mmap tracking
 */

struct perf_mmap_event {
3739 3740 3741 3742
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3743 3744 3745 3746 3747 3748 3749 3750 3751

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3752
	} event_id;
3753 3754
};

3755
static void perf_event_mmap_output(struct perf_event *event,
3756 3757 3758
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3759 3760
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3761 3762 3763 3764

	if (ret)
		return;

3765 3766
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3767

3768
	perf_output_put(&handle, mmap_event->event_id);
3769 3770
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3771
	perf_output_end(&handle);
3772 3773
}

3774
static int perf_event_mmap_match(struct perf_event *event,
3775 3776
				   struct perf_mmap_event *mmap_event,
				   int executable)
3777
{
P
Peter Zijlstra 已提交
3778
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3779 3780
		return 0;

3781 3782 3783
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3784 3785
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
3786 3787 3788 3789 3790
		return 1;

	return 0;
}

3791
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3792 3793
				  struct perf_mmap_event *mmap_event,
				  int executable)
3794
{
3795
	struct perf_event *event;
3796

3797
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3798
		if (perf_event_mmap_match(event, mmap_event, executable))
3799
			perf_event_mmap_output(event, mmap_event);
3800 3801 3802
	}
}

3803
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3804 3805
{
	struct perf_cpu_context *cpuctx;
3806
	struct perf_event_context *ctx;
3807 3808
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3809 3810 3811
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3812
	const char *name;
3813

3814 3815
	memset(tmp, 0, sizeof(tmp));

3816
	if (file) {
3817 3818 3819 3820 3821 3822
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3823 3824 3825 3826
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3827
		name = d_path(&file->f_path, buf, PATH_MAX);
3828 3829 3830 3831 3832
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3833 3834 3835
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3836
			goto got_name;
3837
		}
3838 3839 3840 3841

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
3842 3843 3844 3845 3846 3847 3848 3849
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
3850 3851
		}

3852 3853 3854 3855 3856
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3857
	size = ALIGN(strlen(name)+1, sizeof(u64));
3858 3859 3860 3861

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3862
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3863

3864
	rcu_read_lock();
3865
	cpuctx = &get_cpu_var(perf_cpu_context);
3866
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
3867
	ctx = rcu_dereference(current->perf_event_ctxp);
3868
	if (ctx)
3869
		perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
3870
	put_cpu_var(perf_cpu_context);
3871 3872
	rcu_read_unlock();

3873 3874 3875
	kfree(buf);
}

3876
void perf_event_mmap(struct vm_area_struct *vma)
3877
{
3878 3879
	struct perf_mmap_event mmap_event;

3880
	if (!atomic_read(&nr_mmap_events))
3881 3882 3883
		return;

	mmap_event = (struct perf_mmap_event){
3884
		.vma	= vma,
3885 3886
		/* .file_name */
		/* .file_size */
3887
		.event_id  = {
3888
			.header = {
3889
				.type = PERF_RECORD_MMAP,
3890
				.misc = PERF_RECORD_MISC_USER,
3891 3892 3893 3894
				/* .size */
			},
			/* .pid */
			/* .tid */
3895 3896
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3897
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3898 3899 3900
		},
	};

3901
	perf_event_mmap_event(&mmap_event);
3902 3903
}

3904 3905 3906 3907
/*
 * IRQ throttle logging
 */

3908
static void perf_log_throttle(struct perf_event *event, int enable)
3909 3910 3911 3912 3913 3914 3915
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3916
		u64				id;
3917
		u64				stream_id;
3918 3919
	} throttle_event = {
		.header = {
3920
			.type = PERF_RECORD_THROTTLE,
3921 3922 3923
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3924
		.time		= perf_clock(),
3925 3926
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3927 3928
	};

3929
	if (enable)
3930
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3931

3932
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3933 3934 3935 3936 3937 3938 3939
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3940
/*
3941
 * Generic event overflow handling, sampling.
3942 3943
 */

3944
static int __perf_event_overflow(struct perf_event *event, int nmi,
3945 3946
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3947
{
3948 3949
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3950 3951
	int ret = 0;

3952
	throttle = (throttle && event->pmu->unthrottle != NULL);
3953

3954
	if (!throttle) {
3955
		hwc->interrupts++;
3956
	} else {
3957 3958
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3959
			if (HZ * hwc->interrupts >
3960
					(u64)sysctl_perf_event_sample_rate) {
3961
				hwc->interrupts = MAX_INTERRUPTS;
3962
				perf_log_throttle(event, 0);
3963 3964 3965 3966
				ret = 1;
			}
		} else {
			/*
3967
			 * Keep re-disabling events even though on the previous
3968
			 * pass we disabled it - just in case we raced with a
3969
			 * sched-in and the event got enabled again:
3970
			 */
3971 3972 3973
			ret = 1;
		}
	}
3974

3975
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3976
		u64 now = perf_clock();
3977
		s64 delta = now - hwc->freq_time_stamp;
3978

3979
		hwc->freq_time_stamp = now;
3980

3981 3982
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3983 3984
	}

3985 3986
	/*
	 * XXX event_limit might not quite work as expected on inherited
3987
	 * events
3988 3989
	 */

3990 3991
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3992
		ret = 1;
3993
		event->pending_kill = POLL_HUP;
3994
		if (nmi) {
3995 3996 3997
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3998
		} else
3999
			perf_event_disable(event);
4000 4001
	}

4002 4003 4004 4005 4006
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4007
	return ret;
4008 4009
}

4010
int perf_event_overflow(struct perf_event *event, int nmi,
4011 4012
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4013
{
4014
	return __perf_event_overflow(event, nmi, 1, data, regs);
4015 4016
}

4017
/*
4018
 * Generic software event infrastructure
4019 4020
 */

4021
/*
4022 4023
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4024 4025 4026 4027
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4028
static u64 perf_swevent_set_period(struct perf_event *event)
4029
{
4030
	struct hw_perf_event *hwc = &event->hw;
4031 4032 4033 4034 4035
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4036 4037

again:
4038 4039 4040
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
4041

4042 4043 4044 4045 4046
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
4047

4048
	return nr;
4049 4050
}

4051
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4052 4053
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4054
{
4055
	struct hw_perf_event *hwc = &event->hw;
4056
	int throttle = 0;
4057

4058
	data->period = event->hw.last_period;
4059 4060
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4061

4062 4063
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4064

4065
	for (; overflow; overflow--) {
4066
		if (__perf_event_overflow(event, nmi, throttle,
4067
					    data, regs)) {
4068 4069 4070 4071 4072 4073
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4074
		throttle = 1;
4075
	}
4076 4077
}

4078
static void perf_swevent_add(struct perf_event *event, u64 nr,
4079 4080
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4081
{
4082
	struct hw_perf_event *hwc = &event->hw;
4083

4084
	atomic64_add(nr, &event->count);
4085

4086 4087 4088
	if (!regs)
		return;

4089 4090
	if (!hwc->sample_period)
		return;
4091

4092 4093 4094 4095
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
4096
		return;
4097

4098
	perf_swevent_overflow(event, 0, nmi, data, regs);
4099 4100
}

4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4115
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4116
				enum perf_type_id type,
L
Li Zefan 已提交
4117 4118 4119
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4120
{
4121
	if (event->attr.type != type)
4122
		return 0;
4123

4124
	if (event->attr.config != event_id)
4125 4126
		return 0;

4127 4128
	if (perf_exclude_event(event, regs))
		return 0;
4129 4130 4131 4132

	return 1;
}

4133 4134 4135 4136 4137 4138 4139
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4140 4141
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4142
{
4143 4144 4145 4146
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4147

4148 4149 4150 4151 4152
/* For the read side: events when they trigger */
static inline struct hlist_head *
find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	struct swevent_hlist *hlist;
4153 4154 4155 4156 4157

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
	hlist = rcu_dereference_protected(ctx->swevent_hlist,
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4180 4181 4182 4183 4184 4185
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4186
{
4187
	struct perf_cpu_context *cpuctx;
4188
	struct perf_event *event;
4189 4190
	struct hlist_node *node;
	struct hlist_head *head;
4191

4192 4193 4194 4195
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

4196
	head = find_swevent_head_rcu(cpuctx, type, event_id);
4197 4198 4199 4200 4201

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4202
		if (perf_swevent_match(event, type, event_id, data, regs))
4203
			perf_swevent_add(event, nr, nmi, data, regs);
4204
	}
4205 4206
end:
	rcu_read_unlock();
4207 4208
}

4209
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4210
{
4211
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4212
	int rctx;
4213

P
Peter Zijlstra 已提交
4214
	if (in_nmi())
4215
		rctx = 3;
4216
	else if (in_irq())
4217
		rctx = 2;
4218
	else if (in_softirq())
4219
		rctx = 1;
4220
	else
4221
		rctx = 0;
P
Peter Zijlstra 已提交
4222

4223
	if (cpuctx->recursion[rctx])
4224
		return -1;
P
Peter Zijlstra 已提交
4225

4226 4227
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4228

4229
	return rctx;
P
Peter Zijlstra 已提交
4230
}
I
Ingo Molnar 已提交
4231
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4232

4233
void inline perf_swevent_put_recursion_context(int rctx)
4234
{
4235 4236
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4237
	cpuctx->recursion[rctx]--;
4238
}
4239

4240
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4241
			    struct pt_regs *regs, u64 addr)
4242
{
4243
	struct perf_sample_data data;
4244 4245
	int rctx;

4246
	preempt_disable_notrace();
4247 4248 4249
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4250

4251
	perf_sample_data_init(&data, addr);
4252

4253
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4254 4255

	perf_swevent_put_recursion_context(rctx);
4256
	preempt_enable_notrace();
4257 4258
}

4259
static void perf_swevent_read(struct perf_event *event)
4260 4261 4262
{
}

4263
static int perf_swevent_enable(struct perf_event *event)
4264
{
4265
	struct hw_perf_event *hwc = &event->hw;
4266 4267 4268 4269
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4270 4271 4272

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4273
		perf_swevent_set_period(event);
4274
	}
4275

4276
	head = find_swevent_head(cpuctx, event);
4277 4278 4279 4280 4281
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4282 4283 4284
	return 0;
}

4285
static void perf_swevent_disable(struct perf_event *event)
4286
{
4287
	hlist_del_rcu(&event->hlist_entry);
4288 4289
}

P
Peter Zijlstra 已提交
4290 4291 4292 4293 4294 4295 4296 4297 4298
static void perf_swevent_void(struct perf_event *event)
{
}

static int perf_swevent_int(struct perf_event *event)
{
	return 0;
}

4299
static const struct pmu perf_ops_generic = {
4300 4301
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
P
Peter Zijlstra 已提交
4302 4303
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4304
	.read		= perf_swevent_read,
P
Peter Zijlstra 已提交
4305
	.unthrottle	= perf_swevent_void, /* hwc->interrupts already reset */
4306 4307
};

4308
/*
4309
 * hrtimer based swevent callback
4310 4311
 */

4312
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4313 4314 4315
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4316
	struct pt_regs *regs;
4317
	struct perf_event *event;
4318 4319
	u64 period;

4320
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4321
	event->pmu->read(event);
4322

4323
	perf_sample_data_init(&data, 0);
4324
	data.period = event->hw.last_period;
4325
	regs = get_irq_regs();
4326

4327
	if (regs && !perf_exclude_event(event, regs)) {
4328 4329 4330
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4331 4332
	}

4333
	period = max_t(u64, 10000, event->hw.sample_period);
4334 4335 4336 4337 4338
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4375
/*
4376
 * Software event: cpu wall time clock
4377 4378
 */

4379
static void cpu_clock_perf_event_update(struct perf_event *event)
4380 4381 4382 4383 4384 4385
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4386
	prev = atomic64_xchg(&event->hw.prev_count, now);
4387
	atomic64_add(now - prev, &event->count);
4388 4389
}

4390
static int cpu_clock_perf_event_enable(struct perf_event *event)
4391
{
4392
	struct hw_perf_event *hwc = &event->hw;
4393 4394 4395
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4396
	perf_swevent_start_hrtimer(event);
4397 4398 4399 4400

	return 0;
}

4401
static void cpu_clock_perf_event_disable(struct perf_event *event)
4402
{
4403
	perf_swevent_cancel_hrtimer(event);
4404
	cpu_clock_perf_event_update(event);
4405 4406
}

4407
static void cpu_clock_perf_event_read(struct perf_event *event)
4408
{
4409
	cpu_clock_perf_event_update(event);
4410 4411
}

4412
static const struct pmu perf_ops_cpu_clock = {
4413 4414 4415
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4416 4417
};

4418
/*
4419
 * Software event: task time clock
4420 4421
 */

4422
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4423
{
4424
	u64 prev;
I
Ingo Molnar 已提交
4425 4426
	s64 delta;

4427
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4428
	delta = now - prev;
4429
	atomic64_add(delta, &event->count);
4430 4431
}

4432
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4433
{
4434
	struct hw_perf_event *hwc = &event->hw;
4435 4436
	u64 now;

4437
	now = event->ctx->time;
4438

4439
	atomic64_set(&hwc->prev_count, now);
4440 4441

	perf_swevent_start_hrtimer(event);
4442 4443

	return 0;
I
Ingo Molnar 已提交
4444 4445
}

4446
static void task_clock_perf_event_disable(struct perf_event *event)
4447
{
4448
	perf_swevent_cancel_hrtimer(event);
4449
	task_clock_perf_event_update(event, event->ctx->time);
4450

4451
}
I
Ingo Molnar 已提交
4452

4453
static void task_clock_perf_event_read(struct perf_event *event)
4454
{
4455 4456 4457
	u64 time;

	if (!in_nmi()) {
4458 4459
		update_context_time(event->ctx);
		time = event->ctx->time;
4460 4461
	} else {
		u64 now = perf_clock();
4462 4463
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4464 4465
	}

4466
	task_clock_perf_event_update(event, time);
4467 4468
}

4469
static const struct pmu perf_ops_task_clock = {
4470 4471 4472
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4473 4474
};

4475 4476 4477 4478 4479 4480 4481 4482
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
swevent_hlist_deref(struct perf_cpu_context *cpuctx)
{
	return rcu_dereference_protected(cpuctx->swevent_hlist,
					 lockdep_is_held(&cpuctx->hlist_mutex));
}

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
4493
	struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4494

4495
	if (!hlist)
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533
		return;

	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

4534
	if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
 exit:
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
 fail:
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4581 4582
#ifdef CONFIG_EVENT_TRACING

4583 4584 4585
static const struct pmu perf_ops_tracepoint = {
	.enable		= perf_trace_enable,
	.disable	= perf_trace_disable,
P
Peter Zijlstra 已提交
4586 4587
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4588
	.read		= perf_swevent_read,
P
Peter Zijlstra 已提交
4589
	.unthrottle	= perf_swevent_void,
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
};

static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4606 4607 4608 4609
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4610 4611 4612 4613 4614 4615 4616 4617 4618
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4619
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4620 4621
{
	struct perf_sample_data data;
4622 4623 4624
	struct perf_event *event;
	struct hlist_node *node;

4625 4626 4627 4628 4629 4630 4631 4632
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4633 4634 4635
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
			perf_swevent_add(event, count, 1, &data, regs);
4636
	}
4637 4638

	perf_swevent_put_recursion_context(rctx);
4639 4640 4641
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4642
static void tp_perf_event_destroy(struct perf_event *event)
4643
{
4644
	perf_trace_destroy(event);
4645 4646
}

4647
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4648
{
4649 4650
	int err;

4651 4652 4653 4654
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4655
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4656
			perf_paranoid_tracepoint_raw() &&
4657 4658 4659
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4660 4661
	err = perf_trace_init(event);
	if (err)
4662 4663
		return NULL;

4664
	event->destroy = tp_perf_event_destroy;
4665

4666
	return &perf_ops_tracepoint;
4667
}
L
Li Zefan 已提交
4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4692
#else
L
Li Zefan 已提交
4693

4694
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4695 4696 4697
{
	return NULL;
}
L
Li Zefan 已提交
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4708
#endif /* CONFIG_EVENT_TRACING */
4709

4710 4711 4712 4713 4714 4715 4716 4717 4718
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4719 4720

	err = register_perf_hw_breakpoint(bp);
4721 4722 4723 4724 4725 4726 4727 4728
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4729
void perf_bp_event(struct perf_event *bp, void *data)
4730
{
4731 4732 4733
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4734
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4735 4736 4737

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4750
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4751

4752
static void sw_perf_event_destroy(struct perf_event *event)
4753
{
4754
	u64 event_id = event->attr.config;
4755

4756
	WARN_ON(event->parent);
4757

4758
	atomic_dec(&perf_swevent_enabled[event_id]);
4759
	swevent_hlist_put(event);
4760 4761
}

4762
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4763
{
4764
	const struct pmu *pmu = NULL;
4765
	u64 event_id = event->attr.config;
4766

4767
	/*
4768
	 * Software events (currently) can't in general distinguish
4769 4770 4771 4772 4773
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4774
	switch (event_id) {
4775
	case PERF_COUNT_SW_CPU_CLOCK:
4776
		pmu = &perf_ops_cpu_clock;
4777

4778
		break;
4779
	case PERF_COUNT_SW_TASK_CLOCK:
4780
		/*
4781 4782
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4783
		 */
4784
		if (event->ctx->task)
4785
			pmu = &perf_ops_task_clock;
4786
		else
4787
			pmu = &perf_ops_cpu_clock;
4788

4789
		break;
4790 4791 4792 4793 4794
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4795 4796
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4797
		if (!event->parent) {
4798 4799 4800 4801 4802 4803
			int err;

			err = swevent_hlist_get(event);
			if (err)
				return ERR_PTR(err);

4804 4805
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4806
		}
4807
		pmu = &perf_ops_generic;
4808
		break;
4809
	}
4810

4811
	return pmu;
4812 4813
}

T
Thomas Gleixner 已提交
4814
/*
4815
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4816
 */
4817 4818
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4819
		   int cpu,
4820 4821 4822
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4823
		   perf_overflow_handler_t overflow_handler,
4824
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4825
{
4826
	const struct pmu *pmu;
4827 4828
	struct perf_event *event;
	struct hw_perf_event *hwc;
4829
	long err;
T
Thomas Gleixner 已提交
4830

4831 4832
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4833
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4834

4835
	/*
4836
	 * Single events are their own group leaders, with an
4837 4838 4839
	 * empty sibling list:
	 */
	if (!group_leader)
4840
		group_leader = event;
4841

4842 4843
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4844

4845 4846 4847 4848
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4849

4850
	mutex_init(&event->mmap_mutex);
4851

4852 4853 4854 4855 4856 4857
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4858

4859
	event->parent		= parent_event;
4860

4861 4862
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4863

4864
	event->state		= PERF_EVENT_STATE_INACTIVE;
4865

4866 4867
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4868
	
4869
	event->overflow_handler	= overflow_handler;
4870

4871
	if (attr->disabled)
4872
		event->state = PERF_EVENT_STATE_OFF;
4873

4874
	pmu = NULL;
4875

4876
	hwc = &event->hw;
4877
	hwc->sample_period = attr->sample_period;
4878
	if (attr->freq && attr->sample_freq)
4879
		hwc->sample_period = 1;
4880
	hwc->last_period = hwc->sample_period;
4881 4882

	atomic64_set(&hwc->period_left, hwc->sample_period);
4883

4884
	/*
4885
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4886
	 */
4887
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4888 4889
		goto done;

4890
	switch (attr->type) {
4891
	case PERF_TYPE_RAW:
4892
	case PERF_TYPE_HARDWARE:
4893
	case PERF_TYPE_HW_CACHE:
4894
		pmu = hw_perf_event_init(event);
4895 4896 4897
		break;

	case PERF_TYPE_SOFTWARE:
4898
		pmu = sw_perf_event_init(event);
4899 4900 4901
		break;

	case PERF_TYPE_TRACEPOINT:
4902
		pmu = tp_perf_event_init(event);
4903
		break;
4904

4905 4906 4907 4908 4909
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4910 4911
	default:
		break;
4912
	}
4913 4914
done:
	err = 0;
4915
	if (!pmu)
4916
		err = -EINVAL;
4917 4918
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4919

4920
	if (err) {
4921 4922 4923
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4924
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4925
	}
4926

4927
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4928

4929 4930
	if (!event->parent) {
		atomic_inc(&nr_events);
4931
		if (event->attr.mmap || event->attr.mmap_data)
4932 4933 4934 4935 4936
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4937
	}
4938

4939
	return event;
T
Thomas Gleixner 已提交
4940 4941
}

4942 4943
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4944 4945
{
	u32 size;
4946
	int ret;
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4971 4972 4973
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4974 4975
	 */
	if (size > sizeof(*attr)) {
4976 4977 4978
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4979

4980 4981
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4982

4983
		for (; addr < end; addr++) {
4984 4985 4986 4987 4988 4989
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4990
		size = sizeof(*attr);
4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5004
	if (attr->__reserved_1)
5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5022 5023
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5024
{
5025
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5026 5027
	int ret = -EINVAL;

5028
	if (!output_event)
5029 5030
		goto set;

5031 5032
	/* don't allow circular references */
	if (event == output_event)
5033 5034
		goto out;

5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5047
set:
5048
	mutex_lock(&event->mmap_mutex);
5049 5050 5051
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5052

5053 5054
	if (output_event) {
		/* get the buffer we want to redirect to */
5055 5056
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5057
			goto unlock;
5058 5059
	}

5060 5061
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5062
	ret = 0;
5063 5064 5065
unlock:
	mutex_unlock(&event->mmap_mutex);

5066 5067
	if (old_buffer)
		perf_buffer_put(old_buffer);
5068 5069 5070 5071
out:
	return ret;
}

T
Thomas Gleixner 已提交
5072
/**
5073
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5074
 *
5075
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5076
 * @pid:		target pid
I
Ingo Molnar 已提交
5077
 * @cpu:		target cpu
5078
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5079
 */
5080 5081
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5082
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5083
{
5084
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5085 5086 5087
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5088
	struct file *group_file = NULL;
5089
	int event_fd;
5090
	int fput_needed = 0;
5091
	int err;
T
Thomas Gleixner 已提交
5092

5093
	/* for future expandability... */
5094
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5095 5096
		return -EINVAL;

5097 5098 5099
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5100

5101 5102 5103 5104 5105
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5106
	if (attr.freq) {
5107
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5108 5109 5110
			return -EINVAL;
	}

5111 5112 5113 5114
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5115
	/*
I
Ingo Molnar 已提交
5116 5117 5118
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
5119 5120 5121 5122
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_fd;
	}
I
Ingo Molnar 已提交
5123

5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
			goto err_put_context;
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5137
	/*
5138
	 * Look up the group leader (we will attach this event to it):
5139
	 */
5140
	if (group_leader) {
5141
		err = -EINVAL;
5142 5143

		/*
I
Ingo Molnar 已提交
5144 5145 5146 5147 5148 5149 5150 5151
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5152
		 */
I
Ingo Molnar 已提交
5153 5154
		if (group_leader->ctx != ctx)
			goto err_put_context;
5155 5156 5157
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5158
		if (attr.exclusive || attr.pinned)
5159
			goto err_put_context;
5160 5161
	}

5162
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5163
				     NULL, NULL, GFP_KERNEL);
5164 5165
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
T
Thomas Gleixner 已提交
5166
		goto err_put_context;
5167 5168 5169 5170 5171 5172 5173
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
			goto err_free_put_context;
	}
T
Thomas Gleixner 已提交
5174

5175 5176 5177
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5178
		goto err_free_put_context;
5179
	}
5180

5181
	event->filp = event_file;
5182
	WARN_ON_ONCE(ctx->parent_ctx);
5183
	mutex_lock(&ctx->mutex);
5184
	perf_install_in_context(ctx, event, cpu);
5185
	++ctx->generation;
5186
	mutex_unlock(&ctx->mutex);
5187

5188
	event->owner = current;
5189
	get_task_struct(current);
5190 5191 5192
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5193

5194 5195 5196 5197 5198 5199
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5200 5201 5202
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5203

5204
err_free_put_context:
5205
	free_event(event);
T
Thomas Gleixner 已提交
5206
err_put_context:
5207
	fput_light(group_file, fput_needed);
5208 5209 5210
	put_ctx(ctx);
err_fd:
	put_unused_fd(event_fd);
5211
	return err;
T
Thomas Gleixner 已提交
5212 5213
}

5214 5215 5216 5217 5218 5219 5220 5221 5222
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5223 5224
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5235 5236 5237 5238
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5239 5240

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5241
				 NULL, overflow_handler, GFP_KERNEL);
5242 5243
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5244
		goto err_put_context;
5245
	}
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5262 5263 5264 5265
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5266 5267 5268
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5269
/*
5270
 * inherit a event from parent task to child task:
5271
 */
5272 5273
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5274
	      struct task_struct *parent,
5275
	      struct perf_event_context *parent_ctx,
5276
	      struct task_struct *child,
5277 5278
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5279
{
5280
	struct perf_event *child_event;
5281

5282
	/*
5283 5284
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5285 5286 5287
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5288 5289
	if (parent_event->parent)
		parent_event = parent_event->parent;
5290

5291 5292 5293
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5294
					   NULL, GFP_KERNEL);
5295 5296
	if (IS_ERR(child_event))
		return child_event;
5297
	get_ctx(child_ctx);
5298

5299
	/*
5300
	 * Make the child state follow the state of the parent event,
5301
	 * not its attr.disabled bit.  We hold the parent's mutex,
5302
	 * so we won't race with perf_event_{en, dis}able_family.
5303
	 */
5304 5305
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5306
	else
5307
		child_event->state = PERF_EVENT_STATE_OFF;
5308

5309 5310 5311 5312 5313 5314 5315 5316 5317
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5318

5319 5320
	child_event->overflow_handler = parent_event->overflow_handler;

5321 5322 5323
	/*
	 * Link it up in the child's context:
	 */
5324
	add_event_to_ctx(child_event, child_ctx);
5325 5326 5327

	/*
	 * Get a reference to the parent filp - we will fput it
5328
	 * when the child event exits. This is safe to do because
5329 5330 5331
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5332
	atomic_long_inc(&parent_event->filp->f_count);
5333

5334
	/*
5335
	 * Link this into the parent event's child list
5336
	 */
5337 5338 5339 5340
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5341

5342
	return child_event;
5343 5344
}

5345
static int inherit_group(struct perf_event *parent_event,
5346
	      struct task_struct *parent,
5347
	      struct perf_event_context *parent_ctx,
5348
	      struct task_struct *child,
5349
	      struct perf_event_context *child_ctx)
5350
{
5351 5352 5353
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5354

5355
	leader = inherit_event(parent_event, parent, parent_ctx,
5356
				 child, NULL, child_ctx);
5357 5358
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5359 5360
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5361 5362 5363
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5364
	}
5365 5366 5367
	return 0;
}

5368
static void sync_child_event(struct perf_event *child_event,
5369
			       struct task_struct *child)
5370
{
5371
	struct perf_event *parent_event = child_event->parent;
5372
	u64 child_val;
5373

5374 5375
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5376

P
Peter Zijlstra 已提交
5377
	child_val = perf_event_count(child_event);
5378 5379 5380 5381

	/*
	 * Add back the child's count to the parent's count:
	 */
5382
	atomic64_add(child_val, &parent_event->child_count);
5383 5384 5385 5386
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5387 5388

	/*
5389
	 * Remove this event from the parent's list
5390
	 */
5391 5392 5393 5394
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5395 5396

	/*
5397
	 * Release the parent event, if this was the last
5398 5399
	 * reference to it.
	 */
5400
	fput(parent_event->filp);
5401 5402
}

5403
static void
5404 5405
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5406
			 struct task_struct *child)
5407
{
5408
	struct perf_event *parent_event;
5409

5410
	perf_event_remove_from_context(child_event);
5411

5412
	parent_event = child_event->parent;
5413
	/*
5414
	 * It can happen that parent exits first, and has events
5415
	 * that are still around due to the child reference. These
5416
	 * events need to be zapped - but otherwise linger.
5417
	 */
5418 5419 5420
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5421
	}
5422 5423 5424
}

/*
5425
 * When a child task exits, feed back event values to parent events.
5426
 */
5427
void perf_event_exit_task(struct task_struct *child)
5428
{
5429 5430
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5431
	unsigned long flags;
5432

5433 5434
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5435
		return;
P
Peter Zijlstra 已提交
5436
	}
5437

5438
	local_irq_save(flags);
5439 5440 5441 5442 5443 5444
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5445 5446
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5447 5448 5449

	/*
	 * Take the context lock here so that if find_get_context is
5450
	 * reading child->perf_event_ctxp, we wait until it has
5451 5452
	 * incremented the context's refcount before we do put_ctx below.
	 */
5453
	raw_spin_lock(&child_ctx->lock);
5454
	child->perf_event_ctxp = NULL;
5455 5456 5457
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5458
	 * the events from it.
5459 5460
	 */
	unclone_ctx(child_ctx);
5461
	update_context_time(child_ctx);
5462
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5463 5464

	/*
5465 5466 5467
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5468
	 */
5469
	perf_event_task(child, child_ctx, 0);
5470

5471 5472 5473
	/*
	 * We can recurse on the same lock type through:
	 *
5474 5475 5476
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5477 5478 5479 5480 5481
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5482
	mutex_lock(&child_ctx->mutex);
5483

5484
again:
5485 5486 5487 5488 5489
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5490
				 group_entry)
5491
		__perf_event_exit_task(child_event, child_ctx, child);
5492 5493

	/*
5494
	 * If the last event was a group event, it will have appended all
5495 5496 5497
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5498 5499
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5500
		goto again;
5501 5502 5503 5504

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5505 5506
}

5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5521
	perf_group_detach(event);
5522 5523 5524 5525
	list_del_event(event, ctx);
	free_event(event);
}

5526 5527 5528 5529
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5530
void perf_event_free_task(struct task_struct *task)
5531
{
5532 5533
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5534 5535 5536 5537 5538 5539

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5540 5541
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5542

5543 5544 5545
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5546

5547 5548 5549
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5550

5551
	mutex_unlock(&ctx->mutex);
5552

5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5568 5569
	}

5570 5571 5572 5573 5574 5575 5576
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5577

5578 5579 5580 5581
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5582

5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5595 5596
}

5597

5598
/*
5599
 * Initialize the perf_event context in task_struct
5600
 */
5601
int perf_event_init_task(struct task_struct *child)
5602
{
5603
	struct perf_event_context *child_ctx, *parent_ctx;
5604 5605
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5606
	struct task_struct *parent = current;
5607
	int inherited_all = 1;
5608
	int ret = 0;
5609

5610
	child->perf_event_ctxp = NULL;
5611

5612 5613
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5614

5615
	if (likely(!parent->perf_event_ctxp))
5616 5617
		return 0;

5618
	/*
5619 5620
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5621
	 */
5622 5623
	parent_ctx = perf_pin_task_context(parent);

5624 5625 5626 5627 5628 5629 5630
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5631 5632 5633 5634
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5635
	mutex_lock(&parent_ctx->mutex);
5636 5637 5638 5639 5640

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5641 5642 5643 5644 5645 5646
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5647

5648 5649 5650 5651
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5652
			break;
5653 5654
	}

5655 5656
	child_ctx = child->perf_event_ctxp;

5657
	if (child_ctx && inherited_all) {
5658 5659 5660
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5661 5662
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5663
		 * because the list of events and the generation
5664
		 * count can't have changed since we took the mutex.
5665
		 */
5666 5667 5668
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5669
			child_ctx->parent_gen = parent_ctx->parent_gen;
5670 5671 5672 5673 5674
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5675 5676
	}

5677
	mutex_unlock(&parent_ctx->mutex);
5678

5679
	perf_unpin_context(parent_ctx);
5680

5681
	return ret;
5682 5683
}

5684 5685 5686 5687 5688 5689 5690
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5691
		mutex_init(&cpuctx->hlist_mutex);
5692 5693 5694 5695
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5696
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5697
{
5698
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5699

5700
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5701

5702
	spin_lock(&perf_resource_lock);
5703
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5704
	spin_unlock(&perf_resource_lock);
5705 5706 5707 5708 5709 5710 5711 5712 5713 5714

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5715 5716 5717
}

#ifdef CONFIG_HOTPLUG_CPU
5718
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5719 5720
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5721 5722
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5723

5724 5725 5726
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5727
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5728
}
5729
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5730
{
5731
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5732
	struct perf_event_context *ctx = &cpuctx->ctx;
5733

5734 5735 5736 5737
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5738
	mutex_lock(&ctx->mutex);
5739
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5740
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5741 5742
}
#else
5743
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5755
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5756 5757 5758 5759
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5760
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5761 5762 5763 5764 5765 5766 5767 5768 5769
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5770 5771 5772
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5773 5774
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5775
	.priority		= 20,
T
Thomas Gleixner 已提交
5776 5777
};

5778
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5779
{
5780
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5781 5782
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5783 5784
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5785 5786 5787
	register_cpu_notifier(&perf_cpu_nb);
}

5788 5789 5790
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5791 5792 5793 5794 5795 5796
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5797
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5808
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5809 5810
		return -EINVAL;

5811
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5812 5813 5814
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5815
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5816 5817
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5818
		cpuctx->max_pertask = mpt;
5819
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5820
	}
5821
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5822 5823 5824 5825

	return count;
}

5826 5827 5828
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5829 5830 5831 5832 5833
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5834 5835 5836
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5847
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5848
	perf_overcommit = val;
5849
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5876
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5877 5878
};

5879
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5880 5881 5882 5883
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5884
device_initcall(perf_event_sysfs_init);