perf_event.c 120.6 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38 39 40
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205 206
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 209 210
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
211 212 213 214 215

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233 234 235 236 237 238
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242 243 244 245 246 247 248
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
static inline u64 perf_clock(void)
{
	return cpu_clock(smp_processor_id());
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

	event->total_time_enabled = ctx->time - event->tstamp_enabled;

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

287
/*
288
 * Add a event from the lists for its context.
289 290
 * Must be called with ctx->mutex and ctx->lock held.
 */
291
static void
292
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
293
{
294
	struct perf_event *group_leader = event->group_leader;
295 296

	/*
297 298
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
299 300
	 * leader's sibling list:
	 */
301 302
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
303
	else {
304
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
305 306
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
307

308 309 310
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
311
		ctx->nr_stat++;
312 313
}

314
/*
315
 * Remove a event from the lists for its context.
316
 * Must be called with ctx->mutex and ctx->lock held.
317
 */
318
static void
319
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
320
{
321
	struct perf_event *sibling, *tmp;
322

323
	if (list_empty(&event->group_entry))
324
		return;
325 326
	ctx->nr_events--;
	if (event->attr.inherit_stat)
327
		ctx->nr_stat--;
328

329 330
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
331

332 333
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
334

335
	update_event_times(event);
336 337
	event->state = PERF_EVENT_STATE_OFF;

338
	/*
339 340
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
341 342
	 * to the context list directly:
	 */
343
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
344

345
		list_move_tail(&sibling->group_entry, &ctx->group_list);
346 347 348 349
		sibling->group_leader = sibling;
	}
}

350
static void
351
event_sched_out(struct perf_event *event,
352
		  struct perf_cpu_context *cpuctx,
353
		  struct perf_event_context *ctx)
354
{
355
	if (event->state != PERF_EVENT_STATE_ACTIVE)
356 357
		return;

358 359 360 361
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
362
	}
363 364 365
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
366

367
	if (!is_software_event(event))
368 369
		cpuctx->active_oncpu--;
	ctx->nr_active--;
370
	if (event->attr.exclusive || !cpuctx->active_oncpu)
371 372 373
		cpuctx->exclusive = 0;
}

374
static void
375
group_sched_out(struct perf_event *group_event,
376
		struct perf_cpu_context *cpuctx,
377
		struct perf_event_context *ctx)
378
{
379
	struct perf_event *event;
380

381
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
382 383
		return;

384
	event_sched_out(group_event, cpuctx, ctx);
385 386 387 388

	/*
	 * Schedule out siblings (if any):
	 */
389 390
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
391

392
	if (group_event->attr.exclusive)
393 394 395
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
396
/*
397
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
398
 *
399
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
400 401
 * remove it from the context list.
 */
402
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
403 404
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
405 406
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
407 408 409 410 411 412

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
413
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
414 415
		return;

416
	spin_lock(&ctx->lock);
417 418
	/*
	 * Protect the list operation against NMI by disabling the
419
	 * events on a global level.
420 421
	 */
	perf_disable();
T
Thomas Gleixner 已提交
422

423
	event_sched_out(event, cpuctx, ctx);
424

425
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
426 427 428

	if (!ctx->task) {
		/*
429
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
430 431 432
		 * reservation:
		 */
		cpuctx->max_pertask =
433 434
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
435 436
	}

437
	perf_enable();
438
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
439 440 441 442
}


/*
443
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
444
 *
445
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
446
 *
447
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
448
 * call when the task is on a CPU.
449
 *
450 451
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
452 453
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
454
 * When called from perf_event_exit_task, it's OK because the
455
 * context has been detached from its task.
T
Thomas Gleixner 已提交
456
 */
457
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
458
{
459
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
460 461 462 463
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
464
		 * Per cpu events are removed via an smp call and
T
Thomas Gleixner 已提交
465 466
		 * the removal is always sucessful.
		 */
467 468 469
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
470 471 472 473
		return;
	}

retry:
474 475
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
476 477 478 479 480

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
481
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
482 483 484 485 486 487
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
488
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
489 490
	 * succeed.
	 */
P
Peter Zijlstra 已提交
491
	if (!list_empty(&event->group_entry))
492
		list_del_event(event, ctx);
T
Thomas Gleixner 已提交
493 494 495
	spin_unlock_irq(&ctx->lock);
}

496
/*
497
 * Update total_time_enabled and total_time_running for all events in a group.
498
 */
499
static void update_group_times(struct perf_event *leader)
500
{
501
	struct perf_event *event;
502

503 504 505
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
506 507
}

508
/*
509
 * Cross CPU call to disable a performance event
510
 */
511
static void __perf_event_disable(void *info)
512
{
513
	struct perf_event *event = info;
514
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
515
	struct perf_event_context *ctx = event->ctx;
516 517

	/*
518 519
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
520
	 */
521
	if (ctx->task && cpuctx->task_ctx != ctx)
522 523
		return;

524
	spin_lock(&ctx->lock);
525 526

	/*
527
	 * If the event is on, turn it off.
528 529
	 * If it is in error state, leave it in error state.
	 */
530
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
531
		update_context_time(ctx);
532 533 534
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
535
		else
536 537
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
538 539
	}

540
	spin_unlock(&ctx->lock);
541 542 543
}

/*
544
 * Disable a event.
545
 *
546 547
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
548
 * remains valid.  This condition is satisifed when called through
549 550 551 552
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
553
 * is the current context on this CPU and preemption is disabled,
554
 * hence we can't get into perf_event_task_sched_out for this context.
555
 */
556
static void perf_event_disable(struct perf_event *event)
557
{
558
	struct perf_event_context *ctx = event->ctx;
559 560 561 562
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
563
		 * Disable the event on the cpu that it's on
564
		 */
565 566
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
567 568 569 570
		return;
	}

 retry:
571
	task_oncpu_function_call(task, __perf_event_disable, event);
572 573 574

	spin_lock_irq(&ctx->lock);
	/*
575
	 * If the event is still active, we need to retry the cross-call.
576
	 */
577
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
578 579 580 581 582 583 584 585
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
586 587 588
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
589
	}
590 591 592 593

	spin_unlock_irq(&ctx->lock);
}

594
static int
595
event_sched_in(struct perf_event *event,
596
		 struct perf_cpu_context *cpuctx,
597
		 struct perf_event_context *ctx,
598 599
		 int cpu)
{
600
	if (event->state <= PERF_EVENT_STATE_OFF)
601 602
		return 0;

603 604
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
605 606 607 608 609
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

610 611 612
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
613 614 615
		return -EAGAIN;
	}

616
	event->tstamp_running += ctx->time - event->tstamp_stopped;
617

618
	if (!is_software_event(event))
619
		cpuctx->active_oncpu++;
620 621
	ctx->nr_active++;

622
	if (event->attr.exclusive)
623 624
		cpuctx->exclusive = 1;

625 626 627
	return 0;
}

628
static int
629
group_sched_in(struct perf_event *group_event,
630
	       struct perf_cpu_context *cpuctx,
631
	       struct perf_event_context *ctx,
632 633
	       int cpu)
{
634
	struct perf_event *event, *partial_group;
635 636
	int ret;

637
	if (group_event->state == PERF_EVENT_STATE_OFF)
638 639
		return 0;

640
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
641 642 643
	if (ret)
		return ret < 0 ? ret : 0;

644
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
645 646 647 648 649
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
650 651 652
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
653 654 655 656 657 658 659 660 661 662 663
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
664 665
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
666
			break;
667
		event_sched_out(event, cpuctx, ctx);
668
	}
669
	event_sched_out(group_event, cpuctx, ctx);
670 671 672 673

	return -EAGAIN;
}

674
/*
675 676
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
677
 */
678
static int is_software_only_group(struct perf_event *leader)
679
{
680
	struct perf_event *event;
681

682
	if (!is_software_event(leader))
683
		return 0;
P
Peter Zijlstra 已提交
684

685 686
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
687
			return 0;
P
Peter Zijlstra 已提交
688

689 690 691 692
	return 1;
}

/*
693
 * Work out whether we can put this event group on the CPU now.
694
 */
695
static int group_can_go_on(struct perf_event *event,
696 697 698 699
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
700
	 * Groups consisting entirely of software events can always go on.
701
	 */
702
	if (is_software_only_group(event))
703 704 705
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
706
	 * events can go on.
707 708 709 710 711
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
712
	 * events on the CPU, it can't go on.
713
	 */
714
	if (event->attr.exclusive && cpuctx->active_oncpu)
715 716 717 718 719 720 721 722
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

723 724
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
725
{
726 727 728 729
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
730 731
}

T
Thomas Gleixner 已提交
732
/*
733
 * Cross CPU call to install and enable a performance event
734 735
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
736 737 738 739
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
740 741 742
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
743
	int cpu = smp_processor_id();
744
	int err;
T
Thomas Gleixner 已提交
745 746 747 748 749

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
750
	 * Or possibly this is the right context but it isn't
751
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
752
	 */
753
	if (ctx->task && cpuctx->task_ctx != ctx) {
754
		if (cpuctx->task_ctx || ctx->task != current)
755 756 757
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
758

759
	spin_lock(&ctx->lock);
760
	ctx->is_active = 1;
761
	update_context_time(ctx);
T
Thomas Gleixner 已提交
762 763 764

	/*
	 * Protect the list operation against NMI by disabling the
765
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
766
	 */
767
	perf_disable();
T
Thomas Gleixner 已提交
768

769
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
770

771
	/*
772
	 * Don't put the event on if it is disabled or if
773 774
	 * it is in a group and the group isn't on.
	 */
775 776
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
777 778
		goto unlock;

779
	/*
780 781 782
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
783
	 */
784
	if (!group_can_go_on(event, cpuctx, 1))
785 786
		err = -EEXIST;
	else
787
		err = event_sched_in(event, cpuctx, ctx, cpu);
788

789 790
	if (err) {
		/*
791
		 * This event couldn't go on.  If it is in a group
792
		 * then we have to pull the whole group off.
793
		 * If the event group is pinned then put it in error state.
794
		 */
795
		if (leader != event)
796
			group_sched_out(leader, cpuctx, ctx);
797
		if (leader->attr.pinned) {
798
			update_group_times(leader);
799
			leader->state = PERF_EVENT_STATE_ERROR;
800
		}
801
	}
T
Thomas Gleixner 已提交
802

803
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
804 805
		cpuctx->max_pertask--;

806
 unlock:
807
	perf_enable();
808

809
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
810 811 812
}

/*
813
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
814
 *
815 816
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
817
 *
818
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
819 820
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
821 822
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
823 824
 */
static void
825 826
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
827 828 829 830 831 832
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
833
		 * Per cpu events are installed via an smp call and
T
Thomas Gleixner 已提交
834 835 836
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
837
					 event, 1);
T
Thomas Gleixner 已提交
838 839 840 841 842
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
843
				 event);
T
Thomas Gleixner 已提交
844 845 846 847 848

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
849
	if (ctx->is_active && list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
850 851 852 853 854 855
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
856
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
857 858
	 * succeed.
	 */
859 860
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
861 862 863
	spin_unlock_irq(&ctx->lock);
}

864
/*
865
 * Put a event into inactive state and update time fields.
866 867 868 869 870 871
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
872 873
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
874
{
875
	struct perf_event *sub;
876

877 878 879 880
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
881 882 883 884
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

885
/*
886
 * Cross CPU call to enable a performance event
887
 */
888
static void __perf_event_enable(void *info)
889
{
890
	struct perf_event *event = info;
891
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
892 893
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
894
	int err;
895

896
	/*
897 898
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
899
	 */
900
	if (ctx->task && cpuctx->task_ctx != ctx) {
901
		if (cpuctx->task_ctx || ctx->task != current)
902 903 904
			return;
		cpuctx->task_ctx = ctx;
	}
905

906
	spin_lock(&ctx->lock);
907
	ctx->is_active = 1;
908
	update_context_time(ctx);
909

910
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
911
		goto unlock;
912
	__perf_event_mark_enabled(event, ctx);
913 914

	/*
915
	 * If the event is in a group and isn't the group leader,
916
	 * then don't put it on unless the group is on.
917
	 */
918
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
919
		goto unlock;
920

921
	if (!group_can_go_on(event, cpuctx, 1)) {
922
		err = -EEXIST;
923
	} else {
924
		perf_disable();
925 926
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
927 928
					     smp_processor_id());
		else
929
			err = event_sched_in(event, cpuctx, ctx,
930
					       smp_processor_id());
931
		perf_enable();
932
	}
933 934 935

	if (err) {
		/*
936
		 * If this event can't go on and it's part of a
937 938
		 * group, then the whole group has to come off.
		 */
939
		if (leader != event)
940
			group_sched_out(leader, cpuctx, ctx);
941
		if (leader->attr.pinned) {
942
			update_group_times(leader);
943
			leader->state = PERF_EVENT_STATE_ERROR;
944
		}
945 946 947
	}

 unlock:
948
	spin_unlock(&ctx->lock);
949 950 951
}

/*
952
 * Enable a event.
953
 *
954 955
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
956
 * remains valid.  This condition is satisfied when called through
957 958
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
959
 */
960
static void perf_event_enable(struct perf_event *event)
961
{
962
	struct perf_event_context *ctx = event->ctx;
963 964 965 966
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
967
		 * Enable the event on the cpu that it's on
968
		 */
969 970
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
971 972 973 974
		return;
	}

	spin_lock_irq(&ctx->lock);
975
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
976 977 978
		goto out;

	/*
979 980
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
981 982 983 984
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
985 986
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
987 988 989

 retry:
	spin_unlock_irq(&ctx->lock);
990
	task_oncpu_function_call(task, __perf_event_enable, event);
991 992 993 994

	spin_lock_irq(&ctx->lock);

	/*
995
	 * If the context is active and the event is still off,
996 997
	 * we need to retry the cross-call.
	 */
998
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
999 1000 1001 1002 1003 1004
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1005 1006
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1007

1008 1009 1010 1011
 out:
	spin_unlock_irq(&ctx->lock);
}

1012
static int perf_event_refresh(struct perf_event *event, int refresh)
1013
{
1014
	/*
1015
	 * not supported on inherited events
1016
	 */
1017
	if (event->attr.inherit)
1018 1019
		return -EINVAL;

1020 1021
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1022 1023

	return 0;
1024 1025
}

1026
void __perf_event_sched_out(struct perf_event_context *ctx,
1027 1028
			      struct perf_cpu_context *cpuctx)
{
1029
	struct perf_event *event;
1030

1031 1032
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1033
	if (likely(!ctx->nr_events))
1034
		goto out;
1035
	update_context_time(ctx);
1036

1037
	perf_disable();
P
Peter Zijlstra 已提交
1038
	if (ctx->nr_active) {
1039 1040
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1041
	}
1042
	perf_enable();
1043
 out:
1044 1045 1046
	spin_unlock(&ctx->lock);
}

1047 1048 1049
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1050 1051 1052 1053
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1054
 * in them directly with an fd; we can only enable/disable all
1055
 * events via prctl, or enable/disable all events in a family
1056 1057
 * via ioctl, which will have the same effect on both contexts.
 */
1058 1059
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1060 1061
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1062
		&& ctx1->parent_gen == ctx2->parent_gen
1063
		&& !ctx1->pin_count && !ctx2->pin_count;
1064 1065
}

1066 1067
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1068 1069 1070
{
	u64 value;

1071
	if (!event->attr.inherit_stat)
1072 1073 1074
		return;

	/*
1075
	 * Update the event value, we cannot use perf_event_read()
1076 1077
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1078
	 * we know the event must be on the current CPU, therefore we
1079 1080
	 * don't need to use it.
	 */
1081 1082
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1083 1084
		event->pmu->read(event);
		/* fall-through */
1085

1086 1087
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1088 1089 1090 1091 1092 1093 1094
		break;

	default:
		break;
	}

	/*
1095
	 * In order to keep per-task stats reliable we need to flip the event
1096 1097
	 * values when we flip the contexts.
	 */
1098 1099 1100
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1101

1102 1103
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1104

1105
	/*
1106
	 * Since we swizzled the values, update the user visible data too.
1107
	 */
1108 1109
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1110 1111 1112 1113 1114
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1115 1116
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1117
{
1118
	struct perf_event *event, *next_event;
1119 1120 1121 1122

	if (!ctx->nr_stat)
		return;

1123 1124
	update_context_time(ctx);

1125 1126
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1127

1128 1129
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1130

1131 1132
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1133

1134
		__perf_event_sync_stat(event, next_event);
1135

1136 1137
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1138 1139 1140
	}
}

T
Thomas Gleixner 已提交
1141
/*
1142
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1143 1144
 * with interrupts disabled.
 *
1145
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1146
 *
I
Ingo Molnar 已提交
1147
 * This does not protect us against NMI, but disable()
1148 1149 1150
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1151
 */
1152
void perf_event_task_sched_out(struct task_struct *task,
1153
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1154 1155
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1156 1157 1158
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1159
	struct pt_regs *regs;
1160
	int do_switch = 1;
T
Thomas Gleixner 已提交
1161

1162
	regs = task_pt_regs(task);
1163
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1164

1165
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1166 1167
		return;

1168 1169
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1170
	next_ctx = next->perf_event_ctxp;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1185 1186
			/*
			 * XXX do we need a memory barrier of sorts
1187
			 * wrt to rcu_dereference() of perf_event_ctxp
1188
			 */
1189 1190
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1191 1192 1193
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1194

1195
			perf_event_sync_stat(ctx, next_ctx);
1196 1197 1198
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1199
	}
1200
	rcu_read_unlock();
1201

1202
	if (do_switch) {
1203
		__perf_event_sched_out(ctx, cpuctx);
1204 1205
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1206 1207
}

1208 1209 1210
/*
 * Called with IRQs disabled
 */
1211
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1212 1213 1214
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1215 1216
	if (!cpuctx->task_ctx)
		return;
1217 1218 1219 1220

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1221
	__perf_event_sched_out(ctx, cpuctx);
1222 1223 1224
	cpuctx->task_ctx = NULL;
}

1225 1226 1227
/*
 * Called with IRQs disabled
 */
1228
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1229
{
1230
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1231 1232
}

1233
static void
1234
__perf_event_sched_in(struct perf_event_context *ctx,
1235
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1236
{
1237
	struct perf_event *event;
1238
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1239

1240 1241
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
1242
	if (likely(!ctx->nr_events))
1243
		goto out;
T
Thomas Gleixner 已提交
1244

1245
	ctx->timestamp = perf_clock();
1246

1247
	perf_disable();
1248 1249 1250 1251 1252

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1253 1254 1255
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1256
			continue;
1257
		if (event->cpu != -1 && event->cpu != cpu)
1258 1259
			continue;

1260 1261
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1262 1263 1264 1265 1266

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1267 1268 1269
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1270
		}
1271 1272
	}

1273
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1274
		/*
1275 1276
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1277
		 */
1278 1279
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1280 1281
			continue;

1282 1283
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1284
		 * of events:
1285
		 */
1286
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1287 1288
			continue;

1289 1290
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1291
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1292
	}
1293
	perf_enable();
1294
 out:
T
Thomas Gleixner 已提交
1295
	spin_unlock(&ctx->lock);
1296 1297 1298
}

/*
1299
 * Called from scheduler to add the events of the current task
1300 1301
 * with interrupts disabled.
 *
1302
 * We restore the event value and then enable it.
1303 1304
 *
 * This does not protect us against NMI, but enable()
1305 1306 1307
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1308
 */
1309
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1310 1311
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1312
	struct perf_event_context *ctx = task->perf_event_ctxp;
1313

1314 1315
	if (likely(!ctx))
		return;
1316 1317
	if (cpuctx->task_ctx == ctx)
		return;
1318
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1319 1320 1321
	cpuctx->task_ctx = ctx;
}

1322
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1323
{
1324
	struct perf_event_context *ctx = &cpuctx->ctx;
1325

1326
	__perf_event_sched_in(ctx, cpuctx, cpu);
1327 1328
}

1329 1330
#define MAX_INTERRUPTS (~0ULL)

1331
static void perf_log_throttle(struct perf_event *event, int enable);
1332

1333
static void perf_adjust_period(struct perf_event *event, u64 events)
1334
{
1335
	struct hw_perf_event *hwc = &event->hw;
1336 1337 1338 1339
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1340
	period = div64_u64(events, event->attr.sample_freq);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1353
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1354
{
1355 1356
	struct perf_event *event;
	struct hw_perf_event *hwc;
1357
	u64 interrupts, freq;
1358 1359

	spin_lock(&ctx->lock);
1360
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1361
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1362 1363
			continue;

1364
		hwc = &event->hw;
1365 1366 1367

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1368

1369
		/*
1370
		 * unthrottle events on the tick
1371
		 */
1372
		if (interrupts == MAX_INTERRUPTS) {
1373 1374 1375
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1376 1377
		}

1378
		if (!event->attr.freq || !event->attr.sample_freq)
1379 1380
			continue;

1381 1382 1383
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1384 1385
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1399
		perf_adjust_period(event, freq * interrupts);
1400

1401 1402 1403 1404 1405 1406 1407
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1408
			event->pmu->disable(event);
1409
			atomic64_set(&hwc->period_left, 0);
1410
			event->pmu->enable(event);
1411 1412
			perf_enable();
		}
1413 1414 1415 1416
	}
	spin_unlock(&ctx->lock);
}

1417
/*
1418
 * Round-robin a context's events:
1419
 */
1420
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1421
{
1422
	struct perf_event *event;
T
Thomas Gleixner 已提交
1423

1424
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1425 1426 1427 1428
		return;

	spin_lock(&ctx->lock);
	/*
1429
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1430
	 */
1431
	perf_disable();
1432 1433
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1434 1435
		break;
	}
1436
	perf_enable();
T
Thomas Gleixner 已提交
1437 1438

	spin_unlock(&ctx->lock);
1439 1440
}

1441
void perf_event_task_tick(struct task_struct *curr, int cpu)
1442
{
1443
	struct perf_cpu_context *cpuctx;
1444
	struct perf_event_context *ctx;
1445

1446
	if (!atomic_read(&nr_events))
1447 1448 1449
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1450
	ctx = curr->perf_event_ctxp;
1451

1452
	perf_ctx_adjust_freq(&cpuctx->ctx);
1453
	if (ctx)
1454
		perf_ctx_adjust_freq(ctx);
1455

1456
	perf_event_cpu_sched_out(cpuctx);
1457
	if (ctx)
1458
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1459

1460
	rotate_ctx(&cpuctx->ctx);
1461 1462
	if (ctx)
		rotate_ctx(ctx);
1463

1464
	perf_event_cpu_sched_in(cpuctx, cpu);
1465
	if (ctx)
1466
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1467 1468
}

1469
/*
1470
 * Enable all of a task's events that have been marked enable-on-exec.
1471 1472
 * This expects task == current.
 */
1473
static void perf_event_enable_on_exec(struct task_struct *task)
1474
{
1475 1476
	struct perf_event_context *ctx;
	struct perf_event *event;
1477 1478 1479 1480
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1481 1482
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1483 1484
		goto out;

1485
	__perf_event_task_sched_out(ctx);
1486 1487 1488

	spin_lock(&ctx->lock);

1489 1490
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1491
			continue;
1492 1493
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1494
			continue;
1495
		__perf_event_mark_enabled(event, ctx);
1496 1497 1498 1499
		enabled = 1;
	}

	/*
1500
	 * Unclone this context if we enabled any event.
1501
	 */
1502 1503
	if (enabled)
		unclone_ctx(ctx);
1504 1505 1506

	spin_unlock(&ctx->lock);

1507
	perf_event_task_sched_in(task, smp_processor_id());
1508 1509 1510 1511
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1512
/*
1513
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1514
 */
1515
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1516
{
1517
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1518 1519
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1520

1521 1522 1523 1524
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1525 1526
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1527 1528 1529 1530
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

P
Peter Zijlstra 已提交
1531
	spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1532
	update_context_time(ctx);
1533
	update_event_times(event);
P
Peter Zijlstra 已提交
1534 1535
	spin_unlock(&ctx->lock);

P
Peter Zijlstra 已提交
1536
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1537 1538
}

1539
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1540 1541
{
	/*
1542 1543
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1544
	 */
1545 1546 1547 1548
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1549 1550 1551 1552 1553
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

		spin_lock_irqsave(&ctx->lock, flags);
		update_context_time(ctx);
1554
		update_event_times(event);
P
Peter Zijlstra 已提交
1555
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1556 1557
	}

1558
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1559 1560
}

1561
/*
1562
 * Initialize the perf_event context in a task_struct:
1563 1564
 */
static void
1565
__perf_event_init_context(struct perf_event_context *ctx,
1566 1567 1568 1569 1570
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
1571
	INIT_LIST_HEAD(&ctx->group_list);
1572 1573 1574 1575 1576
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1577
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1578
{
1579
	struct perf_event_context *ctx;
1580
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1581
	struct task_struct *task;
1582
	unsigned long flags;
1583
	int err;
T
Thomas Gleixner 已提交
1584 1585

	/*
1586
	 * If cpu is not a wildcard then this is a percpu event:
T
Thomas Gleixner 已提交
1587 1588
	 */
	if (cpu != -1) {
1589
		/* Must be root to operate on a CPU event: */
1590
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1591 1592 1593 1594 1595 1596
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
1597
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1598 1599 1600 1601 1602 1603 1604 1605
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1606
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1623
	/*
1624
	 * Can't attach events to a dying task.
1625 1626 1627 1628 1629
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1630
	/* Reuse ptrace permission checks for now. */
1631 1632 1633 1634 1635
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1636
	ctx = perf_lock_task_context(task, &flags);
1637
	if (ctx) {
1638
		unclone_ctx(ctx);
1639
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1640 1641
	}

1642
	if (!ctx) {
1643
		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1644 1645 1646
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1647
		__perf_event_init_context(ctx, task);
1648
		get_ctx(ctx);
1649
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1650 1651 1652 1653 1654
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1655
			goto retry;
1656
		}
1657
		get_task_struct(task);
1658 1659
	}

1660
	put_task_struct(task);
T
Thomas Gleixner 已提交
1661
	return ctx;
1662 1663 1664 1665

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1666 1667
}

L
Li Zefan 已提交
1668 1669
static void perf_event_free_filter(struct perf_event *event);

1670
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1671
{
1672
	struct perf_event *event;
P
Peter Zijlstra 已提交
1673

1674 1675 1676
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1677
	perf_event_free_filter(event);
1678
	kfree(event);
P
Peter Zijlstra 已提交
1679 1680
}

1681
static void perf_pending_sync(struct perf_event *event);
1682

1683
static void free_event(struct perf_event *event)
1684
{
1685
	perf_pending_sync(event);
1686

1687 1688 1689 1690 1691 1692 1693 1694
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1695
	}
1696

1697 1698 1699
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1700 1701
	}

1702 1703
	if (event->destroy)
		event->destroy(event);
1704

1705 1706
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1707 1708
}

1709
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1710
{
1711
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1712

1713
	WARN_ON_ONCE(ctx->parent_ctx);
1714
	mutex_lock(&ctx->mutex);
1715
	perf_event_remove_from_context(event);
1716
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1717

1718 1719 1720 1721
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1722

1723
	free_event(event);
T
Thomas Gleixner 已提交
1724 1725 1726

	return 0;
}
1727
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1728

1729 1730 1731 1732
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1733
{
1734
	struct perf_event *event = file->private_data;
1735

1736
	file->private_data = NULL;
1737

1738
	return perf_event_release_kernel(event);
1739 1740
}

1741
static int perf_event_read_size(struct perf_event *event)
1742 1743 1744 1745 1746
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1747
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1748 1749
		size += sizeof(u64);

1750
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1751 1752
		size += sizeof(u64);

1753
	if (event->attr.read_format & PERF_FORMAT_ID)
1754 1755
		entry += sizeof(u64);

1756 1757
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1758 1759 1760 1761 1762 1763 1764 1765
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1766
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1767
{
1768
	struct perf_event *child;
1769 1770
	u64 total = 0;

1771 1772 1773
	*enabled = 0;
	*running = 0;

1774
	mutex_lock(&event->child_mutex);
1775
	total += perf_event_read(event);
1776 1777 1778 1779 1780 1781
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1782
		total += perf_event_read(child);
1783 1784 1785
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1786
	mutex_unlock(&event->child_mutex);
1787 1788 1789

	return total;
}
1790
EXPORT_SYMBOL_GPL(perf_event_read_value);
1791

1792
static int perf_event_read_group(struct perf_event *event,
1793 1794
				   u64 read_format, char __user *buf)
{
1795
	struct perf_event *leader = event->group_leader, *sub;
1796 1797
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1798
	u64 values[5];
1799
	u64 count, enabled, running;
1800

1801
	mutex_lock(&ctx->mutex);
1802
	count = perf_event_read_value(leader, &enabled, &running);
1803 1804

	values[n++] = 1 + leader->nr_siblings;
1805 1806 1807 1808
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1809 1810 1811
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1812 1813 1814 1815

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1816
		goto unlock;
1817

1818
	ret = size;
1819

1820
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1821
		n = 0;
1822

1823
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1824 1825 1826 1827 1828
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1829 1830 1831 1832
		if (copy_to_user(buf + size, values, size)) {
			ret = -EFAULT;
			goto unlock;
		}
1833 1834

		ret += size;
1835
	}
1836 1837
unlock:
	mutex_unlock(&ctx->mutex);
1838

1839
	return ret;
1840 1841
}

1842
static int perf_event_read_one(struct perf_event *event,
1843 1844
				 u64 read_format, char __user *buf)
{
1845
	u64 enabled, running;
1846 1847 1848
	u64 values[4];
	int n = 0;

1849 1850 1851 1852 1853
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1854
	if (read_format & PERF_FORMAT_ID)
1855
		values[n++] = primary_event_id(event);
1856 1857 1858 1859 1860 1861 1862

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1863
/*
1864
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1865 1866
 */
static ssize_t
1867
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1868
{
1869
	u64 read_format = event->attr.read_format;
1870
	int ret;
T
Thomas Gleixner 已提交
1871

1872
	/*
1873
	 * Return end-of-file for a read on a event that is in
1874 1875 1876
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1877
	if (event->state == PERF_EVENT_STATE_ERROR)
1878 1879
		return 0;

1880
	if (count < perf_event_read_size(event))
1881 1882
		return -ENOSPC;

1883
	WARN_ON_ONCE(event->ctx->parent_ctx);
1884
	if (read_format & PERF_FORMAT_GROUP)
1885
		ret = perf_event_read_group(event, read_format, buf);
1886
	else
1887
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
1888

1889
	return ret;
T
Thomas Gleixner 已提交
1890 1891 1892 1893 1894
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1895
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1896

1897
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1898 1899 1900 1901
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1902
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1903
	struct perf_mmap_data *data;
1904
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1905 1906

	rcu_read_lock();
1907
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1908
	if (data)
1909
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1910
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1911

1912
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1913 1914 1915 1916

	return events;
}

1917
static void perf_event_reset(struct perf_event *event)
1918
{
1919 1920 1921
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1922 1923
}

1924
/*
1925 1926 1927 1928
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1929
 */
1930 1931
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1932
{
1933
	struct perf_event *child;
P
Peter Zijlstra 已提交
1934

1935 1936 1937 1938
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1939
		func(child);
1940
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1941 1942
}

1943 1944
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1945
{
1946 1947
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1948

1949 1950
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1951
	event = event->group_leader;
1952

1953 1954 1955 1956
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1957
	mutex_unlock(&ctx->mutex);
1958 1959
}

1960
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1961
{
1962
	struct perf_event_context *ctx = event->ctx;
1963 1964 1965 1966
	unsigned long size;
	int ret = 0;
	u64 value;

1967
	if (!event->attr.sample_period)
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1978 1979
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1980 1981 1982 1983
			ret = -EINVAL;
			goto unlock;
		}

1984
		event->attr.sample_freq = value;
1985
	} else {
1986 1987
		event->attr.sample_period = value;
		event->hw.sample_period = value;
1988 1989 1990 1991 1992 1993 1994
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

L
Li Zefan 已提交
1995 1996
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
1997

1998 1999
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2000 2001
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2002
	u32 flags = arg;
2003 2004

	switch (cmd) {
2005 2006
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2007
		break;
2008 2009
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2010
		break;
2011 2012
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2013
		break;
P
Peter Zijlstra 已提交
2014

2015 2016
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2017

2018 2019
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2020

2021 2022
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2023

L
Li Zefan 已提交
2024 2025 2026
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2027
	default:
P
Peter Zijlstra 已提交
2028
		return -ENOTTY;
2029
	}
P
Peter Zijlstra 已提交
2030 2031

	if (flags & PERF_IOC_FLAG_GROUP)
2032
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2033
	else
2034
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2035 2036

	return 0;
2037 2038
}

2039
int perf_event_task_enable(void)
2040
{
2041
	struct perf_event *event;
2042

2043 2044 2045 2046
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2047 2048 2049 2050

	return 0;
}

2051
int perf_event_task_disable(void)
2052
{
2053
	struct perf_event *event;
2054

2055 2056 2057 2058
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2059 2060 2061 2062

	return 0;
}

2063 2064
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2065 2066
#endif

2067
static int perf_event_index(struct perf_event *event)
2068
{
2069
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2070 2071
		return 0;

2072
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2073 2074
}

2075 2076 2077 2078 2079
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2080
void perf_event_update_userpage(struct perf_event *event)
2081
{
2082
	struct perf_event_mmap_page *userpg;
2083
	struct perf_mmap_data *data;
2084 2085

	rcu_read_lock();
2086
	data = rcu_dereference(event->data);
2087 2088 2089 2090
	if (!data)
		goto unlock;

	userpg = data->user_page;
2091

2092 2093 2094 2095 2096
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2097
	++userpg->lock;
2098
	barrier();
2099 2100 2101 2102
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2103

2104 2105
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2106

2107 2108
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2109

2110
	barrier();
2111
	++userpg->lock;
2112
	preempt_enable();
2113
unlock:
2114
	rcu_read_unlock();
2115 2116
}

2117
static unsigned long perf_data_size(struct perf_mmap_data *data)
2118
{
2119 2120
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2121

2122
#ifndef CONFIG_PERF_USE_VMALLOC
2123

2124 2125 2126
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2127

2128 2129 2130 2131 2132
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2133

2134 2135
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2136

2137
	return virt_to_page(data->data_pages[pgoff - 1]);
2138 2139
}

2140 2141
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2142 2143 2144 2145 2146
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2147
	WARN_ON(atomic_read(&event->mmap_count));
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2166
	data->data_order = 0;
2167 2168
	data->nr_pages = nr_pages;

2169
	return data;
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2181
	return NULL;
2182 2183
}

2184 2185
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2186
	struct page *page = virt_to_page((void *)addr);
2187 2188 2189 2190 2191

	page->mapping = NULL;
	__free_page(page);
}

2192
static void perf_mmap_data_free(struct perf_mmap_data *data)
2193 2194 2195
{
	int i;

2196
	perf_mmap_free_page((unsigned long)data->user_page);
2197
	for (i = 0; i < data->nr_pages; i++)
2198
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2254

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2332
		data->watermark = max_size / 2;
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2344 2345 2346
	kfree(data);
}

2347
static void perf_mmap_data_release(struct perf_event *event)
2348
{
2349
	struct perf_mmap_data *data = event->data;
2350

2351
	WARN_ON(atomic_read(&event->mmap_count));
2352

2353
	rcu_assign_pointer(event->data, NULL);
2354
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2355 2356 2357 2358
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2359
	struct perf_event *event = vma->vm_file->private_data;
2360

2361
	atomic_inc(&event->mmap_count);
2362 2363 2364 2365
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2366
	struct perf_event *event = vma->vm_file->private_data;
2367

2368 2369
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2370
		unsigned long size = perf_data_size(event->data);
2371 2372
		struct user_struct *user = current_user();

2373
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2374
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2375
		perf_mmap_data_release(event);
2376
		mutex_unlock(&event->mmap_mutex);
2377
	}
2378 2379
}

2380
static const struct vm_operations_struct perf_mmap_vmops = {
2381 2382 2383 2384
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2385 2386 2387 2388
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2389
	struct perf_event *event = file->private_data;
2390
	unsigned long user_locked, user_lock_limit;
2391
	struct user_struct *user = current_user();
2392
	unsigned long locked, lock_limit;
2393
	struct perf_mmap_data *data;
2394 2395
	unsigned long vma_size;
	unsigned long nr_pages;
2396
	long user_extra, extra;
2397
	int ret = 0;
2398

2399
	if (!(vma->vm_flags & VM_SHARED))
2400
		return -EINVAL;
2401 2402 2403 2404

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2405 2406 2407 2408 2409
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2410 2411
		return -EINVAL;

2412
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2413 2414
		return -EINVAL;

2415 2416
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2417

2418 2419 2420
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2421 2422 2423 2424
		ret = -EINVAL;
		goto unlock;
	}

2425 2426
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2427 2428 2429 2430
			ret = -EINVAL;
		goto unlock;
	}

2431
	user_extra = nr_pages + 1;
2432
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2433 2434 2435 2436 2437 2438

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2439
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2440

2441 2442 2443
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2444 2445 2446

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2447
	locked = vma->vm_mm->locked_vm + extra;
2448

2449 2450
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2451 2452 2453
		ret = -EPERM;
		goto unlock;
	}
2454

2455
	WARN_ON(event->data);
2456 2457 2458 2459

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2460 2461
		goto unlock;

2462 2463 2464
	ret = 0;
	perf_mmap_data_init(event, data);

2465
	atomic_set(&event->mmap_count, 1);
2466
	atomic_long_add(user_extra, &user->locked_vm);
2467
	vma->vm_mm->locked_vm += extra;
2468
	event->data->nr_locked = extra;
2469
	if (vma->vm_flags & VM_WRITE)
2470
		event->data->writable = 1;
2471

2472
unlock:
2473
	mutex_unlock(&event->mmap_mutex);
2474 2475 2476

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2477 2478

	return ret;
2479 2480
}

P
Peter Zijlstra 已提交
2481 2482 2483
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2484
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2485 2486 2487
	int retval;

	mutex_lock(&inode->i_mutex);
2488
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2489 2490 2491 2492 2493 2494 2495 2496
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2497 2498 2499 2500
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2501 2502
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2503
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2504
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2505 2506
};

2507
/*
2508
 * Perf event wakeup
2509 2510 2511 2512 2513
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2514
void perf_event_wakeup(struct perf_event *event)
2515
{
2516
	wake_up_all(&event->waitq);
2517

2518 2519 2520
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2521
	}
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2533
static void perf_pending_event(struct perf_pending_entry *entry)
2534
{
2535 2536
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2537

2538 2539 2540
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2541 2542
	}

2543 2544 2545
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2546 2547 2548
	}
}

2549
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2550

2551
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2552 2553 2554
	PENDING_TAIL,
};

2555 2556
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2557
{
2558
	struct perf_pending_entry **head;
2559

2560
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2561 2562
		return;

2563 2564 2565
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2566 2567

	do {
2568 2569
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2570

2571
	set_perf_event_pending();
2572

2573
	put_cpu_var(perf_pending_head);
2574 2575 2576 2577
}

static int __perf_pending_run(void)
{
2578
	struct perf_pending_entry *list;
2579 2580
	int nr = 0;

2581
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2582
	while (list != PENDING_TAIL) {
2583 2584
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2585 2586 2587

		list = list->next;

2588 2589
		func = entry->func;
		entry->next = NULL;
2590 2591 2592 2593 2594 2595 2596
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2597
		func(entry);
2598 2599 2600 2601 2602 2603
		nr++;
	}

	return nr;
}

2604
static inline int perf_not_pending(struct perf_event *event)
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2619
	return event->pending.next == NULL;
2620 2621
}

2622
static void perf_pending_sync(struct perf_event *event)
2623
{
2624
	wait_event(event->waitq, perf_not_pending(event));
2625 2626
}

2627
void perf_event_do_pending(void)
2628 2629 2630 2631
{
	__perf_pending_run();
}

2632 2633 2634 2635
/*
 * Callchain support -- arch specific
 */

2636
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2637 2638 2639 2640
{
	return NULL;
}

2641 2642 2643
/*
 * Output
 */
2644 2645
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2646 2647 2648 2649 2650 2651
{
	unsigned long mask;

	if (!data->writable)
		return true;

2652
	mask = perf_data_size(data) - 1;
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2663
static void perf_output_wakeup(struct perf_output_handle *handle)
2664
{
2665 2666
	atomic_set(&handle->data->poll, POLL_IN);

2667
	if (handle->nmi) {
2668 2669 2670
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2671
	} else
2672
		perf_event_wakeup(handle->event);
2673 2674
}

2675 2676 2677
/*
 * Curious locking construct.
 *
2678 2679
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2680 2681 2682 2683 2684 2685
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2686
 * event_id completes.
2687 2688 2689 2690
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2691
	int cur, cpu = get_cpu();
2692 2693 2694

	handle->locked = 0;

2695 2696 2697 2698 2699 2700 2701 2702
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2703 2704

		cpu_relax();
2705
	}
2706 2707 2708 2709 2710
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2711 2712
	unsigned long head;
	int cpu;
2713

2714
	data->done_head = data->head;
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2725
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2726 2727 2728
		data->user_page->data_head = head;

	/*
2729
	 * NMI can happen here, which means we can miss a done_head update.
2730 2731
	 */

2732
	cpu = atomic_xchg(&data->lock, -1);
2733 2734 2735 2736 2737
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2738
	if (unlikely(atomic_long_read(&data->done_head))) {
2739 2740 2741
		/*
		 * Since we had it locked, we can lock it again.
		 */
2742
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2743 2744 2745 2746 2747
			cpu_relax();

		goto again;
	}

2748
	if (atomic_xchg(&data->wakeup, 0))
2749 2750
		perf_output_wakeup(handle);
out:
2751
	put_cpu();
2752 2753
}

2754 2755
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2756 2757
{
	unsigned int pages_mask;
2758
	unsigned long offset;
2759 2760 2761 2762 2763 2764 2765 2766
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2767 2768
		unsigned long page_offset;
		unsigned long page_size;
2769 2770 2771
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2772 2773 2774
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2792
int perf_output_begin(struct perf_output_handle *handle,
2793
		      struct perf_event *event, unsigned int size,
2794
		      int nmi, int sample)
2795
{
2796
	struct perf_event *output_event;
2797
	struct perf_mmap_data *data;
2798
	unsigned long tail, offset, head;
2799 2800 2801 2802 2803 2804
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2805

2806
	rcu_read_lock();
2807
	/*
2808
	 * For inherited events we send all the output towards the parent.
2809
	 */
2810 2811
	if (event->parent)
		event = event->parent;
2812

2813 2814 2815
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2816

2817
	data = rcu_dereference(event->data);
2818 2819 2820
	if (!data)
		goto out;

2821
	handle->data	= data;
2822
	handle->event	= event;
2823 2824
	handle->nmi	= nmi;
	handle->sample	= sample;
2825

2826
	if (!data->nr_pages)
2827
		goto fail;
2828

2829 2830 2831 2832
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2833 2834
	perf_output_lock(handle);

2835
	do {
2836 2837 2838 2839 2840 2841 2842
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2843
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2844
		head += size;
2845
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2846
			goto fail;
2847
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2848

2849
	handle->offset	= offset;
2850
	handle->head	= head;
2851

2852
	if (head - tail > data->watermark)
2853
		atomic_set(&data->wakeup, 1);
2854

2855
	if (have_lost) {
2856
		lost_event.header.type = PERF_RECORD_LOST;
2857 2858
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2859
		lost_event.id          = event->id;
2860 2861 2862 2863 2864
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2865
	return 0;
2866

2867
fail:
2868 2869
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2870 2871
out:
	rcu_read_unlock();
2872

2873 2874
	return -ENOSPC;
}
2875

2876
void perf_output_end(struct perf_output_handle *handle)
2877
{
2878
	struct perf_event *event = handle->event;
2879 2880
	struct perf_mmap_data *data = handle->data;

2881
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2882

2883
	if (handle->sample && wakeup_events) {
2884
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2885
		if (events >= wakeup_events) {
2886
			atomic_sub(wakeup_events, &data->events);
2887
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2888
		}
2889 2890 2891
	}

	perf_output_unlock(handle);
2892
	rcu_read_unlock();
2893 2894
}

2895
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2896 2897
{
	/*
2898
	 * only top level events have the pid namespace they were created in
2899
	 */
2900 2901
	if (event->parent)
		event = event->parent;
2902

2903
	return task_tgid_nr_ns(p, event->ns);
2904 2905
}

2906
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2907 2908
{
	/*
2909
	 * only top level events have the pid namespace they were created in
2910
	 */
2911 2912
	if (event->parent)
		event = event->parent;
2913

2914
	return task_pid_nr_ns(p, event->ns);
2915 2916
}

2917
static void perf_output_read_one(struct perf_output_handle *handle,
2918
				 struct perf_event *event)
2919
{
2920
	u64 read_format = event->attr.read_format;
2921 2922 2923
	u64 values[4];
	int n = 0;

2924
	values[n++] = atomic64_read(&event->count);
2925
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2926 2927
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2928 2929
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2930 2931
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2932 2933
	}
	if (read_format & PERF_FORMAT_ID)
2934
		values[n++] = primary_event_id(event);
2935 2936 2937 2938 2939

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2940
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2941 2942
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2943
			    struct perf_event *event)
2944
{
2945 2946
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2958
	if (leader != event)
2959 2960 2961 2962
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2963
		values[n++] = primary_event_id(leader);
2964 2965 2966

	perf_output_copy(handle, values, n * sizeof(u64));

2967
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2968 2969
		n = 0;

2970
		if (sub != event)
2971 2972 2973 2974
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2975
			values[n++] = primary_event_id(sub);
2976 2977 2978 2979 2980 2981

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
2982
			     struct perf_event *event)
2983
{
2984 2985
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
2986
	else
2987
		perf_output_read_one(handle, event);
2988 2989
}

2990 2991 2992
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
2993
			struct perf_event *event)
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3024
		perf_output_read(handle, event);
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3062
			 struct perf_event *event,
3063
			 struct pt_regs *regs)
3064
{
3065
	u64 sample_type = event->attr.sample_type;
3066

3067
	data->type = sample_type;
3068

3069
	header->type = PERF_RECORD_SAMPLE;
3070 3071 3072 3073
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3074

3075
	if (sample_type & PERF_SAMPLE_IP) {
3076 3077 3078
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3079
	}
3080

3081
	if (sample_type & PERF_SAMPLE_TID) {
3082
		/* namespace issues */
3083 3084
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3085

3086
		header->size += sizeof(data->tid_entry);
3087 3088
	}

3089
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3090
		data->time = perf_clock();
3091

3092
		header->size += sizeof(data->time);
3093 3094
	}

3095
	if (sample_type & PERF_SAMPLE_ADDR)
3096
		header->size += sizeof(data->addr);
3097

3098
	if (sample_type & PERF_SAMPLE_ID) {
3099
		data->id = primary_event_id(event);
3100

3101 3102 3103 3104
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3105
		data->stream_id = event->id;
3106 3107 3108

		header->size += sizeof(data->stream_id);
	}
3109

3110
	if (sample_type & PERF_SAMPLE_CPU) {
3111 3112
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3113

3114
		header->size += sizeof(data->cpu_entry);
3115 3116
	}

3117
	if (sample_type & PERF_SAMPLE_PERIOD)
3118
		header->size += sizeof(data->period);
3119

3120
	if (sample_type & PERF_SAMPLE_READ)
3121
		header->size += perf_event_read_size(event);
3122

3123
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3124
		int size = 1;
3125

3126 3127 3128 3129 3130 3131
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3132 3133
	}

3134
	if (sample_type & PERF_SAMPLE_RAW) {
3135 3136 3137 3138 3139 3140 3141 3142
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3143
		header->size += size;
3144
	}
3145
}
3146

3147
static void perf_event_output(struct perf_event *event, int nmi,
3148 3149 3150 3151 3152
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3153

3154
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3155

3156
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3157
		return;
3158

3159
	perf_output_sample(&handle, &header, data, event);
3160

3161
	perf_output_end(&handle);
3162 3163
}

3164
/*
3165
 * read event_id
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3176
perf_event_read_event(struct perf_event *event,
3177 3178 3179
			struct task_struct *task)
{
	struct perf_output_handle handle;
3180
	struct perf_read_event read_event = {
3181
		.header = {
3182
			.type = PERF_RECORD_READ,
3183
			.misc = 0,
3184
			.size = sizeof(read_event) + perf_event_read_size(event),
3185
		},
3186 3187
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3188
	};
3189
	int ret;
3190

3191
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3192 3193 3194
	if (ret)
		return;

3195
	perf_output_put(&handle, read_event);
3196
	perf_output_read(&handle, event);
3197

3198 3199 3200
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3201
/*
P
Peter Zijlstra 已提交
3202 3203 3204
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3205 3206
 */

P
Peter Zijlstra 已提交
3207
struct perf_task_event {
3208
	struct task_struct		*task;
3209
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3210 3211 3212 3213 3214 3215

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3216 3217
		u32				tid;
		u32				ptid;
3218
		u64				time;
3219
	} event_id;
P
Peter Zijlstra 已提交
3220 3221
};

3222
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3223
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3224 3225
{
	struct perf_output_handle handle;
3226
	int size;
P
Peter Zijlstra 已提交
3227
	struct task_struct *task = task_event->task;
3228 3229
	int ret;

3230 3231
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3232 3233 3234 3235

	if (ret)
		return;

3236 3237
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3238

3239 3240
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3241

3242
	task_event->event_id.time = perf_clock();
3243

3244
	perf_output_put(&handle, task_event->event_id);
3245

P
Peter Zijlstra 已提交
3246 3247 3248
	perf_output_end(&handle);
}

3249
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3250
{
3251
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3252 3253 3254 3255 3256
		return 1;

	return 0;
}

3257
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3258
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3259
{
3260
	struct perf_event *event;
P
Peter Zijlstra 已提交
3261

3262 3263 3264
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3265 3266 3267
	}
}

3268
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3269 3270
{
	struct perf_cpu_context *cpuctx;
3271
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3272

3273
	rcu_read_lock();
P
Peter Zijlstra 已提交
3274
	cpuctx = &get_cpu_var(perf_cpu_context);
3275
	perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3276 3277
	put_cpu_var(perf_cpu_context);

3278
	if (!ctx)
3279
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3280
	if (ctx)
3281
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3282 3283 3284
	rcu_read_unlock();
}

3285 3286
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3287
			      int new)
P
Peter Zijlstra 已提交
3288
{
P
Peter Zijlstra 已提交
3289
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3290

3291 3292 3293
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3294 3295
		return;

P
Peter Zijlstra 已提交
3296
	task_event = (struct perf_task_event){
3297 3298
		.task	  = task,
		.task_ctx = task_ctx,
3299
		.event_id    = {
P
Peter Zijlstra 已提交
3300
			.header = {
3301
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3302
				.misc = 0,
3303
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3304
			},
3305 3306
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3307 3308
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3309 3310 3311
		},
	};

3312
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3313 3314
}

3315
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3316
{
3317
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3318 3319
}

3320 3321 3322 3323 3324
/*
 * comm tracking
 */

struct perf_comm_event {
3325 3326
	struct task_struct	*task;
	char			*comm;
3327 3328 3329 3330 3331 3332 3333
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3334
	} event_id;
3335 3336
};

3337
static void perf_event_comm_output(struct perf_event *event,
3338 3339 3340
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3341 3342
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3343 3344 3345 3346

	if (ret)
		return;

3347 3348
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3349

3350
	perf_output_put(&handle, comm_event->event_id);
3351 3352 3353 3354 3355
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3356
static int perf_event_comm_match(struct perf_event *event)
3357
{
3358
	if (event->attr.comm)
3359 3360 3361 3362 3363
		return 1;

	return 0;
}

3364
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3365 3366
				  struct perf_comm_event *comm_event)
{
3367
	struct perf_event *event;
3368

3369 3370 3371
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3372 3373 3374
	}
}

3375
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3376 3377
{
	struct perf_cpu_context *cpuctx;
3378
	struct perf_event_context *ctx;
3379
	unsigned int size;
3380
	char comm[TASK_COMM_LEN];
3381

3382
	memset(comm, 0, sizeof(comm));
3383
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3384
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3385 3386 3387 3388

	comm_event->comm = comm;
	comm_event->comm_size = size;

3389
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3390

3391
	rcu_read_lock();
3392
	cpuctx = &get_cpu_var(perf_cpu_context);
3393
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3394
	put_cpu_var(perf_cpu_context);
3395 3396 3397 3398 3399

	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3400
	ctx = rcu_dereference(current->perf_event_ctxp);
3401
	if (ctx)
3402
		perf_event_comm_ctx(ctx, comm_event);
3403
	rcu_read_unlock();
3404 3405
}

3406
void perf_event_comm(struct task_struct *task)
3407
{
3408 3409
	struct perf_comm_event comm_event;

3410 3411
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3412

3413
	if (!atomic_read(&nr_comm_events))
3414
		return;
3415

3416
	comm_event = (struct perf_comm_event){
3417
		.task	= task,
3418 3419
		/* .comm      */
		/* .comm_size */
3420
		.event_id  = {
3421
			.header = {
3422
				.type = PERF_RECORD_COMM,
3423 3424 3425 3426 3427
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3428 3429 3430
		},
	};

3431
	perf_event_comm_event(&comm_event);
3432 3433
}

3434 3435 3436 3437 3438
/*
 * mmap tracking
 */

struct perf_mmap_event {
3439 3440 3441 3442
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3443 3444 3445 3446 3447 3448 3449 3450 3451

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3452
	} event_id;
3453 3454
};

3455
static void perf_event_mmap_output(struct perf_event *event,
3456 3457 3458
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3459 3460
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3461 3462 3463 3464

	if (ret)
		return;

3465 3466
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3467

3468
	perf_output_put(&handle, mmap_event->event_id);
3469 3470
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3471
	perf_output_end(&handle);
3472 3473
}

3474
static int perf_event_mmap_match(struct perf_event *event,
3475 3476
				   struct perf_mmap_event *mmap_event)
{
3477
	if (event->attr.mmap)
3478 3479 3480 3481 3482
		return 1;

	return 0;
}

3483
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3484 3485
				  struct perf_mmap_event *mmap_event)
{
3486
	struct perf_event *event;
3487

3488 3489 3490
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3491 3492 3493
	}
}

3494
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3495 3496
{
	struct perf_cpu_context *cpuctx;
3497
	struct perf_event_context *ctx;
3498 3499
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3500 3501 3502
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3503
	const char *name;
3504

3505 3506
	memset(tmp, 0, sizeof(tmp));

3507
	if (file) {
3508 3509 3510 3511 3512 3513
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3514 3515 3516 3517
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3518
		name = d_path(&file->f_path, buf, PATH_MAX);
3519 3520 3521 3522 3523
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3524 3525 3526
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3527
			goto got_name;
3528
		}
3529 3530 3531 3532 3533 3534

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3535 3536 3537 3538 3539
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3540
	size = ALIGN(strlen(name)+1, sizeof(u64));
3541 3542 3543 3544

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3545
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3546

3547
	rcu_read_lock();
3548
	cpuctx = &get_cpu_var(perf_cpu_context);
3549
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3550 3551
	put_cpu_var(perf_cpu_context);

3552 3553 3554 3555
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3556
	ctx = rcu_dereference(current->perf_event_ctxp);
3557
	if (ctx)
3558
		perf_event_mmap_ctx(ctx, mmap_event);
3559 3560
	rcu_read_unlock();

3561 3562 3563
	kfree(buf);
}

3564
void __perf_event_mmap(struct vm_area_struct *vma)
3565
{
3566 3567
	struct perf_mmap_event mmap_event;

3568
	if (!atomic_read(&nr_mmap_events))
3569 3570 3571
		return;

	mmap_event = (struct perf_mmap_event){
3572
		.vma	= vma,
3573 3574
		/* .file_name */
		/* .file_size */
3575
		.event_id  = {
3576
			.header = {
3577
				.type = PERF_RECORD_MMAP,
3578 3579 3580 3581 3582
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3583 3584 3585
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3586 3587 3588
		},
	};

3589
	perf_event_mmap_event(&mmap_event);
3590 3591
}

3592 3593 3594 3595
/*
 * IRQ throttle logging
 */

3596
static void perf_log_throttle(struct perf_event *event, int enable)
3597 3598 3599 3600 3601 3602 3603
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3604
		u64				id;
3605
		u64				stream_id;
3606 3607
	} throttle_event = {
		.header = {
3608
			.type = PERF_RECORD_THROTTLE,
3609 3610 3611
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3612
		.time		= perf_clock(),
3613 3614
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3615 3616
	};

3617
	if (enable)
3618
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3619

3620
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3621 3622 3623 3624 3625 3626 3627
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3628
/*
3629
 * Generic event overflow handling, sampling.
3630 3631
 */

3632
static int __perf_event_overflow(struct perf_event *event, int nmi,
3633 3634
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3635
{
3636 3637
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3638 3639
	int ret = 0;

3640
	throttle = (throttle && event->pmu->unthrottle != NULL);
3641

3642
	if (!throttle) {
3643
		hwc->interrupts++;
3644
	} else {
3645 3646
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3647
			if (HZ * hwc->interrupts >
3648
					(u64)sysctl_perf_event_sample_rate) {
3649
				hwc->interrupts = MAX_INTERRUPTS;
3650
				perf_log_throttle(event, 0);
3651 3652 3653 3654
				ret = 1;
			}
		} else {
			/*
3655
			 * Keep re-disabling events even though on the previous
3656
			 * pass we disabled it - just in case we raced with a
3657
			 * sched-in and the event got enabled again:
3658
			 */
3659 3660 3661
			ret = 1;
		}
	}
3662

3663
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3664
		u64 now = perf_clock();
3665 3666 3667 3668 3669
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3670
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3671 3672
	}

3673 3674
	/*
	 * XXX event_limit might not quite work as expected on inherited
3675
	 * events
3676 3677
	 */

3678 3679
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3680
		ret = 1;
3681
		event->pending_kill = POLL_HUP;
3682
		if (nmi) {
3683 3684 3685
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3686
		} else
3687
			perf_event_disable(event);
3688 3689
	}

3690 3691 3692 3693 3694
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3695
	return ret;
3696 3697
}

3698
int perf_event_overflow(struct perf_event *event, int nmi,
3699 3700
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3701
{
3702
	return __perf_event_overflow(event, nmi, 1, data, regs);
3703 3704
}

3705
/*
3706
 * Generic software event infrastructure
3707 3708
 */

3709
/*
3710 3711
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3712 3713 3714 3715
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3716
static u64 perf_swevent_set_period(struct perf_event *event)
3717
{
3718
	struct hw_perf_event *hwc = &event->hw;
3719 3720 3721 3722 3723
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3724 3725

again:
3726 3727 3728
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3729

3730 3731 3732 3733 3734
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3735

3736
	return nr;
3737 3738
}

3739
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3740 3741
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3742
{
3743
	struct hw_perf_event *hwc = &event->hw;
3744
	int throttle = 0;
3745

3746
	data->period = event->hw.last_period;
3747 3748
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3749

3750 3751
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3752

3753
	for (; overflow; overflow--) {
3754
		if (__perf_event_overflow(event, nmi, throttle,
3755
					    data, regs)) {
3756 3757 3758 3759 3760 3761
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3762
		throttle = 1;
3763
	}
3764 3765
}

3766
static void perf_swevent_unthrottle(struct perf_event *event)
3767 3768
{
	/*
3769
	 * Nothing to do, we already reset hwc->interrupts.
3770
	 */
3771
}
3772

3773
static void perf_swevent_add(struct perf_event *event, u64 nr,
3774 3775
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3776
{
3777
	struct hw_perf_event *hwc = &event->hw;
3778

3779
	atomic64_add(nr, &event->count);
3780

3781 3782 3783
	if (!regs)
		return;

3784 3785
	if (!hwc->sample_period)
		return;
3786

3787 3788 3789 3790
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3791
		return;
3792

3793
	perf_swevent_overflow(event, 0, nmi, data, regs);
3794 3795
}

3796
static int perf_swevent_is_counting(struct perf_event *event)
3797
{
3798
	/*
3799
	 * The event is active, we're good!
3800
	 */
3801
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3802 3803
		return 1;

3804
	/*
3805
	 * The event is off/error, not counting.
3806
	 */
3807
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3808 3809 3810
		return 0;

	/*
3811
	 * The event is inactive, if the context is active
3812 3813
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3814
	 */
3815
	if (event->ctx->is_active)
3816 3817 3818 3819 3820 3821 3822 3823
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3824 3825
}

L
Li Zefan 已提交
3826 3827 3828
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3829
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3830
				enum perf_type_id type,
L
Li Zefan 已提交
3831 3832 3833
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3834
{
3835
	if (!perf_swevent_is_counting(event))
3836 3837
		return 0;

3838
	if (event->attr.type != type)
3839
		return 0;
3840
	if (event->attr.config != event_id)
3841 3842
		return 0;

3843
	if (regs) {
3844
		if (event->attr.exclude_user && user_mode(regs))
3845
			return 0;
3846

3847
		if (event->attr.exclude_kernel && !user_mode(regs))
3848 3849
			return 0;
	}
3850

L
Li Zefan 已提交
3851 3852 3853 3854
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3855 3856 3857
	return 1;
}

3858
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3859
				     enum perf_type_id type,
3860
				     u32 event_id, u64 nr, int nmi,
3861 3862
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3863
{
3864
	struct perf_event *event;
3865

3866
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3867
		if (perf_swevent_match(event, type, event_id, data, regs))
3868
			perf_swevent_add(event, nr, nmi, data, regs);
3869 3870 3871
	}
}

3872 3873 3874 3875
/*
 * Must be called with preemption disabled
 */
int perf_swevent_get_recursion_context(int **recursion)
P
Peter Zijlstra 已提交
3876
{
3877 3878
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

P
Peter Zijlstra 已提交
3879
	if (in_nmi())
3880 3881 3882 3883 3884 3885 3886
		*recursion = &cpuctx->recursion[3];
	else if (in_irq())
		*recursion = &cpuctx->recursion[2];
	else if (in_softirq())
		*recursion = &cpuctx->recursion[1];
	else
		*recursion = &cpuctx->recursion[0];
P
Peter Zijlstra 已提交
3887

3888 3889
	if (**recursion)
		return -1;
P
Peter Zijlstra 已提交
3890

3891
	(**recursion)++;
P
Peter Zijlstra 已提交
3892

3893
	return 0;
P
Peter Zijlstra 已提交
3894
}
I
Ingo Molnar 已提交
3895
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
3896

3897
void perf_swevent_put_recursion_context(int *recursion)
3898
{
3899 3900
	(*recursion)--;
}
I
Ingo Molnar 已提交
3901
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
3902

3903 3904 3905 3906 3907 3908 3909
static void __do_perf_sw_event(enum perf_type_id type, u32 event_id,
			       u64 nr, int nmi,
			       struct perf_sample_data *data,
			       struct pt_regs *regs)
{
	struct perf_event_context *ctx;
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3910

3911
	rcu_read_lock();
3912
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3913
				 nr, nmi, data, regs);
3914 3915 3916 3917
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3918
	ctx = rcu_dereference(current->perf_event_ctxp);
3919
	if (ctx)
3920
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3921
	rcu_read_unlock();
3922
}
3923

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
{
	int *recursion;

	preempt_disable();

	if (perf_swevent_get_recursion_context(&recursion))
		goto out;

	__do_perf_sw_event(type, event_id, nr, nmi, data, regs);
P
Peter Zijlstra 已提交
3937

3938
	perf_swevent_put_recursion_context(recursion);
P
Peter Zijlstra 已提交
3939
out:
3940
	preempt_enable();
3941 3942
}

3943
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3944
			    struct pt_regs *regs, u64 addr)
3945
{
3946 3947 3948 3949
	struct perf_sample_data data;

	data.addr = addr;
	data.raw  = NULL;
3950

3951
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3952 3953
}

3954
static void perf_swevent_read(struct perf_event *event)
3955 3956 3957
{
}

3958
static int perf_swevent_enable(struct perf_event *event)
3959
{
3960
	struct hw_perf_event *hwc = &event->hw;
3961 3962 3963

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3964
		perf_swevent_set_period(event);
3965
	}
3966 3967 3968
	return 0;
}

3969
static void perf_swevent_disable(struct perf_event *event)
3970 3971 3972
{
}

3973
static const struct pmu perf_ops_generic = {
3974 3975 3976 3977
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
3978 3979
};

3980
/*
3981
 * hrtimer based swevent callback
3982 3983
 */

3984
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3985 3986 3987
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
3988
	struct pt_regs *regs;
3989
	struct perf_event *event;
3990 3991
	u64 period;

3992 3993
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
3994 3995

	data.addr = 0;
3996
	regs = get_irq_regs();
3997 3998 3999 4000
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4001 4002
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4003
		regs = task_pt_regs(current);
4004

4005
	if (regs) {
4006 4007 4008
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4009 4010
	}

4011
	period = max_t(u64, 10000, event->hw.sample_period);
4012 4013 4014 4015 4016
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4053
/*
4054
 * Software event: cpu wall time clock
4055 4056
 */

4057
static void cpu_clock_perf_event_update(struct perf_event *event)
4058 4059 4060 4061 4062 4063
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4064 4065 4066
	prev = atomic64_read(&event->hw.prev_count);
	atomic64_set(&event->hw.prev_count, now);
	atomic64_add(now - prev, &event->count);
4067 4068
}

4069
static int cpu_clock_perf_event_enable(struct perf_event *event)
4070
{
4071
	struct hw_perf_event *hwc = &event->hw;
4072 4073 4074
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4075
	perf_swevent_start_hrtimer(event);
4076 4077 4078 4079

	return 0;
}

4080
static void cpu_clock_perf_event_disable(struct perf_event *event)
4081
{
4082
	perf_swevent_cancel_hrtimer(event);
4083
	cpu_clock_perf_event_update(event);
4084 4085
}

4086
static void cpu_clock_perf_event_read(struct perf_event *event)
4087
{
4088
	cpu_clock_perf_event_update(event);
4089 4090
}

4091
static const struct pmu perf_ops_cpu_clock = {
4092 4093 4094
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4095 4096
};

4097
/*
4098
 * Software event: task time clock
4099 4100
 */

4101
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4102
{
4103
	u64 prev;
I
Ingo Molnar 已提交
4104 4105
	s64 delta;

4106
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4107
	delta = now - prev;
4108
	atomic64_add(delta, &event->count);
4109 4110
}

4111
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4112
{
4113
	struct hw_perf_event *hwc = &event->hw;
4114 4115
	u64 now;

4116
	now = event->ctx->time;
4117

4118
	atomic64_set(&hwc->prev_count, now);
4119 4120

	perf_swevent_start_hrtimer(event);
4121 4122

	return 0;
I
Ingo Molnar 已提交
4123 4124
}

4125
static void task_clock_perf_event_disable(struct perf_event *event)
4126
{
4127
	perf_swevent_cancel_hrtimer(event);
4128
	task_clock_perf_event_update(event, event->ctx->time);
4129

4130
}
I
Ingo Molnar 已提交
4131

4132
static void task_clock_perf_event_read(struct perf_event *event)
4133
{
4134 4135 4136
	u64 time;

	if (!in_nmi()) {
4137 4138
		update_context_time(event->ctx);
		time = event->ctx->time;
4139 4140
	} else {
		u64 now = perf_clock();
4141 4142
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4143 4144
	}

4145
	task_clock_perf_event_update(event, time);
4146 4147
}

4148
static const struct pmu perf_ops_task_clock = {
4149 4150 4151
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4152 4153
};

4154
#ifdef CONFIG_EVENT_PROFILE
L
Li Zefan 已提交
4155

4156
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4157
			  int entry_size)
4158
{
4159
	struct perf_raw_record raw = {
4160
		.size = entry_size,
4161
		.data = record,
4162 4163
	};

4164
	struct perf_sample_data data = {
4165
		.addr = addr,
4166
		.raw = &raw,
4167
	};
4168

4169 4170 4171 4172
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4173

4174 4175
	/* Trace events already protected against recursion */
	__do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4176
				&data, regs);
4177
}
4178
EXPORT_SYMBOL_GPL(perf_tp_event);
4179

L
Li Zefan 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4189

4190
static void tp_perf_event_destroy(struct perf_event *event)
4191
{
4192
	ftrace_profile_disable(event->attr.config);
4193 4194
}

4195
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4196
{
4197 4198 4199 4200
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4201
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4202
			perf_paranoid_tracepoint_raw() &&
4203 4204 4205
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4206
	if (ftrace_profile_enable(event->attr.config))
4207 4208
		return NULL;

4209
	event->destroy = tp_perf_event_destroy;
4210 4211 4212

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4237
#else
L
Li Zefan 已提交
4238 4239 4240 4241 4242 4243 4244

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4245
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4246 4247 4248
{
	return NULL;
}
L
Li Zefan 已提交
4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

#endif /* CONFIG_EVENT_PROFILE */
4260

4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
	/*
	 * The breakpoint is already filled if we haven't created the counter
	 * through perf syscall
	 * FIXME: manage to get trigerred to NULL if it comes from syscalls
	 */
	if (!bp->callback)
		err = register_perf_hw_breakpoint(bp);
	else
		err = __register_perf_hw_breakpoint(bp);
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
	/* TODO */
}
#else
static void bp_perf_event_destroy(struct perf_event *event)
{
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4306
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4307

4308
static void sw_perf_event_destroy(struct perf_event *event)
4309
{
4310
	u64 event_id = event->attr.config;
4311

4312
	WARN_ON(event->parent);
4313

4314
	atomic_dec(&perf_swevent_enabled[event_id]);
4315 4316
}

4317
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4318
{
4319
	const struct pmu *pmu = NULL;
4320
	u64 event_id = event->attr.config;
4321

4322
	/*
4323
	 * Software events (currently) can't in general distinguish
4324 4325 4326 4327 4328
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4329
	switch (event_id) {
4330
	case PERF_COUNT_SW_CPU_CLOCK:
4331
		pmu = &perf_ops_cpu_clock;
4332

4333
		break;
4334
	case PERF_COUNT_SW_TASK_CLOCK:
4335
		/*
4336 4337
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4338
		 */
4339
		if (event->ctx->task)
4340
			pmu = &perf_ops_task_clock;
4341
		else
4342
			pmu = &perf_ops_cpu_clock;
4343

4344
		break;
4345 4346 4347 4348 4349
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4350 4351
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4352 4353 4354
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4355
		}
4356
		pmu = &perf_ops_generic;
4357
		break;
4358
	}
4359

4360
	return pmu;
4361 4362
}

T
Thomas Gleixner 已提交
4363
/*
4364
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4365
 */
4366 4367
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4368
		   int cpu,
4369 4370 4371
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4372
		   perf_callback_t callback,
4373
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4374
{
4375
	const struct pmu *pmu;
4376 4377
	struct perf_event *event;
	struct hw_perf_event *hwc;
4378
	long err;
T
Thomas Gleixner 已提交
4379

4380 4381
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4382
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4383

4384
	/*
4385
	 * Single events are their own group leaders, with an
4386 4387 4388
	 * empty sibling list:
	 */
	if (!group_leader)
4389
		group_leader = event;
4390

4391 4392
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4393

4394 4395 4396 4397
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4398

4399
	mutex_init(&event->mmap_mutex);
4400

4401 4402 4403 4404 4405 4406
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4407

4408
	event->parent		= parent_event;
4409

4410 4411
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4412

4413
	event->state		= PERF_EVENT_STATE_INACTIVE;
4414

4415 4416 4417 4418 4419
	if (!callback && parent_event)
		callback = parent_event->callback;
	
	event->callback	= callback;

4420
	if (attr->disabled)
4421
		event->state = PERF_EVENT_STATE_OFF;
4422

4423
	pmu = NULL;
4424

4425
	hwc = &event->hw;
4426
	hwc->sample_period = attr->sample_period;
4427
	if (attr->freq && attr->sample_freq)
4428
		hwc->sample_period = 1;
4429
	hwc->last_period = hwc->sample_period;
4430 4431

	atomic64_set(&hwc->period_left, hwc->sample_period);
4432

4433
	/*
4434
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4435
	 */
4436
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4437 4438
		goto done;

4439
	switch (attr->type) {
4440
	case PERF_TYPE_RAW:
4441
	case PERF_TYPE_HARDWARE:
4442
	case PERF_TYPE_HW_CACHE:
4443
		pmu = hw_perf_event_init(event);
4444 4445 4446
		break;

	case PERF_TYPE_SOFTWARE:
4447
		pmu = sw_perf_event_init(event);
4448 4449 4450
		break;

	case PERF_TYPE_TRACEPOINT:
4451
		pmu = tp_perf_event_init(event);
4452
		break;
4453

4454 4455 4456 4457 4458
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4459 4460
	default:
		break;
4461
	}
4462 4463
done:
	err = 0;
4464
	if (!pmu)
4465
		err = -EINVAL;
4466 4467
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4468

4469
	if (err) {
4470 4471 4472
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4473
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4474
	}
4475

4476
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4477

4478 4479 4480 4481 4482 4483 4484 4485
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4486
	}
4487

4488
	return event;
T
Thomas Gleixner 已提交
4489 4490
}

4491 4492
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4493 4494
{
	u32 size;
4495
	int ret;
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4520 4521 4522
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4523 4524
	 */
	if (size > sizeof(*attr)) {
4525 4526 4527
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4528

4529 4530
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4531

4532
		for (; addr < end; addr++) {
4533 4534 4535 4536 4537 4538
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4539
		size = sizeof(*attr);
4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4571
static int perf_event_set_output(struct perf_event *event, int output_fd)
4572
{
4573
	struct perf_event *output_event = NULL;
4574
	struct file *output_file = NULL;
4575
	struct perf_event *old_output;
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4589
	output_event = output_file->private_data;
4590 4591

	/* Don't chain output fds */
4592
	if (output_event->output)
4593 4594 4595
		goto out;

	/* Don't set an output fd when we already have an output channel */
4596
	if (event->data)
4597 4598 4599 4600 4601
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4602 4603 4604 4605
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4606 4607 4608 4609

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4610
		 * is still referencing this event.
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4622
/**
4623
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4624
 *
4625
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4626
 * @pid:		target pid
I
Ingo Molnar 已提交
4627
 * @cpu:		target cpu
4628
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4629
 */
4630 4631
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4632
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4633
{
4634 4635 4636 4637
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4638 4639
	struct file *group_file = NULL;
	int fput_needed = 0;
4640
	int fput_needed2 = 0;
4641
	int err;
T
Thomas Gleixner 已提交
4642

4643
	/* for future expandability... */
4644
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4645 4646
		return -EINVAL;

4647 4648 4649
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4650

4651 4652 4653 4654 4655
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4656
	if (attr.freq) {
4657
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4658 4659 4660
			return -EINVAL;
	}

4661
	/*
I
Ingo Molnar 已提交
4662 4663 4664 4665 4666 4667 4668
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4669
	 * Look up the group leader (we will attach this event to it):
4670 4671
	 */
	group_leader = NULL;
4672
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4673
		err = -EINVAL;
4674 4675
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4676
			goto err_put_context;
4677
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4678
			goto err_put_context;
4679 4680 4681

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4682 4683 4684 4685 4686 4687 4688 4689
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4690
		 */
I
Ingo Molnar 已提交
4691 4692
		if (group_leader->ctx != ctx)
			goto err_put_context;
4693 4694 4695
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4696
		if (attr.exclusive || attr.pinned)
4697
			goto err_put_context;
4698 4699
	}

4700
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4701
				     NULL, NULL, GFP_KERNEL);
4702 4703
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4704 4705
		goto err_put_context;

4706
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4707
	if (err < 0)
4708 4709
		goto err_free_put_context;

4710 4711
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4712 4713
		goto err_free_put_context;

4714
	if (flags & PERF_FLAG_FD_OUTPUT) {
4715
		err = perf_event_set_output(event, group_fd);
4716 4717
		if (err)
			goto err_fput_free_put_context;
4718 4719
	}

4720
	event->filp = event_file;
4721
	WARN_ON_ONCE(ctx->parent_ctx);
4722
	mutex_lock(&ctx->mutex);
4723
	perf_install_in_context(ctx, event, cpu);
4724
	++ctx->generation;
4725
	mutex_unlock(&ctx->mutex);
4726

4727
	event->owner = current;
4728
	get_task_struct(current);
4729 4730 4731
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4732

4733
err_fput_free_put_context:
4734
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4735

4736
err_free_put_context:
4737
	if (err < 0)
4738
		kfree(event);
T
Thomas Gleixner 已提交
4739 4740

err_put_context:
4741 4742 4743 4744
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4745

4746
	return err;
T
Thomas Gleixner 已提交
4747 4748
}

4749 4750 4751 4752 4753 4754 4755 4756 4757
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4758
				 pid_t pid, perf_callback_t callback)
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
4770
		return NULL;
4771 4772

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4773
				     NULL, callback, GFP_KERNEL);
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800
	err = PTR_ERR(event);
	if (IS_ERR(event))
		goto err_put_context;

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

err_put_context:
	if (err < 0)
		put_ctx(ctx);

	return NULL;
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4801
/*
4802
 * inherit a event from parent task to child task:
4803
 */
4804 4805
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4806
	      struct task_struct *parent,
4807
	      struct perf_event_context *parent_ctx,
4808
	      struct task_struct *child,
4809 4810
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4811
{
4812
	struct perf_event *child_event;
4813

4814
	/*
4815 4816
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4817 4818 4819
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4820 4821
	if (parent_event->parent)
		parent_event = parent_event->parent;
4822

4823 4824 4825
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4826
					   NULL, GFP_KERNEL);
4827 4828
	if (IS_ERR(child_event))
		return child_event;
4829
	get_ctx(child_ctx);
4830

4831
	/*
4832
	 * Make the child state follow the state of the parent event,
4833
	 * not its attr.disabled bit.  We hold the parent's mutex,
4834
	 * so we won't race with perf_event_{en, dis}able_family.
4835
	 */
4836 4837
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4838
	else
4839
		child_event->state = PERF_EVENT_STATE_OFF;
4840

4841 4842
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4843

4844 4845
	child_event->overflow_handler = parent_event->overflow_handler;

4846 4847 4848
	/*
	 * Link it up in the child's context:
	 */
4849
	add_event_to_ctx(child_event, child_ctx);
4850 4851 4852

	/*
	 * Get a reference to the parent filp - we will fput it
4853
	 * when the child event exits. This is safe to do because
4854 4855 4856
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4857
	atomic_long_inc(&parent_event->filp->f_count);
4858

4859
	/*
4860
	 * Link this into the parent event's child list
4861
	 */
4862 4863 4864 4865
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4866

4867
	return child_event;
4868 4869
}

4870
static int inherit_group(struct perf_event *parent_event,
4871
	      struct task_struct *parent,
4872
	      struct perf_event_context *parent_ctx,
4873
	      struct task_struct *child,
4874
	      struct perf_event_context *child_ctx)
4875
{
4876 4877 4878
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4879

4880
	leader = inherit_event(parent_event, parent, parent_ctx,
4881
				 child, NULL, child_ctx);
4882 4883
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4884 4885
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4886 4887 4888
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4889
	}
4890 4891 4892
	return 0;
}

4893
static void sync_child_event(struct perf_event *child_event,
4894
			       struct task_struct *child)
4895
{
4896
	struct perf_event *parent_event = child_event->parent;
4897
	u64 child_val;
4898

4899 4900
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4901

4902
	child_val = atomic64_read(&child_event->count);
4903 4904 4905 4906

	/*
	 * Add back the child's count to the parent's count:
	 */
4907 4908 4909 4910 4911
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4912 4913

	/*
4914
	 * Remove this event from the parent's list
4915
	 */
4916 4917 4918 4919
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4920 4921

	/*
4922
	 * Release the parent event, if this was the last
4923 4924
	 * reference to it.
	 */
4925
	fput(parent_event->filp);
4926 4927
}

4928
static void
4929 4930
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4931
			 struct task_struct *child)
4932
{
4933
	struct perf_event *parent_event;
4934

4935
	perf_event_remove_from_context(child_event);
4936

4937
	parent_event = child_event->parent;
4938
	/*
4939
	 * It can happen that parent exits first, and has events
4940
	 * that are still around due to the child reference. These
4941
	 * events need to be zapped - but otherwise linger.
4942
	 */
4943 4944 4945
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4946
	}
4947 4948 4949
}

/*
4950
 * When a child task exits, feed back event values to parent events.
4951
 */
4952
void perf_event_exit_task(struct task_struct *child)
4953
{
4954 4955
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4956
	unsigned long flags;
4957

4958 4959
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4960
		return;
P
Peter Zijlstra 已提交
4961
	}
4962

4963
	local_irq_save(flags);
4964 4965 4966 4967 4968 4969
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4970 4971
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4972 4973 4974

	/*
	 * Take the context lock here so that if find_get_context is
4975
	 * reading child->perf_event_ctxp, we wait until it has
4976 4977 4978
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4979
	child->perf_event_ctxp = NULL;
4980 4981 4982
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
4983
	 * the events from it.
4984 4985
	 */
	unclone_ctx(child_ctx);
4986
	update_context_time(child_ctx);
P
Peter Zijlstra 已提交
4987 4988 4989
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
4990 4991 4992
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
4993
	 */
4994
	perf_event_task(child, child_ctx, 0);
4995

4996 4997 4998
	/*
	 * We can recurse on the same lock type through:
	 *
4999 5000 5001
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5002 5003 5004 5005 5006 5007
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5008

5009
again:
5010
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5011
				 group_entry)
5012
		__perf_event_exit_task(child_event, child_ctx, child);
5013 5014

	/*
5015
	 * If the last event was a group event, it will have appended all
5016 5017 5018
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5019
	if (!list_empty(&child_ctx->group_list))
5020
		goto again;
5021 5022 5023 5024

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5025 5026
}

5027 5028 5029 5030
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5031
void perf_event_free_task(struct task_struct *task)
5032
{
5033 5034
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5035 5036 5037 5038 5039 5040

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5041 5042
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5043 5044 5045 5046 5047

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5048
		list_del_init(&event->child_list);
5049 5050 5051 5052
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5053 5054
		list_del_event(event, ctx);
		free_event(event);
5055 5056
	}

5057
	if (!list_empty(&ctx->group_list))
5058 5059 5060 5061 5062 5063 5064
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5065
/*
5066
 * Initialize the perf_event context in task_struct
5067
 */
5068
int perf_event_init_task(struct task_struct *child)
5069
{
5070 5071 5072
	struct perf_event_context *child_ctx, *parent_ctx;
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5073
	struct task_struct *parent = current;
5074
	int inherited_all = 1;
5075
	int ret = 0;
5076

5077
	child->perf_event_ctxp = NULL;
5078

5079 5080
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5081

5082
	if (likely(!parent->perf_event_ctxp))
5083 5084
		return 0;

5085 5086
	/*
	 * This is executed from the parent task context, so inherit
5087
	 * events that have been marked for cloning.
5088
	 * First allocate and initialize a context for the child.
5089 5090
	 */

5091
	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5092
	if (!child_ctx)
5093
		return -ENOMEM;
5094

5095 5096
	__perf_event_init_context(child_ctx, child);
	child->perf_event_ctxp = child_ctx;
5097
	get_task_struct(child);
5098

5099
	/*
5100 5101
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5102
	 */
5103 5104
	parent_ctx = perf_pin_task_context(parent);

5105 5106 5107 5108 5109 5110 5111
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5112 5113 5114 5115
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5116
	mutex_lock(&parent_ctx->mutex);
5117 5118 5119 5120 5121

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5122
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5123

5124
		if (!event->attr.inherit) {
5125
			inherited_all = 0;
5126
			continue;
5127
		}
5128

5129
		ret = inherit_group(event, parent, parent_ctx,
5130 5131
					     child, child_ctx);
		if (ret) {
5132
			inherited_all = 0;
5133
			break;
5134 5135 5136 5137 5138 5139 5140
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5141 5142
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5143
		 * because the list of events and the generation
5144
		 * count can't have changed since we took the mutex.
5145
		 */
5146 5147 5148
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5149
			child_ctx->parent_gen = parent_ctx->parent_gen;
5150 5151 5152 5153 5154
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5155 5156
	}

5157
	mutex_unlock(&parent_ctx->mutex);
5158

5159
	perf_unpin_context(parent_ctx);
5160

5161
	return ret;
5162 5163
}

5164
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5165
{
5166
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5167

5168
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5169
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5170

5171
	spin_lock(&perf_resource_lock);
5172
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5173
	spin_unlock(&perf_resource_lock);
5174

5175
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5176 5177 5178
}

#ifdef CONFIG_HOTPLUG_CPU
5179
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5180 5181
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5182 5183
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5184

5185 5186
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5187
}
5188
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5189
{
5190
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5191
	struct perf_event_context *ctx = &cpuctx->ctx;
5192 5193

	mutex_lock(&ctx->mutex);
5194
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5195
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5196 5197
}
#else
5198
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5210
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5211 5212
		break;

5213 5214
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5215
		hw_perf_event_setup_online(cpu);
5216 5217
		break;

T
Thomas Gleixner 已提交
5218 5219
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5220
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5221 5222 5223 5224 5225 5226 5227 5228 5229
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5230 5231 5232
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5233 5234
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5235
	.priority		= 20,
T
Thomas Gleixner 已提交
5236 5237
};

5238
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5239 5240 5241
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5242 5243
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5264
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5265 5266
		return -EINVAL;

5267
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5268 5269 5270 5271
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
5272 5273
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5274 5275 5276
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
5277
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5299
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5300
	perf_overcommit = val;
5301
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5328
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5329 5330
};

5331
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5332 5333 5334 5335
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5336
device_initcall(perf_event_sysfs_init);