perf_event.c 136.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
37
/*
38
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
39
 */
40
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
41

42 43 44 45
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
46

47
/*
48
 * perf event paranoia level:
49 50
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
51
 *   1 - disallow cpu events for unpriv
52
 *   2 - disallow kernel profiling for unpriv
53
 */
54
int sysctl_perf_event_paranoid __read_mostly = 1;
55

56
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
57 58

/*
59
 * max perf event sample rate
60
 */
61
int sysctl_perf_event_sample_rate __read_mostly = 100000;
62

63
static atomic64_t perf_event_id;
64

65
void __weak perf_event_print_debug(void)	{ }
66

P
Peter Zijlstra 已提交
67
void perf_pmu_disable(struct pmu *pmu)
68
{
P
Peter Zijlstra 已提交
69 70 71
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
72 73
}

P
Peter Zijlstra 已提交
74
void perf_pmu_enable(struct pmu *pmu)
75
{
P
Peter Zijlstra 已提交
76 77 78
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
79 80
}

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
static void perf_pmu_rotate_start(void)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

	if (hrtimer_active(&cpuctx->timer))
		return;

	__hrtimer_start_range_ns(&cpuctx->timer,
			ns_to_ktime(cpuctx->timer_interval), 0,
			HRTIMER_MODE_REL_PINNED, 0);
}

static void perf_pmu_rotate_stop(void)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

	hrtimer_cancel(&cpuctx->timer);
}

100
static void get_ctx(struct perf_event_context *ctx)
101
{
102
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
103 104
}

105 106
static void free_ctx(struct rcu_head *head)
{
107
	struct perf_event_context *ctx;
108

109
	ctx = container_of(head, struct perf_event_context, rcu_head);
110 111 112
	kfree(ctx);
}

113
static void put_ctx(struct perf_event_context *ctx)
114
{
115 116 117
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
118 119 120
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
121
	}
122 123
}

124
static void unclone_ctx(struct perf_event_context *ctx)
125 126 127 128 129 130 131
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

132
/*
133
 * If we inherit events we want to return the parent event id
134 135
 * to userspace.
 */
136
static u64 primary_event_id(struct perf_event *event)
137
{
138
	u64 id = event->id;
139

140 141
	if (event->parent)
		id = event->parent->id;
142 143 144 145

	return id;
}

146
/*
147
 * Get the perf_event_context for a task and lock it.
148 149 150
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
151
static struct perf_event_context *
152
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
153
{
154
	struct perf_event_context *ctx;
155 156

	rcu_read_lock();
P
Peter Zijlstra 已提交
157
retry:
158
	ctx = rcu_dereference(task->perf_event_ctxp);
159 160 161 162
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
163
		 * perf_event_task_sched_out, though the
164 165 166 167 168 169
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
170
		raw_spin_lock_irqsave(&ctx->lock, *flags);
171
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
172
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
173 174
			goto retry;
		}
175 176

		if (!atomic_inc_not_zero(&ctx->refcount)) {
177
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
178 179
			ctx = NULL;
		}
180 181 182 183 184 185 186 187 188 189
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
190
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
191
{
192
	struct perf_event_context *ctx;
193 194 195 196 197
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
198
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
199 200 201 202
	}
	return ctx;
}

203
static void perf_unpin_context(struct perf_event_context *ctx)
204 205 206
{
	unsigned long flags;

207
	raw_spin_lock_irqsave(&ctx->lock, flags);
208
	--ctx->pin_count;
209
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
210 211 212
	put_ctx(ctx);
}

213 214
static inline u64 perf_clock(void)
{
215
	return local_clock();
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

241 242 243 244 245 246
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
247 248 249 250 251 252 253 254 255

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

256 257 258 259 260 261 262 263 264 265 266 267
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

268 269 270 271 272 273 274 275 276
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

277
/*
278
 * Add a event from the lists for its context.
279 280
 * Must be called with ctx->mutex and ctx->lock held.
 */
281
static void
282
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
283
{
284 285
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
286 287

	/*
288 289 290
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
291
	 */
292
	if (event->group_leader == event) {
293 294
		struct list_head *list;

295 296 297
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

298 299
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
300
	}
P
Peter Zijlstra 已提交
301

302
	list_add_rcu(&event->event_entry, &ctx->event_list);
303 304
	if (!ctx->nr_events)
		perf_pmu_rotate_start();
305 306
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

328
/*
329
 * Remove a event from the lists for its context.
330
 * Must be called with ctx->mutex and ctx->lock held.
331
 */
332
static void
333
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334
{
335 336 337 338
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339
		return;
340 341 342

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

343 344
	ctx->nr_events--;
	if (event->attr.inherit_stat)
345
		ctx->nr_stat--;
346

347
	list_del_rcu(&event->event_entry);
348

349 350
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
351

352
	update_group_times(event);
353 354 355 356 357 358 359 360 361 362

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
363 364
}

365
static void perf_group_detach(struct perf_event *event)
366 367
{
	struct perf_event *sibling, *tmp;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
389

390
	/*
391 392
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
393
	 * to whatever list we are on.
394
	 */
395
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 397
		if (list)
			list_move_tail(&sibling->group_entry, list);
398
		sibling->group_leader = sibling;
399 400 401

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
402 403 404
	}
}

405 406 407 408 409 410
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

411
static void
412
event_sched_out(struct perf_event *event,
413
		  struct perf_cpu_context *cpuctx,
414
		  struct perf_event_context *ctx)
415
{
416 417 418 419 420 421 422 423 424 425 426 427 428 429
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

430
	if (event->state != PERF_EVENT_STATE_ACTIVE)
431 432
		return;

433 434 435 436
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
437
	}
438
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
439
	event->pmu->del(event, 0);
440
	event->oncpu = -1;
441

442
	if (!is_software_event(event))
443 444
		cpuctx->active_oncpu--;
	ctx->nr_active--;
445
	if (event->attr.exclusive || !cpuctx->active_oncpu)
446 447 448
		cpuctx->exclusive = 0;
}

449
static void
450
group_sched_out(struct perf_event *group_event,
451
		struct perf_cpu_context *cpuctx,
452
		struct perf_event_context *ctx)
453
{
454
	struct perf_event *event;
455
	int state = group_event->state;
456

457
	event_sched_out(group_event, cpuctx, ctx);
458 459 460 461

	/*
	 * Schedule out siblings (if any):
	 */
462 463
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
464

465
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
466 467 468
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
469
/*
470
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
471
 *
472
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
473 474
 * remove it from the context list.
 */
475
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
476 477
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
478 479
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
480 481 482 483 484 485

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
486
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
487 488
		return;

489
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
490

491
	event_sched_out(event, cpuctx, ctx);
492

493
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
494

495
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
496 497 498 499
}


/*
500
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
501
 *
502
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
503
 *
504
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
505
 * call when the task is on a CPU.
506
 *
507 508
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
509 510
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
511
 * When called from perf_event_exit_task, it's OK because the
512
 * context has been detached from its task.
T
Thomas Gleixner 已提交
513
 */
514
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
515
{
516
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
517 518 519 520
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
521
		 * Per cpu events are removed via an smp call and
522
		 * the removal is always successful.
T
Thomas Gleixner 已提交
523
		 */
524 525 526
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
527 528 529 530
		return;
	}

retry:
531 532
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
533

534
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
535 536 537
	/*
	 * If the context is active we need to retry the smp call.
	 */
538
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
539
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
540 541 542 543 544
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
545
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
546 547
	 * succeed.
	 */
P
Peter Zijlstra 已提交
548
	if (!list_empty(&event->group_entry))
549
		list_del_event(event, ctx);
550
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
551 552
}

553
/*
554
 * Cross CPU call to disable a performance event
555
 */
556
static void __perf_event_disable(void *info)
557
{
558
	struct perf_event *event = info;
559
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
560
	struct perf_event_context *ctx = event->ctx;
561 562

	/*
563 564
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
565
	 */
566
	if (ctx->task && cpuctx->task_ctx != ctx)
567 568
		return;

569
	raw_spin_lock(&ctx->lock);
570 571

	/*
572
	 * If the event is on, turn it off.
573 574
	 * If it is in error state, leave it in error state.
	 */
575
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
576
		update_context_time(ctx);
577 578 579
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
580
		else
581 582
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
583 584
	}

585
	raw_spin_unlock(&ctx->lock);
586 587 588
}

/*
589
 * Disable a event.
590
 *
591 592
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
593
 * remains valid.  This condition is satisifed when called through
594 595 596 597
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
598
 * is the current context on this CPU and preemption is disabled,
599
 * hence we can't get into perf_event_task_sched_out for this context.
600
 */
601
void perf_event_disable(struct perf_event *event)
602
{
603
	struct perf_event_context *ctx = event->ctx;
604 605 606 607
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
608
		 * Disable the event on the cpu that it's on
609
		 */
610 611
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
612 613 614
		return;
	}

P
Peter Zijlstra 已提交
615
retry:
616
	task_oncpu_function_call(task, __perf_event_disable, event);
617

618
	raw_spin_lock_irq(&ctx->lock);
619
	/*
620
	 * If the event is still active, we need to retry the cross-call.
621
	 */
622
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
623
		raw_spin_unlock_irq(&ctx->lock);
624 625 626 627 628 629 630
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
631 632 633
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
634
	}
635

636
	raw_spin_unlock_irq(&ctx->lock);
637 638
}

639
static int
640
event_sched_in(struct perf_event *event,
641
		 struct perf_cpu_context *cpuctx,
642
		 struct perf_event_context *ctx)
643
{
644
	if (event->state <= PERF_EVENT_STATE_OFF)
645 646
		return 0;

647
	event->state = PERF_EVENT_STATE_ACTIVE;
648
	event->oncpu = smp_processor_id();
649 650 651 652 653
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
654
	if (event->pmu->add(event, PERF_EF_START)) {
655 656
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
657 658 659
		return -EAGAIN;
	}

660
	event->tstamp_running += ctx->time - event->tstamp_stopped;
661

662
	if (!is_software_event(event))
663
		cpuctx->active_oncpu++;
664 665
	ctx->nr_active++;

666
	if (event->attr.exclusive)
667 668
		cpuctx->exclusive = 1;

669 670 671
	return 0;
}

672
static int
673
group_sched_in(struct perf_event *group_event,
674
	       struct perf_cpu_context *cpuctx,
675
	       struct perf_event_context *ctx)
676
{
677
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
678
	struct pmu *pmu = group_event->pmu;
679

680
	if (group_event->state == PERF_EVENT_STATE_OFF)
681 682
		return 0;

P
Peter Zijlstra 已提交
683
	pmu->start_txn(pmu);
684

685
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
686
		pmu->cancel_txn(pmu);
687
		return -EAGAIN;
688
	}
689 690 691 692

	/*
	 * Schedule in siblings as one group (if any):
	 */
693
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
694
		if (event_sched_in(event, cpuctx, ctx)) {
695
			partial_group = event;
696 697 698 699
			goto group_error;
		}
	}

P
Peter Zijlstra 已提交
700
	if (!pmu->commit_txn(pmu))
701
		return 0;
702

703 704 705 706 707
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
708 709
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
710
			break;
711
		event_sched_out(event, cpuctx, ctx);
712
	}
713
	event_sched_out(group_event, cpuctx, ctx);
714

P
Peter Zijlstra 已提交
715
	pmu->cancel_txn(pmu);
716

717 718 719
	return -EAGAIN;
}

720
/*
721
 * Work out whether we can put this event group on the CPU now.
722
 */
723
static int group_can_go_on(struct perf_event *event,
724 725 726 727
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
728
	 * Groups consisting entirely of software events can always go on.
729
	 */
730
	if (event->group_flags & PERF_GROUP_SOFTWARE)
731 732 733
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
734
	 * events can go on.
735 736 737 738 739
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
740
	 * events on the CPU, it can't go on.
741
	 */
742
	if (event->attr.exclusive && cpuctx->active_oncpu)
743 744 745 746 747 748 749 750
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

751 752
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
753
{
754
	list_add_event(event, ctx);
755
	perf_group_attach(event);
756 757 758
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
759 760
}

T
Thomas Gleixner 已提交
761
/*
762
 * Cross CPU call to install and enable a performance event
763 764
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
765 766 767 768
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
769 770 771
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
772
	int err;
T
Thomas Gleixner 已提交
773 774 775 776 777

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
778
	 * Or possibly this is the right context but it isn't
779
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
780
	 */
781
	if (ctx->task && cpuctx->task_ctx != ctx) {
782
		if (cpuctx->task_ctx || ctx->task != current)
783 784 785
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
786

787
	raw_spin_lock(&ctx->lock);
788
	ctx->is_active = 1;
789
	update_context_time(ctx);
T
Thomas Gleixner 已提交
790

791
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
792

793 794 795
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

796
	/*
797
	 * Don't put the event on if it is disabled or if
798 799
	 * it is in a group and the group isn't on.
	 */
800 801
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
802 803
		goto unlock;

804
	/*
805 806 807
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
808
	 */
809
	if (!group_can_go_on(event, cpuctx, 1))
810 811
		err = -EEXIST;
	else
812
		err = event_sched_in(event, cpuctx, ctx);
813

814 815
	if (err) {
		/*
816
		 * This event couldn't go on.  If it is in a group
817
		 * then we have to pull the whole group off.
818
		 * If the event group is pinned then put it in error state.
819
		 */
820
		if (leader != event)
821
			group_sched_out(leader, cpuctx, ctx);
822
		if (leader->attr.pinned) {
823
			update_group_times(leader);
824
			leader->state = PERF_EVENT_STATE_ERROR;
825
		}
826
	}
T
Thomas Gleixner 已提交
827

P
Peter Zijlstra 已提交
828
unlock:
829
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
830 831 832
}

/*
833
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
834
 *
835 836
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
837
 *
838
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
839 840
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
841 842
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
843 844
 */
static void
845 846
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
847 848 849 850
			int cpu)
{
	struct task_struct *task = ctx->task;

851 852
	event->ctx = ctx;

T
Thomas Gleixner 已提交
853 854
	if (!task) {
		/*
855
		 * Per cpu events are installed via an smp call and
856
		 * the install is always successful.
T
Thomas Gleixner 已提交
857 858
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
859
					 event, 1);
T
Thomas Gleixner 已提交
860 861 862 863 864
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
865
				 event);
T
Thomas Gleixner 已提交
866

867
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
868 869 870
	/*
	 * we need to retry the smp call.
	 */
871
	if (ctx->is_active && list_empty(&event->group_entry)) {
872
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
873 874 875 876 877
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
878
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
879 880
	 * succeed.
	 */
881 882
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
883
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
884 885
}

886
/*
887
 * Put a event into inactive state and update time fields.
888 889 890 891 892 893
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
894 895
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
896
{
897
	struct perf_event *sub;
898

899 900
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
901 902
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
903 904
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
905 906
		}
	}
907 908
}

909
/*
910
 * Cross CPU call to enable a performance event
911
 */
912
static void __perf_event_enable(void *info)
913
{
914
	struct perf_event *event = info;
915
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
916 917
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
918
	int err;
919

920
	/*
921 922
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
923
	 */
924
	if (ctx->task && cpuctx->task_ctx != ctx) {
925
		if (cpuctx->task_ctx || ctx->task != current)
926 927 928
			return;
		cpuctx->task_ctx = ctx;
	}
929

930
	raw_spin_lock(&ctx->lock);
931
	ctx->is_active = 1;
932
	update_context_time(ctx);
933

934
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
935
		goto unlock;
936
	__perf_event_mark_enabled(event, ctx);
937

938 939 940
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

941
	/*
942
	 * If the event is in a group and isn't the group leader,
943
	 * then don't put it on unless the group is on.
944
	 */
945
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
946
		goto unlock;
947

948
	if (!group_can_go_on(event, cpuctx, 1)) {
949
		err = -EEXIST;
950
	} else {
951
		if (event == leader)
952
			err = group_sched_in(event, cpuctx, ctx);
953
		else
954
			err = event_sched_in(event, cpuctx, ctx);
955
	}
956 957 958

	if (err) {
		/*
959
		 * If this event can't go on and it's part of a
960 961
		 * group, then the whole group has to come off.
		 */
962
		if (leader != event)
963
			group_sched_out(leader, cpuctx, ctx);
964
		if (leader->attr.pinned) {
965
			update_group_times(leader);
966
			leader->state = PERF_EVENT_STATE_ERROR;
967
		}
968 969
	}

P
Peter Zijlstra 已提交
970
unlock:
971
	raw_spin_unlock(&ctx->lock);
972 973 974
}

/*
975
 * Enable a event.
976
 *
977 978
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
979
 * remains valid.  This condition is satisfied when called through
980 981
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
982
 */
983
void perf_event_enable(struct perf_event *event)
984
{
985
	struct perf_event_context *ctx = event->ctx;
986 987 988 989
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
990
		 * Enable the event on the cpu that it's on
991
		 */
992 993
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
994 995 996
		return;
	}

997
	raw_spin_lock_irq(&ctx->lock);
998
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
999 1000 1001
		goto out;

	/*
1002 1003
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1004 1005 1006 1007
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1008 1009
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1010

P
Peter Zijlstra 已提交
1011
retry:
1012
	raw_spin_unlock_irq(&ctx->lock);
1013
	task_oncpu_function_call(task, __perf_event_enable, event);
1014

1015
	raw_spin_lock_irq(&ctx->lock);
1016 1017

	/*
1018
	 * If the context is active and the event is still off,
1019 1020
	 * we need to retry the cross-call.
	 */
1021
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1022 1023 1024 1025 1026 1027
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1028 1029
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1030

P
Peter Zijlstra 已提交
1031
out:
1032
	raw_spin_unlock_irq(&ctx->lock);
1033 1034
}

1035
static int perf_event_refresh(struct perf_event *event, int refresh)
1036
{
1037
	/*
1038
	 * not supported on inherited events
1039
	 */
1040
	if (event->attr.inherit)
1041 1042
		return -EINVAL;

1043 1044
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1045 1046

	return 0;
1047 1048
}

1049 1050 1051 1052 1053 1054 1055 1056 1057
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1058
{
1059
	struct perf_event *event;
1060

1061
	raw_spin_lock(&ctx->lock);
1062
	ctx->is_active = 0;
1063
	if (likely(!ctx->nr_events))
1064
		goto out;
1065
	update_context_time(ctx);
1066

1067
	if (!ctx->nr_active)
1068
		goto out;
1069

P
Peter Zijlstra 已提交
1070
	if (event_type & EVENT_PINNED) {
1071 1072
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1073
	}
1074

P
Peter Zijlstra 已提交
1075
	if (event_type & EVENT_FLEXIBLE) {
1076
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1077
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1078 1079
	}
out:
1080
	raw_spin_unlock(&ctx->lock);
1081 1082
}

1083 1084 1085
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1086 1087 1088 1089
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1090
 * in them directly with an fd; we can only enable/disable all
1091
 * events via prctl, or enable/disable all events in a family
1092 1093
 * via ioctl, which will have the same effect on both contexts.
 */
1094 1095
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1096 1097
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1098
		&& ctx1->parent_gen == ctx2->parent_gen
1099
		&& !ctx1->pin_count && !ctx2->pin_count;
1100 1101
}

1102 1103
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1104 1105 1106
{
	u64 value;

1107
	if (!event->attr.inherit_stat)
1108 1109 1110
		return;

	/*
1111
	 * Update the event value, we cannot use perf_event_read()
1112 1113
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1114
	 * we know the event must be on the current CPU, therefore we
1115 1116
	 * don't need to use it.
	 */
1117 1118
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1119 1120
		event->pmu->read(event);
		/* fall-through */
1121

1122 1123
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1124 1125 1126 1127 1128 1129 1130
		break;

	default:
		break;
	}

	/*
1131
	 * In order to keep per-task stats reliable we need to flip the event
1132 1133
	 * values when we flip the contexts.
	 */
1134 1135 1136
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1137

1138 1139
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1140

1141
	/*
1142
	 * Since we swizzled the values, update the user visible data too.
1143
	 */
1144 1145
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1146 1147 1148 1149 1150
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1151 1152
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1153
{
1154
	struct perf_event *event, *next_event;
1155 1156 1157 1158

	if (!ctx->nr_stat)
		return;

1159 1160
	update_context_time(ctx);

1161 1162
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1163

1164 1165
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1166

1167 1168
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1169

1170
		__perf_event_sync_stat(event, next_event);
1171

1172 1173
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1174 1175 1176
	}
}

T
Thomas Gleixner 已提交
1177
/*
1178
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1179 1180
 * with interrupts disabled.
 *
1181
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1182
 *
I
Ingo Molnar 已提交
1183
 * This does not protect us against NMI, but disable()
1184 1185 1186
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1187
 */
1188
void perf_event_task_sched_out(struct task_struct *task,
1189
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1190
{
1191
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1192 1193 1194
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1195
	int do_switch = 1;
T
Thomas Gleixner 已提交
1196

1197
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1198

1199
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1200 1201
		return;

1202 1203
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1204
	next_ctx = next->perf_event_ctxp;
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1216 1217
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1218
		if (context_equiv(ctx, next_ctx)) {
1219 1220
			/*
			 * XXX do we need a memory barrier of sorts
1221
			 * wrt to rcu_dereference() of perf_event_ctxp
1222
			 */
1223 1224
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1225 1226 1227
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1228

1229
			perf_event_sync_stat(ctx, next_ctx);
1230
		}
1231 1232
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1233
	}
1234
	rcu_read_unlock();
1235

1236
	if (do_switch) {
1237
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1238 1239
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1240 1241
}

1242 1243
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1244 1245 1246
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1247 1248
	if (!cpuctx->task_ctx)
		return;
1249 1250 1251 1252

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1253
	ctx_sched_out(ctx, cpuctx, event_type);
1254 1255 1256
	cpuctx->task_ctx = NULL;
}

1257 1258 1259
/*
 * Called with IRQs disabled
 */
1260
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1261
{
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1272 1273
}

1274
static void
1275
ctx_pinned_sched_in(struct perf_event_context *ctx,
1276
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1277
{
1278
	struct perf_event *event;
T
Thomas Gleixner 已提交
1279

1280 1281
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1282
			continue;
1283
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1284 1285
			continue;

1286
		if (group_can_go_on(event, cpuctx, 1))
1287
			group_sched_in(event, cpuctx, ctx);
1288 1289 1290 1291 1292

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1293 1294 1295
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1296
		}
1297
	}
1298 1299 1300 1301
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1302
		      struct perf_cpu_context *cpuctx)
1303 1304 1305
{
	struct perf_event *event;
	int can_add_hw = 1;
1306

1307 1308 1309
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1310
			continue;
1311 1312
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1313
		 * of events:
1314
		 */
1315
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1316 1317
			continue;

P
Peter Zijlstra 已提交
1318
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1319
			if (group_sched_in(event, cpuctx, ctx))
1320
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1321
		}
T
Thomas Gleixner 已提交
1322
	}
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1342
		ctx_pinned_sched_in(ctx, cpuctx);
1343 1344 1345

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1346
		ctx_flexible_sched_in(ctx, cpuctx);
1347

P
Peter Zijlstra 已提交
1348
out:
1349
	raw_spin_unlock(&ctx->lock);
1350 1351
}

1352 1353 1354 1355 1356 1357 1358 1359
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1373
/*
1374
 * Called from scheduler to add the events of the current task
1375 1376
 * with interrupts disabled.
 *
1377
 * We restore the event value and then enable it.
1378 1379
 *
 * This does not protect us against NMI, but enable()
1380 1381 1382
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1383
 */
1384
void perf_event_task_sched_in(struct task_struct *task)
1385
{
1386 1387
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1388

1389 1390
	if (likely(!ctx))
		return;
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	if (cpuctx->task_ctx == ctx)
		return;

	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1407 1408 1409 1410 1411 1412

	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
	perf_pmu_rotate_start();
1413 1414
}

1415 1416
#define MAX_INTERRUPTS (~0ULL)

1417
static void perf_log_throttle(struct perf_event *event, int enable);
1418

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1486 1487 1488
	if (!divisor)
		return dividend;

1489 1490 1491 1492
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1493
{
1494
	struct hw_perf_event *hwc = &event->hw;
1495
	s64 period, sample_period;
1496 1497
	s64 delta;

1498
	period = perf_calculate_period(event, nsec, count);
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1509

1510
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1511
		event->pmu->stop(event, PERF_EF_UPDATE);
1512
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1513
		event->pmu->start(event, PERF_EF_RELOAD);
1514
	}
1515 1516
}

1517
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1518
{
1519 1520
	struct perf_event *event;
	struct hw_perf_event *hwc;
1521 1522
	u64 interrupts, now;
	s64 delta;
1523

1524
	raw_spin_lock(&ctx->lock);
1525
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1526
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1527 1528
			continue;

1529 1530 1531
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1532
		hwc = &event->hw;
1533 1534 1535

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1536

1537
		/*
1538
		 * unthrottle events on the tick
1539
		 */
1540
		if (interrupts == MAX_INTERRUPTS) {
1541
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1542
			event->pmu->start(event, 0);
1543 1544
		}

1545
		if (!event->attr.freq || !event->attr.sample_freq)
1546 1547
			continue;

1548
		event->pmu->read(event);
1549
		now = local64_read(&event->count);
1550 1551
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1552

1553
		if (delta > 0)
1554
			perf_adjust_period(event, period, delta);
1555
	}
1556
	raw_spin_unlock(&ctx->lock);
1557 1558
}

1559
/*
1560
 * Round-robin a context's events:
1561
 */
1562
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1563
{
1564
	raw_spin_lock(&ctx->lock);
1565 1566 1567 1568

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1569
	raw_spin_unlock(&ctx->lock);
1570 1571
}

1572 1573 1574 1575 1576 1577
/*
 * Cannot race with ->pmu_rotate_start() because this is ran from hardirq
 * context, and ->pmu_rotate_start() is called with irqs disabled (both are
 * cpu affine, so there are no SMP races).
 */
static enum hrtimer_restart perf_event_context_tick(struct hrtimer *timer)
1578
{
1579
	enum hrtimer_restart restart = HRTIMER_NORESTART;
1580
	struct perf_cpu_context *cpuctx;
1581
	struct perf_event_context *ctx;
1582
	int rotate = 0;
1583

1584
	cpuctx = container_of(timer, struct perf_cpu_context, timer);
1585

1586 1587 1588 1589 1590
	if (cpuctx->ctx.nr_events) {
		restart = HRTIMER_RESTART;
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1591

1592 1593 1594 1595 1596 1597
	ctx = current->perf_event_ctxp;
	if (ctx && ctx->nr_events) {
		restart = HRTIMER_RESTART;
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1598

1599
	perf_ctx_adjust_freq(&cpuctx->ctx, cpuctx->timer_interval);
1600
	if (ctx)
1601
		perf_ctx_adjust_freq(ctx, cpuctx->timer_interval);
1602

1603
	if (!rotate)
1604
		goto done;
1605

1606
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1607
	if (ctx)
1608
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1609

1610
	rotate_ctx(&cpuctx->ctx);
1611 1612
	if (ctx)
		rotate_ctx(ctx);
1613

1614
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1615
	if (ctx)
1616 1617 1618 1619 1620 1621
		task_ctx_sched_in(current, EVENT_FLEXIBLE);

done:
	hrtimer_forward_now(timer, ns_to_ktime(cpuctx->timer_interval));

	return restart;
T
Thomas Gleixner 已提交
1622 1623
}

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1639
/*
1640
 * Enable all of a task's events that have been marked enable-on-exec.
1641 1642
 * This expects task == current.
 */
1643
static void perf_event_enable_on_exec(struct task_struct *task)
1644
{
1645 1646
	struct perf_event_context *ctx;
	struct perf_event *event;
1647 1648
	unsigned long flags;
	int enabled = 0;
1649
	int ret;
1650 1651

	local_irq_save(flags);
1652 1653
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1654 1655
		goto out;

1656
	__perf_event_task_sched_out(ctx);
1657

1658
	raw_spin_lock(&ctx->lock);
1659

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1670 1671 1672
	}

	/*
1673
	 * Unclone this context if we enabled any event.
1674
	 */
1675 1676
	if (enabled)
		unclone_ctx(ctx);
1677

1678
	raw_spin_unlock(&ctx->lock);
1679

1680
	perf_event_task_sched_in(task);
P
Peter Zijlstra 已提交
1681
out:
1682 1683 1684
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1685
/*
1686
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1687
 */
1688
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1689
{
1690
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1691 1692
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1693

1694 1695 1696 1697
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1698 1699
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1700 1701 1702 1703
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1704
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1705
	update_context_time(ctx);
1706
	update_event_times(event);
1707
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1708

P
Peter Zijlstra 已提交
1709
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1710 1711
}

P
Peter Zijlstra 已提交
1712 1713
static inline u64 perf_event_count(struct perf_event *event)
{
1714
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1715 1716
}

1717
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1718 1719
{
	/*
1720 1721
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1722
	 */
1723 1724 1725 1726
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1727 1728 1729
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1730
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1731
		update_context_time(ctx);
1732
		update_event_times(event);
1733
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1734 1735
	}

P
Peter Zijlstra 已提交
1736
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1737 1738
}

1739 1740 1741 1742 1743 1744 1745 1746 1747
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1748
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1804
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1949
/*
1950
 * Initialize the perf_event context in a task_struct:
1951 1952
 */
static void
1953
__perf_event_init_context(struct perf_event_context *ctx,
1954 1955
			    struct task_struct *task)
{
1956
	raw_spin_lock_init(&ctx->lock);
1957
	mutex_init(&ctx->mutex);
1958 1959
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1960 1961 1962 1963 1964
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1965
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1966
{
1967
	struct perf_event_context *ctx;
1968
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1969
	struct task_struct *task;
1970
	unsigned long flags;
1971
	int err;
T
Thomas Gleixner 已提交
1972

1973
	if (pid == -1 && cpu != -1) {
1974
		/* Must be root to operate on a CPU event: */
1975
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1976 1977
			return ERR_PTR(-EACCES);

1978
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1979 1980 1981
			return ERR_PTR(-EINVAL);

		/*
1982
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1983 1984 1985
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1986
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1987 1988 1989 1990
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1991
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2008
	/*
2009
	 * Can't attach events to a dying task.
2010 2011 2012 2013 2014
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2015
	/* Reuse ptrace permission checks for now. */
2016 2017 2018 2019
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

P
Peter Zijlstra 已提交
2020
retry:
2021
	ctx = perf_lock_task_context(task, &flags);
2022
	if (ctx) {
2023
		unclone_ctx(ctx);
2024
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2025 2026
	}

2027
	if (!ctx) {
2028
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2029 2030 2031
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2032
		__perf_event_init_context(ctx, task);
2033
		get_ctx(ctx);
2034
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2035 2036 2037 2038 2039
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
2040
			goto retry;
2041
		}
2042
		get_task_struct(task);
2043 2044
	}

2045
	put_task_struct(task);
T
Thomas Gleixner 已提交
2046
	return ctx;
2047

P
Peter Zijlstra 已提交
2048
errout:
2049 2050
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2051 2052
}

L
Li Zefan 已提交
2053 2054
static void perf_event_free_filter(struct perf_event *event);

2055
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2056
{
2057
	struct perf_event *event;
P
Peter Zijlstra 已提交
2058

2059 2060 2061
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2062
	perf_event_free_filter(event);
2063
	kfree(event);
P
Peter Zijlstra 已提交
2064 2065
}

2066
static void perf_pending_sync(struct perf_event *event);
2067
static void perf_buffer_put(struct perf_buffer *buffer);
2068

2069
static void free_event(struct perf_event *event)
2070
{
2071
	perf_pending_sync(event);
2072

2073 2074
	if (!event->parent) {
		atomic_dec(&nr_events);
2075
		if (event->attr.mmap || event->attr.mmap_data)
2076 2077 2078 2079 2080
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2081 2082
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2083
	}
2084

2085 2086 2087
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2088 2089
	}

2090 2091
	if (event->destroy)
		event->destroy(event);
2092

2093 2094
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
2095 2096
}

2097
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2098
{
2099
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2100

2101 2102 2103 2104 2105 2106
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2107
	WARN_ON_ONCE(ctx->parent_ctx);
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2121
	raw_spin_lock_irq(&ctx->lock);
2122
	perf_group_detach(event);
2123 2124
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2125
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2126

2127 2128 2129 2130
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2131

2132
	free_event(event);
T
Thomas Gleixner 已提交
2133 2134 2135

	return 0;
}
2136
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2137

2138 2139 2140 2141
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2142
{
2143
	struct perf_event *event = file->private_data;
2144

2145
	file->private_data = NULL;
2146

2147
	return perf_event_release_kernel(event);
2148 2149
}

2150
static int perf_event_read_size(struct perf_event *event)
2151 2152 2153 2154 2155
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2156
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2157 2158
		size += sizeof(u64);

2159
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2160 2161
		size += sizeof(u64);

2162
	if (event->attr.read_format & PERF_FORMAT_ID)
2163 2164
		entry += sizeof(u64);

2165 2166
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2167 2168 2169 2170 2171 2172 2173 2174
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2175
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2176
{
2177
	struct perf_event *child;
2178 2179
	u64 total = 0;

2180 2181 2182
	*enabled = 0;
	*running = 0;

2183
	mutex_lock(&event->child_mutex);
2184
	total += perf_event_read(event);
2185 2186 2187 2188 2189 2190
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2191
		total += perf_event_read(child);
2192 2193 2194
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2195
	mutex_unlock(&event->child_mutex);
2196 2197 2198

	return total;
}
2199
EXPORT_SYMBOL_GPL(perf_event_read_value);
2200

2201
static int perf_event_read_group(struct perf_event *event,
2202 2203
				   u64 read_format, char __user *buf)
{
2204
	struct perf_event *leader = event->group_leader, *sub;
2205 2206
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2207
	u64 values[5];
2208
	u64 count, enabled, running;
2209

2210
	mutex_lock(&ctx->mutex);
2211
	count = perf_event_read_value(leader, &enabled, &running);
2212 2213

	values[n++] = 1 + leader->nr_siblings;
2214 2215 2216 2217
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2218 2219 2220
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2221 2222 2223 2224

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2225
		goto unlock;
2226

2227
	ret = size;
2228

2229
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2230
		n = 0;
2231

2232
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2233 2234 2235 2236 2237
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2238
		if (copy_to_user(buf + ret, values, size)) {
2239 2240 2241
			ret = -EFAULT;
			goto unlock;
		}
2242 2243

		ret += size;
2244
	}
2245 2246
unlock:
	mutex_unlock(&ctx->mutex);
2247

2248
	return ret;
2249 2250
}

2251
static int perf_event_read_one(struct perf_event *event,
2252 2253
				 u64 read_format, char __user *buf)
{
2254
	u64 enabled, running;
2255 2256 2257
	u64 values[4];
	int n = 0;

2258 2259 2260 2261 2262
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2263
	if (read_format & PERF_FORMAT_ID)
2264
		values[n++] = primary_event_id(event);
2265 2266 2267 2268 2269 2270 2271

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2272
/*
2273
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2274 2275
 */
static ssize_t
2276
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2277
{
2278
	u64 read_format = event->attr.read_format;
2279
	int ret;
T
Thomas Gleixner 已提交
2280

2281
	/*
2282
	 * Return end-of-file for a read on a event that is in
2283 2284 2285
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2286
	if (event->state == PERF_EVENT_STATE_ERROR)
2287 2288
		return 0;

2289
	if (count < perf_event_read_size(event))
2290 2291
		return -ENOSPC;

2292
	WARN_ON_ONCE(event->ctx->parent_ctx);
2293
	if (read_format & PERF_FORMAT_GROUP)
2294
		ret = perf_event_read_group(event, read_format, buf);
2295
	else
2296
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2297

2298
	return ret;
T
Thomas Gleixner 已提交
2299 2300 2301 2302 2303
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2304
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2305

2306
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2307 2308 2309 2310
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2311
	struct perf_event *event = file->private_data;
2312
	struct perf_buffer *buffer;
2313
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2314 2315

	rcu_read_lock();
2316 2317 2318
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2319
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2320

2321
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2322 2323 2324 2325

	return events;
}

2326
static void perf_event_reset(struct perf_event *event)
2327
{
2328
	(void)perf_event_read(event);
2329
	local64_set(&event->count, 0);
2330
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2331 2332
}

2333
/*
2334 2335 2336 2337
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2338
 */
2339 2340
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2341
{
2342
	struct perf_event *child;
P
Peter Zijlstra 已提交
2343

2344 2345 2346 2347
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2348
		func(child);
2349
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2350 2351
}

2352 2353
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2354
{
2355 2356
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2357

2358 2359
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2360
	event = event->group_leader;
2361

2362 2363 2364 2365
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2366
	mutex_unlock(&ctx->mutex);
2367 2368
}

2369
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2370
{
2371
	struct perf_event_context *ctx = event->ctx;
2372 2373 2374 2375
	unsigned long size;
	int ret = 0;
	u64 value;

2376
	if (!event->attr.sample_period)
2377 2378 2379 2380 2381 2382 2383 2384 2385
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2386
	raw_spin_lock_irq(&ctx->lock);
2387 2388
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2389 2390 2391 2392
			ret = -EINVAL;
			goto unlock;
		}

2393
		event->attr.sample_freq = value;
2394
	} else {
2395 2396
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2397 2398
	}
unlock:
2399
	raw_spin_unlock_irq(&ctx->lock);
2400 2401 2402 2403

	return ret;
}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2425
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2426

2427 2428
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2429 2430
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2431
	u32 flags = arg;
2432 2433

	switch (cmd) {
2434 2435
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2436
		break;
2437 2438
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2439
		break;
2440 2441
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2442
		break;
P
Peter Zijlstra 已提交
2443

2444 2445
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2446

2447 2448
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2449

2450
	case PERF_EVENT_IOC_SET_OUTPUT:
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2468

L
Li Zefan 已提交
2469 2470 2471
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2472
	default:
P
Peter Zijlstra 已提交
2473
		return -ENOTTY;
2474
	}
P
Peter Zijlstra 已提交
2475 2476

	if (flags & PERF_IOC_FLAG_GROUP)
2477
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2478
	else
2479
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2480 2481

	return 0;
2482 2483
}

2484
int perf_event_task_enable(void)
2485
{
2486
	struct perf_event *event;
2487

2488 2489 2490 2491
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2492 2493 2494 2495

	return 0;
}

2496
int perf_event_task_disable(void)
2497
{
2498
	struct perf_event *event;
2499

2500 2501 2502 2503
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2504 2505 2506 2507

	return 0;
}

2508 2509
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2510 2511
#endif

2512
static int perf_event_index(struct perf_event *event)
2513
{
P
Peter Zijlstra 已提交
2514 2515 2516
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2517
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2518 2519
		return 0;

2520
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2521 2522
}

2523 2524 2525 2526 2527
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2528
void perf_event_update_userpage(struct perf_event *event)
2529
{
2530
	struct perf_event_mmap_page *userpg;
2531
	struct perf_buffer *buffer;
2532 2533

	rcu_read_lock();
2534 2535
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2536 2537
		goto unlock;

2538
	userpg = buffer->user_page;
2539

2540 2541 2542 2543 2544
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2545
	++userpg->lock;
2546
	barrier();
2547
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2548
	userpg->offset = perf_event_count(event);
2549
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2550
		userpg->offset -= local64_read(&event->hw.prev_count);
2551

2552 2553
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2554

2555 2556
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2557

2558
	barrier();
2559
	++userpg->lock;
2560
	preempt_enable();
2561
unlock:
2562
	rcu_read_unlock();
2563 2564
}

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2584
#ifndef CONFIG_PERF_USE_VMALLOC
2585

2586 2587 2588
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2589

2590
static struct page *
2591
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2592
{
2593
	if (pgoff > buffer->nr_pages)
2594
		return NULL;
2595

2596
	if (pgoff == 0)
2597
		return virt_to_page(buffer->user_page);
2598

2599
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2615
static struct perf_buffer *
2616
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2617
{
2618
	struct perf_buffer *buffer;
2619 2620 2621
	unsigned long size;
	int i;

2622
	size = sizeof(struct perf_buffer);
2623 2624
	size += nr_pages * sizeof(void *);

2625 2626
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2627 2628
		goto fail;

2629
	buffer->user_page = perf_mmap_alloc_page(cpu);
2630
	if (!buffer->user_page)
2631 2632 2633
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2634
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2635
		if (!buffer->data_pages[i])
2636 2637 2638
			goto fail_data_pages;
	}

2639
	buffer->nr_pages = nr_pages;
2640

2641 2642
	perf_buffer_init(buffer, watermark, flags);

2643
	return buffer;
2644 2645 2646

fail_data_pages:
	for (i--; i >= 0; i--)
2647
		free_page((unsigned long)buffer->data_pages[i]);
2648

2649
	free_page((unsigned long)buffer->user_page);
2650 2651

fail_user_page:
2652
	kfree(buffer);
2653 2654

fail:
2655
	return NULL;
2656 2657
}

2658 2659
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2660
	struct page *page = virt_to_page((void *)addr);
2661 2662 2663 2664 2665

	page->mapping = NULL;
	__free_page(page);
}

2666
static void perf_buffer_free(struct perf_buffer *buffer)
2667 2668 2669
{
	int i;

2670 2671 2672 2673
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2674 2675
}

2676
static inline int page_order(struct perf_buffer *buffer)
2677 2678 2679 2680
{
	return 0;
}

2681 2682 2683 2684 2685 2686 2687 2688
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2689
static inline int page_order(struct perf_buffer *buffer)
2690
{
2691
	return buffer->page_order;
2692 2693
}

2694
static struct page *
2695
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2696
{
2697
	if (pgoff > (1UL << page_order(buffer)))
2698 2699
		return NULL;

2700
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2701 2702 2703 2704 2705 2706 2707 2708 2709
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2710
static void perf_buffer_free_work(struct work_struct *work)
2711
{
2712
	struct perf_buffer *buffer;
2713 2714 2715
	void *base;
	int i, nr;

2716 2717
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2718

2719
	base = buffer->user_page;
2720 2721 2722 2723
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2724
	kfree(buffer);
2725 2726
}

2727
static void perf_buffer_free(struct perf_buffer *buffer)
2728
{
2729
	schedule_work(&buffer->work);
2730 2731
}

2732
static struct perf_buffer *
2733
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2734
{
2735
	struct perf_buffer *buffer;
2736 2737 2738
	unsigned long size;
	void *all_buf;

2739
	size = sizeof(struct perf_buffer);
2740 2741
	size += sizeof(void *);

2742 2743
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2744 2745
		goto fail;

2746
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2747 2748 2749 2750 2751

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2752 2753 2754 2755
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2756

2757 2758
	perf_buffer_init(buffer, watermark, flags);

2759
	return buffer;
2760 2761

fail_all_buf:
2762
	kfree(buffer);
2763 2764 2765 2766 2767 2768 2769

fail:
	return NULL;
}

#endif

2770
static unsigned long perf_data_size(struct perf_buffer *buffer)
2771
{
2772
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2773 2774
}

2775 2776 2777
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2778
	struct perf_buffer *buffer;
2779 2780 2781 2782 2783 2784 2785 2786 2787
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2788 2789
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2790 2791 2792 2793 2794
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2795
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2810
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2811
{
2812
	struct perf_buffer *buffer;
2813

2814 2815
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2816 2817
}

2818
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2819
{
2820
	struct perf_buffer *buffer;
2821

2822
	rcu_read_lock();
2823 2824 2825 2826
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2827 2828 2829
	}
	rcu_read_unlock();

2830
	return buffer;
2831 2832
}

2833
static void perf_buffer_put(struct perf_buffer *buffer)
2834
{
2835
	if (!atomic_dec_and_test(&buffer->refcount))
2836
		return;
2837

2838
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2839 2840 2841 2842
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2843
	struct perf_event *event = vma->vm_file->private_data;
2844

2845
	atomic_inc(&event->mmap_count);
2846 2847 2848 2849
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2850
	struct perf_event *event = vma->vm_file->private_data;
2851

2852
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2853
		unsigned long size = perf_data_size(event->buffer);
2854
		struct user_struct *user = event->mmap_user;
2855
		struct perf_buffer *buffer = event->buffer;
2856

2857
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2858
		vma->vm_mm->locked_vm -= event->mmap_locked;
2859
		rcu_assign_pointer(event->buffer, NULL);
2860
		mutex_unlock(&event->mmap_mutex);
2861

2862
		perf_buffer_put(buffer);
2863
		free_uid(user);
2864
	}
2865 2866
}

2867
static const struct vm_operations_struct perf_mmap_vmops = {
2868 2869 2870 2871
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2872 2873 2874 2875
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2876
	struct perf_event *event = file->private_data;
2877
	unsigned long user_locked, user_lock_limit;
2878
	struct user_struct *user = current_user();
2879
	unsigned long locked, lock_limit;
2880
	struct perf_buffer *buffer;
2881 2882
	unsigned long vma_size;
	unsigned long nr_pages;
2883
	long user_extra, extra;
2884
	int ret = 0, flags = 0;
2885

2886 2887 2888 2889 2890 2891 2892 2893
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2894
	if (!(vma->vm_flags & VM_SHARED))
2895
		return -EINVAL;
2896 2897 2898 2899

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2900
	/*
2901
	 * If we have buffer pages ensure they're a power-of-two number, so we
2902 2903 2904
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2905 2906
		return -EINVAL;

2907
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2908 2909
		return -EINVAL;

2910 2911
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2912

2913 2914
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2915 2916 2917
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2918
		else
2919 2920 2921 2922
			ret = -EINVAL;
		goto unlock;
	}

2923
	user_extra = nr_pages + 1;
2924
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2925 2926 2927 2928 2929 2930

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2931
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2932

2933 2934 2935
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2936

2937
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2938
	lock_limit >>= PAGE_SHIFT;
2939
	locked = vma->vm_mm->locked_vm + extra;
2940

2941 2942
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2943 2944 2945
		ret = -EPERM;
		goto unlock;
	}
2946

2947
	WARN_ON(event->buffer);
2948

2949 2950 2951 2952 2953
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
2954
	if (!buffer) {
2955
		ret = -ENOMEM;
2956
		goto unlock;
2957
	}
2958
	rcu_assign_pointer(event->buffer, buffer);
2959

2960 2961 2962 2963 2964
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

2965
unlock:
2966 2967
	if (!ret)
		atomic_inc(&event->mmap_count);
2968
	mutex_unlock(&event->mmap_mutex);
2969 2970 2971

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2972 2973

	return ret;
2974 2975
}

P
Peter Zijlstra 已提交
2976 2977 2978
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2979
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2980 2981 2982
	int retval;

	mutex_lock(&inode->i_mutex);
2983
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2984 2985 2986 2987 2988 2989 2990 2991
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2992
static const struct file_operations perf_fops = {
2993
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2994 2995 2996
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2997 2998
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2999
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3000
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3001 3002
};

3003
/*
3004
 * Perf event wakeup
3005 3006 3007 3008 3009
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3010
void perf_event_wakeup(struct perf_event *event)
3011
{
3012
	wake_up_all(&event->waitq);
3013

3014 3015 3016
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3017
	}
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3029
static void perf_pending_event(struct perf_pending_entry *entry)
3030
{
3031 3032
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3033

3034 3035 3036
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3037 3038
	}

3039 3040 3041
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3042 3043 3044
	}
}

3045
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3046

3047
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3048 3049 3050
	PENDING_TAIL,
};

3051 3052
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3053
{
3054
	struct perf_pending_entry **head;
3055

3056
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3057 3058
		return;

3059 3060 3061
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3062 3063

	do {
3064 3065
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3066

3067
	set_perf_event_pending();
3068

3069
	put_cpu_var(perf_pending_head);
3070 3071 3072 3073
}

static int __perf_pending_run(void)
{
3074
	struct perf_pending_entry *list;
3075 3076
	int nr = 0;

3077
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3078
	while (list != PENDING_TAIL) {
3079 3080
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3081 3082 3083

		list = list->next;

3084 3085
		func = entry->func;
		entry->next = NULL;
3086 3087 3088 3089 3090 3091 3092
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3093
		func(entry);
3094 3095 3096 3097 3098 3099
		nr++;
	}

	return nr;
}

3100
static inline int perf_not_pending(struct perf_event *event)
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3115
	return event->pending.next == NULL;
3116 3117
}

3118
static void perf_pending_sync(struct perf_event *event)
3119
{
3120
	wait_event(event->waitq, perf_not_pending(event));
3121 3122
}

3123
void perf_event_do_pending(void)
3124 3125 3126 3127
{
	__perf_pending_run();
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3149 3150 3151
/*
 * Output
 */
3152
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3153
			      unsigned long offset, unsigned long head)
3154 3155 3156
{
	unsigned long mask;

3157
	if (!buffer->writable)
3158 3159
		return true;

3160
	mask = perf_data_size(buffer) - 1;
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3171
static void perf_output_wakeup(struct perf_output_handle *handle)
3172
{
3173
	atomic_set(&handle->buffer->poll, POLL_IN);
3174

3175
	if (handle->nmi) {
3176 3177 3178
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3179
	} else
3180
		perf_event_wakeup(handle->event);
3181 3182
}

3183
/*
3184
 * We need to ensure a later event_id doesn't publish a head when a former
3185
 * event isn't done writing. However since we need to deal with NMIs we
3186 3187 3188
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3189
 * event completes.
3190
 */
3191
static void perf_output_get_handle(struct perf_output_handle *handle)
3192
{
3193
	struct perf_buffer *buffer = handle->buffer;
3194

3195
	preempt_disable();
3196 3197
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3198 3199
}

3200
static void perf_output_put_handle(struct perf_output_handle *handle)
3201
{
3202
	struct perf_buffer *buffer = handle->buffer;
3203
	unsigned long head;
3204 3205

again:
3206
	head = local_read(&buffer->head);
3207 3208

	/*
3209
	 * IRQ/NMI can happen here, which means we can miss a head update.
3210 3211
	 */

3212
	if (!local_dec_and_test(&buffer->nest))
3213
		goto out;
3214 3215

	/*
3216
	 * Publish the known good head. Rely on the full barrier implied
3217
	 * by atomic_dec_and_test() order the buffer->head read and this
3218
	 * write.
3219
	 */
3220
	buffer->user_page->data_head = head;
3221

3222 3223
	/*
	 * Now check if we missed an update, rely on the (compiler)
3224
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3225
	 */
3226 3227
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3228 3229 3230
		goto again;
	}

3231
	if (handle->wakeup != local_read(&buffer->wakeup))
3232
		perf_output_wakeup(handle);
3233

P
Peter Zijlstra 已提交
3234
out:
3235
	preempt_enable();
3236 3237
}

3238
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3239
		      const void *buf, unsigned int len)
3240
{
3241
	do {
3242
		unsigned long size = min_t(unsigned long, handle->size, len);
3243 3244 3245 3246 3247

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3248
		buf += size;
3249 3250
		handle->size -= size;
		if (!handle->size) {
3251
			struct perf_buffer *buffer = handle->buffer;
3252

3253
			handle->page++;
3254 3255 3256
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3257 3258
		}
	} while (len);
3259 3260
}

3261
int perf_output_begin(struct perf_output_handle *handle,
3262
		      struct perf_event *event, unsigned int size,
3263
		      int nmi, int sample)
3264
{
3265
	struct perf_buffer *buffer;
3266
	unsigned long tail, offset, head;
3267 3268 3269 3270 3271 3272
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3273

3274
	rcu_read_lock();
3275
	/*
3276
	 * For inherited events we send all the output towards the parent.
3277
	 */
3278 3279
	if (event->parent)
		event = event->parent;
3280

3281 3282
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3283 3284
		goto out;

3285
	handle->buffer	= buffer;
3286
	handle->event	= event;
3287 3288
	handle->nmi	= nmi;
	handle->sample	= sample;
3289

3290
	if (!buffer->nr_pages)
3291
		goto out;
3292

3293
	have_lost = local_read(&buffer->lost);
3294 3295 3296
	if (have_lost)
		size += sizeof(lost_event);

3297
	perf_output_get_handle(handle);
3298

3299
	do {
3300 3301 3302 3303 3304
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3305
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3306
		smp_rmb();
3307
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3308
		head += size;
3309
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3310
			goto fail;
3311
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3312

3313 3314
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3315

3316 3317 3318 3319
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3320
	handle->addr += handle->size;
3321
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3322

3323
	if (have_lost) {
3324
		lost_event.header.type = PERF_RECORD_LOST;
3325 3326
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3327
		lost_event.id          = event->id;
3328
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3329 3330 3331 3332

		perf_output_put(handle, lost_event);
	}

3333
	return 0;
3334

3335
fail:
3336
	local_inc(&buffer->lost);
3337
	perf_output_put_handle(handle);
3338 3339
out:
	rcu_read_unlock();
3340

3341 3342
	return -ENOSPC;
}
3343

3344
void perf_output_end(struct perf_output_handle *handle)
3345
{
3346
	struct perf_event *event = handle->event;
3347
	struct perf_buffer *buffer = handle->buffer;
3348

3349
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3350

3351
	if (handle->sample && wakeup_events) {
3352
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3353
		if (events >= wakeup_events) {
3354 3355
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3356
		}
3357 3358
	}

3359
	perf_output_put_handle(handle);
3360
	rcu_read_unlock();
3361 3362
}

3363
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3364 3365
{
	/*
3366
	 * only top level events have the pid namespace they were created in
3367
	 */
3368 3369
	if (event->parent)
		event = event->parent;
3370

3371
	return task_tgid_nr_ns(p, event->ns);
3372 3373
}

3374
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3375 3376
{
	/*
3377
	 * only top level events have the pid namespace they were created in
3378
	 */
3379 3380
	if (event->parent)
		event = event->parent;
3381

3382
	return task_pid_nr_ns(p, event->ns);
3383 3384
}

3385
static void perf_output_read_one(struct perf_output_handle *handle,
3386
				 struct perf_event *event)
3387
{
3388
	u64 read_format = event->attr.read_format;
3389 3390 3391
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3392
	values[n++] = perf_event_count(event);
3393
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3394 3395
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3396 3397
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3398 3399
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3400 3401
	}
	if (read_format & PERF_FORMAT_ID)
3402
		values[n++] = primary_event_id(event);
3403 3404 3405 3406 3407

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3408
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3409 3410
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3411
			    struct perf_event *event)
3412
{
3413 3414
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3426
	if (leader != event)
3427 3428
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3429
	values[n++] = perf_event_count(leader);
3430
	if (read_format & PERF_FORMAT_ID)
3431
		values[n++] = primary_event_id(leader);
3432 3433 3434

	perf_output_copy(handle, values, n * sizeof(u64));

3435
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3436 3437
		n = 0;

3438
		if (sub != event)
3439 3440
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3441
		values[n++] = perf_event_count(sub);
3442
		if (read_format & PERF_FORMAT_ID)
3443
			values[n++] = primary_event_id(sub);
3444 3445 3446 3447 3448 3449

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3450
			     struct perf_event *event)
3451
{
3452 3453
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3454
	else
3455
		perf_output_read_one(handle, event);
3456 3457
}

3458 3459 3460
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3461
			struct perf_event *event)
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3492
		perf_output_read(handle, event);
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3530
			 struct perf_event *event,
3531
			 struct pt_regs *regs)
3532
{
3533
	u64 sample_type = event->attr.sample_type;
3534

3535
	data->type = sample_type;
3536

3537
	header->type = PERF_RECORD_SAMPLE;
3538 3539 3540 3541
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3542

3543
	if (sample_type & PERF_SAMPLE_IP) {
3544 3545 3546
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3547
	}
3548

3549
	if (sample_type & PERF_SAMPLE_TID) {
3550
		/* namespace issues */
3551 3552
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3553

3554
		header->size += sizeof(data->tid_entry);
3555 3556
	}

3557
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3558
		data->time = perf_clock();
3559

3560
		header->size += sizeof(data->time);
3561 3562
	}

3563
	if (sample_type & PERF_SAMPLE_ADDR)
3564
		header->size += sizeof(data->addr);
3565

3566
	if (sample_type & PERF_SAMPLE_ID) {
3567
		data->id = primary_event_id(event);
3568

3569 3570 3571 3572
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3573
		data->stream_id = event->id;
3574 3575 3576

		header->size += sizeof(data->stream_id);
	}
3577

3578
	if (sample_type & PERF_SAMPLE_CPU) {
3579 3580
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3581

3582
		header->size += sizeof(data->cpu_entry);
3583 3584
	}

3585
	if (sample_type & PERF_SAMPLE_PERIOD)
3586
		header->size += sizeof(data->period);
3587

3588
	if (sample_type & PERF_SAMPLE_READ)
3589
		header->size += perf_event_read_size(event);
3590

3591
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3592
		int size = 1;
3593

3594 3595 3596 3597 3598 3599
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3600 3601
	}

3602
	if (sample_type & PERF_SAMPLE_RAW) {
3603 3604 3605 3606 3607 3608 3609 3610
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3611
		header->size += size;
3612
	}
3613
}
3614

3615
static void perf_event_output(struct perf_event *event, int nmi,
3616 3617 3618 3619 3620
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3621

3622 3623 3624
	/* protect the callchain buffers */
	rcu_read_lock();

3625
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3626

3627
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3628
		goto exit;
3629

3630
	perf_output_sample(&handle, &header, data, event);
3631

3632
	perf_output_end(&handle);
3633 3634 3635

exit:
	rcu_read_unlock();
3636 3637
}

3638
/*
3639
 * read event_id
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3650
perf_event_read_event(struct perf_event *event,
3651 3652 3653
			struct task_struct *task)
{
	struct perf_output_handle handle;
3654
	struct perf_read_event read_event = {
3655
		.header = {
3656
			.type = PERF_RECORD_READ,
3657
			.misc = 0,
3658
			.size = sizeof(read_event) + perf_event_read_size(event),
3659
		},
3660 3661
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3662
	};
3663
	int ret;
3664

3665
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3666 3667 3668
	if (ret)
		return;

3669
	perf_output_put(&handle, read_event);
3670
	perf_output_read(&handle, event);
3671

3672 3673 3674
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3675
/*
P
Peter Zijlstra 已提交
3676 3677
 * task tracking -- fork/exit
 *
3678
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3679 3680
 */

P
Peter Zijlstra 已提交
3681
struct perf_task_event {
3682
	struct task_struct		*task;
3683
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3684 3685 3686 3687 3688 3689

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3690 3691
		u32				tid;
		u32				ptid;
3692
		u64				time;
3693
	} event_id;
P
Peter Zijlstra 已提交
3694 3695
};

3696
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3697
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3698 3699
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3700
	struct task_struct *task = task_event->task;
3701 3702
	int size, ret;

3703 3704
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3705

3706
	if (ret)
P
Peter Zijlstra 已提交
3707 3708
		return;

3709 3710
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3711

3712 3713
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3714

3715
	perf_output_put(&handle, task_event->event_id);
3716

P
Peter Zijlstra 已提交
3717 3718 3719
	perf_output_end(&handle);
}

3720
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3721
{
P
Peter Zijlstra 已提交
3722
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3723 3724
		return 0;

3725 3726 3727
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3728 3729
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3730 3731 3732 3733 3734
		return 1;

	return 0;
}

3735
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3736
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3737
{
3738
	struct perf_event *event;
P
Peter Zijlstra 已提交
3739

3740 3741 3742
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3743 3744 3745
	}
}

3746
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3747 3748
{
	struct perf_cpu_context *cpuctx;
3749
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3750

3751
	rcu_read_lock();
P
Peter Zijlstra 已提交
3752
	cpuctx = &get_cpu_var(perf_cpu_context);
3753
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3754
	if (!ctx)
P
Peter Zijlstra 已提交
3755
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3756
	if (ctx)
3757
		perf_event_task_ctx(ctx, task_event);
3758
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3759 3760 3761
	rcu_read_unlock();
}

3762 3763
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3764
			      int new)
P
Peter Zijlstra 已提交
3765
{
P
Peter Zijlstra 已提交
3766
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3767

3768 3769 3770
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3771 3772
		return;

P
Peter Zijlstra 已提交
3773
	task_event = (struct perf_task_event){
3774 3775
		.task	  = task,
		.task_ctx = task_ctx,
3776
		.event_id    = {
P
Peter Zijlstra 已提交
3777
			.header = {
3778
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3779
				.misc = 0,
3780
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3781
			},
3782 3783
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3784 3785
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3786
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3787 3788 3789
		},
	};

3790
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3791 3792
}

3793
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3794
{
3795
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3796 3797
}

3798 3799 3800 3801 3802
/*
 * comm tracking
 */

struct perf_comm_event {
3803 3804
	struct task_struct	*task;
	char			*comm;
3805 3806 3807 3808 3809 3810 3811
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3812
	} event_id;
3813 3814
};

3815
static void perf_event_comm_output(struct perf_event *event,
3816 3817 3818
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3819 3820
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3821 3822 3823 3824

	if (ret)
		return;

3825 3826
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3827

3828
	perf_output_put(&handle, comm_event->event_id);
3829 3830 3831 3832 3833
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3834
static int perf_event_comm_match(struct perf_event *event)
3835
{
P
Peter Zijlstra 已提交
3836
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3837 3838
		return 0;

3839 3840 3841
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3842
	if (event->attr.comm)
3843 3844 3845 3846 3847
		return 1;

	return 0;
}

3848
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3849 3850
				  struct perf_comm_event *comm_event)
{
3851
	struct perf_event *event;
3852

3853 3854 3855
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3856 3857 3858
	}
}

3859
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3860 3861
{
	struct perf_cpu_context *cpuctx;
3862
	struct perf_event_context *ctx;
3863
	unsigned int size;
3864
	char comm[TASK_COMM_LEN];
3865

3866
	memset(comm, 0, sizeof(comm));
3867
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3868
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3869 3870 3871 3872

	comm_event->comm = comm;
	comm_event->comm_size = size;

3873
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3874

3875
	rcu_read_lock();
3876
	cpuctx = &get_cpu_var(perf_cpu_context);
3877 3878
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3879
	if (ctx)
3880
		perf_event_comm_ctx(ctx, comm_event);
3881
	put_cpu_var(perf_cpu_context);
3882
	rcu_read_unlock();
3883 3884
}

3885
void perf_event_comm(struct task_struct *task)
3886
{
3887 3888
	struct perf_comm_event comm_event;

3889 3890
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3891

3892
	if (!atomic_read(&nr_comm_events))
3893
		return;
3894

3895
	comm_event = (struct perf_comm_event){
3896
		.task	= task,
3897 3898
		/* .comm      */
		/* .comm_size */
3899
		.event_id  = {
3900
			.header = {
3901
				.type = PERF_RECORD_COMM,
3902 3903 3904 3905 3906
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3907 3908 3909
		},
	};

3910
	perf_event_comm_event(&comm_event);
3911 3912
}

3913 3914 3915 3916 3917
/*
 * mmap tracking
 */

struct perf_mmap_event {
3918 3919 3920 3921
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3922 3923 3924 3925 3926 3927 3928 3929 3930

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3931
	} event_id;
3932 3933
};

3934
static void perf_event_mmap_output(struct perf_event *event,
3935 3936 3937
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3938 3939
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3940 3941 3942 3943

	if (ret)
		return;

3944 3945
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3946

3947
	perf_output_put(&handle, mmap_event->event_id);
3948 3949
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3950
	perf_output_end(&handle);
3951 3952
}

3953
static int perf_event_mmap_match(struct perf_event *event,
3954 3955
				   struct perf_mmap_event *mmap_event,
				   int executable)
3956
{
P
Peter Zijlstra 已提交
3957
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3958 3959
		return 0;

3960 3961 3962
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3963 3964
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
3965 3966 3967 3968 3969
		return 1;

	return 0;
}

3970
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3971 3972
				  struct perf_mmap_event *mmap_event,
				  int executable)
3973
{
3974
	struct perf_event *event;
3975

3976
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3977
		if (perf_event_mmap_match(event, mmap_event, executable))
3978
			perf_event_mmap_output(event, mmap_event);
3979 3980 3981
	}
}

3982
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3983 3984
{
	struct perf_cpu_context *cpuctx;
3985
	struct perf_event_context *ctx;
3986 3987
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3988 3989 3990
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3991
	const char *name;
3992

3993 3994
	memset(tmp, 0, sizeof(tmp));

3995
	if (file) {
3996 3997 3998 3999 4000 4001
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4002 4003 4004 4005
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4006
		name = d_path(&file->f_path, buf, PATH_MAX);
4007 4008 4009 4010 4011
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4012 4013 4014
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4015
			goto got_name;
4016
		}
4017 4018 4019 4020

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4021 4022 4023 4024 4025 4026 4027 4028
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4029 4030
		}

4031 4032 4033 4034 4035
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4036
	size = ALIGN(strlen(name)+1, sizeof(u64));
4037 4038 4039 4040

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4041
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4042

4043
	rcu_read_lock();
4044
	cpuctx = &get_cpu_var(perf_cpu_context);
4045
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
4046
	ctx = rcu_dereference(current->perf_event_ctxp);
4047
	if (ctx)
4048
		perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4049
	put_cpu_var(perf_cpu_context);
4050 4051
	rcu_read_unlock();

4052 4053 4054
	kfree(buf);
}

4055
void perf_event_mmap(struct vm_area_struct *vma)
4056
{
4057 4058
	struct perf_mmap_event mmap_event;

4059
	if (!atomic_read(&nr_mmap_events))
4060 4061 4062
		return;

	mmap_event = (struct perf_mmap_event){
4063
		.vma	= vma,
4064 4065
		/* .file_name */
		/* .file_size */
4066
		.event_id  = {
4067
			.header = {
4068
				.type = PERF_RECORD_MMAP,
4069
				.misc = PERF_RECORD_MISC_USER,
4070 4071 4072 4073
				/* .size */
			},
			/* .pid */
			/* .tid */
4074 4075
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4076
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4077 4078 4079
		},
	};

4080
	perf_event_mmap_event(&mmap_event);
4081 4082
}

4083 4084 4085 4086
/*
 * IRQ throttle logging
 */

4087
static void perf_log_throttle(struct perf_event *event, int enable)
4088 4089 4090 4091 4092 4093 4094
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4095
		u64				id;
4096
		u64				stream_id;
4097 4098
	} throttle_event = {
		.header = {
4099
			.type = PERF_RECORD_THROTTLE,
4100 4101 4102
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4103
		.time		= perf_clock(),
4104 4105
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4106 4107
	};

4108
	if (enable)
4109
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4110

4111
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4112 4113 4114 4115 4116 4117 4118
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4119
/*
4120
 * Generic event overflow handling, sampling.
4121 4122
 */

4123
static int __perf_event_overflow(struct perf_event *event, int nmi,
4124 4125
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4126
{
4127 4128
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4129 4130
	int ret = 0;

4131
	if (!throttle) {
4132
		hwc->interrupts++;
4133
	} else {
4134 4135
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4136
			if (HZ * hwc->interrupts >
4137
					(u64)sysctl_perf_event_sample_rate) {
4138
				hwc->interrupts = MAX_INTERRUPTS;
4139
				perf_log_throttle(event, 0);
4140 4141 4142 4143
				ret = 1;
			}
		} else {
			/*
4144
			 * Keep re-disabling events even though on the previous
4145
			 * pass we disabled it - just in case we raced with a
4146
			 * sched-in and the event got enabled again:
4147
			 */
4148 4149 4150
			ret = 1;
		}
	}
4151

4152
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4153
		u64 now = perf_clock();
4154
		s64 delta = now - hwc->freq_time_stamp;
4155

4156
		hwc->freq_time_stamp = now;
4157

4158 4159
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4160 4161
	}

4162 4163
	/*
	 * XXX event_limit might not quite work as expected on inherited
4164
	 * events
4165 4166
	 */

4167 4168
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4169
		ret = 1;
4170
		event->pending_kill = POLL_HUP;
4171
		if (nmi) {
4172 4173 4174
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4175
		} else
4176
			perf_event_disable(event);
4177 4178
	}

4179 4180 4181 4182 4183
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4184
	return ret;
4185 4186
}

4187
int perf_event_overflow(struct perf_event *event, int nmi,
4188 4189
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4190
{
4191
	return __perf_event_overflow(event, nmi, 1, data, regs);
4192 4193
}

4194
/*
4195
 * Generic software event infrastructure
4196 4197
 */

4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4209
/*
4210 4211
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4212 4213 4214 4215
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4216
static u64 perf_swevent_set_period(struct perf_event *event)
4217
{
4218
	struct hw_perf_event *hwc = &event->hw;
4219 4220 4221 4222 4223
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4224 4225

again:
4226
	old = val = local64_read(&hwc->period_left);
4227 4228
	if (val < 0)
		return 0;
4229

4230 4231 4232
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4233
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4234
		goto again;
4235

4236
	return nr;
4237 4238
}

4239
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4240 4241
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4242
{
4243
	struct hw_perf_event *hwc = &event->hw;
4244
	int throttle = 0;
4245

4246
	data->period = event->hw.last_period;
4247 4248
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4249

4250 4251
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4252

4253
	for (; overflow; overflow--) {
4254
		if (__perf_event_overflow(event, nmi, throttle,
4255
					    data, regs)) {
4256 4257 4258 4259 4260 4261
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4262
		throttle = 1;
4263
	}
4264 4265
}

P
Peter Zijlstra 已提交
4266
static void perf_swevent_event(struct perf_event *event, u64 nr,
4267 4268
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4269
{
4270
	struct hw_perf_event *hwc = &event->hw;
4271

4272
	local64_add(nr, &event->count);
4273

4274 4275 4276
	if (!regs)
		return;

4277 4278
	if (!hwc->sample_period)
		return;
4279

4280 4281 4282
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4283
	if (local64_add_negative(nr, &hwc->period_left))
4284
		return;
4285

4286
	perf_swevent_overflow(event, 0, nmi, data, regs);
4287 4288
}

4289 4290 4291
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4292 4293 4294
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4306
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4307
				enum perf_type_id type,
L
Li Zefan 已提交
4308 4309 4310
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4311
{
4312
	if (event->attr.type != type)
4313
		return 0;
4314

4315
	if (event->attr.config != event_id)
4316 4317
		return 0;

4318 4319
	if (perf_exclude_event(event, regs))
		return 0;
4320 4321 4322 4323

	return 1;
}

4324 4325 4326 4327 4328 4329 4330
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4331 4332
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4333
{
4334 4335 4336 4337
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4338

4339 4340
/* For the read side: events when they trigger */
static inline struct hlist_head *
4341
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4342 4343
{
	struct swevent_hlist *hlist;
4344

4345
	hlist = rcu_dereference(swhash->swevent_hlist);
4346 4347 4348
	if (!hlist)
		return NULL;

4349 4350 4351 4352 4353
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4354
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4355 4356 4357 4358 4359 4360 4361 4362 4363 4364
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4365
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4366 4367 4368 4369 4370
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4371 4372 4373 4374 4375 4376
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4377
{
4378
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4379
	struct perf_event *event;
4380 4381
	struct hlist_node *node;
	struct hlist_head *head;
4382

4383
	rcu_read_lock();
4384
	head = find_swevent_head_rcu(swhash, type, event_id);
4385 4386 4387 4388
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4389
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4390
			perf_swevent_event(event, nr, nmi, data, regs);
4391
	}
4392 4393
end:
	rcu_read_unlock();
4394 4395
}

4396
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4397
{
4398
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4399

4400
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4401
}
I
Ingo Molnar 已提交
4402
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4403

4404
void inline perf_swevent_put_recursion_context(int rctx)
4405
{
4406
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4407

4408
	put_recursion_context(swhash->recursion, rctx);
4409
}
4410

4411
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4412
			    struct pt_regs *regs, u64 addr)
4413
{
4414
	struct perf_sample_data data;
4415 4416
	int rctx;

4417
	preempt_disable_notrace();
4418 4419 4420
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4421

4422
	perf_sample_data_init(&data, addr);
4423

4424
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4425 4426

	perf_swevent_put_recursion_context(rctx);
4427
	preempt_enable_notrace();
4428 4429
}

4430
static void perf_swevent_read(struct perf_event *event)
4431 4432 4433
{
}

P
Peter Zijlstra 已提交
4434
static int perf_swevent_add(struct perf_event *event, int flags)
4435
{
4436
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4437
	struct hw_perf_event *hwc = &event->hw;
4438 4439
	struct hlist_head *head;

4440 4441
	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4442
		perf_swevent_set_period(event);
4443
	}
4444

P
Peter Zijlstra 已提交
4445 4446
	hwc->state = !(flags & PERF_EF_START);

4447
	head = find_swevent_head(swhash, event);
4448 4449 4450 4451 4452
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4453 4454 4455
	return 0;
}

P
Peter Zijlstra 已提交
4456
static void perf_swevent_del(struct perf_event *event, int flags)
4457
{
4458
	hlist_del_rcu(&event->hlist_entry);
4459 4460
}

P
Peter Zijlstra 已提交
4461
static void perf_swevent_start(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4462
{
P
Peter Zijlstra 已提交
4463
	event->hw.state = 0;
P
Peter Zijlstra 已提交
4464 4465
}

P
Peter Zijlstra 已提交
4466
static void perf_swevent_stop(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4467
{
P
Peter Zijlstra 已提交
4468
	event->hw.state = PERF_HES_STOPPED;
P
Peter Zijlstra 已提交
4469 4470
}

4471 4472
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4473
swevent_hlist_deref(struct swevent_htable *swhash)
4474
{
4475 4476
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4477 4478
}

4479 4480 4481 4482 4483 4484 4485 4486
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4487
static void swevent_hlist_release(struct swevent_htable *swhash)
4488
{
4489
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4490

4491
	if (!hlist)
4492 4493
		return;

4494
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4495 4496 4497 4498 4499
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4500
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4501

4502
	mutex_lock(&swhash->hlist_mutex);
4503

4504 4505
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4506

4507
	mutex_unlock(&swhash->hlist_mutex);
4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4525
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4526 4527
	int err = 0;

4528
	mutex_lock(&swhash->hlist_mutex);
4529

4530
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4531 4532 4533 4534 4535 4536 4537
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4538
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4539
	}
4540
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4541
exit:
4542
	mutex_unlock(&swhash->hlist_mutex);
4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4566
fail:
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4577
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4578

4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;

	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4624 4625 4626 4627
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4628 4629 4630
	.read		= perf_swevent_read,
};

4631 4632
#ifdef CONFIG_EVENT_TRACING

4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4647 4648 4649 4650
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4651 4652 4653 4654 4655 4656 4657 4658 4659
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4660
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4661 4662
{
	struct perf_sample_data data;
4663 4664 4665
	struct perf_event *event;
	struct hlist_node *node;

4666 4667 4668 4669 4670 4671 4672 4673
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4674 4675
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4676
			perf_swevent_event(event, count, 1, &data, regs);
4677
	}
4678 4679

	perf_swevent_put_recursion_context(rctx);
4680 4681 4682
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4683
static void tp_perf_event_destroy(struct perf_event *event)
4684
{
4685
	perf_trace_destroy(event);
4686 4687
}

4688
static int perf_tp_event_init(struct perf_event *event)
4689
{
4690 4691
	int err;

4692 4693 4694
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4695 4696 4697 4698
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4699
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4700
			perf_paranoid_tracepoint_raw() &&
4701
			!capable(CAP_SYS_ADMIN))
4702
		return -EPERM;
4703

4704 4705
	err = perf_trace_init(event);
	if (err)
4706
		return err;
4707

4708
	event->destroy = tp_perf_event_destroy;
4709

4710 4711 4712 4713 4714
	return 0;
}

static struct pmu perf_tracepoint = {
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4715 4716 4717 4718
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4719 4720 4721 4722 4723 4724
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4725
}
L
Li Zefan 已提交
4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4750
#else
L
Li Zefan 已提交
4751

4752
static inline void perf_tp_register(void)
4753 4754
{
}
L
Li Zefan 已提交
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4765
#endif /* CONFIG_EVENT_TRACING */
4766

4767
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4768
void perf_bp_event(struct perf_event *bp, void *data)
4769
{
4770 4771 4772 4773 4774
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

P
Peter Zijlstra 已提交
4775 4776
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4777
}
4778 4779 4780 4781 4782
#endif

/*
 * hrtimer based swevent callback
 */
4783

4784
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4785
{
4786 4787 4788 4789 4790
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4791

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4804

4805 4806
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4807

4808
	return ret;
4809 4810
}

4811
static void perf_swevent_start_hrtimer(struct perf_event *event)
4812
{
4813
	struct hw_perf_event *hwc = &event->hw;
4814

4815 4816 4817
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4818
		s64 period = local64_read(&hwc->period_left);
4819

P
Peter Zijlstra 已提交
4820 4821
		if (period) {
			if (period < 0)
4822
				period = 10000;
P
Peter Zijlstra 已提交
4823 4824

			local64_set(&hwc->period_left, 0);
4825 4826 4827 4828 4829
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
4830
				HRTIMER_MODE_REL_PINNED, 0);
4831
	}
4832
}
4833 4834

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4835
{
4836 4837 4838 4839
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4840
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4841 4842 4843

		hrtimer_cancel(&hwc->hrtimer);
	}
4844 4845
}

4846 4847 4848 4849 4850
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4851
{
4852 4853 4854
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4855
	now = local_clock();
4856 4857
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4858 4859
}

P
Peter Zijlstra 已提交
4860
static void cpu_clock_event_start(struct perf_event *event, int flags)
4861
{
P
Peter Zijlstra 已提交
4862
	local64_set(&event->hw.prev_count, local_clock());
4863 4864 4865
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4866
static void cpu_clock_event_stop(struct perf_event *event, int flags)
4867
{
4868 4869 4870
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4871

P
Peter Zijlstra 已提交
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

4885 4886 4887 4888
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4889

4890 4891 4892 4893 4894 4895 4896 4897 4898
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
4899 4900
}

4901 4902
static struct pmu perf_cpu_clock = {
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
4903 4904 4905 4906
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
4907 4908 4909 4910 4911 4912 4913 4914
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
4915
{
4916 4917
	u64 prev;
	s64 delta;
4918

4919 4920 4921 4922
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
4923

P
Peter Zijlstra 已提交
4924
static void task_clock_event_start(struct perf_event *event, int flags)
4925
{
P
Peter Zijlstra 已提交
4926
	local64_set(&event->hw.prev_count, event->ctx->time);
4927 4928 4929
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4930
static void task_clock_event_stop(struct perf_event *event, int flags)
4931 4932 4933
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
4934 4935 4936 4937 4938 4939
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
4940

P
Peter Zijlstra 已提交
4941 4942 4943 4944 4945 4946
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
}

static struct pmu perf_task_clock = {
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
4978 4979 4980 4981
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
4982 4983 4984 4985 4986 4987 4988
	.read		= task_clock_event_read,
};

static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

P
Peter Zijlstra 已提交
4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013
static void perf_pmu_nop_void(struct pmu *pmu)
{
}

static int perf_pmu_nop_int(struct pmu *pmu)
{
	return 0;
}

static void perf_pmu_start_txn(struct pmu *pmu)
{
	perf_pmu_disable(pmu);
}

static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}

static void perf_pmu_cancel_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
}

5014 5015
int perf_pmu_register(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
5016 5017
	int ret;

5018
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5019 5020 5021 5022
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
P
Peter Zijlstra 已提交
5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045

	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
		}
	}

	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5046
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5047 5048
	ret = 0;
unlock:
5049 5050
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5051
	return ret;
5052 5053 5054 5055 5056 5057 5058 5059 5060
}

void perf_pmu_unregister(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);

	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5061 5062

	free_percpu(pmu->pmu_disable_count);
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
}

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
			break;
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
			break;
5078
		}
5079
	}
5080
	srcu_read_unlock(&pmus_srcu, idx);
5081

5082
	return pmu;
5083 5084
}

T
Thomas Gleixner 已提交
5085
/*
5086
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5087
 */
5088
static struct perf_event *
5089
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5090 5091
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5092
		   perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5093
{
P
Peter Zijlstra 已提交
5094
	struct pmu *pmu;
5095 5096
	struct perf_event *event;
	struct hw_perf_event *hwc;
5097
	long err;
T
Thomas Gleixner 已提交
5098

5099
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5100
	if (!event)
5101
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5102

5103
	/*
5104
	 * Single events are their own group leaders, with an
5105 5106 5107
	 * empty sibling list:
	 */
	if (!group_leader)
5108
		group_leader = event;
5109

5110 5111
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5112

5113 5114 5115 5116
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5117

5118
	mutex_init(&event->mmap_mutex);
5119

5120 5121 5122 5123 5124
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5125

5126
	event->parent		= parent_event;
5127

5128 5129
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5130

5131
	event->state		= PERF_EVENT_STATE_INACTIVE;
5132

5133 5134
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5135
	
5136
	event->overflow_handler	= overflow_handler;
5137

5138
	if (attr->disabled)
5139
		event->state = PERF_EVENT_STATE_OFF;
5140

5141
	pmu = NULL;
5142

5143
	hwc = &event->hw;
5144
	hwc->sample_period = attr->sample_period;
5145
	if (attr->freq && attr->sample_freq)
5146
		hwc->sample_period = 1;
5147
	hwc->last_period = hwc->sample_period;
5148

5149
	local64_set(&hwc->period_left, hwc->sample_period);
5150

5151
	/*
5152
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5153
	 */
5154
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5155 5156
		goto done;

5157
	pmu = perf_init_event(event);
5158

5159 5160
done:
	err = 0;
5161
	if (!pmu)
5162
		err = -EINVAL;
5163 5164
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5165

5166
	if (err) {
5167 5168 5169
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5170
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5171
	}
5172

5173
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5174

5175 5176
	if (!event->parent) {
		atomic_inc(&nr_events);
5177
		if (event->attr.mmap || event->attr.mmap_data)
5178 5179 5180 5181 5182
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5183 5184 5185 5186 5187 5188 5189
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5190
	}
5191

5192
	return event;
T
Thomas Gleixner 已提交
5193 5194
}

5195 5196
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5197 5198
{
	u32 size;
5199
	int ret;
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5224 5225 5226
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5227 5228
	 */
	if (size > sizeof(*attr)) {
5229 5230 5231
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5232

5233 5234
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5235

5236
		for (; addr < end; addr++) {
5237 5238 5239 5240 5241 5242
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5243
		size = sizeof(*attr);
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5257
	if (attr->__reserved_1)
5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5275 5276
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5277
{
5278
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5279 5280
	int ret = -EINVAL;

5281
	if (!output_event)
5282 5283
		goto set;

5284 5285
	/* don't allow circular references */
	if (event == output_event)
5286 5287
		goto out;

5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5300
set:
5301
	mutex_lock(&event->mmap_mutex);
5302 5303 5304
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5305

5306 5307
	if (output_event) {
		/* get the buffer we want to redirect to */
5308 5309
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5310
			goto unlock;
5311 5312
	}

5313 5314
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5315
	ret = 0;
5316 5317 5318
unlock:
	mutex_unlock(&event->mmap_mutex);

5319 5320
	if (old_buffer)
		perf_buffer_put(old_buffer);
5321 5322 5323 5324
out:
	return ret;
}

T
Thomas Gleixner 已提交
5325
/**
5326
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5327
 *
5328
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5329
 * @pid:		target pid
I
Ingo Molnar 已提交
5330
 * @cpu:		target cpu
5331
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5332
 */
5333 5334
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5335
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5336
{
5337
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5338 5339 5340
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5341
	struct file *group_file = NULL;
5342
	int event_fd;
5343
	int fput_needed = 0;
5344
	int err;
T
Thomas Gleixner 已提交
5345

5346
	/* for future expandability... */
5347
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5348 5349
		return -EINVAL;

5350 5351 5352
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5353

5354 5355 5356 5357 5358
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5359
	if (attr.freq) {
5360
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5361 5362 5363
			return -EINVAL;
	}

5364 5365 5366 5367
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5368 5369 5370 5371 5372 5373
	event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err_fd;
	}

5374
	/*
I
Ingo Molnar 已提交
5375 5376 5377
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
5378 5379
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5380
		goto err_alloc;
5381
	}
I
Ingo Molnar 已提交
5382

5383 5384 5385 5386
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5387
			goto err_context;
5388 5389 5390 5391 5392 5393 5394 5395
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5396
	/*
5397
	 * Look up the group leader (we will attach this event to it):
5398
	 */
5399
	if (group_leader) {
5400
		err = -EINVAL;
5401 5402

		/*
I
Ingo Molnar 已提交
5403 5404 5405 5406
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5407
			goto err_context;
I
Ingo Molnar 已提交
5408 5409 5410
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5411
		 */
I
Ingo Molnar 已提交
5412
		if (group_leader->ctx != ctx)
5413
			goto err_context;
5414 5415 5416
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5417
		if (attr.exclusive || attr.pinned)
5418
			goto err_context;
5419 5420 5421 5422 5423
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5424
			goto err_context;
5425
	}
T
Thomas Gleixner 已提交
5426

5427 5428 5429
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5430
		goto err_context;
5431
	}
5432

5433
	event->filp = event_file;
5434
	WARN_ON_ONCE(ctx->parent_ctx);
5435
	mutex_lock(&ctx->mutex);
5436
	perf_install_in_context(ctx, event, cpu);
5437
	++ctx->generation;
5438
	mutex_unlock(&ctx->mutex);
5439

5440
	event->owner = current;
5441
	get_task_struct(current);
5442 5443 5444
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5445

5446 5447 5448 5449 5450 5451
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5452 5453 5454
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5455

5456
err_context:
5457
	fput_light(group_file, fput_needed);
5458
	put_ctx(ctx);
5459 5460
err_alloc:
	free_event(event);
5461 5462
err_fd:
	put_unused_fd(event_fd);
5463
	return err;
T
Thomas Gleixner 已提交
5464 5465
}

5466 5467 5468 5469 5470 5471 5472 5473 5474
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5475 5476
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5477 5478
{
	struct perf_event_context *ctx;
5479
	struct perf_event *event;
5480 5481 5482 5483 5484 5485
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

5486 5487 5488 5489 5490 5491
	event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}

5492
	ctx = find_get_context(pid, cpu);
5493 5494
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5495
		goto err_free;
5496
	}
5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5513 5514 5515
err_free:
	free_event(event);
err:
5516
	return ERR_PTR(err);
5517 5518 5519
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5520
/*
5521
 * inherit a event from parent task to child task:
5522
 */
5523 5524
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5525
	      struct task_struct *parent,
5526
	      struct perf_event_context *parent_ctx,
5527
	      struct task_struct *child,
5528 5529
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5530
{
5531
	struct perf_event *child_event;
5532

5533
	/*
5534 5535
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5536 5537 5538
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5539 5540
	if (parent_event->parent)
		parent_event = parent_event->parent;
5541

5542
	child_event = perf_event_alloc(&parent_event->attr,
5543
					   parent_event->cpu,
5544
					   group_leader, parent_event,
5545
					   NULL);
5546 5547
	if (IS_ERR(child_event))
		return child_event;
5548
	get_ctx(child_ctx);
5549

5550
	/*
5551
	 * Make the child state follow the state of the parent event,
5552
	 * not its attr.disabled bit.  We hold the parent's mutex,
5553
	 * so we won't race with perf_event_{en, dis}able_family.
5554
	 */
5555 5556
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5557
	else
5558
		child_event->state = PERF_EVENT_STATE_OFF;
5559

5560 5561 5562 5563 5564 5565 5566
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

5567
		local64_set(&hwc->period_left, sample_period);
5568
	}
5569

5570
	child_event->ctx = child_ctx;
5571 5572
	child_event->overflow_handler = parent_event->overflow_handler;

5573 5574 5575
	/*
	 * Link it up in the child's context:
	 */
5576
	add_event_to_ctx(child_event, child_ctx);
5577 5578 5579

	/*
	 * Get a reference to the parent filp - we will fput it
5580
	 * when the child event exits. This is safe to do because
5581 5582 5583
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5584
	atomic_long_inc(&parent_event->filp->f_count);
5585

5586
	/*
5587
	 * Link this into the parent event's child list
5588
	 */
5589 5590 5591 5592
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5593

5594
	return child_event;
5595 5596
}

5597
static int inherit_group(struct perf_event *parent_event,
5598
	      struct task_struct *parent,
5599
	      struct perf_event_context *parent_ctx,
5600
	      struct task_struct *child,
5601
	      struct perf_event_context *child_ctx)
5602
{
5603 5604 5605
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5606

5607
	leader = inherit_event(parent_event, parent, parent_ctx,
5608
				 child, NULL, child_ctx);
5609 5610
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5611 5612
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5613 5614 5615
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5616
	}
5617 5618 5619
	return 0;
}

5620
static void sync_child_event(struct perf_event *child_event,
5621
			       struct task_struct *child)
5622
{
5623
	struct perf_event *parent_event = child_event->parent;
5624
	u64 child_val;
5625

5626 5627
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5628

P
Peter Zijlstra 已提交
5629
	child_val = perf_event_count(child_event);
5630 5631 5632 5633

	/*
	 * Add back the child's count to the parent's count:
	 */
5634
	atomic64_add(child_val, &parent_event->child_count);
5635 5636 5637 5638
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5639 5640

	/*
5641
	 * Remove this event from the parent's list
5642
	 */
5643 5644 5645 5646
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5647 5648

	/*
5649
	 * Release the parent event, if this was the last
5650 5651
	 * reference to it.
	 */
5652
	fput(parent_event->filp);
5653 5654
}

5655
static void
5656 5657
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5658
			 struct task_struct *child)
5659
{
5660
	struct perf_event *parent_event;
5661

5662
	perf_event_remove_from_context(child_event);
5663

5664
	parent_event = child_event->parent;
5665
	/*
5666
	 * It can happen that parent exits first, and has events
5667
	 * that are still around due to the child reference. These
5668
	 * events need to be zapped - but otherwise linger.
5669
	 */
5670 5671 5672
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5673
	}
5674 5675 5676
}

/*
5677
 * When a child task exits, feed back event values to parent events.
5678
 */
5679
void perf_event_exit_task(struct task_struct *child)
5680
{
5681 5682
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5683
	unsigned long flags;
5684

5685 5686
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5687
		return;
P
Peter Zijlstra 已提交
5688
	}
5689

5690
	local_irq_save(flags);
5691 5692 5693 5694 5695 5696
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5697 5698
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5699 5700 5701

	/*
	 * Take the context lock here so that if find_get_context is
5702
	 * reading child->perf_event_ctxp, we wait until it has
5703 5704
	 * incremented the context's refcount before we do put_ctx below.
	 */
5705
	raw_spin_lock(&child_ctx->lock);
5706
	child->perf_event_ctxp = NULL;
5707 5708 5709
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5710
	 * the events from it.
5711 5712
	 */
	unclone_ctx(child_ctx);
5713
	update_context_time(child_ctx);
5714
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5715 5716

	/*
5717 5718 5719
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5720
	 */
5721
	perf_event_task(child, child_ctx, 0);
5722

5723 5724 5725
	/*
	 * We can recurse on the same lock type through:
	 *
5726 5727 5728
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5729 5730 5731 5732 5733
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5734
	mutex_lock(&child_ctx->mutex);
5735

5736
again:
5737 5738 5739 5740 5741
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5742
				 group_entry)
5743
		__perf_event_exit_task(child_event, child_ctx, child);
5744 5745

	/*
5746
	 * If the last event was a group event, it will have appended all
5747 5748 5749
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5750 5751
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5752
		goto again;
5753 5754 5755 5756

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5757 5758
}

5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5773
	perf_group_detach(event);
5774 5775 5776 5777
	list_del_event(event, ctx);
	free_event(event);
}

5778 5779 5780 5781
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5782
void perf_event_free_task(struct task_struct *task)
5783
{
5784 5785
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5786 5787 5788 5789 5790 5791

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5792 5793
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5794

5795 5796 5797
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5798

5799 5800 5801
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5802

5803
	mutex_unlock(&ctx->mutex);
5804

5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5820 5821
	}

5822 5823 5824 5825 5826 5827 5828
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5829

5830 5831 5832 5833
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5834

5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5847 5848
}

5849

5850
/*
5851
 * Initialize the perf_event context in task_struct
5852
 */
5853
int perf_event_init_task(struct task_struct *child)
5854
{
5855
	struct perf_event_context *child_ctx, *parent_ctx;
5856 5857
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5858
	struct task_struct *parent = current;
5859
	int inherited_all = 1;
5860
	int ret = 0;
5861

5862
	child->perf_event_ctxp = NULL;
5863

5864 5865
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5866

5867
	if (likely(!parent->perf_event_ctxp))
5868 5869
		return 0;

5870
	/*
5871 5872
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5873
	 */
5874 5875
	parent_ctx = perf_pin_task_context(parent);

5876 5877 5878 5879 5880 5881 5882
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5883 5884 5885 5886
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5887
	mutex_lock(&parent_ctx->mutex);
5888 5889 5890 5891 5892

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5893 5894 5895 5896 5897 5898
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5899

5900 5901 5902 5903
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5904
			break;
5905 5906
	}

5907 5908
	child_ctx = child->perf_event_ctxp;

5909
	if (child_ctx && inherited_all) {
5910 5911 5912
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5913 5914
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5915
		 * because the list of events and the generation
5916
		 * count can't have changed since we took the mutex.
5917
		 */
5918 5919 5920
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5921
			child_ctx->parent_gen = parent_ctx->parent_gen;
5922 5923 5924 5925 5926
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5927 5928
	}

5929
	mutex_unlock(&parent_ctx->mutex);
5930

5931
	perf_unpin_context(parent_ctx);
5932

5933
	return ret;
5934 5935
}

5936 5937 5938
static void __init perf_event_init_all_cpus(void)
{
	struct perf_cpu_context *cpuctx;
5939 5940
	struct swevent_htable *swhash;
	int cpu;
5941 5942

	for_each_possible_cpu(cpu) {
5943 5944 5945
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);

5946 5947
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		__perf_event_init_context(&cpuctx->ctx, NULL);
5948 5949 5950
		cpuctx->timer_interval = TICK_NSEC;
		hrtimer_init(&cpuctx->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
		cpuctx->timer.function = perf_event_context_tick;
5951 5952 5953
	}
}

5954
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5955
{
5956
	struct perf_cpu_context *cpuctx;
5957
	struct swevent_htable *swhash;
T
Thomas Gleixner 已提交
5958

5959
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5960

5961 5962 5963 5964
	swhash = &per_cpu(swevent_htable, cpu);

	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
5965 5966
		struct swevent_hlist *hlist;

5967 5968 5969
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
5970
	}
5971
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
5972 5973 5974
}

#ifdef CONFIG_HOTPLUG_CPU
5975
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5976 5977
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5978 5979
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5980

5981 5982
	perf_pmu_rotate_stop();

5983 5984 5985
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5986
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5987
}
5988
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5989
{
5990
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5991
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5992
	struct perf_event_context *ctx = &cpuctx->ctx;
5993

5994 5995 5996
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
5997

5998
	mutex_lock(&ctx->mutex);
5999
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
6000
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
6001 6002
}
#else
6003
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6004 6005 6006 6007 6008 6009 6010
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6011
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6012 6013

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6014
	case CPU_DOWN_FAILED:
6015
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6016 6017
		break;

P
Peter Zijlstra 已提交
6018
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6019
	case CPU_DOWN_PREPARE:
6020
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6021 6022 6023 6024 6025 6026 6027 6028 6029
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6030
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6031
{
6032
	perf_event_init_all_cpus();
6033 6034 6035 6036 6037 6038
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
6039
}