perf_event.c 132.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
38
/*
39
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
40
 */
41
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
42

43
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
44 45 46
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

47 48 49 50
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
51

52
/*
53
 * perf event paranoia level:
54 55
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
56
 *   1 - disallow cpu events for unpriv
57
 *   2 - disallow kernel profiling for unpriv
58
 */
59
int sysctl_perf_event_paranoid __read_mostly = 1;
60

61
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 63

/*
64
 * max perf event sample rate
65
 */
66
int sysctl_perf_event_sample_rate __read_mostly = 100000;
67

68
static atomic64_t perf_event_id;
69

T
Thomas Gleixner 已提交
70
/*
71
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
72
 */
73
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
74 75 76 77

/*
 * Architecture provided APIs - weak aliases:
 */
78
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
79
{
80
	return NULL;
T
Thomas Gleixner 已提交
81 82
}

83 84 85
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

86
void __weak perf_event_print_debug(void)	{ }
87

88
static DEFINE_PER_CPU(int, perf_disable_count);
89 90 91

void perf_disable(void)
{
P
Peter Zijlstra 已提交
92 93
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
94 95 96 97
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
98
	if (!--__get_cpu_var(perf_disable_count))
99 100 101
		hw_perf_enable();
}

102
static void get_ctx(struct perf_event_context *ctx)
103
{
104
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 106
}

107 108
static void free_ctx(struct rcu_head *head)
{
109
	struct perf_event_context *ctx;
110

111
	ctx = container_of(head, struct perf_event_context, rcu_head);
112 113 114
	kfree(ctx);
}

115
static void put_ctx(struct perf_event_context *ctx)
116
{
117 118 119
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
120 121 122
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
123
	}
124 125
}

126
static void unclone_ctx(struct perf_event_context *ctx)
127 128 129 130 131 132 133
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

134
/*
135
 * If we inherit events we want to return the parent event id
136 137
 * to userspace.
 */
138
static u64 primary_event_id(struct perf_event *event)
139
{
140
	u64 id = event->id;
141

142 143
	if (event->parent)
		id = event->parent->id;
144 145 146 147

	return id;
}

148
/*
149
 * Get the perf_event_context for a task and lock it.
150 151 152
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
153
static struct perf_event_context *
154
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155
{
156
	struct perf_event_context *ctx;
157 158 159

	rcu_read_lock();
 retry:
160
	ctx = rcu_dereference(task->perf_event_ctxp);
161 162 163 164
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
165
		 * perf_event_task_sched_out, though the
166 167 168 169 170 171
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
172
		raw_spin_lock_irqsave(&ctx->lock, *flags);
173
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 176
			goto retry;
		}
177 178

		if (!atomic_inc_not_zero(&ctx->refcount)) {
179
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 181
			ctx = NULL;
		}
182 183 184 185 186 187 188 189 190 191
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
192
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193
{
194
	struct perf_event_context *ctx;
195 196 197 198 199
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
200
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 202 203 204
	}
	return ctx;
}

205
static void perf_unpin_context(struct perf_event_context *ctx)
206 207 208
{
	unsigned long flags;

209
	raw_spin_lock_irqsave(&ctx->lock, flags);
210
	--ctx->pin_count;
211
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 213 214
	put_ctx(ctx);
}

215 216
static inline u64 perf_clock(void)
{
217
	return cpu_clock(raw_smp_processor_id());
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

243 244 245 246 247 248
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
249 250 251 252 253 254 255 256 257

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

270 271 272 273 274 275 276 277 278
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

279
/*
280
 * Add a event from the lists for its context.
281 282
 * Must be called with ctx->mutex and ctx->lock held.
 */
283
static void
284
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285
{
286 287
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
288 289

	/*
290 291 292
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
293
	 */
294
	if (event->group_leader == event) {
295 296
		struct list_head *list;

297 298 299
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

300 301
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
302
	}
P
Peter Zijlstra 已提交
303

304 305 306
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

328
/*
329
 * Remove a event from the lists for its context.
330
 * Must be called with ctx->mutex and ctx->lock held.
331
 */
332
static void
333
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
334
{
335 336 337 338
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
339
		return;
340 341 342

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

343 344
	ctx->nr_events--;
	if (event->attr.inherit_stat)
345
		ctx->nr_stat--;
346

347
	list_del_rcu(&event->event_entry);
348

349 350
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
351

352
	update_group_times(event);
353 354 355 356 357 358 359 360 361 362

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
363 364
}

365
static void perf_group_detach(struct perf_event *event)
366 367
{
	struct perf_event *sibling, *tmp;
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
389

390
	/*
391 392
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
393
	 * to whatever list we are on.
394
	 */
395
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
396 397
		if (list)
			list_move_tail(&sibling->group_entry, list);
398
		sibling->group_leader = sibling;
399 400 401

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
402 403 404
	}
}

405
static void
406
event_sched_out(struct perf_event *event,
407
		  struct perf_cpu_context *cpuctx,
408
		  struct perf_event_context *ctx)
409
{
410
	if (event->state != PERF_EVENT_STATE_ACTIVE)
411 412
		return;

413 414 415 416
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
417
	}
418 419 420
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
421

422
	if (!is_software_event(event))
423 424
		cpuctx->active_oncpu--;
	ctx->nr_active--;
425
	if (event->attr.exclusive || !cpuctx->active_oncpu)
426 427 428
		cpuctx->exclusive = 0;
}

429
static void
430
group_sched_out(struct perf_event *group_event,
431
		struct perf_cpu_context *cpuctx,
432
		struct perf_event_context *ctx)
433
{
434
	struct perf_event *event;
435

436
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
437 438
		return;

439
	event_sched_out(group_event, cpuctx, ctx);
440 441 442 443

	/*
	 * Schedule out siblings (if any):
	 */
444 445
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
446

447
	if (group_event->attr.exclusive)
448 449 450
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
451
/*
452
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
453
 *
454
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
455 456
 * remove it from the context list.
 */
457
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
458 459
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
460 461
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
462 463 464 465 466 467

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
468
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
469 470
		return;

471
	raw_spin_lock(&ctx->lock);
472 473
	/*
	 * Protect the list operation against NMI by disabling the
474
	 * events on a global level.
475 476
	 */
	perf_disable();
T
Thomas Gleixner 已提交
477

478
	event_sched_out(event, cpuctx, ctx);
479

480
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
481 482 483

	if (!ctx->task) {
		/*
484
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
485 486 487
		 * reservation:
		 */
		cpuctx->max_pertask =
488 489
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
490 491
	}

492
	perf_enable();
493
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
494 495 496 497
}


/*
498
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
499
 *
500
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
501
 *
502
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
503
 * call when the task is on a CPU.
504
 *
505 506
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
507 508
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
509
 * When called from perf_event_exit_task, it's OK because the
510
 * context has been detached from its task.
T
Thomas Gleixner 已提交
511
 */
512
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
513
{
514
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
515 516 517 518
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
519
		 * Per cpu events are removed via an smp call and
520
		 * the removal is always successful.
T
Thomas Gleixner 已提交
521
		 */
522 523 524
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
525 526 527 528
		return;
	}

retry:
529 530
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
531

532
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
533 534 535
	/*
	 * If the context is active we need to retry the smp call.
	 */
536
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
537
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
538 539 540 541 542
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
543
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
544 545
	 * succeed.
	 */
P
Peter Zijlstra 已提交
546
	if (!list_empty(&event->group_entry))
547
		list_del_event(event, ctx);
548
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
549 550
}

551
/*
552
 * Cross CPU call to disable a performance event
553
 */
554
static void __perf_event_disable(void *info)
555
{
556
	struct perf_event *event = info;
557
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558
	struct perf_event_context *ctx = event->ctx;
559 560

	/*
561 562
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
563
	 */
564
	if (ctx->task && cpuctx->task_ctx != ctx)
565 566
		return;

567
	raw_spin_lock(&ctx->lock);
568 569

	/*
570
	 * If the event is on, turn it off.
571 572
	 * If it is in error state, leave it in error state.
	 */
573
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574
		update_context_time(ctx);
575 576 577
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
578
		else
579 580
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
581 582
	}

583
	raw_spin_unlock(&ctx->lock);
584 585 586
}

/*
587
 * Disable a event.
588
 *
589 590
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
591
 * remains valid.  This condition is satisifed when called through
592 593 594 595
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
596
 * is the current context on this CPU and preemption is disabled,
597
 * hence we can't get into perf_event_task_sched_out for this context.
598
 */
599
void perf_event_disable(struct perf_event *event)
600
{
601
	struct perf_event_context *ctx = event->ctx;
602 603 604 605
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
606
		 * Disable the event on the cpu that it's on
607
		 */
608 609
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
610 611 612 613
		return;
	}

 retry:
614
	task_oncpu_function_call(task, __perf_event_disable, event);
615

616
	raw_spin_lock_irq(&ctx->lock);
617
	/*
618
	 * If the event is still active, we need to retry the cross-call.
619
	 */
620
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
621
		raw_spin_unlock_irq(&ctx->lock);
622 623 624 625 626 627 628
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
629 630 631
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
632
	}
633

634
	raw_spin_unlock_irq(&ctx->lock);
635 636
}

637
static int
638
event_sched_in(struct perf_event *event,
639
		 struct perf_cpu_context *cpuctx,
640
		 struct perf_event_context *ctx)
641
{
642
	if (event->state <= PERF_EVENT_STATE_OFF)
643 644
		return 0;

645
	event->state = PERF_EVENT_STATE_ACTIVE;
646
	event->oncpu = smp_processor_id();
647 648 649 650 651
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

652 653 654
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
655 656 657
		return -EAGAIN;
	}

658
	event->tstamp_running += ctx->time - event->tstamp_stopped;
659

660
	if (!is_software_event(event))
661
		cpuctx->active_oncpu++;
662 663
	ctx->nr_active++;

664
	if (event->attr.exclusive)
665 666
		cpuctx->exclusive = 1;

667 668 669
	return 0;
}

670
static int
671
group_sched_in(struct perf_event *group_event,
672
	       struct perf_cpu_context *cpuctx,
673
	       struct perf_event_context *ctx)
674
{
675 676 677
	struct perf_event *event, *partial_group = NULL;
	const struct pmu *pmu = group_event->pmu;
	bool txn = false;
678 679
	int ret;

680
	if (group_event->state == PERF_EVENT_STATE_OFF)
681 682
		return 0;

683 684 685 686 687 688
	/* Check if group transaction availabe */
	if (pmu->start_txn)
		txn = true;

	if (txn)
		pmu->start_txn(pmu);
689

690 691 692
	if (event_sched_in(group_event, cpuctx, ctx)) {
		if (txn)
			pmu->cancel_txn(pmu);
693
		return -EAGAIN;
694
	}
695 696 697 698

	/*
	 * Schedule in siblings as one group (if any):
	 */
699
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
700
		if (event_sched_in(event, cpuctx, ctx)) {
701
			partial_group = event;
702 703 704 705
			goto group_error;
		}
	}

706 707
	if (!txn)
		return 0;
708

709 710 711 712
	ret = pmu->commit_txn(pmu);
	if (!ret) {
		pmu->cancel_txn(pmu);
		return 0;
713
	}
714 715 716 717 718 719

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
720 721
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
722
			break;
723
		event_sched_out(event, cpuctx, ctx);
724
	}
725
	event_sched_out(group_event, cpuctx, ctx);
726

727 728 729
	if (txn)
		pmu->cancel_txn(pmu);

730 731 732
	return -EAGAIN;
}

733
/*
734
 * Work out whether we can put this event group on the CPU now.
735
 */
736
static int group_can_go_on(struct perf_event *event,
737 738 739 740
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
741
	 * Groups consisting entirely of software events can always go on.
742
	 */
743
	if (event->group_flags & PERF_GROUP_SOFTWARE)
744 745 746
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
747
	 * events can go on.
748 749 750 751 752
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
753
	 * events on the CPU, it can't go on.
754
	 */
755
	if (event->attr.exclusive && cpuctx->active_oncpu)
756 757 758 759 760 761 762 763
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

764 765
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
766
{
767
	list_add_event(event, ctx);
768
	perf_group_attach(event);
769 770 771
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
772 773
}

T
Thomas Gleixner 已提交
774
/*
775
 * Cross CPU call to install and enable a performance event
776 777
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
778 779 780 781
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
782 783 784
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
785
	int err;
T
Thomas Gleixner 已提交
786 787 788 789 790

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
791
	 * Or possibly this is the right context but it isn't
792
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
793
	 */
794
	if (ctx->task && cpuctx->task_ctx != ctx) {
795
		if (cpuctx->task_ctx || ctx->task != current)
796 797 798
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
799

800
	raw_spin_lock(&ctx->lock);
801
	ctx->is_active = 1;
802
	update_context_time(ctx);
T
Thomas Gleixner 已提交
803 804 805

	/*
	 * Protect the list operation against NMI by disabling the
806
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
807
	 */
808
	perf_disable();
T
Thomas Gleixner 已提交
809

810
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
811

812 813 814
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

815
	/*
816
	 * Don't put the event on if it is disabled or if
817 818
	 * it is in a group and the group isn't on.
	 */
819 820
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
821 822
		goto unlock;

823
	/*
824 825 826
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
827
	 */
828
	if (!group_can_go_on(event, cpuctx, 1))
829 830
		err = -EEXIST;
	else
831
		err = event_sched_in(event, cpuctx, ctx);
832

833 834
	if (err) {
		/*
835
		 * This event couldn't go on.  If it is in a group
836
		 * then we have to pull the whole group off.
837
		 * If the event group is pinned then put it in error state.
838
		 */
839
		if (leader != event)
840
			group_sched_out(leader, cpuctx, ctx);
841
		if (leader->attr.pinned) {
842
			update_group_times(leader);
843
			leader->state = PERF_EVENT_STATE_ERROR;
844
		}
845
	}
T
Thomas Gleixner 已提交
846

847
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
848 849
		cpuctx->max_pertask--;

850
 unlock:
851
	perf_enable();
852

853
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
854 855 856
}

/*
857
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
858
 *
859 860
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
861
 *
862
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
863 864
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
865 866
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
867 868
 */
static void
869 870
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
871 872 873 874 875 876
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
877
		 * Per cpu events are installed via an smp call and
878
		 * the install is always successful.
T
Thomas Gleixner 已提交
879 880
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
881
					 event, 1);
T
Thomas Gleixner 已提交
882 883 884 885 886
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
887
				 event);
T
Thomas Gleixner 已提交
888

889
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
890 891 892
	/*
	 * we need to retry the smp call.
	 */
893
	if (ctx->is_active && list_empty(&event->group_entry)) {
894
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
895 896 897 898 899
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
900
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
901 902
	 * succeed.
	 */
903 904
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
905
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
906 907
}

908
/*
909
 * Put a event into inactive state and update time fields.
910 911 912 913 914 915
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
916 917
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
918
{
919
	struct perf_event *sub;
920

921 922 923 924
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
925 926 927 928
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

929
/*
930
 * Cross CPU call to enable a performance event
931
 */
932
static void __perf_event_enable(void *info)
933
{
934
	struct perf_event *event = info;
935
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
936 937
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
938
	int err;
939

940
	/*
941 942
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
943
	 */
944
	if (ctx->task && cpuctx->task_ctx != ctx) {
945
		if (cpuctx->task_ctx || ctx->task != current)
946 947 948
			return;
		cpuctx->task_ctx = ctx;
	}
949

950
	raw_spin_lock(&ctx->lock);
951
	ctx->is_active = 1;
952
	update_context_time(ctx);
953

954
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
955
		goto unlock;
956
	__perf_event_mark_enabled(event, ctx);
957

958 959 960
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

961
	/*
962
	 * If the event is in a group and isn't the group leader,
963
	 * then don't put it on unless the group is on.
964
	 */
965
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
966
		goto unlock;
967

968
	if (!group_can_go_on(event, cpuctx, 1)) {
969
		err = -EEXIST;
970
	} else {
971
		perf_disable();
972
		if (event == leader)
973
			err = group_sched_in(event, cpuctx, ctx);
974
		else
975
			err = event_sched_in(event, cpuctx, ctx);
976
		perf_enable();
977
	}
978 979 980

	if (err) {
		/*
981
		 * If this event can't go on and it's part of a
982 983
		 * group, then the whole group has to come off.
		 */
984
		if (leader != event)
985
			group_sched_out(leader, cpuctx, ctx);
986
		if (leader->attr.pinned) {
987
			update_group_times(leader);
988
			leader->state = PERF_EVENT_STATE_ERROR;
989
		}
990 991 992
	}

 unlock:
993
	raw_spin_unlock(&ctx->lock);
994 995 996
}

/*
997
 * Enable a event.
998
 *
999 1000
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
1001
 * remains valid.  This condition is satisfied when called through
1002 1003
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
1004
 */
1005
void perf_event_enable(struct perf_event *event)
1006
{
1007
	struct perf_event_context *ctx = event->ctx;
1008 1009 1010 1011
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1012
		 * Enable the event on the cpu that it's on
1013
		 */
1014 1015
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1016 1017 1018
		return;
	}

1019
	raw_spin_lock_irq(&ctx->lock);
1020
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1021 1022 1023
		goto out;

	/*
1024 1025
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1026 1027 1028 1029
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1030 1031
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1032 1033

 retry:
1034
	raw_spin_unlock_irq(&ctx->lock);
1035
	task_oncpu_function_call(task, __perf_event_enable, event);
1036

1037
	raw_spin_lock_irq(&ctx->lock);
1038 1039

	/*
1040
	 * If the context is active and the event is still off,
1041 1042
	 * we need to retry the cross-call.
	 */
1043
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1044 1045 1046 1047 1048 1049
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1050 1051
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1052

1053
 out:
1054
	raw_spin_unlock_irq(&ctx->lock);
1055 1056
}

1057
static int perf_event_refresh(struct perf_event *event, int refresh)
1058
{
1059
	/*
1060
	 * not supported on inherited events
1061
	 */
1062
	if (event->attr.inherit)
1063 1064
		return -EINVAL;

1065 1066
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1067 1068

	return 0;
1069 1070
}

1071 1072 1073 1074 1075 1076 1077 1078 1079
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1080
{
1081
	struct perf_event *event;
1082

1083
	raw_spin_lock(&ctx->lock);
1084
	ctx->is_active = 0;
1085
	if (likely(!ctx->nr_events))
1086
		goto out;
1087
	update_context_time(ctx);
1088

1089
	perf_disable();
1090 1091 1092 1093
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1094 1095 1096
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1097
	if (event_type & EVENT_FLEXIBLE)
1098
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1099
			group_sched_out(event, cpuctx, ctx);
1100 1101

 out_enable:
1102
	perf_enable();
1103
 out:
1104
	raw_spin_unlock(&ctx->lock);
1105 1106
}

1107 1108 1109
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1110 1111 1112 1113
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1114
 * in them directly with an fd; we can only enable/disable all
1115
 * events via prctl, or enable/disable all events in a family
1116 1117
 * via ioctl, which will have the same effect on both contexts.
 */
1118 1119
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1120 1121
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1122
		&& ctx1->parent_gen == ctx2->parent_gen
1123
		&& !ctx1->pin_count && !ctx2->pin_count;
1124 1125
}

1126 1127
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1128 1129 1130
{
	u64 value;

1131
	if (!event->attr.inherit_stat)
1132 1133 1134
		return;

	/*
1135
	 * Update the event value, we cannot use perf_event_read()
1136 1137
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1138
	 * we know the event must be on the current CPU, therefore we
1139 1140
	 * don't need to use it.
	 */
1141 1142
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1143 1144
		event->pmu->read(event);
		/* fall-through */
1145

1146 1147
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1148 1149 1150 1151 1152 1153 1154
		break;

	default:
		break;
	}

	/*
1155
	 * In order to keep per-task stats reliable we need to flip the event
1156 1157
	 * values when we flip the contexts.
	 */
1158 1159 1160
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1161

1162 1163
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1164

1165
	/*
1166
	 * Since we swizzled the values, update the user visible data too.
1167
	 */
1168 1169
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1170 1171 1172 1173 1174
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1175 1176
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1177
{
1178
	struct perf_event *event, *next_event;
1179 1180 1181 1182

	if (!ctx->nr_stat)
		return;

1183 1184
	update_context_time(ctx);

1185 1186
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1187

1188 1189
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1190

1191 1192
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1193

1194
		__perf_event_sync_stat(event, next_event);
1195

1196 1197
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1198 1199 1200
	}
}

T
Thomas Gleixner 已提交
1201
/*
1202
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1203 1204
 * with interrupts disabled.
 *
1205
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1206
 *
I
Ingo Molnar 已提交
1207
 * This does not protect us against NMI, but disable()
1208 1209 1210
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1211
 */
1212
void perf_event_task_sched_out(struct task_struct *task,
1213
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1214
{
1215
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1216 1217 1218
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1219
	int do_switch = 1;
T
Thomas Gleixner 已提交
1220

1221
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1222

1223
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1224 1225
		return;

1226 1227
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1228
	next_ctx = next->perf_event_ctxp;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1240 1241
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1242
		if (context_equiv(ctx, next_ctx)) {
1243 1244
			/*
			 * XXX do we need a memory barrier of sorts
1245
			 * wrt to rcu_dereference() of perf_event_ctxp
1246
			 */
1247 1248
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1249 1250 1251
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1252

1253
			perf_event_sync_stat(ctx, next_ctx);
1254
		}
1255 1256
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1257
	}
1258
	rcu_read_unlock();
1259

1260
	if (do_switch) {
1261
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1262 1263
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1264 1265
}

1266 1267
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1268 1269 1270
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1271 1272
	if (!cpuctx->task_ctx)
		return;
1273 1274 1275 1276

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1277
	ctx_sched_out(ctx, cpuctx, event_type);
1278 1279 1280
	cpuctx->task_ctx = NULL;
}

1281 1282 1283
/*
 * Called with IRQs disabled
 */
1284
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1285
{
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1296 1297
}

1298
static void
1299
ctx_pinned_sched_in(struct perf_event_context *ctx,
1300
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1301
{
1302
	struct perf_event *event;
T
Thomas Gleixner 已提交
1303

1304 1305
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1306
			continue;
1307
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1308 1309
			continue;

1310
		if (group_can_go_on(event, cpuctx, 1))
1311
			group_sched_in(event, cpuctx, ctx);
1312 1313 1314 1315 1316

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1317 1318 1319
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1320
		}
1321
	}
1322 1323 1324 1325
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1326
		      struct perf_cpu_context *cpuctx)
1327 1328 1329
{
	struct perf_event *event;
	int can_add_hw = 1;
1330

1331 1332 1333
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1334
			continue;
1335 1336
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1337
		 * of events:
1338
		 */
1339
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1340 1341
			continue;

1342
		if (group_can_go_on(event, cpuctx, can_add_hw))
1343
			if (group_sched_in(event, cpuctx, ctx))
1344
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1345
	}
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1367
		ctx_pinned_sched_in(ctx, cpuctx);
1368 1369 1370

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1371
		ctx_flexible_sched_in(ctx, cpuctx);
1372

1373
	perf_enable();
1374
 out:
1375
	raw_spin_unlock(&ctx->lock);
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1399
/*
1400
 * Called from scheduler to add the events of the current task
1401 1402
 * with interrupts disabled.
 *
1403
 * We restore the event value and then enable it.
1404 1405
 *
 * This does not protect us against NMI, but enable()
1406 1407 1408
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1409
 */
1410
void perf_event_task_sched_in(struct task_struct *task)
1411
{
1412 1413
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1414

1415 1416
	if (likely(!ctx))
		return;
1417

1418 1419 1420
	if (cpuctx->task_ctx == ctx)
		return;

1421 1422
	perf_disable();

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1435 1436

	perf_enable();
1437 1438
}

1439 1440
#define MAX_INTERRUPTS (~0ULL)

1441
static void perf_log_throttle(struct perf_event *event, int enable);
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1529
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1530
{
1531
	struct hw_perf_event *hwc = &event->hw;
1532 1533 1534
	u64 period, sample_period;
	s64 delta;

1535
	period = perf_calculate_period(event, nsec, count);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1546 1547 1548

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1549
		perf_event_stop(event);
1550
		atomic64_set(&hwc->period_left, 0);
1551
		perf_event_start(event);
1552 1553
		perf_enable();
	}
1554 1555
}

1556
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1557
{
1558 1559
	struct perf_event *event;
	struct hw_perf_event *hwc;
1560 1561
	u64 interrupts, now;
	s64 delta;
1562

1563
	raw_spin_lock(&ctx->lock);
1564
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1565
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1566 1567
			continue;

1568 1569 1570
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1571
		hwc = &event->hw;
1572 1573 1574

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1575

1576
		/*
1577
		 * unthrottle events on the tick
1578
		 */
1579
		if (interrupts == MAX_INTERRUPTS) {
1580
			perf_log_throttle(event, 1);
1581
			perf_disable();
1582
			event->pmu->unthrottle(event);
1583
			perf_enable();
1584 1585
		}

1586
		if (!event->attr.freq || !event->attr.sample_freq)
1587 1588
			continue;

1589
		perf_disable();
1590 1591 1592 1593
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1594

1595 1596
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1597
		perf_enable();
1598
	}
1599
	raw_spin_unlock(&ctx->lock);
1600 1601
}

1602
/*
1603
 * Round-robin a context's events:
1604
 */
1605
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1606
{
1607
	raw_spin_lock(&ctx->lock);
1608 1609 1610 1611

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1612
	raw_spin_unlock(&ctx->lock);
1613 1614
}

1615
void perf_event_task_tick(struct task_struct *curr)
1616
{
1617
	struct perf_cpu_context *cpuctx;
1618
	struct perf_event_context *ctx;
1619
	int rotate = 0;
1620

1621
	if (!atomic_read(&nr_events))
1622 1623
		return;

1624
	cpuctx = &__get_cpu_var(perf_cpu_context);
1625 1626 1627
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1628

1629 1630 1631
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1632

1633
	perf_ctx_adjust_freq(&cpuctx->ctx);
1634
	if (ctx)
1635
		perf_ctx_adjust_freq(ctx);
1636

1637 1638 1639 1640
	if (!rotate)
		return;

	perf_disable();
1641
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1642
	if (ctx)
1643
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1644

1645
	rotate_ctx(&cpuctx->ctx);
1646 1647
	if (ctx)
		rotate_ctx(ctx);
1648

1649
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1650
	if (ctx)
1651
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1652
	perf_enable();
T
Thomas Gleixner 已提交
1653 1654
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1670
/*
1671
 * Enable all of a task's events that have been marked enable-on-exec.
1672 1673
 * This expects task == current.
 */
1674
static void perf_event_enable_on_exec(struct task_struct *task)
1675
{
1676 1677
	struct perf_event_context *ctx;
	struct perf_event *event;
1678 1679
	unsigned long flags;
	int enabled = 0;
1680
	int ret;
1681 1682

	local_irq_save(flags);
1683 1684
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1685 1686
		goto out;

1687
	__perf_event_task_sched_out(ctx);
1688

1689
	raw_spin_lock(&ctx->lock);
1690

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1701 1702 1703
	}

	/*
1704
	 * Unclone this context if we enabled any event.
1705
	 */
1706 1707
	if (enabled)
		unclone_ctx(ctx);
1708

1709
	raw_spin_unlock(&ctx->lock);
1710

1711
	perf_event_task_sched_in(task);
1712 1713 1714 1715
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1716
/*
1717
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1718
 */
1719
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1720
{
1721
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1722 1723
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1724

1725 1726 1727 1728
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1729 1730
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1731 1732 1733 1734
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1735
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1736
	update_context_time(ctx);
1737
	update_event_times(event);
1738
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1739

P
Peter Zijlstra 已提交
1740
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1741 1742
}

1743
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1744 1745
{
	/*
1746 1747
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1748
	 */
1749 1750 1751 1752
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1753 1754 1755
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1756
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1757
		update_context_time(ctx);
1758
		update_event_times(event);
1759
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1760 1761
	}

1762
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1763 1764
}

1765
/*
1766
 * Initialize the perf_event context in a task_struct:
1767 1768
 */
static void
1769
__perf_event_init_context(struct perf_event_context *ctx,
1770 1771
			    struct task_struct *task)
{
1772
	raw_spin_lock_init(&ctx->lock);
1773
	mutex_init(&ctx->mutex);
1774 1775
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1776 1777 1778 1779 1780
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1781
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1782
{
1783
	struct perf_event_context *ctx;
1784
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1785
	struct task_struct *task;
1786
	unsigned long flags;
1787
	int err;
T
Thomas Gleixner 已提交
1788

1789
	if (pid == -1 && cpu != -1) {
1790
		/* Must be root to operate on a CPU event: */
1791
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1792 1793
			return ERR_PTR(-EACCES);

1794
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1795 1796 1797
			return ERR_PTR(-EINVAL);

		/*
1798
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1799 1800 1801
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1802
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1803 1804 1805 1806
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1807
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1824
	/*
1825
	 * Can't attach events to a dying task.
1826 1827 1828 1829 1830
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1831
	/* Reuse ptrace permission checks for now. */
1832 1833 1834 1835 1836
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1837
	ctx = perf_lock_task_context(task, &flags);
1838
	if (ctx) {
1839
		unclone_ctx(ctx);
1840
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1841 1842
	}

1843
	if (!ctx) {
1844
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1845 1846 1847
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1848
		__perf_event_init_context(ctx, task);
1849
		get_ctx(ctx);
1850
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1851 1852 1853 1854 1855
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1856
			goto retry;
1857
		}
1858
		get_task_struct(task);
1859 1860
	}

1861
	put_task_struct(task);
T
Thomas Gleixner 已提交
1862
	return ctx;
1863 1864 1865 1866

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1867 1868
}

L
Li Zefan 已提交
1869 1870
static void perf_event_free_filter(struct perf_event *event);

1871
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1872
{
1873
	struct perf_event *event;
P
Peter Zijlstra 已提交
1874

1875 1876 1877
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1878
	perf_event_free_filter(event);
1879
	kfree(event);
P
Peter Zijlstra 已提交
1880 1881
}

1882
static void perf_pending_sync(struct perf_event *event);
1883
static void perf_mmap_data_put(struct perf_mmap_data *data);
1884

1885
static void free_event(struct perf_event *event)
1886
{
1887
	perf_pending_sync(event);
1888

1889 1890 1891 1892 1893 1894 1895 1896
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1897
	}
1898

1899 1900 1901
	if (event->data) {
		perf_mmap_data_put(event->data);
		event->data = NULL;
1902 1903
	}

1904 1905
	if (event->destroy)
		event->destroy(event);
1906

1907 1908
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1909 1910
}

1911
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1912
{
1913
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1914

1915 1916 1917 1918 1919 1920
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

1921
	WARN_ON_ONCE(ctx->parent_ctx);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1935
	raw_spin_lock_irq(&ctx->lock);
1936
	perf_group_detach(event);
1937 1938
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
1939
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1940

1941 1942 1943 1944
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1945

1946
	free_event(event);
T
Thomas Gleixner 已提交
1947 1948 1949

	return 0;
}
1950
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1951

1952 1953 1954 1955
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1956
{
1957
	struct perf_event *event = file->private_data;
1958

1959
	file->private_data = NULL;
1960

1961
	return perf_event_release_kernel(event);
1962 1963
}

1964
static int perf_event_read_size(struct perf_event *event)
1965 1966 1967 1968 1969
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1970
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1971 1972
		size += sizeof(u64);

1973
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1974 1975
		size += sizeof(u64);

1976
	if (event->attr.read_format & PERF_FORMAT_ID)
1977 1978
		entry += sizeof(u64);

1979 1980
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1981 1982 1983 1984 1985 1986 1987 1988
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1989
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1990
{
1991
	struct perf_event *child;
1992 1993
	u64 total = 0;

1994 1995 1996
	*enabled = 0;
	*running = 0;

1997
	mutex_lock(&event->child_mutex);
1998
	total += perf_event_read(event);
1999 2000 2001 2002 2003 2004
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2005
		total += perf_event_read(child);
2006 2007 2008
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2009
	mutex_unlock(&event->child_mutex);
2010 2011 2012

	return total;
}
2013
EXPORT_SYMBOL_GPL(perf_event_read_value);
2014

2015
static int perf_event_read_group(struct perf_event *event,
2016 2017
				   u64 read_format, char __user *buf)
{
2018
	struct perf_event *leader = event->group_leader, *sub;
2019 2020
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2021
	u64 values[5];
2022
	u64 count, enabled, running;
2023

2024
	mutex_lock(&ctx->mutex);
2025
	count = perf_event_read_value(leader, &enabled, &running);
2026 2027

	values[n++] = 1 + leader->nr_siblings;
2028 2029 2030 2031
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2032 2033 2034
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2035 2036 2037 2038

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2039
		goto unlock;
2040

2041
	ret = size;
2042

2043
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2044
		n = 0;
2045

2046
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2047 2048 2049 2050 2051
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2052
		if (copy_to_user(buf + ret, values, size)) {
2053 2054 2055
			ret = -EFAULT;
			goto unlock;
		}
2056 2057

		ret += size;
2058
	}
2059 2060
unlock:
	mutex_unlock(&ctx->mutex);
2061

2062
	return ret;
2063 2064
}

2065
static int perf_event_read_one(struct perf_event *event,
2066 2067
				 u64 read_format, char __user *buf)
{
2068
	u64 enabled, running;
2069 2070 2071
	u64 values[4];
	int n = 0;

2072 2073 2074 2075 2076
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2077
	if (read_format & PERF_FORMAT_ID)
2078
		values[n++] = primary_event_id(event);
2079 2080 2081 2082 2083 2084 2085

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2086
/*
2087
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2088 2089
 */
static ssize_t
2090
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2091
{
2092
	u64 read_format = event->attr.read_format;
2093
	int ret;
T
Thomas Gleixner 已提交
2094

2095
	/*
2096
	 * Return end-of-file for a read on a event that is in
2097 2098 2099
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2100
	if (event->state == PERF_EVENT_STATE_ERROR)
2101 2102
		return 0;

2103
	if (count < perf_event_read_size(event))
2104 2105
		return -ENOSPC;

2106
	WARN_ON_ONCE(event->ctx->parent_ctx);
2107
	if (read_format & PERF_FORMAT_GROUP)
2108
		ret = perf_event_read_group(event, read_format, buf);
2109
	else
2110
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2111

2112
	return ret;
T
Thomas Gleixner 已提交
2113 2114 2115 2116 2117
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2118
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2119

2120
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2121 2122 2123 2124
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2125
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2126
	struct perf_mmap_data *data;
2127
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2128 2129

	rcu_read_lock();
2130
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2131
	if (data)
2132
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2133
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2134

2135
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2136 2137 2138 2139

	return events;
}

2140
static void perf_event_reset(struct perf_event *event)
2141
{
2142 2143 2144
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2145 2146
}

2147
/*
2148 2149 2150 2151
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2152
 */
2153 2154
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2155
{
2156
	struct perf_event *child;
P
Peter Zijlstra 已提交
2157

2158 2159 2160 2161
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2162
		func(child);
2163
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2164 2165
}

2166 2167
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2168
{
2169 2170
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2171

2172 2173
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2174
	event = event->group_leader;
2175

2176 2177 2178 2179
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2180
	mutex_unlock(&ctx->mutex);
2181 2182
}

2183
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2184
{
2185
	struct perf_event_context *ctx = event->ctx;
2186 2187 2188 2189
	unsigned long size;
	int ret = 0;
	u64 value;

2190
	if (!event->attr.sample_period)
2191 2192 2193 2194 2195 2196 2197 2198 2199
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2200
	raw_spin_lock_irq(&ctx->lock);
2201 2202
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2203 2204 2205 2206
			ret = -EINVAL;
			goto unlock;
		}

2207
		event->attr.sample_freq = value;
2208
	} else {
2209 2210
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2211 2212
	}
unlock:
2213
	raw_spin_unlock_irq(&ctx->lock);
2214 2215 2216 2217

	return ret;
}

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2239
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2240

2241 2242
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2243 2244
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2245
	u32 flags = arg;
2246 2247

	switch (cmd) {
2248 2249
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2250
		break;
2251 2252
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2253
		break;
2254 2255
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2256
		break;
P
Peter Zijlstra 已提交
2257

2258 2259
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2260

2261 2262
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2263

2264
	case PERF_EVENT_IOC_SET_OUTPUT:
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2282

L
Li Zefan 已提交
2283 2284 2285
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2286
	default:
P
Peter Zijlstra 已提交
2287
		return -ENOTTY;
2288
	}
P
Peter Zijlstra 已提交
2289 2290

	if (flags & PERF_IOC_FLAG_GROUP)
2291
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2292
	else
2293
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2294 2295

	return 0;
2296 2297
}

2298
int perf_event_task_enable(void)
2299
{
2300
	struct perf_event *event;
2301

2302 2303 2304 2305
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2306 2307 2308 2309

	return 0;
}

2310
int perf_event_task_disable(void)
2311
{
2312
	struct perf_event *event;
2313

2314 2315 2316 2317
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2318 2319 2320 2321

	return 0;
}

2322 2323
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2324 2325
#endif

2326
static int perf_event_index(struct perf_event *event)
2327
{
2328
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2329 2330
		return 0;

2331
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2332 2333
}

2334 2335 2336 2337 2338
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2339
void perf_event_update_userpage(struct perf_event *event)
2340
{
2341
	struct perf_event_mmap_page *userpg;
2342
	struct perf_mmap_data *data;
2343 2344

	rcu_read_lock();
2345
	data = rcu_dereference(event->data);
2346 2347 2348 2349
	if (!data)
		goto unlock;

	userpg = data->user_page;
2350

2351 2352 2353 2354 2355
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2356
	++userpg->lock;
2357
	barrier();
2358 2359 2360 2361
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2362

2363 2364
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2365

2366 2367
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2368

2369
	barrier();
2370
	++userpg->lock;
2371
	preempt_enable();
2372
unlock:
2373
	rcu_read_unlock();
2374 2375
}

2376
#ifndef CONFIG_PERF_USE_VMALLOC
2377

2378 2379 2380
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2381

2382 2383 2384 2385 2386
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2387

2388 2389
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2390

2391
	return virt_to_page(data->data_pages[pgoff - 1]);
2392 2393
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2407 2408
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

2421
	data->user_page = perf_mmap_alloc_page(event->cpu);
2422 2423 2424 2425
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2426
		data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
2427 2428 2429 2430 2431 2432
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

2433
	return data;
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2445
	return NULL;
2446 2447
}

2448 2449
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2450
	struct page *page = virt_to_page((void *)addr);
2451 2452 2453 2454 2455

	page->mapping = NULL;
	__free_page(page);
}

2456
static void perf_mmap_data_free(struct perf_mmap_data *data)
2457 2458 2459
{
	int i;

2460
	perf_mmap_free_page((unsigned long)data->user_page);
2461
	for (i = 0; i < data->nr_pages; i++)
2462
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2463
	kfree(data);
2464 2465
}

2466 2467 2468 2469 2470
static inline int page_order(struct perf_mmap_data *data)
{
	return 0;
}

2471 2472 2473 2474 2475 2476 2477 2478
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2479 2480 2481 2482 2483
static inline int page_order(struct perf_mmap_data *data)
{
	return data->page_order;
}

2484 2485 2486
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
2487
	if (pgoff > (1UL << page_order(data)))
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
2507
	nr = 1 << page_order(data);
2508 2509 2510 2511 2512 2513

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2514
	kfree(data);
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
2544
	data->page_order = ilog2(nr_pages);
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

2558 2559 2560 2561 2562
static unsigned long perf_data_size(struct perf_mmap_data *data)
{
	return data->nr_pages << (PAGE_SHIFT + page_order(data));
}

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2609
		data->watermark = max_size / 2;
2610

2611
	atomic_set(&data->refcount, 1);
2612 2613 2614 2615 2616 2617 2618 2619 2620
	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2621 2622
}

2623
static struct perf_mmap_data *perf_mmap_data_get(struct perf_event *event)
2624
{
2625
	struct perf_mmap_data *data;
2626

2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (data) {
		if (!atomic_inc_not_zero(&data->refcount))
			data = NULL;
	}
	rcu_read_unlock();

	return data;
}

static void perf_mmap_data_put(struct perf_mmap_data *data)
{
	if (!atomic_dec_and_test(&data->refcount))
		return;
2642

2643
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2644 2645 2646 2647
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2648
	struct perf_event *event = vma->vm_file->private_data;
2649

2650
	atomic_inc(&event->mmap_count);
2651 2652 2653 2654
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2655
	struct perf_event *event = vma->vm_file->private_data;
2656

2657
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2658
		unsigned long size = perf_data_size(event->data);
2659 2660
		struct user_struct *user = event->mmap_user;
		struct perf_mmap_data *data = event->data;
2661

2662
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2663 2664
		vma->vm_mm->locked_vm -= event->mmap_locked;
		rcu_assign_pointer(event->data, NULL);
2665
		mutex_unlock(&event->mmap_mutex);
2666 2667 2668

		perf_mmap_data_put(data);
		free_uid(user);
2669
	}
2670 2671
}

2672
static const struct vm_operations_struct perf_mmap_vmops = {
2673 2674 2675 2676
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2677 2678 2679 2680
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2681
	struct perf_event *event = file->private_data;
2682
	unsigned long user_locked, user_lock_limit;
2683
	struct user_struct *user = current_user();
2684
	unsigned long locked, lock_limit;
2685
	struct perf_mmap_data *data;
2686 2687
	unsigned long vma_size;
	unsigned long nr_pages;
2688
	long user_extra, extra;
2689
	int ret = 0;
2690

2691 2692 2693 2694 2695 2696 2697 2698
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2699
	if (!(vma->vm_flags & VM_SHARED))
2700
		return -EINVAL;
2701 2702 2703 2704

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2705 2706 2707 2708 2709
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2710 2711
		return -EINVAL;

2712
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2713 2714
		return -EINVAL;

2715 2716
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2717

2718 2719
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2720 2721 2722 2723
	if (event->data) {
		if (event->data->nr_pages == nr_pages)
			atomic_inc(&event->data->refcount);
		else
2724 2725 2726 2727
			ret = -EINVAL;
		goto unlock;
	}

2728
	user_extra = nr_pages + 1;
2729
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2730 2731 2732 2733 2734 2735

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2736
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2737

2738 2739 2740
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2741

2742
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2743
	lock_limit >>= PAGE_SHIFT;
2744
	locked = vma->vm_mm->locked_vm + extra;
2745

2746 2747
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2748 2749 2750
		ret = -EPERM;
		goto unlock;
	}
2751

2752
	WARN_ON(event->data);
2753 2754

	data = perf_mmap_data_alloc(event, nr_pages);
2755 2756
	if (!data) {
		ret = -ENOMEM;
2757
		goto unlock;
2758
	}
2759

2760
	perf_mmap_data_init(event, data);
2761
	if (vma->vm_flags & VM_WRITE)
2762
		event->data->writable = 1;
2763

2764 2765 2766 2767 2768
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

2769
unlock:
2770 2771
	if (!ret)
		atomic_inc(&event->mmap_count);
2772
	mutex_unlock(&event->mmap_mutex);
2773 2774 2775

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2776 2777

	return ret;
2778 2779
}

P
Peter Zijlstra 已提交
2780 2781 2782
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2783
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2784 2785 2786
	int retval;

	mutex_lock(&inode->i_mutex);
2787
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2788 2789 2790 2791 2792 2793 2794 2795
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2796
static const struct file_operations perf_fops = {
2797
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2798 2799 2800
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2801 2802
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2803
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2804
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2805 2806
};

2807
/*
2808
 * Perf event wakeup
2809 2810 2811 2812 2813
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2814
void perf_event_wakeup(struct perf_event *event)
2815
{
2816
	wake_up_all(&event->waitq);
2817

2818 2819 2820
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2821
	}
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2833
static void perf_pending_event(struct perf_pending_entry *entry)
2834
{
2835 2836
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2837

2838 2839 2840
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2841 2842
	}

2843 2844 2845
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2846 2847 2848
	}
}

2849
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2850

2851
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2852 2853 2854
	PENDING_TAIL,
};

2855 2856
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2857
{
2858
	struct perf_pending_entry **head;
2859

2860
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2861 2862
		return;

2863 2864 2865
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2866 2867

	do {
2868 2869
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2870

2871
	set_perf_event_pending();
2872

2873
	put_cpu_var(perf_pending_head);
2874 2875 2876 2877
}

static int __perf_pending_run(void)
{
2878
	struct perf_pending_entry *list;
2879 2880
	int nr = 0;

2881
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2882
	while (list != PENDING_TAIL) {
2883 2884
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2885 2886 2887

		list = list->next;

2888 2889
		func = entry->func;
		entry->next = NULL;
2890 2891 2892 2893 2894 2895 2896
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2897
		func(entry);
2898 2899 2900 2901 2902 2903
		nr++;
	}

	return nr;
}

2904
static inline int perf_not_pending(struct perf_event *event)
2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2919
	return event->pending.next == NULL;
2920 2921
}

2922
static void perf_pending_sync(struct perf_event *event)
2923
{
2924
	wait_event(event->waitq, perf_not_pending(event));
2925 2926
}

2927
void perf_event_do_pending(void)
2928 2929 2930 2931
{
	__perf_pending_run();
}

2932 2933 2934 2935
/*
 * Callchain support -- arch specific
 */

2936
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2937 2938 2939 2940
{
	return NULL;
}

2941 2942 2943 2944
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}
2945

2946

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

2968 2969 2970
/*
 * Output
 */
2971 2972
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2973 2974 2975 2976 2977 2978
{
	unsigned long mask;

	if (!data->writable)
		return true;

2979
	mask = perf_data_size(data) - 1;
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2990
static void perf_output_wakeup(struct perf_output_handle *handle)
2991
{
2992 2993
	atomic_set(&handle->data->poll, POLL_IN);

2994
	if (handle->nmi) {
2995 2996 2997
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2998
	} else
2999
		perf_event_wakeup(handle->event);
3000 3001
}

3002
/*
3003
 * We need to ensure a later event_id doesn't publish a head when a former
3004
 * event isn't done writing. However since we need to deal with NMIs we
3005 3006 3007
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3008
 * event completes.
3009
 */
3010
static void perf_output_get_handle(struct perf_output_handle *handle)
3011 3012 3013
{
	struct perf_mmap_data *data = handle->data;

3014
	preempt_disable();
3015
	local_inc(&data->nest);
3016
	handle->wakeup = local_read(&data->wakeup);
3017 3018
}

3019
static void perf_output_put_handle(struct perf_output_handle *handle)
3020 3021
{
	struct perf_mmap_data *data = handle->data;
3022
	unsigned long head;
3023 3024

again:
3025
	head = local_read(&data->head);
3026 3027

	/*
3028
	 * IRQ/NMI can happen here, which means we can miss a head update.
3029 3030
	 */

3031
	if (!local_dec_and_test(&data->nest))
3032
		goto out;
3033 3034

	/*
3035 3036 3037
	 * Publish the known good head. Rely on the full barrier implied
	 * by atomic_dec_and_test() order the data->head read and this
	 * write.
3038
	 */
3039
	data->user_page->data_head = head;
3040

3041 3042 3043 3044
	/*
	 * Now check if we missed an update, rely on the (compiler)
	 * barrier in atomic_dec_and_test() to re-read data->head.
	 */
3045 3046
	if (unlikely(head != local_read(&data->head))) {
		local_inc(&data->nest);
3047 3048 3049
		goto again;
	}

3050
	if (handle->wakeup != local_read(&data->wakeup))
3051
		perf_output_wakeup(handle);
3052

3053
 out:
3054
	preempt_enable();
3055 3056
}

3057
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3058
		      const void *buf, unsigned int len)
3059
{
3060
	do {
3061
		unsigned long size = min_t(unsigned long, handle->size, len);
3062 3063 3064 3065 3066

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3067
		buf += size;
3068 3069
		handle->size -= size;
		if (!handle->size) {
3070 3071
			struct perf_mmap_data *data = handle->data;

3072
			handle->page++;
3073 3074 3075
			handle->page &= data->nr_pages - 1;
			handle->addr = data->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(data);
3076 3077
		}
	} while (len);
3078 3079
}

3080
int perf_output_begin(struct perf_output_handle *handle,
3081
		      struct perf_event *event, unsigned int size,
3082
		      int nmi, int sample)
3083
{
3084
	struct perf_mmap_data *data;
3085
	unsigned long tail, offset, head;
3086 3087 3088 3089 3090 3091
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3092

3093
	rcu_read_lock();
3094
	/*
3095
	 * For inherited events we send all the output towards the parent.
3096
	 */
3097 3098
	if (event->parent)
		event = event->parent;
3099

3100
	data = rcu_dereference(event->data);
3101 3102 3103
	if (!data)
		goto out;

3104
	handle->data	= data;
3105
	handle->event	= event;
3106 3107
	handle->nmi	= nmi;
	handle->sample	= sample;
3108

3109
	if (!data->nr_pages)
3110
		goto out;
3111

3112
	have_lost = local_read(&data->lost);
3113 3114 3115
	if (have_lost)
		size += sizeof(lost_event);

3116
	perf_output_get_handle(handle);
3117

3118
	do {
3119 3120 3121 3122 3123 3124 3125
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
3126
		offset = head = local_read(&data->head);
P
Peter Zijlstra 已提交
3127
		head += size;
3128
		if (unlikely(!perf_output_space(data, tail, offset, head)))
3129
			goto fail;
3130
	} while (local_cmpxchg(&data->head, offset, head) != offset);
3131

3132 3133
	if (head - local_read(&data->wakeup) > data->watermark)
		local_add(data->watermark, &data->wakeup);
3134

3135
	handle->page = offset >> (PAGE_SHIFT + page_order(data));
3136
	handle->page &= data->nr_pages - 1;
3137
	handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1);
3138 3139
	handle->addr = data->data_pages[handle->page];
	handle->addr += handle->size;
3140
	handle->size = (PAGE_SIZE << page_order(data)) - handle->size;
3141

3142
	if (have_lost) {
3143
		lost_event.header.type = PERF_RECORD_LOST;
3144 3145
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3146
		lost_event.id          = event->id;
3147
		lost_event.lost        = local_xchg(&data->lost, 0);
3148 3149 3150 3151

		perf_output_put(handle, lost_event);
	}

3152
	return 0;
3153

3154
fail:
3155
	local_inc(&data->lost);
3156
	perf_output_put_handle(handle);
3157 3158
out:
	rcu_read_unlock();
3159

3160 3161
	return -ENOSPC;
}
3162

3163
void perf_output_end(struct perf_output_handle *handle)
3164
{
3165
	struct perf_event *event = handle->event;
3166 3167
	struct perf_mmap_data *data = handle->data;

3168
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3169

3170
	if (handle->sample && wakeup_events) {
3171
		int events = local_inc_return(&data->events);
P
Peter Zijlstra 已提交
3172
		if (events >= wakeup_events) {
3173 3174
			local_sub(wakeup_events, &data->events);
			local_inc(&data->wakeup);
P
Peter Zijlstra 已提交
3175
		}
3176 3177
	}

3178
	perf_output_put_handle(handle);
3179
	rcu_read_unlock();
3180 3181
}

3182
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3183 3184
{
	/*
3185
	 * only top level events have the pid namespace they were created in
3186
	 */
3187 3188
	if (event->parent)
		event = event->parent;
3189

3190
	return task_tgid_nr_ns(p, event->ns);
3191 3192
}

3193
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3194 3195
{
	/*
3196
	 * only top level events have the pid namespace they were created in
3197
	 */
3198 3199
	if (event->parent)
		event = event->parent;
3200

3201
	return task_pid_nr_ns(p, event->ns);
3202 3203
}

3204
static void perf_output_read_one(struct perf_output_handle *handle,
3205
				 struct perf_event *event)
3206
{
3207
	u64 read_format = event->attr.read_format;
3208 3209 3210
	u64 values[4];
	int n = 0;

3211
	values[n++] = atomic64_read(&event->count);
3212
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3213 3214
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3215 3216
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3217 3218
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3219 3220
	}
	if (read_format & PERF_FORMAT_ID)
3221
		values[n++] = primary_event_id(event);
3222 3223 3224 3225 3226

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3227
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3228 3229
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3230
			    struct perf_event *event)
3231
{
3232 3233
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3245
	if (leader != event)
3246 3247 3248 3249
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3250
		values[n++] = primary_event_id(leader);
3251 3252 3253

	perf_output_copy(handle, values, n * sizeof(u64));

3254
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3255 3256
		n = 0;

3257
		if (sub != event)
3258 3259 3260 3261
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3262
			values[n++] = primary_event_id(sub);
3263 3264 3265 3266 3267 3268

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3269
			     struct perf_event *event)
3270
{
3271 3272
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3273
	else
3274
		perf_output_read_one(handle, event);
3275 3276
}

3277 3278 3279
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3280
			struct perf_event *event)
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3311
		perf_output_read(handle, event);
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3349
			 struct perf_event *event,
3350
			 struct pt_regs *regs)
3351
{
3352
	u64 sample_type = event->attr.sample_type;
3353

3354
	data->type = sample_type;
3355

3356
	header->type = PERF_RECORD_SAMPLE;
3357 3358 3359 3360
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3361

3362
	if (sample_type & PERF_SAMPLE_IP) {
3363 3364 3365
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3366
	}
3367

3368
	if (sample_type & PERF_SAMPLE_TID) {
3369
		/* namespace issues */
3370 3371
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3372

3373
		header->size += sizeof(data->tid_entry);
3374 3375
	}

3376
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3377
		data->time = perf_clock();
3378

3379
		header->size += sizeof(data->time);
3380 3381
	}

3382
	if (sample_type & PERF_SAMPLE_ADDR)
3383
		header->size += sizeof(data->addr);
3384

3385
	if (sample_type & PERF_SAMPLE_ID) {
3386
		data->id = primary_event_id(event);
3387

3388 3389 3390 3391
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3392
		data->stream_id = event->id;
3393 3394 3395

		header->size += sizeof(data->stream_id);
	}
3396

3397
	if (sample_type & PERF_SAMPLE_CPU) {
3398 3399
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3400

3401
		header->size += sizeof(data->cpu_entry);
3402 3403
	}

3404
	if (sample_type & PERF_SAMPLE_PERIOD)
3405
		header->size += sizeof(data->period);
3406

3407
	if (sample_type & PERF_SAMPLE_READ)
3408
		header->size += perf_event_read_size(event);
3409

3410
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3411
		int size = 1;
3412

3413 3414 3415 3416 3417 3418
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3419 3420
	}

3421
	if (sample_type & PERF_SAMPLE_RAW) {
3422 3423 3424 3425 3426 3427 3428 3429
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3430
		header->size += size;
3431
	}
3432
}
3433

3434
static void perf_event_output(struct perf_event *event, int nmi,
3435 3436 3437 3438 3439
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3440

3441
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3442

3443
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3444
		return;
3445

3446
	perf_output_sample(&handle, &header, data, event);
3447

3448
	perf_output_end(&handle);
3449 3450
}

3451
/*
3452
 * read event_id
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3463
perf_event_read_event(struct perf_event *event,
3464 3465 3466
			struct task_struct *task)
{
	struct perf_output_handle handle;
3467
	struct perf_read_event read_event = {
3468
		.header = {
3469
			.type = PERF_RECORD_READ,
3470
			.misc = 0,
3471
			.size = sizeof(read_event) + perf_event_read_size(event),
3472
		},
3473 3474
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3475
	};
3476
	int ret;
3477

3478
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3479 3480 3481
	if (ret)
		return;

3482
	perf_output_put(&handle, read_event);
3483
	perf_output_read(&handle, event);
3484

3485 3486 3487
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3488
/*
P
Peter Zijlstra 已提交
3489 3490 3491
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3492 3493
 */

P
Peter Zijlstra 已提交
3494
struct perf_task_event {
3495
	struct task_struct		*task;
3496
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3497 3498 3499 3500 3501 3502

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3503 3504
		u32				tid;
		u32				ptid;
3505
		u64				time;
3506
	} event_id;
P
Peter Zijlstra 已提交
3507 3508
};

3509
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3510
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3511 3512
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3513
	struct task_struct *task = task_event->task;
3514 3515
	int size, ret;

3516 3517
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3518

3519
	if (ret)
P
Peter Zijlstra 已提交
3520 3521
		return;

3522 3523
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3524

3525 3526
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3527

3528
	perf_output_put(&handle, task_event->event_id);
3529

P
Peter Zijlstra 已提交
3530 3531 3532
	perf_output_end(&handle);
}

3533
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3534
{
P
Peter Zijlstra 已提交
3535
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3536 3537
		return 0;

3538 3539 3540
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3541
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3542 3543 3544 3545 3546
		return 1;

	return 0;
}

3547
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3548
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3549
{
3550
	struct perf_event *event;
P
Peter Zijlstra 已提交
3551

3552 3553 3554
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3555 3556 3557
	}
}

3558
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3559 3560
{
	struct perf_cpu_context *cpuctx;
3561
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3562

3563
	rcu_read_lock();
P
Peter Zijlstra 已提交
3564
	cpuctx = &get_cpu_var(perf_cpu_context);
3565
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3566
	if (!ctx)
P
Peter Zijlstra 已提交
3567
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3568
	if (ctx)
3569
		perf_event_task_ctx(ctx, task_event);
3570
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3571 3572 3573
	rcu_read_unlock();
}

3574 3575
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3576
			      int new)
P
Peter Zijlstra 已提交
3577
{
P
Peter Zijlstra 已提交
3578
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3579

3580 3581 3582
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3583 3584
		return;

P
Peter Zijlstra 已提交
3585
	task_event = (struct perf_task_event){
3586 3587
		.task	  = task,
		.task_ctx = task_ctx,
3588
		.event_id    = {
P
Peter Zijlstra 已提交
3589
			.header = {
3590
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3591
				.misc = 0,
3592
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3593
			},
3594 3595
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3596 3597
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3598
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3599 3600 3601
		},
	};

3602
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3603 3604
}

3605
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3606
{
3607
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3608 3609
}

3610 3611 3612 3613 3614
/*
 * comm tracking
 */

struct perf_comm_event {
3615 3616
	struct task_struct	*task;
	char			*comm;
3617 3618 3619 3620 3621 3622 3623
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3624
	} event_id;
3625 3626
};

3627
static void perf_event_comm_output(struct perf_event *event,
3628 3629 3630
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3631 3632
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3633 3634 3635 3636

	if (ret)
		return;

3637 3638
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3639

3640
	perf_output_put(&handle, comm_event->event_id);
3641 3642 3643 3644 3645
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3646
static int perf_event_comm_match(struct perf_event *event)
3647
{
P
Peter Zijlstra 已提交
3648
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3649 3650
		return 0;

3651 3652 3653
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3654
	if (event->attr.comm)
3655 3656 3657 3658 3659
		return 1;

	return 0;
}

3660
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3661 3662
				  struct perf_comm_event *comm_event)
{
3663
	struct perf_event *event;
3664

3665 3666 3667
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3668 3669 3670
	}
}

3671
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3672 3673
{
	struct perf_cpu_context *cpuctx;
3674
	struct perf_event_context *ctx;
3675
	unsigned int size;
3676
	char comm[TASK_COMM_LEN];
3677

3678
	memset(comm, 0, sizeof(comm));
3679
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3680
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3681 3682 3683 3684

	comm_event->comm = comm;
	comm_event->comm_size = size;

3685
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3686

3687
	rcu_read_lock();
3688
	cpuctx = &get_cpu_var(perf_cpu_context);
3689 3690
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3691
	if (ctx)
3692
		perf_event_comm_ctx(ctx, comm_event);
3693
	put_cpu_var(perf_cpu_context);
3694
	rcu_read_unlock();
3695 3696
}

3697
void perf_event_comm(struct task_struct *task)
3698
{
3699 3700
	struct perf_comm_event comm_event;

3701 3702
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3703

3704
	if (!atomic_read(&nr_comm_events))
3705
		return;
3706

3707
	comm_event = (struct perf_comm_event){
3708
		.task	= task,
3709 3710
		/* .comm      */
		/* .comm_size */
3711
		.event_id  = {
3712
			.header = {
3713
				.type = PERF_RECORD_COMM,
3714 3715 3716 3717 3718
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3719 3720 3721
		},
	};

3722
	perf_event_comm_event(&comm_event);
3723 3724
}

3725 3726 3727 3728 3729
/*
 * mmap tracking
 */

struct perf_mmap_event {
3730 3731 3732 3733
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3734 3735 3736 3737 3738 3739 3740 3741 3742

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3743
	} event_id;
3744 3745
};

3746
static void perf_event_mmap_output(struct perf_event *event,
3747 3748 3749
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3750 3751
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3752 3753 3754 3755

	if (ret)
		return;

3756 3757
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3758

3759
	perf_output_put(&handle, mmap_event->event_id);
3760 3761
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3762
	perf_output_end(&handle);
3763 3764
}

3765
static int perf_event_mmap_match(struct perf_event *event,
3766 3767
				   struct perf_mmap_event *mmap_event)
{
P
Peter Zijlstra 已提交
3768
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3769 3770
		return 0;

3771 3772 3773
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3774
	if (event->attr.mmap)
3775 3776 3777 3778 3779
		return 1;

	return 0;
}

3780
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3781 3782
				  struct perf_mmap_event *mmap_event)
{
3783
	struct perf_event *event;
3784

3785 3786 3787
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3788 3789 3790
	}
}

3791
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3792 3793
{
	struct perf_cpu_context *cpuctx;
3794
	struct perf_event_context *ctx;
3795 3796
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3797 3798 3799
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3800
	const char *name;
3801

3802 3803
	memset(tmp, 0, sizeof(tmp));

3804
	if (file) {
3805 3806 3807 3808 3809 3810
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3811 3812 3813 3814
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3815
		name = d_path(&file->f_path, buf, PATH_MAX);
3816 3817 3818 3819 3820
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3821 3822 3823
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3824
			goto got_name;
3825
		}
3826 3827 3828 3829 3830 3831

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3832 3833 3834 3835 3836
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3837
	size = ALIGN(strlen(name)+1, sizeof(u64));
3838 3839 3840 3841

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3842
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3843

3844
	rcu_read_lock();
3845
	cpuctx = &get_cpu_var(perf_cpu_context);
3846 3847
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3848
	if (ctx)
3849
		perf_event_mmap_ctx(ctx, mmap_event);
3850
	put_cpu_var(perf_cpu_context);
3851 3852
	rcu_read_unlock();

3853 3854 3855
	kfree(buf);
}

3856
void __perf_event_mmap(struct vm_area_struct *vma)
3857
{
3858 3859
	struct perf_mmap_event mmap_event;

3860
	if (!atomic_read(&nr_mmap_events))
3861 3862 3863
		return;

	mmap_event = (struct perf_mmap_event){
3864
		.vma	= vma,
3865 3866
		/* .file_name */
		/* .file_size */
3867
		.event_id  = {
3868
			.header = {
3869
				.type = PERF_RECORD_MMAP,
3870
				.misc = PERF_RECORD_MISC_USER,
3871 3872 3873 3874
				/* .size */
			},
			/* .pid */
			/* .tid */
3875 3876
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3877
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3878 3879 3880
		},
	};

3881
	perf_event_mmap_event(&mmap_event);
3882 3883
}

3884 3885 3886 3887
/*
 * IRQ throttle logging
 */

3888
static void perf_log_throttle(struct perf_event *event, int enable)
3889 3890 3891 3892 3893 3894 3895
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3896
		u64				id;
3897
		u64				stream_id;
3898 3899
	} throttle_event = {
		.header = {
3900
			.type = PERF_RECORD_THROTTLE,
3901 3902 3903
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3904
		.time		= perf_clock(),
3905 3906
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3907 3908
	};

3909
	if (enable)
3910
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3911

3912
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3913 3914 3915 3916 3917 3918 3919
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3920
/*
3921
 * Generic event overflow handling, sampling.
3922 3923
 */

3924
static int __perf_event_overflow(struct perf_event *event, int nmi,
3925 3926
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3927
{
3928 3929
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3930 3931
	int ret = 0;

3932
	throttle = (throttle && event->pmu->unthrottle != NULL);
3933

3934
	if (!throttle) {
3935
		hwc->interrupts++;
3936
	} else {
3937 3938
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3939
			if (HZ * hwc->interrupts >
3940
					(u64)sysctl_perf_event_sample_rate) {
3941
				hwc->interrupts = MAX_INTERRUPTS;
3942
				perf_log_throttle(event, 0);
3943 3944 3945 3946
				ret = 1;
			}
		} else {
			/*
3947
			 * Keep re-disabling events even though on the previous
3948
			 * pass we disabled it - just in case we raced with a
3949
			 * sched-in and the event got enabled again:
3950
			 */
3951 3952 3953
			ret = 1;
		}
	}
3954

3955
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3956
		u64 now = perf_clock();
3957
		s64 delta = now - hwc->freq_time_stamp;
3958

3959
		hwc->freq_time_stamp = now;
3960

3961 3962
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3963 3964
	}

3965 3966
	/*
	 * XXX event_limit might not quite work as expected on inherited
3967
	 * events
3968 3969
	 */

3970 3971
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3972
		ret = 1;
3973
		event->pending_kill = POLL_HUP;
3974
		if (nmi) {
3975 3976 3977
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3978
		} else
3979
			perf_event_disable(event);
3980 3981
	}

3982 3983 3984 3985 3986
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3987
	return ret;
3988 3989
}

3990
int perf_event_overflow(struct perf_event *event, int nmi,
3991 3992
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3993
{
3994
	return __perf_event_overflow(event, nmi, 1, data, regs);
3995 3996
}

3997
/*
3998
 * Generic software event infrastructure
3999 4000
 */

4001
/*
4002 4003
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4004 4005 4006 4007
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4008
static u64 perf_swevent_set_period(struct perf_event *event)
4009
{
4010
	struct hw_perf_event *hwc = &event->hw;
4011 4012 4013 4014 4015
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4016 4017

again:
4018 4019 4020
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
4021

4022 4023 4024 4025 4026
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
4027

4028
	return nr;
4029 4030
}

4031
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4032 4033
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4034
{
4035
	struct hw_perf_event *hwc = &event->hw;
4036
	int throttle = 0;
4037

4038
	data->period = event->hw.last_period;
4039 4040
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4041

4042 4043
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4044

4045
	for (; overflow; overflow--) {
4046
		if (__perf_event_overflow(event, nmi, throttle,
4047
					    data, regs)) {
4048 4049 4050 4051 4052 4053
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4054
		throttle = 1;
4055
	}
4056 4057
}

4058
static void perf_swevent_add(struct perf_event *event, u64 nr,
4059 4060
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4061
{
4062
	struct hw_perf_event *hwc = &event->hw;
4063

4064
	atomic64_add(nr, &event->count);
4065

4066 4067 4068
	if (!regs)
		return;

4069 4070
	if (!hwc->sample_period)
		return;
4071

4072 4073 4074 4075
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
4076
		return;
4077

4078
	perf_swevent_overflow(event, 0, nmi, data, regs);
4079 4080
}

4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4095
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4096
				enum perf_type_id type,
L
Li Zefan 已提交
4097 4098 4099
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4100
{
4101
	if (event->attr.type != type)
4102
		return 0;
4103

4104
	if (event->attr.config != event_id)
4105 4106
		return 0;

4107 4108
	if (perf_exclude_event(event, regs))
		return 0;
4109 4110 4111 4112

	return 1;
}

4113 4114 4115 4116 4117 4118 4119
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4120 4121
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4122
{
4123 4124 4125 4126
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4127

4128 4129 4130 4131 4132
/* For the read side: events when they trigger */
static inline struct hlist_head *
find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	struct swevent_hlist *hlist;
4133 4134 4135 4136 4137

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
	hlist = rcu_dereference_protected(ctx->swevent_hlist,
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4160 4161 4162 4163 4164 4165
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4166
{
4167
	struct perf_cpu_context *cpuctx;
4168
	struct perf_event *event;
4169 4170
	struct hlist_node *node;
	struct hlist_head *head;
4171

4172 4173 4174 4175
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

4176
	head = find_swevent_head_rcu(cpuctx, type, event_id);
4177 4178 4179 4180 4181

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4182
		if (perf_swevent_match(event, type, event_id, data, regs))
4183
			perf_swevent_add(event, nr, nmi, data, regs);
4184
	}
4185 4186
end:
	rcu_read_unlock();
4187 4188
}

4189
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4190
{
4191
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4192
	int rctx;
4193

P
Peter Zijlstra 已提交
4194
	if (in_nmi())
4195
		rctx = 3;
4196
	else if (in_irq())
4197
		rctx = 2;
4198
	else if (in_softirq())
4199
		rctx = 1;
4200
	else
4201
		rctx = 0;
P
Peter Zijlstra 已提交
4202

4203
	if (cpuctx->recursion[rctx])
4204
		return -1;
P
Peter Zijlstra 已提交
4205

4206 4207
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4208

4209
	return rctx;
P
Peter Zijlstra 已提交
4210
}
I
Ingo Molnar 已提交
4211
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4212

4213
void perf_swevent_put_recursion_context(int rctx)
4214
{
4215 4216
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4217
	cpuctx->recursion[rctx]--;
4218
}
I
Ingo Molnar 已提交
4219
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4220

4221

4222
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4223
			    struct pt_regs *regs, u64 addr)
4224
{
4225
	struct perf_sample_data data;
4226 4227
	int rctx;

4228
	preempt_disable_notrace();
4229 4230 4231
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4232

4233
	perf_sample_data_init(&data, addr);
4234

4235
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4236 4237

	perf_swevent_put_recursion_context(rctx);
4238
	preempt_enable_notrace();
4239 4240
}

4241
static void perf_swevent_read(struct perf_event *event)
4242 4243 4244
{
}

4245
static int perf_swevent_enable(struct perf_event *event)
4246
{
4247
	struct hw_perf_event *hwc = &event->hw;
4248 4249 4250 4251
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4252 4253 4254

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4255
		perf_swevent_set_period(event);
4256
	}
4257

4258
	head = find_swevent_head(cpuctx, event);
4259 4260 4261 4262 4263
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4264 4265 4266
	return 0;
}

4267
static void perf_swevent_disable(struct perf_event *event)
4268
{
4269
	hlist_del_rcu(&event->hlist_entry);
4270 4271
}

P
Peter Zijlstra 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280
static void perf_swevent_void(struct perf_event *event)
{
}

static int perf_swevent_int(struct perf_event *event)
{
	return 0;
}

4281
static const struct pmu perf_ops_generic = {
4282 4283
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
P
Peter Zijlstra 已提交
4284 4285
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4286
	.read		= perf_swevent_read,
P
Peter Zijlstra 已提交
4287
	.unthrottle	= perf_swevent_void, /* hwc->interrupts already reset */
4288 4289
};

4290
/*
4291
 * hrtimer based swevent callback
4292 4293
 */

4294
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4295 4296 4297
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4298
	struct pt_regs *regs;
4299
	struct perf_event *event;
4300 4301
	u64 period;

4302
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4303
	event->pmu->read(event);
4304

4305
	perf_sample_data_init(&data, 0);
4306
	data.period = event->hw.last_period;
4307
	regs = get_irq_regs();
4308

4309
	if (regs && !perf_exclude_event(event, regs)) {
4310 4311 4312
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4313 4314
	}

4315
	period = max_t(u64, 10000, event->hw.sample_period);
4316 4317 4318 4319 4320
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4357
/*
4358
 * Software event: cpu wall time clock
4359 4360
 */

4361
static void cpu_clock_perf_event_update(struct perf_event *event)
4362 4363 4364 4365 4366 4367
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4368
	prev = atomic64_xchg(&event->hw.prev_count, now);
4369
	atomic64_add(now - prev, &event->count);
4370 4371
}

4372
static int cpu_clock_perf_event_enable(struct perf_event *event)
4373
{
4374
	struct hw_perf_event *hwc = &event->hw;
4375 4376 4377
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4378
	perf_swevent_start_hrtimer(event);
4379 4380 4381 4382

	return 0;
}

4383
static void cpu_clock_perf_event_disable(struct perf_event *event)
4384
{
4385
	perf_swevent_cancel_hrtimer(event);
4386
	cpu_clock_perf_event_update(event);
4387 4388
}

4389
static void cpu_clock_perf_event_read(struct perf_event *event)
4390
{
4391
	cpu_clock_perf_event_update(event);
4392 4393
}

4394
static const struct pmu perf_ops_cpu_clock = {
4395 4396 4397
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4398 4399
};

4400
/*
4401
 * Software event: task time clock
4402 4403
 */

4404
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4405
{
4406
	u64 prev;
I
Ingo Molnar 已提交
4407 4408
	s64 delta;

4409
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4410
	delta = now - prev;
4411
	atomic64_add(delta, &event->count);
4412 4413
}

4414
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4415
{
4416
	struct hw_perf_event *hwc = &event->hw;
4417 4418
	u64 now;

4419
	now = event->ctx->time;
4420

4421
	atomic64_set(&hwc->prev_count, now);
4422 4423

	perf_swevent_start_hrtimer(event);
4424 4425

	return 0;
I
Ingo Molnar 已提交
4426 4427
}

4428
static void task_clock_perf_event_disable(struct perf_event *event)
4429
{
4430
	perf_swevent_cancel_hrtimer(event);
4431
	task_clock_perf_event_update(event, event->ctx->time);
4432

4433
}
I
Ingo Molnar 已提交
4434

4435
static void task_clock_perf_event_read(struct perf_event *event)
4436
{
4437 4438 4439
	u64 time;

	if (!in_nmi()) {
4440 4441
		update_context_time(event->ctx);
		time = event->ctx->time;
4442 4443
	} else {
		u64 now = perf_clock();
4444 4445
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4446 4447
	}

4448
	task_clock_perf_event_update(event, time);
4449 4450
}

4451
static const struct pmu perf_ops_task_clock = {
4452 4453 4454
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4455 4456
};

4457 4458 4459 4460 4461 4462 4463 4464
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
swevent_hlist_deref(struct perf_cpu_context *cpuctx)
{
	return rcu_dereference_protected(cpuctx->swevent_hlist,
					 lockdep_is_held(&cpuctx->hlist_mutex));
}

4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
4475
	struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4476

4477
	if (!hlist)
4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
		return;

	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

4516
	if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
 exit:
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
 fail:
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4563 4564
#ifdef CONFIG_EVENT_TRACING

4565 4566 4567
static const struct pmu perf_ops_tracepoint = {
	.enable		= perf_trace_enable,
	.disable	= perf_trace_disable,
P
Peter Zijlstra 已提交
4568 4569
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4570
	.read		= perf_swevent_read,
P
Peter Zijlstra 已提交
4571
	.unthrottle	= perf_swevent_void,
4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587
};

static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4588 4589 4590 4591
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
		   struct pt_regs *regs, struct hlist_head *head)
4602 4603
{
	struct perf_sample_data data;
4604 4605 4606
	struct perf_event *event;
	struct hlist_node *node;

4607 4608 4609 4610 4611 4612 4613 4614
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4615 4616 4617 4618
	rcu_read_lock();
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
			perf_swevent_add(event, count, 1, &data, regs);
4619
	}
4620
	rcu_read_unlock();
4621 4622 4623
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4624
static void tp_perf_event_destroy(struct perf_event *event)
4625
{
4626
	perf_trace_destroy(event);
4627 4628
}

4629
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4630
{
4631 4632
	int err;

4633 4634 4635 4636
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4637
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4638
			perf_paranoid_tracepoint_raw() &&
4639 4640 4641
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4642 4643
	err = perf_trace_init(event);
	if (err)
4644 4645
		return NULL;

4646
	event->destroy = tp_perf_event_destroy;
4647

4648
	return &perf_ops_tracepoint;
4649
}
L
Li Zefan 已提交
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4674
#else
L
Li Zefan 已提交
4675

4676
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4677 4678 4679
{
	return NULL;
}
L
Li Zefan 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4690
#endif /* CONFIG_EVENT_TRACING */
4691

4692 4693 4694 4695 4696 4697 4698 4699 4700
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4701 4702

	err = register_perf_hw_breakpoint(bp);
4703 4704 4705 4706 4707 4708 4709 4710
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4711
void perf_bp_event(struct perf_event *bp, void *data)
4712
{
4713 4714 4715
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4716
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4717 4718 4719

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4732
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4733

4734
static void sw_perf_event_destroy(struct perf_event *event)
4735
{
4736
	u64 event_id = event->attr.config;
4737

4738
	WARN_ON(event->parent);
4739

4740
	atomic_dec(&perf_swevent_enabled[event_id]);
4741
	swevent_hlist_put(event);
4742 4743
}

4744
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4745
{
4746
	const struct pmu *pmu = NULL;
4747
	u64 event_id = event->attr.config;
4748

4749
	/*
4750
	 * Software events (currently) can't in general distinguish
4751 4752 4753 4754 4755
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4756
	switch (event_id) {
4757
	case PERF_COUNT_SW_CPU_CLOCK:
4758
		pmu = &perf_ops_cpu_clock;
4759

4760
		break;
4761
	case PERF_COUNT_SW_TASK_CLOCK:
4762
		/*
4763 4764
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4765
		 */
4766
		if (event->ctx->task)
4767
			pmu = &perf_ops_task_clock;
4768
		else
4769
			pmu = &perf_ops_cpu_clock;
4770

4771
		break;
4772 4773 4774 4775 4776
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4777 4778
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4779
		if (!event->parent) {
4780 4781 4782 4783 4784 4785
			int err;

			err = swevent_hlist_get(event);
			if (err)
				return ERR_PTR(err);

4786 4787
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4788
		}
4789
		pmu = &perf_ops_generic;
4790
		break;
4791
	}
4792

4793
	return pmu;
4794 4795
}

T
Thomas Gleixner 已提交
4796
/*
4797
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4798
 */
4799 4800
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4801
		   int cpu,
4802 4803 4804
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4805
		   perf_overflow_handler_t overflow_handler,
4806
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4807
{
4808
	const struct pmu *pmu;
4809 4810
	struct perf_event *event;
	struct hw_perf_event *hwc;
4811
	long err;
T
Thomas Gleixner 已提交
4812

4813 4814
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4815
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4816

4817
	/*
4818
	 * Single events are their own group leaders, with an
4819 4820 4821
	 * empty sibling list:
	 */
	if (!group_leader)
4822
		group_leader = event;
4823

4824 4825
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4826

4827 4828 4829 4830
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4831

4832
	mutex_init(&event->mmap_mutex);
4833

4834 4835 4836 4837 4838 4839
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4840

4841
	event->parent		= parent_event;
4842

4843 4844
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4845

4846
	event->state		= PERF_EVENT_STATE_INACTIVE;
4847

4848 4849
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4850
	
4851
	event->overflow_handler	= overflow_handler;
4852

4853
	if (attr->disabled)
4854
		event->state = PERF_EVENT_STATE_OFF;
4855

4856
	pmu = NULL;
4857

4858
	hwc = &event->hw;
4859
	hwc->sample_period = attr->sample_period;
4860
	if (attr->freq && attr->sample_freq)
4861
		hwc->sample_period = 1;
4862
	hwc->last_period = hwc->sample_period;
4863 4864

	atomic64_set(&hwc->period_left, hwc->sample_period);
4865

4866
	/*
4867
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4868
	 */
4869
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4870 4871
		goto done;

4872
	switch (attr->type) {
4873
	case PERF_TYPE_RAW:
4874
	case PERF_TYPE_HARDWARE:
4875
	case PERF_TYPE_HW_CACHE:
4876
		pmu = hw_perf_event_init(event);
4877 4878 4879
		break;

	case PERF_TYPE_SOFTWARE:
4880
		pmu = sw_perf_event_init(event);
4881 4882 4883
		break;

	case PERF_TYPE_TRACEPOINT:
4884
		pmu = tp_perf_event_init(event);
4885
		break;
4886

4887 4888 4889 4890 4891
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4892 4893
	default:
		break;
4894
	}
4895 4896
done:
	err = 0;
4897
	if (!pmu)
4898
		err = -EINVAL;
4899 4900
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4901

4902
	if (err) {
4903 4904 4905
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4906
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4907
	}
4908

4909
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4910

4911 4912 4913 4914 4915 4916 4917 4918
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4919
	}
4920

4921
	return event;
T
Thomas Gleixner 已提交
4922 4923
}

4924 4925
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4926 4927
{
	u32 size;
4928
	int ret;
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4953 4954 4955
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4956 4957
	 */
	if (size > sizeof(*attr)) {
4958 4959 4960
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4961

4962 4963
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4964

4965
		for (; addr < end; addr++) {
4966 4967 4968 4969 4970 4971
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4972
		size = sizeof(*attr);
4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4986
	if (attr->__reserved_1)
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5004 5005
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5006
{
5007
	struct perf_mmap_data *data = NULL, *old_data = NULL;
5008 5009
	int ret = -EINVAL;

5010
	if (!output_event)
5011 5012
		goto set;

5013 5014
	/* don't allow circular references */
	if (event == output_event)
5015 5016
		goto out;

5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5029
set:
5030
	mutex_lock(&event->mmap_mutex);
5031 5032 5033
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5034

5035 5036 5037 5038 5039
	if (output_event) {
		/* get the buffer we want to redirect to */
		data = perf_mmap_data_get(output_event);
		if (!data)
			goto unlock;
5040 5041
	}

5042 5043
	old_data = event->data;
	rcu_assign_pointer(event->data, data);
5044
	ret = 0;
5045 5046 5047 5048 5049
unlock:
	mutex_unlock(&event->mmap_mutex);

	if (old_data)
		perf_mmap_data_put(old_data);
5050 5051 5052 5053
out:
	return ret;
}

T
Thomas Gleixner 已提交
5054
/**
5055
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5056
 *
5057
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5058
 * @pid:		target pid
I
Ingo Molnar 已提交
5059
 * @cpu:		target cpu
5060
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5061
 */
5062 5063
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5064
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5065
{
5066
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5067 5068 5069
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5070
	struct file *group_file = NULL;
5071
	int event_fd;
5072
	int fput_needed = 0;
5073
	int err;
T
Thomas Gleixner 已提交
5074

5075
	/* for future expandability... */
5076
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5077 5078
		return -EINVAL;

5079 5080 5081
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5082

5083 5084 5085 5086 5087
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5088
	if (attr.freq) {
5089
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5090 5091 5092
			return -EINVAL;
	}

5093 5094 5095 5096
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5097
	/*
I
Ingo Molnar 已提交
5098 5099 5100
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
5101 5102 5103 5104
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_fd;
	}
I
Ingo Molnar 已提交
5105

5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
			goto err_put_context;
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5119
	/*
5120
	 * Look up the group leader (we will attach this event to it):
5121
	 */
5122
	if (group_leader) {
5123
		err = -EINVAL;
5124 5125

		/*
I
Ingo Molnar 已提交
5126 5127 5128 5129 5130 5131 5132 5133
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5134
		 */
I
Ingo Molnar 已提交
5135 5136
		if (group_leader->ctx != ctx)
			goto err_put_context;
5137 5138 5139
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5140
		if (attr.exclusive || attr.pinned)
5141
			goto err_put_context;
5142 5143
	}

5144
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5145
				     NULL, NULL, GFP_KERNEL);
5146 5147
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
T
Thomas Gleixner 已提交
5148
		goto err_put_context;
5149 5150 5151 5152 5153 5154 5155
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
			goto err_free_put_context;
	}
T
Thomas Gleixner 已提交
5156

5157 5158 5159
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5160
		goto err_free_put_context;
5161
	}
5162

5163
	event->filp = event_file;
5164
	WARN_ON_ONCE(ctx->parent_ctx);
5165
	mutex_lock(&ctx->mutex);
5166
	perf_install_in_context(ctx, event, cpu);
5167
	++ctx->generation;
5168
	mutex_unlock(&ctx->mutex);
5169

5170
	event->owner = current;
5171
	get_task_struct(current);
5172 5173 5174
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5175

5176 5177 5178 5179 5180 5181
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5182 5183 5184
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5185

5186
err_free_put_context:
5187
	free_event(event);
T
Thomas Gleixner 已提交
5188
err_put_context:
5189
	fput_light(group_file, fput_needed);
5190 5191 5192
	put_ctx(ctx);
err_fd:
	put_unused_fd(event_fd);
5193
	return err;
T
Thomas Gleixner 已提交
5194 5195
}

5196 5197 5198 5199 5200 5201 5202 5203 5204
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5205 5206
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5217 5218 5219 5220
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5221 5222

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5223
				 NULL, overflow_handler, GFP_KERNEL);
5224 5225
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5226
		goto err_put_context;
5227
	}
5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5244 5245 5246 5247
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5248 5249 5250
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5251
/*
5252
 * inherit a event from parent task to child task:
5253
 */
5254 5255
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5256
	      struct task_struct *parent,
5257
	      struct perf_event_context *parent_ctx,
5258
	      struct task_struct *child,
5259 5260
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5261
{
5262
	struct perf_event *child_event;
5263

5264
	/*
5265 5266
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5267 5268 5269
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5270 5271
	if (parent_event->parent)
		parent_event = parent_event->parent;
5272

5273 5274 5275
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5276
					   NULL, GFP_KERNEL);
5277 5278
	if (IS_ERR(child_event))
		return child_event;
5279
	get_ctx(child_ctx);
5280

5281
	/*
5282
	 * Make the child state follow the state of the parent event,
5283
	 * not its attr.disabled bit.  We hold the parent's mutex,
5284
	 * so we won't race with perf_event_{en, dis}able_family.
5285
	 */
5286 5287
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5288
	else
5289
		child_event->state = PERF_EVENT_STATE_OFF;
5290

5291 5292 5293 5294 5295 5296 5297 5298 5299
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5300

5301 5302
	child_event->overflow_handler = parent_event->overflow_handler;

5303 5304 5305
	/*
	 * Link it up in the child's context:
	 */
5306
	add_event_to_ctx(child_event, child_ctx);
5307 5308 5309

	/*
	 * Get a reference to the parent filp - we will fput it
5310
	 * when the child event exits. This is safe to do because
5311 5312 5313
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5314
	atomic_long_inc(&parent_event->filp->f_count);
5315

5316
	/*
5317
	 * Link this into the parent event's child list
5318
	 */
5319 5320 5321 5322
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5323

5324
	return child_event;
5325 5326
}

5327
static int inherit_group(struct perf_event *parent_event,
5328
	      struct task_struct *parent,
5329
	      struct perf_event_context *parent_ctx,
5330
	      struct task_struct *child,
5331
	      struct perf_event_context *child_ctx)
5332
{
5333 5334 5335
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5336

5337
	leader = inherit_event(parent_event, parent, parent_ctx,
5338
				 child, NULL, child_ctx);
5339 5340
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5341 5342
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5343 5344 5345
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5346
	}
5347 5348 5349
	return 0;
}

5350
static void sync_child_event(struct perf_event *child_event,
5351
			       struct task_struct *child)
5352
{
5353
	struct perf_event *parent_event = child_event->parent;
5354
	u64 child_val;
5355

5356 5357
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5358

5359
	child_val = atomic64_read(&child_event->count);
5360 5361 5362 5363

	/*
	 * Add back the child's count to the parent's count:
	 */
5364 5365 5366 5367 5368
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5369 5370

	/*
5371
	 * Remove this event from the parent's list
5372
	 */
5373 5374 5375 5376
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5377 5378

	/*
5379
	 * Release the parent event, if this was the last
5380 5381
	 * reference to it.
	 */
5382
	fput(parent_event->filp);
5383 5384
}

5385
static void
5386 5387
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5388
			 struct task_struct *child)
5389
{
5390
	struct perf_event *parent_event;
5391

5392
	perf_event_remove_from_context(child_event);
5393

5394
	parent_event = child_event->parent;
5395
	/*
5396
	 * It can happen that parent exits first, and has events
5397
	 * that are still around due to the child reference. These
5398
	 * events need to be zapped - but otherwise linger.
5399
	 */
5400 5401 5402
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5403
	}
5404 5405 5406
}

/*
5407
 * When a child task exits, feed back event values to parent events.
5408
 */
5409
void perf_event_exit_task(struct task_struct *child)
5410
{
5411 5412
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5413
	unsigned long flags;
5414

5415 5416
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5417
		return;
P
Peter Zijlstra 已提交
5418
	}
5419

5420
	local_irq_save(flags);
5421 5422 5423 5424 5425 5426
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5427 5428
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5429 5430 5431

	/*
	 * Take the context lock here so that if find_get_context is
5432
	 * reading child->perf_event_ctxp, we wait until it has
5433 5434
	 * incremented the context's refcount before we do put_ctx below.
	 */
5435
	raw_spin_lock(&child_ctx->lock);
5436
	child->perf_event_ctxp = NULL;
5437 5438 5439
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5440
	 * the events from it.
5441 5442
	 */
	unclone_ctx(child_ctx);
5443
	update_context_time(child_ctx);
5444
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5445 5446

	/*
5447 5448 5449
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5450
	 */
5451
	perf_event_task(child, child_ctx, 0);
5452

5453 5454 5455
	/*
	 * We can recurse on the same lock type through:
	 *
5456 5457 5458
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5459 5460 5461 5462 5463
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5464
	mutex_lock(&child_ctx->mutex);
5465

5466
again:
5467 5468 5469 5470 5471
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5472
				 group_entry)
5473
		__perf_event_exit_task(child_event, child_ctx, child);
5474 5475

	/*
5476
	 * If the last event was a group event, it will have appended all
5477 5478 5479
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5480 5481
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5482
		goto again;
5483 5484 5485 5486

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5487 5488
}

5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5503
	perf_group_detach(event);
5504 5505 5506 5507
	list_del_event(event, ctx);
	free_event(event);
}

5508 5509 5510 5511
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5512
void perf_event_free_task(struct task_struct *task)
5513
{
5514 5515
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5516 5517 5518 5519 5520 5521

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5522 5523
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5524

5525 5526 5527
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5528

5529 5530 5531
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5532

5533
	mutex_unlock(&ctx->mutex);
5534

5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5550 5551
	}

5552 5553 5554 5555 5556 5557 5558
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5559

5560 5561 5562 5563
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5564

5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5577 5578
}

5579

5580
/*
5581
 * Initialize the perf_event context in task_struct
5582
 */
5583
int perf_event_init_task(struct task_struct *child)
5584
{
5585
	struct perf_event_context *child_ctx, *parent_ctx;
5586 5587
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5588
	struct task_struct *parent = current;
5589
	int inherited_all = 1;
5590
	int ret = 0;
5591

5592
	child->perf_event_ctxp = NULL;
5593

5594 5595
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5596

5597
	if (likely(!parent->perf_event_ctxp))
5598 5599
		return 0;

5600
	/*
5601 5602
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5603
	 */
5604 5605
	parent_ctx = perf_pin_task_context(parent);

5606 5607 5608 5609 5610 5611 5612
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5613 5614 5615 5616
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5617
	mutex_lock(&parent_ctx->mutex);
5618 5619 5620 5621 5622

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5623 5624 5625 5626 5627 5628
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5629

5630 5631 5632 5633
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5634
			break;
5635 5636
	}

5637 5638
	child_ctx = child->perf_event_ctxp;

5639
	if (child_ctx && inherited_all) {
5640 5641 5642
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5643 5644
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5645
		 * because the list of events and the generation
5646
		 * count can't have changed since we took the mutex.
5647
		 */
5648 5649 5650
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5651
			child_ctx->parent_gen = parent_ctx->parent_gen;
5652 5653 5654 5655 5656
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5657 5658
	}

5659
	mutex_unlock(&parent_ctx->mutex);
5660

5661
	perf_unpin_context(parent_ctx);
5662

5663
	return ret;
5664 5665
}

5666 5667 5668 5669 5670 5671 5672
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5673
		mutex_init(&cpuctx->hlist_mutex);
5674 5675 5676 5677
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5678
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5679
{
5680
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5681

5682
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5683

5684
	spin_lock(&perf_resource_lock);
5685
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5686
	spin_unlock(&perf_resource_lock);
5687 5688 5689 5690 5691 5692 5693 5694 5695 5696

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5697 5698 5699
}

#ifdef CONFIG_HOTPLUG_CPU
5700
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5701 5702
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5703 5704
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5705

5706 5707 5708
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5709
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5710
}
5711
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5712
{
5713
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5714
	struct perf_event_context *ctx = &cpuctx->ctx;
5715

5716 5717 5718 5719
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5720
	mutex_lock(&ctx->mutex);
5721
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5722
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5723 5724
}
#else
5725
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5737
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5738 5739 5740 5741
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5742
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5743 5744 5745 5746 5747 5748 5749 5750 5751
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5752 5753 5754
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5755 5756
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5757
	.priority		= 20,
T
Thomas Gleixner 已提交
5758 5759
};

5760
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5761
{
5762
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5763 5764
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5765 5766
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5767 5768 5769
	register_cpu_notifier(&perf_cpu_nb);
}

5770 5771 5772
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5773 5774 5775 5776 5777 5778
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5779
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5780 5781 5782 5783 5784 5785 5786 5787 5788 5789
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5790
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5791 5792
		return -EINVAL;

5793
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5794 5795 5796
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5797
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5798 5799
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5800
		cpuctx->max_pertask = mpt;
5801
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5802
	}
5803
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5804 5805 5806 5807

	return count;
}

5808 5809 5810
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5811 5812 5813 5814 5815
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5816 5817 5818
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5829
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5830
	perf_overcommit = val;
5831
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5858
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5859 5860
};

5861
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5862 5863 5864 5865
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5866
device_initcall(perf_event_sysfs_init);