perf_event.c 142.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

37 38 39 40
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
41

P
Peter Zijlstra 已提交
42 43 44 45
static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

46
/*
47
 * perf event paranoia level:
48 49
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
50
 *   1 - disallow cpu events for unpriv
51
 *   2 - disallow kernel profiling for unpriv
52
 */
53
int sysctl_perf_event_paranoid __read_mostly = 1;
54

55
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
56 57

/*
58
 * max perf event sample rate
59
 */
60
int sysctl_perf_event_sample_rate __read_mostly = 100000;
61

62
static atomic64_t perf_event_id;
63

64
void __weak perf_event_print_debug(void)	{ }
65

P
Peter Zijlstra 已提交
66
void perf_pmu_disable(struct pmu *pmu)
67
{
P
Peter Zijlstra 已提交
68 69 70
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
71 72
}

P
Peter Zijlstra 已提交
73
void perf_pmu_enable(struct pmu *pmu)
74
{
P
Peter Zijlstra 已提交
75 76 77
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
78 79
}

80 81 82 83 84 85 86
static DEFINE_PER_CPU(struct list_head, rotation_list);

/*
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
 */
P
Peter Zijlstra 已提交
87
static void perf_pmu_rotate_start(struct pmu *pmu)
88
{
P
Peter Zijlstra 已提交
89
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
90
	struct list_head *head = &__get_cpu_var(rotation_list);
91

92
	WARN_ON(!irqs_disabled());
93

94 95
	if (list_empty(&cpuctx->rotation_list))
		list_add(&cpuctx->rotation_list, head);
96 97
}

98
static void get_ctx(struct perf_event_context *ctx)
99
{
100
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
101 102
}

103 104
static void free_ctx(struct rcu_head *head)
{
105
	struct perf_event_context *ctx;
106

107
	ctx = container_of(head, struct perf_event_context, rcu_head);
108 109 110
	kfree(ctx);
}

111
static void put_ctx(struct perf_event_context *ctx)
112
{
113 114 115
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
116 117 118
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
119
	}
120 121
}

122
static void unclone_ctx(struct perf_event_context *ctx)
123 124 125 126 127 128 129
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

130
/*
131
 * If we inherit events we want to return the parent event id
132 133
 * to userspace.
 */
134
static u64 primary_event_id(struct perf_event *event)
135
{
136
	u64 id = event->id;
137

138 139
	if (event->parent)
		id = event->parent->id;
140 141 142 143

	return id;
}

144
/*
145
 * Get the perf_event_context for a task and lock it.
146 147 148
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
149
static struct perf_event_context *
P
Peter Zijlstra 已提交
150
perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
151
{
152
	struct perf_event_context *ctx;
153 154

	rcu_read_lock();
P
Peter Zijlstra 已提交
155
retry:
P
Peter Zijlstra 已提交
156
	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
157 158 159 160
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
161
		 * perf_event_task_sched_out, though the
162 163 164 165 166 167
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
168
		raw_spin_lock_irqsave(&ctx->lock, *flags);
P
Peter Zijlstra 已提交
169
		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
170
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
171 172
			goto retry;
		}
173 174

		if (!atomic_inc_not_zero(&ctx->refcount)) {
175
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
176 177
			ctx = NULL;
		}
178 179 180 181 182 183 184 185 186 187
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
P
Peter Zijlstra 已提交
188 189
static struct perf_event_context *
perf_pin_task_context(struct task_struct *task, int ctxn)
190
{
191
	struct perf_event_context *ctx;
192 193
	unsigned long flags;

P
Peter Zijlstra 已提交
194
	ctx = perf_lock_task_context(task, ctxn, &flags);
195 196
	if (ctx) {
		++ctx->pin_count;
197
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
198 199 200 201
	}
	return ctx;
}

202
static void perf_unpin_context(struct perf_event_context *ctx)
203 204 205
{
	unsigned long flags;

206
	raw_spin_lock_irqsave(&ctx->lock, flags);
207
	--ctx->pin_count;
208
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
209 210 211
	put_ctx(ctx);
}

212 213
static inline u64 perf_clock(void)
{
214
	return local_clock();
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

240 241 242 243 244 245
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
246 247 248 249 250 251 252 253 254

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

255 256 257 258 259 260 261 262 263 264 265 266
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

267 268 269 270 271 272 273 274 275
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

276
/*
277
 * Add a event from the lists for its context.
278 279
 * Must be called with ctx->mutex and ctx->lock held.
 */
280
static void
281
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
282
{
283 284
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
285 286

	/*
287 288 289
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
290
	 */
291
	if (event->group_leader == event) {
292 293
		struct list_head *list;

294 295 296
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

297 298
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
299
	}
P
Peter Zijlstra 已提交
300

301
	list_add_rcu(&event->event_entry, &ctx->event_list);
302
	if (!ctx->nr_events)
P
Peter Zijlstra 已提交
303
		perf_pmu_rotate_start(ctx->pmu);
304 305
	ctx->nr_events++;
	if (event->attr.inherit_stat)
306
		ctx->nr_stat++;
307 308
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

327
/*
328
 * Remove a event from the lists for its context.
329
 * Must be called with ctx->mutex and ctx->lock held.
330
 */
331
static void
332
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
333
{
334 335 336 337
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
338
		return;
339 340 341

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

342 343
	ctx->nr_events--;
	if (event->attr.inherit_stat)
344
		ctx->nr_stat--;
345

346
	list_del_rcu(&event->event_entry);
347

348 349
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
350

351
	update_group_times(event);
352 353 354 355 356 357 358 359 360 361

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
362 363
}

364
static void perf_group_detach(struct perf_event *event)
365 366
{
	struct perf_event *sibling, *tmp;
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
388

389
	/*
390 391
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
392
	 * to whatever list we are on.
393
	 */
394
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
395 396
		if (list)
			list_move_tail(&sibling->group_entry, list);
397
		sibling->group_leader = sibling;
398 399 400

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
401 402 403
	}
}

404 405 406 407 408 409
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

410
static void
411
event_sched_out(struct perf_event *event,
412
		  struct perf_cpu_context *cpuctx,
413
		  struct perf_event_context *ctx)
414
{
415 416 417 418 419 420 421 422 423 424 425 426 427 428
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

429
	if (event->state != PERF_EVENT_STATE_ACTIVE)
430 431
		return;

432 433 434 435
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
436
	}
437
	event->tstamp_stopped = ctx->time;
P
Peter Zijlstra 已提交
438
	event->pmu->del(event, 0);
439
	event->oncpu = -1;
440

441
	if (!is_software_event(event))
442 443
		cpuctx->active_oncpu--;
	ctx->nr_active--;
444
	if (event->attr.exclusive || !cpuctx->active_oncpu)
445 446 447
		cpuctx->exclusive = 0;
}

448
static void
449
group_sched_out(struct perf_event *group_event,
450
		struct perf_cpu_context *cpuctx,
451
		struct perf_event_context *ctx)
452
{
453
	struct perf_event *event;
454
	int state = group_event->state;
455

456
	event_sched_out(group_event, cpuctx, ctx);
457 458 459 460

	/*
	 * Schedule out siblings (if any):
	 */
461 462
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
463

464
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
465 466 467
		cpuctx->exclusive = 0;
}

P
Peter Zijlstra 已提交
468 469 470 471 472 473
static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context *ctx)
{
	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
}

T
Thomas Gleixner 已提交
474
/*
475
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
476
 *
477
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
478 479
 * remove it from the context list.
 */
480
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
481
{
482 483
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
484
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
T
Thomas Gleixner 已提交
485 486 487 488 489 490

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
491
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
492 493
		return;

494
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
495

496
	event_sched_out(event, cpuctx, ctx);
497

498
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
499

500
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
501 502 503 504
}


/*
505
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
506
 *
507
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
508
 *
509
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
510
 * call when the task is on a CPU.
511
 *
512 513
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
514 515
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
516
 * When called from perf_event_exit_task, it's OK because the
517
 * context has been detached from its task.
T
Thomas Gleixner 已提交
518
 */
519
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
520
{
521
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
522 523 524 525
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
526
		 * Per cpu events are removed via an smp call and
527
		 * the removal is always successful.
T
Thomas Gleixner 已提交
528
		 */
529 530 531
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
532 533 534 535
		return;
	}

retry:
536 537
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
538

539
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
540 541 542
	/*
	 * If the context is active we need to retry the smp call.
	 */
543
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
544
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
545 546 547 548 549
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
550
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
551 552
	 * succeed.
	 */
P
Peter Zijlstra 已提交
553
	if (!list_empty(&event->group_entry))
554
		list_del_event(event, ctx);
555
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
556 557
}

558
/*
559
 * Cross CPU call to disable a performance event
560
 */
561
static void __perf_event_disable(void *info)
562
{
563 564
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
565
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
566 567

	/*
568 569
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
570
	 */
571
	if (ctx->task && cpuctx->task_ctx != ctx)
572 573
		return;

574
	raw_spin_lock(&ctx->lock);
575 576

	/*
577
	 * If the event is on, turn it off.
578 579
	 * If it is in error state, leave it in error state.
	 */
580
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
581
		update_context_time(ctx);
582 583 584
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
585
		else
586 587
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
588 589
	}

590
	raw_spin_unlock(&ctx->lock);
591 592 593
}

/*
594
 * Disable a event.
595
 *
596 597
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
598
 * remains valid.  This condition is satisifed when called through
599 600 601 602
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
603
 * is the current context on this CPU and preemption is disabled,
604
 * hence we can't get into perf_event_task_sched_out for this context.
605
 */
606
void perf_event_disable(struct perf_event *event)
607
{
608
	struct perf_event_context *ctx = event->ctx;
609 610 611 612
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
613
		 * Disable the event on the cpu that it's on
614
		 */
615 616
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
617 618 619
		return;
	}

P
Peter Zijlstra 已提交
620
retry:
621
	task_oncpu_function_call(task, __perf_event_disable, event);
622

623
	raw_spin_lock_irq(&ctx->lock);
624
	/*
625
	 * If the event is still active, we need to retry the cross-call.
626
	 */
627
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
628
		raw_spin_unlock_irq(&ctx->lock);
629 630 631 632 633 634 635
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
636 637 638
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
639
	}
640

641
	raw_spin_unlock_irq(&ctx->lock);
642 643
}

644
static int
645
event_sched_in(struct perf_event *event,
646
		 struct perf_cpu_context *cpuctx,
647
		 struct perf_event_context *ctx)
648
{
649
	if (event->state <= PERF_EVENT_STATE_OFF)
650 651
		return 0;

652
	event->state = PERF_EVENT_STATE_ACTIVE;
653
	event->oncpu = smp_processor_id();
654 655 656 657 658
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

P
Peter Zijlstra 已提交
659
	if (event->pmu->add(event, PERF_EF_START)) {
660 661
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
662 663 664
		return -EAGAIN;
	}

665
	event->tstamp_running += ctx->time - event->tstamp_stopped;
666

667
	if (!is_software_event(event))
668
		cpuctx->active_oncpu++;
669 670
	ctx->nr_active++;

671
	if (event->attr.exclusive)
672 673
		cpuctx->exclusive = 1;

674 675 676
	return 0;
}

677
static int
678
group_sched_in(struct perf_event *group_event,
679
	       struct perf_cpu_context *cpuctx,
680
	       struct perf_event_context *ctx)
681
{
682
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
683
	struct pmu *pmu = group_event->pmu;
684

685
	if (group_event->state == PERF_EVENT_STATE_OFF)
686 687
		return 0;

P
Peter Zijlstra 已提交
688
	pmu->start_txn(pmu);
689

690
	if (event_sched_in(group_event, cpuctx, ctx)) {
P
Peter Zijlstra 已提交
691
		pmu->cancel_txn(pmu);
692
		return -EAGAIN;
693
	}
694 695 696 697

	/*
	 * Schedule in siblings as one group (if any):
	 */
698
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699
		if (event_sched_in(event, cpuctx, ctx)) {
700
			partial_group = event;
701 702 703 704
			goto group_error;
		}
	}

P
Peter Zijlstra 已提交
705
	if (!pmu->commit_txn(pmu))
706
		return 0;
707

708 709 710 711 712
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
713 714
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
715
			break;
716
		event_sched_out(event, cpuctx, ctx);
717
	}
718
	event_sched_out(group_event, cpuctx, ctx);
719

P
Peter Zijlstra 已提交
720
	pmu->cancel_txn(pmu);
721

722 723 724
	return -EAGAIN;
}

725
/*
726
 * Work out whether we can put this event group on the CPU now.
727
 */
728
static int group_can_go_on(struct perf_event *event,
729 730 731 732
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
733
	 * Groups consisting entirely of software events can always go on.
734
	 */
735
	if (event->group_flags & PERF_GROUP_SOFTWARE)
736 737 738
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
739
	 * events can go on.
740 741 742 743 744
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
745
	 * events on the CPU, it can't go on.
746
	 */
747
	if (event->attr.exclusive && cpuctx->active_oncpu)
748 749 750 751 752 753 754 755
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

756 757
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
758
{
759
	list_add_event(event, ctx);
760
	perf_group_attach(event);
761 762 763
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
764 765
}

T
Thomas Gleixner 已提交
766
/*
767
 * Cross CPU call to install and enable a performance event
768 769
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
770 771 772
 */
static void __perf_install_in_context(void *info)
{
773 774 775
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
776
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
777
	int err;
T
Thomas Gleixner 已提交
778 779 780 781 782

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
783
	 * Or possibly this is the right context but it isn't
784
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
785
	 */
786
	if (ctx->task && cpuctx->task_ctx != ctx) {
787
		if (cpuctx->task_ctx || ctx->task != current)
788 789 790
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
791

792
	raw_spin_lock(&ctx->lock);
793
	ctx->is_active = 1;
794
	update_context_time(ctx);
T
Thomas Gleixner 已提交
795

796
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
797

798 799 800
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

801
	/*
802
	 * Don't put the event on if it is disabled or if
803 804
	 * it is in a group and the group isn't on.
	 */
805 806
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
807 808
		goto unlock;

809
	/*
810 811 812
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
813
	 */
814
	if (!group_can_go_on(event, cpuctx, 1))
815 816
		err = -EEXIST;
	else
817
		err = event_sched_in(event, cpuctx, ctx);
818

819 820
	if (err) {
		/*
821
		 * This event couldn't go on.  If it is in a group
822
		 * then we have to pull the whole group off.
823
		 * If the event group is pinned then put it in error state.
824
		 */
825
		if (leader != event)
826
			group_sched_out(leader, cpuctx, ctx);
827
		if (leader->attr.pinned) {
828
			update_group_times(leader);
829
			leader->state = PERF_EVENT_STATE_ERROR;
830
		}
831
	}
T
Thomas Gleixner 已提交
832

P
Peter Zijlstra 已提交
833
unlock:
834
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
835 836 837
}

/*
838
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
839
 *
840 841
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
842
 *
843
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
844 845
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
846 847
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
848 849
 */
static void
850 851
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
852 853 854 855
			int cpu)
{
	struct task_struct *task = ctx->task;

856 857
	event->ctx = ctx;

T
Thomas Gleixner 已提交
858 859
	if (!task) {
		/*
860
		 * Per cpu events are installed via an smp call and
861
		 * the install is always successful.
T
Thomas Gleixner 已提交
862 863
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
864
					 event, 1);
T
Thomas Gleixner 已提交
865 866 867 868 869
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
870
				 event);
T
Thomas Gleixner 已提交
871

872
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
873 874 875
	/*
	 * we need to retry the smp call.
	 */
876
	if (ctx->is_active && list_empty(&event->group_entry)) {
877
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
878 879 880 881 882
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
883
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
884 885
	 * succeed.
	 */
886 887
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
888
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
889 890
}

891
/*
892
 * Put a event into inactive state and update time fields.
893 894 895 896 897 898
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
899 900
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
901
{
902
	struct perf_event *sub;
903

904 905
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
906 907
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
908 909
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
910 911
		}
	}
912 913
}

914
/*
915
 * Cross CPU call to enable a performance event
916
 */
917
static void __perf_event_enable(void *info)
918
{
919 920 921
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
P
Peter Zijlstra 已提交
922
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
923
	int err;
924

925
	/*
926 927
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
928
	 */
929
	if (ctx->task && cpuctx->task_ctx != ctx) {
930
		if (cpuctx->task_ctx || ctx->task != current)
931 932 933
			return;
		cpuctx->task_ctx = ctx;
	}
934

935
	raw_spin_lock(&ctx->lock);
936
	ctx->is_active = 1;
937
	update_context_time(ctx);
938

939
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
940
		goto unlock;
941
	__perf_event_mark_enabled(event, ctx);
942

943 944 945
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

946
	/*
947
	 * If the event is in a group and isn't the group leader,
948
	 * then don't put it on unless the group is on.
949
	 */
950
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
951
		goto unlock;
952

953
	if (!group_can_go_on(event, cpuctx, 1)) {
954
		err = -EEXIST;
955
	} else {
956
		if (event == leader)
957
			err = group_sched_in(event, cpuctx, ctx);
958
		else
959
			err = event_sched_in(event, cpuctx, ctx);
960
	}
961 962 963

	if (err) {
		/*
964
		 * If this event can't go on and it's part of a
965 966
		 * group, then the whole group has to come off.
		 */
967
		if (leader != event)
968
			group_sched_out(leader, cpuctx, ctx);
969
		if (leader->attr.pinned) {
970
			update_group_times(leader);
971
			leader->state = PERF_EVENT_STATE_ERROR;
972
		}
973 974
	}

P
Peter Zijlstra 已提交
975
unlock:
976
	raw_spin_unlock(&ctx->lock);
977 978 979
}

/*
980
 * Enable a event.
981
 *
982 983
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
984
 * remains valid.  This condition is satisfied when called through
985 986
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
987
 */
988
void perf_event_enable(struct perf_event *event)
989
{
990
	struct perf_event_context *ctx = event->ctx;
991 992 993 994
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
995
		 * Enable the event on the cpu that it's on
996
		 */
997 998
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
999 1000 1001
		return;
	}

1002
	raw_spin_lock_irq(&ctx->lock);
1003
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1004 1005 1006
		goto out;

	/*
1007 1008
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1009 1010 1011 1012
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1013 1014
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1015

P
Peter Zijlstra 已提交
1016
retry:
1017
	raw_spin_unlock_irq(&ctx->lock);
1018
	task_oncpu_function_call(task, __perf_event_enable, event);
1019

1020
	raw_spin_lock_irq(&ctx->lock);
1021 1022

	/*
1023
	 * If the context is active and the event is still off,
1024 1025
	 * we need to retry the cross-call.
	 */
1026
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1027 1028 1029 1030 1031 1032
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1033 1034
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1035

P
Peter Zijlstra 已提交
1036
out:
1037
	raw_spin_unlock_irq(&ctx->lock);
1038 1039
}

1040
static int perf_event_refresh(struct perf_event *event, int refresh)
1041
{
1042
	/*
1043
	 * not supported on inherited events
1044
	 */
1045
	if (event->attr.inherit)
1046 1047
		return -EINVAL;

1048 1049
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1050 1051

	return 0;
1052 1053
}

1054 1055 1056 1057 1058 1059 1060 1061 1062
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1063
{
1064
	struct perf_event *event;
1065

1066
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1067
	perf_pmu_disable(ctx->pmu);
1068
	ctx->is_active = 0;
1069
	if (likely(!ctx->nr_events))
1070
		goto out;
1071
	update_context_time(ctx);
1072

1073
	if (!ctx->nr_active)
1074
		goto out;
1075

P
Peter Zijlstra 已提交
1076
	if (event_type & EVENT_PINNED) {
1077 1078
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1079
	}
1080

P
Peter Zijlstra 已提交
1081
	if (event_type & EVENT_FLEXIBLE) {
1082
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1083
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1084 1085
	}
out:
P
Peter Zijlstra 已提交
1086
	perf_pmu_enable(ctx->pmu);
1087
	raw_spin_unlock(&ctx->lock);
1088 1089
}

1090 1091 1092
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1093 1094 1095 1096
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1097
 * in them directly with an fd; we can only enable/disable all
1098
 * events via prctl, or enable/disable all events in a family
1099 1100
 * via ioctl, which will have the same effect on both contexts.
 */
1101 1102
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1103 1104
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1105
		&& ctx1->parent_gen == ctx2->parent_gen
1106
		&& !ctx1->pin_count && !ctx2->pin_count;
1107 1108
}

1109 1110
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1111 1112 1113
{
	u64 value;

1114
	if (!event->attr.inherit_stat)
1115 1116 1117
		return;

	/*
1118
	 * Update the event value, we cannot use perf_event_read()
1119 1120
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1121
	 * we know the event must be on the current CPU, therefore we
1122 1123
	 * don't need to use it.
	 */
1124 1125
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1126 1127
		event->pmu->read(event);
		/* fall-through */
1128

1129 1130
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1131 1132 1133 1134 1135 1136 1137
		break;

	default:
		break;
	}

	/*
1138
	 * In order to keep per-task stats reliable we need to flip the event
1139 1140
	 * values when we flip the contexts.
	 */
1141 1142 1143
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1144

1145 1146
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1147

1148
	/*
1149
	 * Since we swizzled the values, update the user visible data too.
1150
	 */
1151 1152
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1153 1154 1155 1156 1157
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1158 1159
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1160
{
1161
	struct perf_event *event, *next_event;
1162 1163 1164 1165

	if (!ctx->nr_stat)
		return;

1166 1167
	update_context_time(ctx);

1168 1169
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1170

1171 1172
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1173

1174 1175
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1176

1177
		__perf_event_sync_stat(event, next_event);
1178

1179 1180
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1181 1182 1183
	}
}

P
Peter Zijlstra 已提交
1184 1185
void perf_event_context_sched_out(struct task_struct *task, int ctxn,
				  struct task_struct *next)
T
Thomas Gleixner 已提交
1186
{
P
Peter Zijlstra 已提交
1187
	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1188 1189
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
P
Peter Zijlstra 已提交
1190
	struct perf_cpu_context *cpuctx;
1191
	int do_switch = 1;
T
Thomas Gleixner 已提交
1192

P
Peter Zijlstra 已提交
1193 1194 1195 1196 1197
	if (likely(!ctx))
		return;

	cpuctx = __get_cpu_context(ctx);
	if (!cpuctx->task_ctx)
T
Thomas Gleixner 已提交
1198 1199
		return;

1200 1201
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
P
Peter Zijlstra 已提交
1202
	next_ctx = next->perf_event_ctxp[ctxn];
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1214 1215
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1216
		if (context_equiv(ctx, next_ctx)) {
1217 1218
			/*
			 * XXX do we need a memory barrier of sorts
1219
			 * wrt to rcu_dereference() of perf_event_ctxp
1220
			 */
P
Peter Zijlstra 已提交
1221 1222
			task->perf_event_ctxp[ctxn] = next_ctx;
			next->perf_event_ctxp[ctxn] = ctx;
1223 1224 1225
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1226

1227
			perf_event_sync_stat(ctx, next_ctx);
1228
		}
1229 1230
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1231
	}
1232
	rcu_read_unlock();
1233

1234
	if (do_switch) {
1235
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1236 1237
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1238 1239
}

P
Peter Zijlstra 已提交
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
#define for_each_task_context_nr(ctxn)					\
	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)

/*
 * Called from scheduler to remove the events of the current task,
 * with interrupts disabled.
 *
 * We stop each event and update the event value in event->count.
 *
 * This does not protect us against NMI, but disable()
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
 */
void perf_event_task_sched_out(struct task_struct *task,
			       struct task_struct *next)
{
	int ctxn;

	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);

	for_each_task_context_nr(ctxn)
		perf_event_context_sched_out(task, ctxn, next);
}

1265 1266
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1267
{
P
Peter Zijlstra 已提交
1268
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1269

1270 1271
	if (!cpuctx->task_ctx)
		return;
1272 1273 1274 1275

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1276
	ctx_sched_out(ctx, cpuctx, event_type);
1277 1278 1279
	cpuctx->task_ctx = NULL;
}

1280 1281 1282
/*
 * Called with IRQs disabled
 */
1283
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1284
{
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1295 1296
}

1297
static void
1298
ctx_pinned_sched_in(struct perf_event_context *ctx,
1299
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1300
{
1301
	struct perf_event *event;
T
Thomas Gleixner 已提交
1302

1303 1304
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1305
			continue;
1306
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1307 1308
			continue;

1309
		if (group_can_go_on(event, cpuctx, 1))
1310
			group_sched_in(event, cpuctx, ctx);
1311 1312 1313 1314 1315

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1316 1317 1318
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1319
		}
1320
	}
1321 1322 1323 1324
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1325
		      struct perf_cpu_context *cpuctx)
1326 1327 1328
{
	struct perf_event *event;
	int can_add_hw = 1;
1329

1330 1331 1332
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1333
			continue;
1334 1335
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1336
		 * of events:
1337
		 */
1338
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1339 1340
			continue;

P
Peter Zijlstra 已提交
1341
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1342
			if (group_sched_in(event, cpuctx, ctx))
1343
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1344
		}
T
Thomas Gleixner 已提交
1345
	}
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1365
		ctx_pinned_sched_in(ctx, cpuctx);
1366 1367 1368

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1369
		ctx_flexible_sched_in(ctx, cpuctx);
1370

P
Peter Zijlstra 已提交
1371
out:
1372
	raw_spin_unlock(&ctx->lock);
1373 1374
}

1375 1376 1377 1378 1379 1380 1381 1382
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

P
Peter Zijlstra 已提交
1383
static void task_ctx_sched_in(struct perf_event_context *ctx,
1384 1385
			      enum event_type_t event_type)
{
P
Peter Zijlstra 已提交
1386
	struct perf_cpu_context *cpuctx;
1387

P
Peter Zijlstra 已提交
1388
       	cpuctx = __get_cpu_context(ctx);
1389 1390
	if (cpuctx->task_ctx == ctx)
		return;
P
Peter Zijlstra 已提交
1391

1392 1393 1394
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
P
Peter Zijlstra 已提交
1395 1396

void perf_event_context_sched_in(struct perf_event_context *ctx)
1397
{
P
Peter Zijlstra 已提交
1398
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1399

P
Peter Zijlstra 已提交
1400
	cpuctx = __get_cpu_context(ctx);
1401 1402 1403
	if (cpuctx->task_ctx == ctx)
		return;

P
Peter Zijlstra 已提交
1404
	perf_pmu_disable(ctx->pmu);
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1417 1418 1419 1420 1421

	/*
	 * Since these rotations are per-cpu, we need to ensure the
	 * cpu-context we got scheduled on is actually rotating.
	 */
P
Peter Zijlstra 已提交
1422
	perf_pmu_rotate_start(ctx->pmu);
P
Peter Zijlstra 已提交
1423
	perf_pmu_enable(ctx->pmu);
1424 1425
}

P
Peter Zijlstra 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
/*
 * Called from scheduler to add the events of the current task
 * with interrupts disabled.
 *
 * We restore the event value and then enable it.
 *
 * This does not protect us against NMI, but enable()
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
 */
void perf_event_task_sched_in(struct task_struct *task)
{
	struct perf_event_context *ctx;
	int ctxn;

	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (likely(!ctx))
			continue;

		perf_event_context_sched_in(ctx);
	}
}

1451 1452
#define MAX_INTERRUPTS (~0ULL)

1453
static void perf_log_throttle(struct perf_event *event, int enable);
1454

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1522 1523 1524
	if (!divisor)
		return dividend;

1525 1526 1527 1528
	return div64_u64(dividend, divisor);
}

static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1529
{
1530
	struct hw_perf_event *hwc = &event->hw;
1531
	s64 period, sample_period;
1532 1533
	s64 delta;

1534
	period = perf_calculate_period(event, nsec, count);
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1545

1546
	if (local64_read(&hwc->period_left) > 8*sample_period) {
P
Peter Zijlstra 已提交
1547
		event->pmu->stop(event, PERF_EF_UPDATE);
1548
		local64_set(&hwc->period_left, 0);
P
Peter Zijlstra 已提交
1549
		event->pmu->start(event, PERF_EF_RELOAD);
1550
	}
1551 1552
}

1553
static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1554
{
1555 1556
	struct perf_event *event;
	struct hw_perf_event *hwc;
1557 1558
	u64 interrupts, now;
	s64 delta;
1559

1560
	raw_spin_lock(&ctx->lock);
1561
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1562
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1563 1564
			continue;

1565 1566 1567
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1568
		hwc = &event->hw;
1569 1570 1571

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1572

1573
		/*
1574
		 * unthrottle events on the tick
1575
		 */
1576
		if (interrupts == MAX_INTERRUPTS) {
1577
			perf_log_throttle(event, 1);
P
Peter Zijlstra 已提交
1578
			event->pmu->start(event, 0);
1579 1580
		}

1581
		if (!event->attr.freq || !event->attr.sample_freq)
1582 1583
			continue;

1584
		event->pmu->read(event);
1585
		now = local64_read(&event->count);
1586 1587
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1588

1589
		if (delta > 0)
1590
			perf_adjust_period(event, period, delta);
1591
	}
1592
	raw_spin_unlock(&ctx->lock);
1593 1594
}

1595
/*
1596
 * Round-robin a context's events:
1597
 */
1598
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1599
{
1600
	raw_spin_lock(&ctx->lock);
1601 1602 1603 1604

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1605
	raw_spin_unlock(&ctx->lock);
1606 1607
}

1608
/*
1609 1610 1611
 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
 * because they're strictly cpu affine and rotate_start is called with IRQs
 * disabled, while rotate_context is called from IRQ context.
1612
 */
1613
static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1614
{
1615
	u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
P
Peter Zijlstra 已提交
1616
	struct perf_event_context *ctx = NULL;
1617
	int rotate = 0, remove = 1;
1618

1619
	if (cpuctx->ctx.nr_events) {
1620
		remove = 0;
1621 1622 1623
		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
			rotate = 1;
	}
1624

P
Peter Zijlstra 已提交
1625
	ctx = cpuctx->task_ctx;
1626
	if (ctx && ctx->nr_events) {
1627
		remove = 0;
1628 1629 1630
		if (ctx->nr_events != ctx->nr_active)
			rotate = 1;
	}
1631

P
Peter Zijlstra 已提交
1632
	perf_pmu_disable(cpuctx->ctx.pmu);
1633
	perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1634
	if (ctx)
1635
		perf_ctx_adjust_freq(ctx, interval);
1636

1637
	if (!rotate)
1638
		goto done;
1639

1640
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1641
	if (ctx)
1642
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1643

1644
	rotate_ctx(&cpuctx->ctx);
1645 1646
	if (ctx)
		rotate_ctx(ctx);
1647

1648
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1649
	if (ctx)
P
Peter Zijlstra 已提交
1650
		task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1651 1652

done:
1653 1654 1655
	if (remove)
		list_del_init(&cpuctx->rotation_list);

P
Peter Zijlstra 已提交
1656
	perf_pmu_enable(cpuctx->ctx.pmu);
1657 1658 1659 1660 1661 1662
}

void perf_event_task_tick(void)
{
	struct list_head *head = &__get_cpu_var(rotation_list);
	struct perf_cpu_context *cpuctx, *tmp;
1663

1664 1665 1666 1667 1668 1669 1670
	WARN_ON(!irqs_disabled());

	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
		if (cpuctx->jiffies_interval == 1 ||
				!(jiffies % cpuctx->jiffies_interval))
			perf_rotate_context(cpuctx);
	}
T
Thomas Gleixner 已提交
1671 1672
}

1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1688
/*
1689
 * Enable all of a task's events that have been marked enable-on-exec.
1690 1691
 * This expects task == current.
 */
P
Peter Zijlstra 已提交
1692
static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1693
{
1694
	struct perf_event *event;
1695 1696
	unsigned long flags;
	int enabled = 0;
1697
	int ret;
1698 1699

	local_irq_save(flags);
1700
	if (!ctx || !ctx->nr_events)
1701 1702
		goto out;

P
Peter Zijlstra 已提交
1703
	task_ctx_sched_out(ctx, EVENT_ALL);
1704

1705
	raw_spin_lock(&ctx->lock);
1706

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1717 1718 1719
	}

	/*
1720
	 * Unclone this context if we enabled any event.
1721
	 */
1722 1723
	if (enabled)
		unclone_ctx(ctx);
1724

1725
	raw_spin_unlock(&ctx->lock);
1726

P
Peter Zijlstra 已提交
1727
	perf_event_context_sched_in(ctx);
P
Peter Zijlstra 已提交
1728
out:
1729 1730 1731
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1732
/*
1733
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1734
 */
1735
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1736
{
1737 1738
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
P
Peter Zijlstra 已提交
1739
	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
I
Ingo Molnar 已提交
1740

1741 1742 1743 1744
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1745 1746
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1747 1748 1749 1750
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1751
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1752
	update_context_time(ctx);
1753
	update_event_times(event);
1754
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1755

P
Peter Zijlstra 已提交
1756
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1757 1758
}

P
Peter Zijlstra 已提交
1759 1760
static inline u64 perf_event_count(struct perf_event *event)
{
1761
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1762 1763
}

1764
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1765 1766
{
	/*
1767 1768
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1769
	 */
1770 1771 1772 1773
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1774 1775 1776
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1777
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1778
		update_context_time(ctx);
1779
		update_event_times(event);
1780
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1781 1782
	}

P
Peter Zijlstra 已提交
1783
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1784 1785
}

1786 1787 1788 1789 1790 1791 1792 1793 1794
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1795
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1851
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1996
/*
1997
 * Initialize the perf_event context in a task_struct:
1998
 */
1999
static void __perf_event_init_context(struct perf_event_context *ctx)
2000
{
2001
	raw_spin_lock_init(&ctx->lock);
2002
	mutex_init(&ctx->mutex);
2003 2004
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
2005 2006
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
}

static struct perf_event_context *
alloc_perf_context(struct pmu *pmu, struct task_struct *task)
{
	struct perf_event_context *ctx;

	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
	if (!ctx)
		return NULL;

	__perf_event_init_context(ctx);
	if (task) {
		ctx->task = task;
		get_task_struct(task);
	}
	ctx->pmu = pmu;

	return ctx;
2026 2027
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)
{
	struct task_struct *task;
	int err;

	rcu_read_lock();
	if (!vpid)
		task = current;
	else
		task = find_task_by_vpid(vpid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

	/*
	 * Can't attach events to a dying task.
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

	/* Reuse ptrace permission checks for now. */
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

	return task;
errout:
	put_task_struct(task);
	return ERR_PTR(err);

}

P
Peter Zijlstra 已提交
2065
static struct perf_event_context *
M
Matt Helsley 已提交
2066
find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
T
Thomas Gleixner 已提交
2067
{
2068
	struct perf_event_context *ctx;
2069
	struct perf_cpu_context *cpuctx;
2070
	unsigned long flags;
P
Peter Zijlstra 已提交
2071
	int ctxn, err;
T
Thomas Gleixner 已提交
2072

M
Matt Helsley 已提交
2073
	if (!task && cpu != -1) {
2074
		/* Must be root to operate on a CPU event: */
2075
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
2076 2077
			return ERR_PTR(-EACCES);

2078
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
2079 2080 2081
			return ERR_PTR(-EINVAL);

		/*
2082
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
2083 2084 2085
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
2086
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
2087 2088
			return ERR_PTR(-ENODEV);

P
Peter Zijlstra 已提交
2089
		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
T
Thomas Gleixner 已提交
2090
		ctx = &cpuctx->ctx;
2091
		get_ctx(ctx);
T
Thomas Gleixner 已提交
2092 2093 2094 2095

		return ctx;
	}

P
Peter Zijlstra 已提交
2096 2097 2098 2099 2100
	err = -EINVAL;
	ctxn = pmu->task_ctx_nr;
	if (ctxn < 0)
		goto errout;

P
Peter Zijlstra 已提交
2101
retry:
P
Peter Zijlstra 已提交
2102
	ctx = perf_lock_task_context(task, ctxn, &flags);
2103
	if (ctx) {
2104
		unclone_ctx(ctx);
2105
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2106 2107
	}

2108
	if (!ctx) {
2109
		ctx = alloc_perf_context(pmu, task);
2110 2111 2112
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2113

2114
		get_ctx(ctx);
2115

P
Peter Zijlstra 已提交
2116
		if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2117 2118 2119 2120
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
2121
			put_task_struct(task);
2122
			kfree(ctx);
2123
			goto retry;
2124 2125 2126
		}
	}

2127
	put_task_struct(task);
T
Thomas Gleixner 已提交
2128
	return ctx;
2129

P
Peter Zijlstra 已提交
2130
errout:
2131 2132
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2133 2134
}

L
Li Zefan 已提交
2135 2136
static void perf_event_free_filter(struct perf_event *event);

2137
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2138
{
2139
	struct perf_event *event;
P
Peter Zijlstra 已提交
2140

2141 2142 2143
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2144
	perf_event_free_filter(event);
2145
	kfree(event);
P
Peter Zijlstra 已提交
2146 2147
}

2148
static void perf_pending_sync(struct perf_event *event);
2149
static void perf_buffer_put(struct perf_buffer *buffer);
2150

2151
static void free_event(struct perf_event *event)
2152
{
2153
	perf_pending_sync(event);
2154

2155 2156
	if (!event->parent) {
		atomic_dec(&nr_events);
2157
		if (event->attr.mmap || event->attr.mmap_data)
2158 2159 2160 2161 2162
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2163 2164
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2165
	}
2166

2167 2168 2169
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2170 2171
	}

2172 2173
	if (event->destroy)
		event->destroy(event);
2174

P
Peter Zijlstra 已提交
2175 2176 2177
	if (event->ctx)
		put_ctx(event->ctx);

2178
	call_rcu(&event->rcu_head, free_event_rcu);
2179 2180
}

2181
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2182
{
2183
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2184

2185 2186 2187 2188 2189 2190
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2191
	WARN_ON_ONCE(ctx->parent_ctx);
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2205
	raw_spin_lock_irq(&ctx->lock);
2206
	perf_group_detach(event);
2207 2208
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2209
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2210

2211 2212 2213 2214
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2215

2216
	free_event(event);
T
Thomas Gleixner 已提交
2217 2218 2219

	return 0;
}
2220
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2221

2222 2223 2224 2225
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2226
{
2227
	struct perf_event *event = file->private_data;
2228

2229
	file->private_data = NULL;
2230

2231
	return perf_event_release_kernel(event);
2232 2233
}

2234
static int perf_event_read_size(struct perf_event *event)
2235 2236 2237 2238 2239
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2240
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2241 2242
		size += sizeof(u64);

2243
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2244 2245
		size += sizeof(u64);

2246
	if (event->attr.read_format & PERF_FORMAT_ID)
2247 2248
		entry += sizeof(u64);

2249 2250
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2251 2252 2253 2254 2255 2256 2257 2258
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2259
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2260
{
2261
	struct perf_event *child;
2262 2263
	u64 total = 0;

2264 2265 2266
	*enabled = 0;
	*running = 0;

2267
	mutex_lock(&event->child_mutex);
2268
	total += perf_event_read(event);
2269 2270 2271 2272 2273 2274
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2275
		total += perf_event_read(child);
2276 2277 2278
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2279
	mutex_unlock(&event->child_mutex);
2280 2281 2282

	return total;
}
2283
EXPORT_SYMBOL_GPL(perf_event_read_value);
2284

2285
static int perf_event_read_group(struct perf_event *event,
2286 2287
				   u64 read_format, char __user *buf)
{
2288
	struct perf_event *leader = event->group_leader, *sub;
2289 2290
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2291
	u64 values[5];
2292
	u64 count, enabled, running;
2293

2294
	mutex_lock(&ctx->mutex);
2295
	count = perf_event_read_value(leader, &enabled, &running);
2296 2297

	values[n++] = 1 + leader->nr_siblings;
2298 2299 2300 2301
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2302 2303 2304
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2305 2306 2307 2308

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2309
		goto unlock;
2310

2311
	ret = size;
2312

2313
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2314
		n = 0;
2315

2316
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2317 2318 2319 2320 2321
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2322
		if (copy_to_user(buf + ret, values, size)) {
2323 2324 2325
			ret = -EFAULT;
			goto unlock;
		}
2326 2327

		ret += size;
2328
	}
2329 2330
unlock:
	mutex_unlock(&ctx->mutex);
2331

2332
	return ret;
2333 2334
}

2335
static int perf_event_read_one(struct perf_event *event,
2336 2337
				 u64 read_format, char __user *buf)
{
2338
	u64 enabled, running;
2339 2340 2341
	u64 values[4];
	int n = 0;

2342 2343 2344 2345 2346
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2347
	if (read_format & PERF_FORMAT_ID)
2348
		values[n++] = primary_event_id(event);
2349 2350 2351 2352 2353 2354 2355

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2356
/*
2357
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2358 2359
 */
static ssize_t
2360
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2361
{
2362
	u64 read_format = event->attr.read_format;
2363
	int ret;
T
Thomas Gleixner 已提交
2364

2365
	/*
2366
	 * Return end-of-file for a read on a event that is in
2367 2368 2369
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2370
	if (event->state == PERF_EVENT_STATE_ERROR)
2371 2372
		return 0;

2373
	if (count < perf_event_read_size(event))
2374 2375
		return -ENOSPC;

2376
	WARN_ON_ONCE(event->ctx->parent_ctx);
2377
	if (read_format & PERF_FORMAT_GROUP)
2378
		ret = perf_event_read_group(event, read_format, buf);
2379
	else
2380
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2381

2382
	return ret;
T
Thomas Gleixner 已提交
2383 2384 2385 2386 2387
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2388
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2389

2390
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2391 2392 2393 2394
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2395
	struct perf_event *event = file->private_data;
2396
	struct perf_buffer *buffer;
2397
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2398 2399

	rcu_read_lock();
2400 2401 2402
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2403
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2404

2405
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2406 2407 2408 2409

	return events;
}

2410
static void perf_event_reset(struct perf_event *event)
2411
{
2412
	(void)perf_event_read(event);
2413
	local64_set(&event->count, 0);
2414
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2415 2416
}

2417
/*
2418 2419 2420 2421
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2422
 */
2423 2424
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2425
{
2426
	struct perf_event *child;
P
Peter Zijlstra 已提交
2427

2428 2429 2430 2431
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2432
		func(child);
2433
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2434 2435
}

2436 2437
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2438
{
2439 2440
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2441

2442 2443
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2444
	event = event->group_leader;
2445

2446 2447 2448 2449
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2450
	mutex_unlock(&ctx->mutex);
2451 2452
}

2453
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2454
{
2455
	struct perf_event_context *ctx = event->ctx;
2456 2457 2458 2459
	unsigned long size;
	int ret = 0;
	u64 value;

2460
	if (!event->attr.sample_period)
2461 2462 2463 2464 2465 2466 2467 2468 2469
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2470
	raw_spin_lock_irq(&ctx->lock);
2471 2472
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2473 2474 2475 2476
			ret = -EINVAL;
			goto unlock;
		}

2477
		event->attr.sample_freq = value;
2478
	} else {
2479 2480
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2481 2482
	}
unlock:
2483
	raw_spin_unlock_irq(&ctx->lock);
2484 2485 2486 2487

	return ret;
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2509
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2510

2511 2512
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2513 2514
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2515
	u32 flags = arg;
2516 2517

	switch (cmd) {
2518 2519
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2520
		break;
2521 2522
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2523
		break;
2524 2525
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2526
		break;
P
Peter Zijlstra 已提交
2527

2528 2529
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2530

2531 2532
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2533

2534
	case PERF_EVENT_IOC_SET_OUTPUT:
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2552

L
Li Zefan 已提交
2553 2554 2555
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2556
	default:
P
Peter Zijlstra 已提交
2557
		return -ENOTTY;
2558
	}
P
Peter Zijlstra 已提交
2559 2560

	if (flags & PERF_IOC_FLAG_GROUP)
2561
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2562
	else
2563
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2564 2565

	return 0;
2566 2567
}

2568
int perf_event_task_enable(void)
2569
{
2570
	struct perf_event *event;
2571

2572 2573 2574 2575
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2576 2577 2578 2579

	return 0;
}

2580
int perf_event_task_disable(void)
2581
{
2582
	struct perf_event *event;
2583

2584 2585 2586 2587
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2588 2589 2590 2591

	return 0;
}

2592 2593
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2594 2595
#endif

2596
static int perf_event_index(struct perf_event *event)
2597
{
P
Peter Zijlstra 已提交
2598 2599 2600
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

2601
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2602 2603
		return 0;

2604
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2605 2606
}

2607 2608 2609 2610 2611
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2612
void perf_event_update_userpage(struct perf_event *event)
2613
{
2614
	struct perf_event_mmap_page *userpg;
2615
	struct perf_buffer *buffer;
2616 2617

	rcu_read_lock();
2618 2619
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2620 2621
		goto unlock;

2622
	userpg = buffer->user_page;
2623

2624 2625 2626 2627 2628
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2629
	++userpg->lock;
2630
	barrier();
2631
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2632
	userpg->offset = perf_event_count(event);
2633
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2634
		userpg->offset -= local64_read(&event->hw.prev_count);
2635

2636 2637
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2638

2639 2640
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2641

2642
	barrier();
2643
	++userpg->lock;
2644
	preempt_enable();
2645
unlock:
2646
	rcu_read_unlock();
2647 2648
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2668
#ifndef CONFIG_PERF_USE_VMALLOC
2669

2670 2671 2672
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2673

2674
static struct page *
2675
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2676
{
2677
	if (pgoff > buffer->nr_pages)
2678
		return NULL;
2679

2680
	if (pgoff == 0)
2681
		return virt_to_page(buffer->user_page);
2682

2683
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2684 2685
}

2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2699
static struct perf_buffer *
2700
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2701
{
2702
	struct perf_buffer *buffer;
2703 2704 2705
	unsigned long size;
	int i;

2706
	size = sizeof(struct perf_buffer);
2707 2708
	size += nr_pages * sizeof(void *);

2709 2710
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2711 2712
		goto fail;

2713
	buffer->user_page = perf_mmap_alloc_page(cpu);
2714
	if (!buffer->user_page)
2715 2716 2717
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2718
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2719
		if (!buffer->data_pages[i])
2720 2721 2722
			goto fail_data_pages;
	}

2723
	buffer->nr_pages = nr_pages;
2724

2725 2726
	perf_buffer_init(buffer, watermark, flags);

2727
	return buffer;
2728 2729 2730

fail_data_pages:
	for (i--; i >= 0; i--)
2731
		free_page((unsigned long)buffer->data_pages[i]);
2732

2733
	free_page((unsigned long)buffer->user_page);
2734 2735

fail_user_page:
2736
	kfree(buffer);
2737 2738

fail:
2739
	return NULL;
2740 2741
}

2742 2743
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2744
	struct page *page = virt_to_page((void *)addr);
2745 2746 2747 2748 2749

	page->mapping = NULL;
	__free_page(page);
}

2750
static void perf_buffer_free(struct perf_buffer *buffer)
2751 2752 2753
{
	int i;

2754 2755 2756 2757
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2758 2759
}

2760
static inline int page_order(struct perf_buffer *buffer)
2761 2762 2763 2764
{
	return 0;
}

2765 2766 2767 2768 2769 2770 2771 2772
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2773
static inline int page_order(struct perf_buffer *buffer)
2774
{
2775
	return buffer->page_order;
2776 2777
}

2778
static struct page *
2779
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2780
{
2781
	if (pgoff > (1UL << page_order(buffer)))
2782 2783
		return NULL;

2784
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2785 2786 2787 2788 2789 2790 2791 2792 2793
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2794
static void perf_buffer_free_work(struct work_struct *work)
2795
{
2796
	struct perf_buffer *buffer;
2797 2798 2799
	void *base;
	int i, nr;

2800 2801
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2802

2803
	base = buffer->user_page;
2804 2805 2806 2807
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2808
	kfree(buffer);
2809 2810
}

2811
static void perf_buffer_free(struct perf_buffer *buffer)
2812
{
2813
	schedule_work(&buffer->work);
2814 2815
}

2816
static struct perf_buffer *
2817
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2818
{
2819
	struct perf_buffer *buffer;
2820 2821 2822
	unsigned long size;
	void *all_buf;

2823
	size = sizeof(struct perf_buffer);
2824 2825
	size += sizeof(void *);

2826 2827
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2828 2829
		goto fail;

2830
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2831 2832 2833 2834 2835

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2836 2837 2838 2839
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2840

2841 2842
	perf_buffer_init(buffer, watermark, flags);

2843
	return buffer;
2844 2845

fail_all_buf:
2846
	kfree(buffer);
2847 2848 2849 2850 2851 2852 2853

fail:
	return NULL;
}

#endif

2854
static unsigned long perf_data_size(struct perf_buffer *buffer)
2855
{
2856
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2857 2858
}

2859 2860 2861
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2862
	struct perf_buffer *buffer;
2863 2864 2865 2866 2867 2868 2869 2870 2871
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2872 2873
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2874 2875 2876 2877 2878
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2879
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2894
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2895
{
2896
	struct perf_buffer *buffer;
2897

2898 2899
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2900 2901
}

2902
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2903
{
2904
	struct perf_buffer *buffer;
2905

2906
	rcu_read_lock();
2907 2908 2909 2910
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2911 2912 2913
	}
	rcu_read_unlock();

2914
	return buffer;
2915 2916
}

2917
static void perf_buffer_put(struct perf_buffer *buffer)
2918
{
2919
	if (!atomic_dec_and_test(&buffer->refcount))
2920
		return;
2921

2922
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2923 2924 2925 2926
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2927
	struct perf_event *event = vma->vm_file->private_data;
2928

2929
	atomic_inc(&event->mmap_count);
2930 2931 2932 2933
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2934
	struct perf_event *event = vma->vm_file->private_data;
2935

2936
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2937
		unsigned long size = perf_data_size(event->buffer);
2938
		struct user_struct *user = event->mmap_user;
2939
		struct perf_buffer *buffer = event->buffer;
2940

2941
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2942
		vma->vm_mm->locked_vm -= event->mmap_locked;
2943
		rcu_assign_pointer(event->buffer, NULL);
2944
		mutex_unlock(&event->mmap_mutex);
2945

2946
		perf_buffer_put(buffer);
2947
		free_uid(user);
2948
	}
2949 2950
}

2951
static const struct vm_operations_struct perf_mmap_vmops = {
2952 2953 2954 2955
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2956 2957 2958 2959
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2960
	struct perf_event *event = file->private_data;
2961
	unsigned long user_locked, user_lock_limit;
2962
	struct user_struct *user = current_user();
2963
	unsigned long locked, lock_limit;
2964
	struct perf_buffer *buffer;
2965 2966
	unsigned long vma_size;
	unsigned long nr_pages;
2967
	long user_extra, extra;
2968
	int ret = 0, flags = 0;
2969

2970 2971 2972 2973 2974 2975 2976 2977
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2978
	if (!(vma->vm_flags & VM_SHARED))
2979
		return -EINVAL;
2980 2981 2982 2983

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2984
	/*
2985
	 * If we have buffer pages ensure they're a power-of-two number, so we
2986 2987 2988
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2989 2990
		return -EINVAL;

2991
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2992 2993
		return -EINVAL;

2994 2995
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2996

2997 2998
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2999 3000 3001
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
3002
		else
3003 3004 3005 3006
			ret = -EINVAL;
		goto unlock;
	}

3007
	user_extra = nr_pages + 1;
3008
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
3009 3010 3011 3012 3013 3014

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

3015
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3016

3017 3018 3019
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
3020

3021
	lock_limit = rlimit(RLIMIT_MEMLOCK);
3022
	lock_limit >>= PAGE_SHIFT;
3023
	locked = vma->vm_mm->locked_vm + extra;
3024

3025 3026
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
3027 3028 3029
		ret = -EPERM;
		goto unlock;
	}
3030

3031
	WARN_ON(event->buffer);
3032

3033 3034 3035 3036 3037
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
3038
	if (!buffer) {
3039
		ret = -ENOMEM;
3040
		goto unlock;
3041
	}
3042
	rcu_assign_pointer(event->buffer, buffer);
3043

3044 3045 3046 3047 3048
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

3049
unlock:
3050 3051
	if (!ret)
		atomic_inc(&event->mmap_count);
3052
	mutex_unlock(&event->mmap_mutex);
3053 3054 3055

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
3056 3057

	return ret;
3058 3059
}

P
Peter Zijlstra 已提交
3060 3061 3062
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
3063
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
3064 3065 3066
	int retval;

	mutex_lock(&inode->i_mutex);
3067
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
3068 3069 3070 3071 3072 3073 3074 3075
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
3076
static const struct file_operations perf_fops = {
3077
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
3078 3079 3080
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
3081 3082
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
3083
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3084
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3085 3086
};

3087
/*
3088
 * Perf event wakeup
3089 3090 3091 3092 3093
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3094
void perf_event_wakeup(struct perf_event *event)
3095
{
3096
	wake_up_all(&event->waitq);
3097

3098 3099 3100
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3101
	}
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3113
static void perf_pending_event(struct perf_pending_entry *entry)
3114
{
3115 3116
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3117

3118 3119 3120
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3121 3122
	}

3123 3124 3125
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3126 3127 3128
	}
}

3129
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3130

3131
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3132 3133 3134
	PENDING_TAIL,
};

3135 3136
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3137
{
3138
	struct perf_pending_entry **head;
3139

3140
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3141 3142
		return;

3143 3144 3145
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3146 3147

	do {
3148 3149
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3150

3151
	set_perf_event_pending();
3152

3153
	put_cpu_var(perf_pending_head);
3154 3155 3156 3157
}

static int __perf_pending_run(void)
{
3158
	struct perf_pending_entry *list;
3159 3160
	int nr = 0;

3161
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3162
	while (list != PENDING_TAIL) {
3163 3164
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3165 3166 3167

		list = list->next;

3168 3169
		func = entry->func;
		entry->next = NULL;
3170 3171 3172 3173 3174 3175 3176
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3177
		func(entry);
3178 3179 3180 3181 3182 3183
		nr++;
	}

	return nr;
}

3184
static inline int perf_not_pending(struct perf_event *event)
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3199
	return event->pending.next == NULL;
3200 3201
}

3202
static void perf_pending_sync(struct perf_event *event)
3203
{
3204
	wait_event(event->waitq, perf_not_pending(event));
3205 3206
}

3207
void perf_event_do_pending(void)
3208 3209 3210 3211
{
	__perf_pending_run();
}

3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3233 3234 3235
/*
 * Output
 */
3236
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3237
			      unsigned long offset, unsigned long head)
3238 3239 3240
{
	unsigned long mask;

3241
	if (!buffer->writable)
3242 3243
		return true;

3244
	mask = perf_data_size(buffer) - 1;
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3255
static void perf_output_wakeup(struct perf_output_handle *handle)
3256
{
3257
	atomic_set(&handle->buffer->poll, POLL_IN);
3258

3259
	if (handle->nmi) {
3260 3261 3262
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3263
	} else
3264
		perf_event_wakeup(handle->event);
3265 3266
}

3267
/*
3268
 * We need to ensure a later event_id doesn't publish a head when a former
3269
 * event isn't done writing. However since we need to deal with NMIs we
3270 3271 3272
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3273
 * event completes.
3274
 */
3275
static void perf_output_get_handle(struct perf_output_handle *handle)
3276
{
3277
	struct perf_buffer *buffer = handle->buffer;
3278

3279
	preempt_disable();
3280 3281
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3282 3283
}

3284
static void perf_output_put_handle(struct perf_output_handle *handle)
3285
{
3286
	struct perf_buffer *buffer = handle->buffer;
3287
	unsigned long head;
3288 3289

again:
3290
	head = local_read(&buffer->head);
3291 3292

	/*
3293
	 * IRQ/NMI can happen here, which means we can miss a head update.
3294 3295
	 */

3296
	if (!local_dec_and_test(&buffer->nest))
3297
		goto out;
3298 3299

	/*
3300
	 * Publish the known good head. Rely on the full barrier implied
3301
	 * by atomic_dec_and_test() order the buffer->head read and this
3302
	 * write.
3303
	 */
3304
	buffer->user_page->data_head = head;
3305

3306 3307
	/*
	 * Now check if we missed an update, rely on the (compiler)
3308
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3309
	 */
3310 3311
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3312 3313 3314
		goto again;
	}

3315
	if (handle->wakeup != local_read(&buffer->wakeup))
3316
		perf_output_wakeup(handle);
3317

P
Peter Zijlstra 已提交
3318
out:
3319
	preempt_enable();
3320 3321
}

3322
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3323
		      const void *buf, unsigned int len)
3324
{
3325
	do {
3326
		unsigned long size = min_t(unsigned long, handle->size, len);
3327 3328 3329 3330 3331

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3332
		buf += size;
3333 3334
		handle->size -= size;
		if (!handle->size) {
3335
			struct perf_buffer *buffer = handle->buffer;
3336

3337
			handle->page++;
3338 3339 3340
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3341 3342
		}
	} while (len);
3343 3344
}

3345
int perf_output_begin(struct perf_output_handle *handle,
3346
		      struct perf_event *event, unsigned int size,
3347
		      int nmi, int sample)
3348
{
3349
	struct perf_buffer *buffer;
3350
	unsigned long tail, offset, head;
3351 3352 3353 3354 3355 3356
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3357

3358
	rcu_read_lock();
3359
	/*
3360
	 * For inherited events we send all the output towards the parent.
3361
	 */
3362 3363
	if (event->parent)
		event = event->parent;
3364

3365 3366
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3367 3368
		goto out;

3369
	handle->buffer	= buffer;
3370
	handle->event	= event;
3371 3372
	handle->nmi	= nmi;
	handle->sample	= sample;
3373

3374
	if (!buffer->nr_pages)
3375
		goto out;
3376

3377
	have_lost = local_read(&buffer->lost);
3378 3379 3380
	if (have_lost)
		size += sizeof(lost_event);

3381
	perf_output_get_handle(handle);
3382

3383
	do {
3384 3385 3386 3387 3388
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3389
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3390
		smp_rmb();
3391
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3392
		head += size;
3393
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3394
			goto fail;
3395
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3396

3397 3398
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3399

3400 3401 3402 3403
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3404
	handle->addr += handle->size;
3405
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3406

3407
	if (have_lost) {
3408
		lost_event.header.type = PERF_RECORD_LOST;
3409 3410
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3411
		lost_event.id          = event->id;
3412
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3413 3414 3415 3416

		perf_output_put(handle, lost_event);
	}

3417
	return 0;
3418

3419
fail:
3420
	local_inc(&buffer->lost);
3421
	perf_output_put_handle(handle);
3422 3423
out:
	rcu_read_unlock();
3424

3425 3426
	return -ENOSPC;
}
3427

3428
void perf_output_end(struct perf_output_handle *handle)
3429
{
3430
	struct perf_event *event = handle->event;
3431
	struct perf_buffer *buffer = handle->buffer;
3432

3433
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3434

3435
	if (handle->sample && wakeup_events) {
3436
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3437
		if (events >= wakeup_events) {
3438 3439
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3440
		}
3441 3442
	}

3443
	perf_output_put_handle(handle);
3444
	rcu_read_unlock();
3445 3446
}

3447
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3448 3449
{
	/*
3450
	 * only top level events have the pid namespace they were created in
3451
	 */
3452 3453
	if (event->parent)
		event = event->parent;
3454

3455
	return task_tgid_nr_ns(p, event->ns);
3456 3457
}

3458
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3459 3460
{
	/*
3461
	 * only top level events have the pid namespace they were created in
3462
	 */
3463 3464
	if (event->parent)
		event = event->parent;
3465

3466
	return task_pid_nr_ns(p, event->ns);
3467 3468
}

3469
static void perf_output_read_one(struct perf_output_handle *handle,
3470
				 struct perf_event *event)
3471
{
3472
	u64 read_format = event->attr.read_format;
3473 3474 3475
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3476
	values[n++] = perf_event_count(event);
3477
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3478 3479
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3480 3481
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3482 3483
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3484 3485
	}
	if (read_format & PERF_FORMAT_ID)
3486
		values[n++] = primary_event_id(event);
3487 3488 3489 3490 3491

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3492
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3493 3494
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3495
			    struct perf_event *event)
3496
{
3497 3498
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3510
	if (leader != event)
3511 3512
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3513
	values[n++] = perf_event_count(leader);
3514
	if (read_format & PERF_FORMAT_ID)
3515
		values[n++] = primary_event_id(leader);
3516 3517 3518

	perf_output_copy(handle, values, n * sizeof(u64));

3519
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3520 3521
		n = 0;

3522
		if (sub != event)
3523 3524
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3525
		values[n++] = perf_event_count(sub);
3526
		if (read_format & PERF_FORMAT_ID)
3527
			values[n++] = primary_event_id(sub);
3528 3529 3530 3531 3532 3533

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3534
			     struct perf_event *event)
3535
{
3536 3537
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3538
	else
3539
		perf_output_read_one(handle, event);
3540 3541
}

3542 3543 3544
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3545
			struct perf_event *event)
3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3576
		perf_output_read(handle, event);
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3614
			 struct perf_event *event,
3615
			 struct pt_regs *regs)
3616
{
3617
	u64 sample_type = event->attr.sample_type;
3618

3619
	data->type = sample_type;
3620

3621
	header->type = PERF_RECORD_SAMPLE;
3622 3623 3624 3625
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3626

3627
	if (sample_type & PERF_SAMPLE_IP) {
3628 3629 3630
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3631
	}
3632

3633
	if (sample_type & PERF_SAMPLE_TID) {
3634
		/* namespace issues */
3635 3636
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3637

3638
		header->size += sizeof(data->tid_entry);
3639 3640
	}

3641
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3642
		data->time = perf_clock();
3643

3644
		header->size += sizeof(data->time);
3645 3646
	}

3647
	if (sample_type & PERF_SAMPLE_ADDR)
3648
		header->size += sizeof(data->addr);
3649

3650
	if (sample_type & PERF_SAMPLE_ID) {
3651
		data->id = primary_event_id(event);
3652

3653 3654 3655 3656
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3657
		data->stream_id = event->id;
3658 3659 3660

		header->size += sizeof(data->stream_id);
	}
3661

3662
	if (sample_type & PERF_SAMPLE_CPU) {
3663 3664
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3665

3666
		header->size += sizeof(data->cpu_entry);
3667 3668
	}

3669
	if (sample_type & PERF_SAMPLE_PERIOD)
3670
		header->size += sizeof(data->period);
3671

3672
	if (sample_type & PERF_SAMPLE_READ)
3673
		header->size += perf_event_read_size(event);
3674

3675
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3676
		int size = 1;
3677

3678 3679 3680 3681 3682 3683
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3684 3685
	}

3686
	if (sample_type & PERF_SAMPLE_RAW) {
3687 3688 3689 3690 3691 3692 3693 3694
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3695
		header->size += size;
3696
	}
3697
}
3698

3699
static void perf_event_output(struct perf_event *event, int nmi,
3700 3701 3702 3703 3704
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3705

3706 3707 3708
	/* protect the callchain buffers */
	rcu_read_lock();

3709
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3710

3711
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3712
		goto exit;
3713

3714
	perf_output_sample(&handle, &header, data, event);
3715

3716
	perf_output_end(&handle);
3717 3718 3719

exit:
	rcu_read_unlock();
3720 3721
}

3722
/*
3723
 * read event_id
3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3734
perf_event_read_event(struct perf_event *event,
3735 3736 3737
			struct task_struct *task)
{
	struct perf_output_handle handle;
3738
	struct perf_read_event read_event = {
3739
		.header = {
3740
			.type = PERF_RECORD_READ,
3741
			.misc = 0,
3742
			.size = sizeof(read_event) + perf_event_read_size(event),
3743
		},
3744 3745
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3746
	};
3747
	int ret;
3748

3749
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3750 3751 3752
	if (ret)
		return;

3753
	perf_output_put(&handle, read_event);
3754
	perf_output_read(&handle, event);
3755

3756 3757 3758
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3759
/*
P
Peter Zijlstra 已提交
3760 3761
 * task tracking -- fork/exit
 *
3762
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3763 3764
 */

P
Peter Zijlstra 已提交
3765
struct perf_task_event {
3766
	struct task_struct		*task;
3767
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3768 3769 3770 3771 3772 3773

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3774 3775
		u32				tid;
		u32				ptid;
3776
		u64				time;
3777
	} event_id;
P
Peter Zijlstra 已提交
3778 3779
};

3780
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3781
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3782 3783
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3784
	struct task_struct *task = task_event->task;
3785 3786
	int size, ret;

3787 3788
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3789

3790
	if (ret)
P
Peter Zijlstra 已提交
3791 3792
		return;

3793 3794
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3795

3796 3797
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3798

3799
	perf_output_put(&handle, task_event->event_id);
3800

P
Peter Zijlstra 已提交
3801 3802 3803
	perf_output_end(&handle);
}

3804
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3805
{
P
Peter Zijlstra 已提交
3806
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3807 3808
		return 0;

3809 3810 3811
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3812 3813
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3814 3815 3816 3817 3818
		return 1;

	return 0;
}

3819
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3820
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3821
{
3822
	struct perf_event *event;
P
Peter Zijlstra 已提交
3823

3824 3825 3826
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3827 3828 3829
	}
}

3830
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3831
{
P
Peter Zijlstra 已提交
3832
	struct perf_cpu_context *cpuctx;
P
Peter Zijlstra 已提交
3833
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3834
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3835
	int ctxn;
P
Peter Zijlstra 已提交
3836

P
Peter Zijlstra 已提交
3837
	rcu_read_lock();
P
Peter Zijlstra 已提交
3838 3839 3840
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850

		ctx = task_event->task_ctx;
		if (!ctx) {
			ctxn = pmu->task_ctx_nr;
			if (ctxn < 0)
				continue;
			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		}
		if (ctx)
			perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3851
	}
P
Peter Zijlstra 已提交
3852
	rcu_read_unlock();
P
Peter Zijlstra 已提交
3853 3854
}

3855 3856
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3857
			      int new)
P
Peter Zijlstra 已提交
3858
{
P
Peter Zijlstra 已提交
3859
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3860

3861 3862 3863
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3864 3865
		return;

P
Peter Zijlstra 已提交
3866
	task_event = (struct perf_task_event){
3867 3868
		.task	  = task,
		.task_ctx = task_ctx,
3869
		.event_id    = {
P
Peter Zijlstra 已提交
3870
			.header = {
3871
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3872
				.misc = 0,
3873
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3874
			},
3875 3876
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3877 3878
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3879
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3880 3881 3882
		},
	};

3883
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3884 3885
}

3886
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3887
{
3888
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3889 3890
}

3891 3892 3893 3894 3895
/*
 * comm tracking
 */

struct perf_comm_event {
3896 3897
	struct task_struct	*task;
	char			*comm;
3898 3899 3900 3901 3902 3903 3904
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3905
	} event_id;
3906 3907
};

3908
static void perf_event_comm_output(struct perf_event *event,
3909 3910 3911
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3912 3913
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3914 3915 3916 3917

	if (ret)
		return;

3918 3919
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3920

3921
	perf_output_put(&handle, comm_event->event_id);
3922 3923 3924 3925 3926
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3927
static int perf_event_comm_match(struct perf_event *event)
3928
{
P
Peter Zijlstra 已提交
3929
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3930 3931
		return 0;

3932 3933 3934
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3935
	if (event->attr.comm)
3936 3937 3938 3939 3940
		return 1;

	return 0;
}

3941
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3942 3943
				  struct perf_comm_event *comm_event)
{
3944
	struct perf_event *event;
3945

3946 3947 3948
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3949 3950 3951
	}
}

3952
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3953 3954
{
	struct perf_cpu_context *cpuctx;
3955
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3956
	char comm[TASK_COMM_LEN];
3957
	unsigned int size;
P
Peter Zijlstra 已提交
3958
	struct pmu *pmu;
P
Peter Zijlstra 已提交
3959
	int ctxn;
3960

3961
	memset(comm, 0, sizeof(comm));
3962
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3963
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3964 3965 3966 3967

	comm_event->comm = comm;
	comm_event->comm_size = size;

3968
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3969

P
Peter Zijlstra 已提交
3970
	rcu_read_lock();
P
Peter Zijlstra 已提交
3971 3972 3973
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
P
Peter Zijlstra 已提交
3974 3975 3976 3977 3978 3979 3980 3981

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			continue;

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx)
			perf_event_comm_ctx(ctx, comm_event);
P
Peter Zijlstra 已提交
3982
	}
P
Peter Zijlstra 已提交
3983
	rcu_read_unlock();
3984 3985
}

3986
void perf_event_comm(struct task_struct *task)
3987
{
3988
	struct perf_comm_event comm_event;
P
Peter Zijlstra 已提交
3989 3990
	struct perf_event_context *ctx;
	int ctxn;
3991

P
Peter Zijlstra 已提交
3992 3993 3994 3995 3996 3997 3998
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;

		perf_event_enable_on_exec(ctx);
	}
3999

4000
	if (!atomic_read(&nr_comm_events))
4001
		return;
4002

4003
	comm_event = (struct perf_comm_event){
4004
		.task	= task,
4005 4006
		/* .comm      */
		/* .comm_size */
4007
		.event_id  = {
4008
			.header = {
4009
				.type = PERF_RECORD_COMM,
4010 4011 4012 4013 4014
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
4015 4016 4017
		},
	};

4018
	perf_event_comm_event(&comm_event);
4019 4020
}

4021 4022 4023 4024 4025
/*
 * mmap tracking
 */

struct perf_mmap_event {
4026 4027 4028 4029
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
4030 4031 4032 4033 4034 4035 4036 4037 4038

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
4039
	} event_id;
4040 4041
};

4042
static void perf_event_mmap_output(struct perf_event *event,
4043 4044 4045
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
4046 4047
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
4048 4049 4050 4051

	if (ret)
		return;

4052 4053
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
4054

4055
	perf_output_put(&handle, mmap_event->event_id);
4056 4057
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
4058
	perf_output_end(&handle);
4059 4060
}

4061
static int perf_event_mmap_match(struct perf_event *event,
4062 4063
				   struct perf_mmap_event *mmap_event,
				   int executable)
4064
{
P
Peter Zijlstra 已提交
4065
	if (event->state < PERF_EVENT_STATE_INACTIVE)
4066 4067
		return 0;

4068 4069 4070
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4071 4072
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
4073 4074 4075 4076 4077
		return 1;

	return 0;
}

4078
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4079 4080
				  struct perf_mmap_event *mmap_event,
				  int executable)
4081
{
4082
	struct perf_event *event;
4083

4084
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4085
		if (perf_event_mmap_match(event, mmap_event, executable))
4086
			perf_event_mmap_output(event, mmap_event);
4087 4088 4089
	}
}

4090
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4091 4092
{
	struct perf_cpu_context *cpuctx;
4093
	struct perf_event_context *ctx;
4094 4095
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
4096 4097 4098
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
4099
	const char *name;
P
Peter Zijlstra 已提交
4100
	struct pmu *pmu;
P
Peter Zijlstra 已提交
4101
	int ctxn;
4102

4103 4104
	memset(tmp, 0, sizeof(tmp));

4105
	if (file) {
4106 4107 4108 4109 4110 4111
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4112 4113 4114 4115
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4116
		name = d_path(&file->f_path, buf, PATH_MAX);
4117 4118 4119 4120 4121
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4122 4123 4124
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4125
			goto got_name;
4126
		}
4127 4128 4129 4130

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4131 4132 4133 4134 4135 4136 4137 4138
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4139 4140
		}

4141 4142 4143 4144 4145
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4146
	size = ALIGN(strlen(name)+1, sizeof(u64));
4147 4148 4149 4150

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4151
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4152

P
Peter Zijlstra 已提交
4153
	rcu_read_lock();
P
Peter Zijlstra 已提交
4154 4155 4156 4157
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
P
Peter Zijlstra 已提交
4158 4159 4160 4161 4162 4163 4164 4165 4166 4167

		ctxn = pmu->task_ctx_nr;
		if (ctxn < 0)
			continue;

		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
		if (ctx) {
			perf_event_mmap_ctx(ctx, mmap_event,
					vma->vm_flags & VM_EXEC);
		}
P
Peter Zijlstra 已提交
4168
	}
P
Peter Zijlstra 已提交
4169
	rcu_read_unlock();
4170

4171 4172 4173
	kfree(buf);
}

4174
void perf_event_mmap(struct vm_area_struct *vma)
4175
{
4176 4177
	struct perf_mmap_event mmap_event;

4178
	if (!atomic_read(&nr_mmap_events))
4179 4180 4181
		return;

	mmap_event = (struct perf_mmap_event){
4182
		.vma	= vma,
4183 4184
		/* .file_name */
		/* .file_size */
4185
		.event_id  = {
4186
			.header = {
4187
				.type = PERF_RECORD_MMAP,
4188
				.misc = PERF_RECORD_MISC_USER,
4189 4190 4191 4192
				/* .size */
			},
			/* .pid */
			/* .tid */
4193 4194
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4195
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4196 4197 4198
		},
	};

4199
	perf_event_mmap_event(&mmap_event);
4200 4201
}

4202 4203 4204 4205
/*
 * IRQ throttle logging
 */

4206
static void perf_log_throttle(struct perf_event *event, int enable)
4207 4208 4209 4210 4211 4212 4213
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4214
		u64				id;
4215
		u64				stream_id;
4216 4217
	} throttle_event = {
		.header = {
4218
			.type = PERF_RECORD_THROTTLE,
4219 4220 4221
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4222
		.time		= perf_clock(),
4223 4224
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4225 4226
	};

4227
	if (enable)
4228
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4229

4230
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4231 4232 4233 4234 4235 4236 4237
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4238
/*
4239
 * Generic event overflow handling, sampling.
4240 4241
 */

4242
static int __perf_event_overflow(struct perf_event *event, int nmi,
4243 4244
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4245
{
4246 4247
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4248 4249
	int ret = 0;

4250
	if (!throttle) {
4251
		hwc->interrupts++;
4252
	} else {
4253 4254
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4255
			if (HZ * hwc->interrupts >
4256
					(u64)sysctl_perf_event_sample_rate) {
4257
				hwc->interrupts = MAX_INTERRUPTS;
4258
				perf_log_throttle(event, 0);
4259 4260 4261 4262
				ret = 1;
			}
		} else {
			/*
4263
			 * Keep re-disabling events even though on the previous
4264
			 * pass we disabled it - just in case we raced with a
4265
			 * sched-in and the event got enabled again:
4266
			 */
4267 4268 4269
			ret = 1;
		}
	}
4270

4271
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4272
		u64 now = perf_clock();
4273
		s64 delta = now - hwc->freq_time_stamp;
4274

4275
		hwc->freq_time_stamp = now;
4276

4277 4278
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4279 4280
	}

4281 4282
	/*
	 * XXX event_limit might not quite work as expected on inherited
4283
	 * events
4284 4285
	 */

4286 4287
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4288
		ret = 1;
4289
		event->pending_kill = POLL_HUP;
4290
		if (nmi) {
4291 4292 4293
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4294
		} else
4295
			perf_event_disable(event);
4296 4297
	}

4298 4299 4300 4301 4302
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4303
	return ret;
4304 4305
}

4306
int perf_event_overflow(struct perf_event *event, int nmi,
4307 4308
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4309
{
4310
	return __perf_event_overflow(event, nmi, 1, data, regs);
4311 4312
}

4313
/*
4314
 * Generic software event infrastructure
4315 4316
 */

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
struct swevent_htable {
	struct swevent_hlist		*swevent_hlist;
	struct mutex			hlist_mutex;
	int				hlist_refcount;

	/* Recursion avoidance in each contexts */
	int				recursion[PERF_NR_CONTEXTS];
};

static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);

4328
/*
4329 4330
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4331 4332 4333 4334
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4335
static u64 perf_swevent_set_period(struct perf_event *event)
4336
{
4337
	struct hw_perf_event *hwc = &event->hw;
4338 4339 4340 4341 4342
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4343 4344

again:
4345
	old = val = local64_read(&hwc->period_left);
4346 4347
	if (val < 0)
		return 0;
4348

4349 4350 4351
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4352
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4353
		goto again;
4354

4355
	return nr;
4356 4357
}

4358
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4359 4360
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4361
{
4362
	struct hw_perf_event *hwc = &event->hw;
4363
	int throttle = 0;
4364

4365
	data->period = event->hw.last_period;
4366 4367
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4368

4369 4370
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4371

4372
	for (; overflow; overflow--) {
4373
		if (__perf_event_overflow(event, nmi, throttle,
4374
					    data, regs)) {
4375 4376 4377 4378 4379 4380
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4381
		throttle = 1;
4382
	}
4383 4384
}

P
Peter Zijlstra 已提交
4385
static void perf_swevent_event(struct perf_event *event, u64 nr,
4386 4387
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4388
{
4389
	struct hw_perf_event *hwc = &event->hw;
4390

4391
	local64_add(nr, &event->count);
4392

4393 4394 4395
	if (!regs)
		return;

4396 4397
	if (!hwc->sample_period)
		return;
4398

4399 4400 4401
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4402
	if (local64_add_negative(nr, &hwc->period_left))
4403
		return;
4404

4405
	perf_swevent_overflow(event, 0, nmi, data, regs);
4406 4407
}

4408 4409 4410
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
P
Peter Zijlstra 已提交
4411 4412 4413
	if (event->hw.state & PERF_HES_STOPPED)
		return 0;

4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4425
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4426
				enum perf_type_id type,
L
Li Zefan 已提交
4427 4428 4429
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4430
{
4431
	if (event->attr.type != type)
4432
		return 0;
4433

4434
	if (event->attr.config != event_id)
4435 4436
		return 0;

4437 4438
	if (perf_exclude_event(event, regs))
		return 0;
4439 4440 4441 4442

	return 1;
}

4443 4444 4445 4446 4447 4448 4449
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4450 4451
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4452
{
4453 4454 4455 4456
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4457

4458 4459
/* For the read side: events when they trigger */
static inline struct hlist_head *
4460
find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4461 4462
{
	struct swevent_hlist *hlist;
4463

4464
	hlist = rcu_dereference(swhash->swevent_hlist);
4465 4466 4467
	if (!hlist)
		return NULL;

4468 4469 4470 4471 4472
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
4473
find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
4484
	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4485 4486 4487 4488 4489
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4490 4491 4492 4493 4494 4495
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4496
{
4497
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4498
	struct perf_event *event;
4499 4500
	struct hlist_node *node;
	struct hlist_head *head;
4501

4502
	rcu_read_lock();
4503
	head = find_swevent_head_rcu(swhash, type, event_id);
4504 4505 4506 4507
	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4508
		if (perf_swevent_match(event, type, event_id, data, regs))
P
Peter Zijlstra 已提交
4509
			perf_swevent_event(event, nr, nmi, data, regs);
4510
	}
4511 4512
end:
	rcu_read_unlock();
4513 4514
}

4515
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4516
{
4517
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4518

4519
	return get_recursion_context(swhash->recursion);
P
Peter Zijlstra 已提交
4520
}
I
Ingo Molnar 已提交
4521
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4522

4523
void inline perf_swevent_put_recursion_context(int rctx)
4524
{
4525
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4526

4527
	put_recursion_context(swhash->recursion, rctx);
4528
}
4529

4530
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4531
			    struct pt_regs *regs, u64 addr)
4532
{
4533
	struct perf_sample_data data;
4534 4535
	int rctx;

4536
	preempt_disable_notrace();
4537 4538 4539
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4540

4541
	perf_sample_data_init(&data, addr);
4542

4543
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4544 4545

	perf_swevent_put_recursion_context(rctx);
4546
	preempt_enable_notrace();
4547 4548
}

4549
static void perf_swevent_read(struct perf_event *event)
4550 4551 4552
{
}

P
Peter Zijlstra 已提交
4553
static int perf_swevent_add(struct perf_event *event, int flags)
4554
{
4555
	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4556
	struct hw_perf_event *hwc = &event->hw;
4557 4558
	struct hlist_head *head;

4559 4560
	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4561
		perf_swevent_set_period(event);
4562
	}
4563

P
Peter Zijlstra 已提交
4564 4565
	hwc->state = !(flags & PERF_EF_START);

4566
	head = find_swevent_head(swhash, event);
4567 4568 4569 4570 4571
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4572 4573 4574
	return 0;
}

P
Peter Zijlstra 已提交
4575
static void perf_swevent_del(struct perf_event *event, int flags)
4576
{
4577
	hlist_del_rcu(&event->hlist_entry);
4578 4579
}

P
Peter Zijlstra 已提交
4580
static void perf_swevent_start(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4581
{
P
Peter Zijlstra 已提交
4582
	event->hw.state = 0;
P
Peter Zijlstra 已提交
4583 4584
}

P
Peter Zijlstra 已提交
4585
static void perf_swevent_stop(struct perf_event *event, int flags)
P
Peter Zijlstra 已提交
4586
{
P
Peter Zijlstra 已提交
4587
	event->hw.state = PERF_HES_STOPPED;
P
Peter Zijlstra 已提交
4588 4589
}

4590 4591
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
4592
swevent_hlist_deref(struct swevent_htable *swhash)
4593
{
4594 4595
	return rcu_dereference_protected(swhash->swevent_hlist,
					 lockdep_is_held(&swhash->hlist_mutex));
4596 4597
}

4598 4599 4600 4601 4602 4603 4604 4605
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

4606
static void swevent_hlist_release(struct swevent_htable *swhash)
4607
{
4608
	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4609

4610
	if (!hlist)
4611 4612
		return;

4613
	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4614 4615 4616 4617 4618
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
4619
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4620

4621
	mutex_lock(&swhash->hlist_mutex);
4622

4623 4624
	if (!--swhash->hlist_refcount)
		swevent_hlist_release(swhash);
4625

4626
	mutex_unlock(&swhash->hlist_mutex);
4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
4644
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4645 4646
	int err = 0;

4647
	mutex_lock(&swhash->hlist_mutex);
4648

4649
	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4650 4651 4652 4653 4654 4655 4656
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
4657
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4658
	}
4659
	swhash->hlist_refcount++;
P
Peter Zijlstra 已提交
4660
exit:
4661
	mutex_unlock(&swhash->hlist_mutex);
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4685
fail:
4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4696
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4697

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;

	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
4742 4743
	.task_ctx_nr	= perf_sw_context,

4744
	.event_init	= perf_swevent_init,
P
Peter Zijlstra 已提交
4745 4746 4747 4748
	.add		= perf_swevent_add,
	.del		= perf_swevent_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4749 4750 4751
	.read		= perf_swevent_read,
};

4752 4753
#ifdef CONFIG_EVENT_TRACING

4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4768 4769 4770 4771
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4772 4773 4774 4775 4776 4777 4778 4779 4780
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4781
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4782 4783
{
	struct perf_sample_data data;
4784 4785 4786
	struct perf_event *event;
	struct hlist_node *node;

4787 4788 4789 4790 4791 4792 4793 4794
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4795 4796
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
P
Peter Zijlstra 已提交
4797
			perf_swevent_event(event, count, 1, &data, regs);
4798
	}
4799 4800

	perf_swevent_put_recursion_context(rctx);
4801 4802 4803
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4804
static void tp_perf_event_destroy(struct perf_event *event)
4805
{
4806
	perf_trace_destroy(event);
4807 4808
}

4809
static int perf_tp_event_init(struct perf_event *event)
4810
{
4811 4812
	int err;

4813 4814 4815
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4816 4817 4818 4819
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4820
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4821
			perf_paranoid_tracepoint_raw() &&
4822
			!capable(CAP_SYS_ADMIN))
4823
		return -EPERM;
4824

4825 4826
	err = perf_trace_init(event);
	if (err)
4827
		return err;
4828

4829
	event->destroy = tp_perf_event_destroy;
4830

4831 4832 4833 4834
	return 0;
}

static struct pmu perf_tracepoint = {
4835 4836
	.task_ctx_nr	= perf_sw_context,

4837
	.event_init	= perf_tp_event_init,
P
Peter Zijlstra 已提交
4838 4839 4840 4841
	.add		= perf_trace_add,
	.del		= perf_trace_del,
	.start		= perf_swevent_start,
	.stop		= perf_swevent_stop,
4842 4843 4844 4845 4846 4847
	.read		= perf_swevent_read,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4848
}
L
Li Zefan 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4873
#else
L
Li Zefan 已提交
4874

4875
static inline void perf_tp_register(void)
4876 4877
{
}
L
Li Zefan 已提交
4878 4879 4880 4881 4882 4883 4884 4885 4886 4887

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4888
#endif /* CONFIG_EVENT_TRACING */
4889

4890
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4891
void perf_bp_event(struct perf_event *bp, void *data)
4892
{
4893 4894 4895 4896 4897
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

P
Peter Zijlstra 已提交
4898 4899
	if (!bp->hw.state && !perf_exclude_event(bp, regs))
		perf_swevent_event(bp, 1, 1, &sample, regs);
4900
}
4901 4902 4903 4904 4905
#endif

/*
 * hrtimer based swevent callback
 */
4906

4907
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4908
{
4909 4910 4911 4912 4913
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4914

4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4927

4928 4929
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4930

4931
	return ret;
4932 4933
}

4934
static void perf_swevent_start_hrtimer(struct perf_event *event)
4935
{
4936
	struct hw_perf_event *hwc = &event->hw;
4937

4938 4939 4940
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
P
Peter Zijlstra 已提交
4941
		s64 period = local64_read(&hwc->period_left);
4942

P
Peter Zijlstra 已提交
4943 4944
		if (period) {
			if (period < 0)
4945
				period = 10000;
P
Peter Zijlstra 已提交
4946 4947

			local64_set(&hwc->period_left, 0);
4948 4949 4950 4951 4952
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
4953
				HRTIMER_MODE_REL_PINNED, 0);
4954
	}
4955
}
4956 4957

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4958
{
4959 4960 4961 4962
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
P
Peter Zijlstra 已提交
4963
		local64_set(&hwc->period_left, ktime_to_ns(remaining));
4964 4965 4966

		hrtimer_cancel(&hwc->hrtimer);
	}
4967 4968
}

4969 4970 4971 4972 4973
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4974
{
4975 4976 4977
	s64 prev;
	u64 now;

P
Peter Zijlstra 已提交
4978
	now = local_clock();
4979 4980
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4981 4982
}

P
Peter Zijlstra 已提交
4983
static void cpu_clock_event_start(struct perf_event *event, int flags)
4984
{
P
Peter Zijlstra 已提交
4985
	local64_set(&event->hw.prev_count, local_clock());
4986 4987 4988
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
4989
static void cpu_clock_event_stop(struct perf_event *event, int flags)
4990
{
4991 4992 4993
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4994

P
Peter Zijlstra 已提交
4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
static int cpu_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		cpu_clock_event_start(event, flags);

	return 0;
}

static void cpu_clock_event_del(struct perf_event *event, int flags)
{
	cpu_clock_event_stop(event, flags);
}

5008 5009 5010 5011
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
5012

5013 5014 5015 5016 5017 5018 5019 5020 5021
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
5022 5023
}

5024
static struct pmu perf_cpu_clock = {
5025 5026
	.task_ctx_nr	= perf_sw_context,

5027
	.event_init	= cpu_clock_event_init,
P
Peter Zijlstra 已提交
5028 5029 5030 5031
	.add		= cpu_clock_event_add,
	.del		= cpu_clock_event_del,
	.start		= cpu_clock_event_start,
	.stop		= cpu_clock_event_stop,
5032 5033 5034 5035 5036 5037 5038 5039
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
5040
{
5041 5042
	u64 prev;
	s64 delta;
5043

5044 5045 5046 5047
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
5048

P
Peter Zijlstra 已提交
5049
static void task_clock_event_start(struct perf_event *event, int flags)
5050
{
P
Peter Zijlstra 已提交
5051
	local64_set(&event->hw.prev_count, event->ctx->time);
5052 5053 5054
	perf_swevent_start_hrtimer(event);
}

P
Peter Zijlstra 已提交
5055
static void task_clock_event_stop(struct perf_event *event, int flags)
5056 5057 5058
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);
P
Peter Zijlstra 已提交
5059 5060 5061 5062 5063 5064
}

static int task_clock_event_add(struct perf_event *event, int flags)
{
	if (flags & PERF_EF_START)
		task_clock_event_start(event, flags);
5065

P
Peter Zijlstra 已提交
5066 5067 5068 5069 5070 5071
	return 0;
}

static void task_clock_event_del(struct perf_event *event, int flags)
{
	task_clock_event_stop(event, PERF_EF_UPDATE);
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
}

static struct pmu perf_task_clock = {
5102 5103
	.task_ctx_nr	= perf_sw_context,

5104
	.event_init	= task_clock_event_init,
P
Peter Zijlstra 已提交
5105 5106 5107 5108
	.add		= task_clock_event_add,
	.del		= task_clock_event_del,
	.start		= task_clock_event_start,
	.stop		= task_clock_event_stop,
5109 5110 5111
	.read		= task_clock_event_read,
};

P
Peter Zijlstra 已提交
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
static void perf_pmu_nop_void(struct pmu *pmu)
{
}

static int perf_pmu_nop_int(struct pmu *pmu)
{
	return 0;
}

static void perf_pmu_start_txn(struct pmu *pmu)
{
	perf_pmu_disable(pmu);
}

static int perf_pmu_commit_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
	return 0;
}

static void perf_pmu_cancel_txn(struct pmu *pmu)
{
	perf_pmu_enable(pmu);
}

P
Peter Zijlstra 已提交
5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
/*
 * Ensures all contexts with the same task_ctx_nr have the same
 * pmu_cpu_context too.
 */
static void *find_pmu_context(int ctxn)
{
	struct pmu *pmu;

	if (ctxn < 0)
		return NULL;

	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->task_ctx_nr == ctxn)
			return pmu->pmu_cpu_context;
	}

	return NULL;
}

static void free_pmu_context(void * __percpu cpu_context)
{
	struct pmu *pmu;

	mutex_lock(&pmus_lock);
	/*
	 * Like a real lame refcount.
	 */
	list_for_each_entry(pmu, &pmus, entry) {
		if (pmu->pmu_cpu_context == cpu_context)
			goto out;
	}

	free_percpu(cpu_context);
out:
	mutex_unlock(&pmus_lock);
}

5174 5175
int perf_pmu_register(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
5176
	int cpu, ret;
P
Peter Zijlstra 已提交
5177

5178
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
5179 5180 5181 5182
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
P
Peter Zijlstra 已提交
5183

P
Peter Zijlstra 已提交
5184 5185 5186 5187
	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
	if (pmu->pmu_cpu_context)
		goto got_cpu_context;

P
Peter Zijlstra 已提交
5188 5189 5190 5191 5192 5193 5194 5195
	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
	if (!pmu->pmu_cpu_context)
		goto free_pdc;

	for_each_possible_cpu(cpu) {
		struct perf_cpu_context *cpuctx;

		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5196
		__perf_event_init_context(&cpuctx->ctx);
5197
		cpuctx->ctx.type = cpu_context;
P
Peter Zijlstra 已提交
5198
		cpuctx->ctx.pmu = pmu;
5199 5200
		cpuctx->jiffies_interval = 1;
		INIT_LIST_HEAD(&cpuctx->rotation_list);
P
Peter Zijlstra 已提交
5201 5202
	}

P
Peter Zijlstra 已提交
5203
got_cpu_context:
P
Peter Zijlstra 已提交
5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225
	if (!pmu->start_txn) {
		if (pmu->pmu_enable) {
			/*
			 * If we have pmu_enable/pmu_disable calls, install
			 * transaction stubs that use that to try and batch
			 * hardware accesses.
			 */
			pmu->start_txn  = perf_pmu_start_txn;
			pmu->commit_txn = perf_pmu_commit_txn;
			pmu->cancel_txn = perf_pmu_cancel_txn;
		} else {
			pmu->start_txn  = perf_pmu_nop_void;
			pmu->commit_txn = perf_pmu_nop_int;
			pmu->cancel_txn = perf_pmu_nop_void;
		}
	}

	if (!pmu->pmu_enable) {
		pmu->pmu_enable  = perf_pmu_nop_void;
		pmu->pmu_disable = perf_pmu_nop_void;
	}

5226
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
5227 5228
	ret = 0;
unlock:
5229 5230
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5231
	return ret;
P
Peter Zijlstra 已提交
5232 5233 5234 5235

free_pdc:
	free_percpu(pmu->pmu_disable_count);
	goto unlock;
5236 5237 5238 5239 5240 5241 5242 5243
}

void perf_pmu_unregister(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
5244
	/*
P
Peter Zijlstra 已提交
5245 5246
	 * We dereference the pmu list under both SRCU and regular RCU, so
	 * synchronize against both of those.
P
Peter Zijlstra 已提交
5247
	 */
5248
	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
5249
	synchronize_rcu();
P
Peter Zijlstra 已提交
5250 5251

	free_percpu(pmu->pmu_disable_count);
P
Peter Zijlstra 已提交
5252
	free_pmu_context(pmu->pmu_cpu_context);
5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263
}

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
P
Peter Zijlstra 已提交
5264 5265
			goto unlock;

5266 5267
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
P
Peter Zijlstra 已提交
5268
			goto unlock;
5269
		}
5270
	}
P
Peter Zijlstra 已提交
5271 5272
	pmu = ERR_PTR(-ENOENT);
unlock:
5273
	srcu_read_unlock(&pmus_srcu, idx);
5274

5275
	return pmu;
5276 5277
}

T
Thomas Gleixner 已提交
5278
/*
5279
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5280
 */
5281
static struct perf_event *
5282
perf_event_alloc(struct perf_event_attr *attr, int cpu,
5283 5284
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5285
		   perf_overflow_handler_t overflow_handler)
T
Thomas Gleixner 已提交
5286
{
P
Peter Zijlstra 已提交
5287
	struct pmu *pmu;
5288 5289
	struct perf_event *event;
	struct hw_perf_event *hwc;
5290
	long err;
T
Thomas Gleixner 已提交
5291

5292
	event = kzalloc(sizeof(*event), GFP_KERNEL);
5293
	if (!event)
5294
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5295

5296
	/*
5297
	 * Single events are their own group leaders, with an
5298 5299 5300
	 * empty sibling list:
	 */
	if (!group_leader)
5301
		group_leader = event;
5302

5303 5304
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5305

5306 5307 5308 5309
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5310

5311
	mutex_init(&event->mmap_mutex);
5312

5313 5314 5315 5316 5317
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->oncpu		= -1;
5318

5319
	event->parent		= parent_event;
5320

5321 5322
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5323

5324
	event->state		= PERF_EVENT_STATE_INACTIVE;
5325

5326 5327
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5328
	
5329
	event->overflow_handler	= overflow_handler;
5330

5331
	if (attr->disabled)
5332
		event->state = PERF_EVENT_STATE_OFF;
5333

5334
	pmu = NULL;
5335

5336
	hwc = &event->hw;
5337
	hwc->sample_period = attr->sample_period;
5338
	if (attr->freq && attr->sample_freq)
5339
		hwc->sample_period = 1;
5340
	hwc->last_period = hwc->sample_period;
5341

5342
	local64_set(&hwc->period_left, hwc->sample_period);
5343

5344
	/*
5345
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5346
	 */
5347
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5348 5349
		goto done;

5350
	pmu = perf_init_event(event);
5351

5352 5353
done:
	err = 0;
5354
	if (!pmu)
5355
		err = -EINVAL;
5356 5357
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5358

5359
	if (err) {
5360 5361 5362
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5363
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5364
	}
5365

5366
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5367

5368 5369
	if (!event->parent) {
		atomic_inc(&nr_events);
5370
		if (event->attr.mmap || event->attr.mmap_data)
5371 5372 5373 5374 5375
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5376 5377 5378 5379 5380 5381 5382
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5383
	}
5384

5385
	return event;
T
Thomas Gleixner 已提交
5386 5387
}

5388 5389
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5390 5391
{
	u32 size;
5392
	int ret;
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5417 5418 5419
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5420 5421
	 */
	if (size > sizeof(*attr)) {
5422 5423 5424
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5425

5426 5427
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5428

5429
		for (; addr < end; addr++) {
5430 5431 5432 5433 5434 5435
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5436
		size = sizeof(*attr);
5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5450
	if (attr->__reserved_1)
5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5468 5469
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5470
{
5471
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5472 5473
	int ret = -EINVAL;

5474
	if (!output_event)
5475 5476
		goto set;

5477 5478
	/* don't allow circular references */
	if (event == output_event)
5479 5480
		goto out;

5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5493
set:
5494
	mutex_lock(&event->mmap_mutex);
5495 5496 5497
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5498

5499 5500
	if (output_event) {
		/* get the buffer we want to redirect to */
5501 5502
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5503
			goto unlock;
5504 5505
	}

5506 5507
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5508
	ret = 0;
5509 5510 5511
unlock:
	mutex_unlock(&event->mmap_mutex);

5512 5513
	if (old_buffer)
		perf_buffer_put(old_buffer);
5514 5515 5516 5517
out:
	return ret;
}

T
Thomas Gleixner 已提交
5518
/**
5519
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5520
 *
5521
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5522
 * @pid:		target pid
I
Ingo Molnar 已提交
5523
 * @cpu:		target cpu
5524
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5525
 */
5526 5527
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5528
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5529
{
5530 5531
	struct perf_event *group_leader = NULL, *output_event = NULL;
	struct perf_event *event, *sibling;
5532 5533 5534
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5535
	struct file *group_file = NULL;
M
Matt Helsley 已提交
5536
	struct task_struct *task = NULL;
5537
	struct pmu *pmu;
5538
	int event_fd;
5539
	int move_group = 0;
5540
	int fput_needed = 0;
5541
	int err;
T
Thomas Gleixner 已提交
5542

5543
	/* for future expandability... */
5544
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5545 5546
		return -EINVAL;

5547 5548 5549
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5550

5551 5552 5553 5554 5555
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5556
	if (attr.freq) {
5557
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5558 5559 5560
			return -EINVAL;
	}

5561 5562 5563 5564
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5565 5566 5567 5568
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
5569
			goto err_fd;
5570 5571 5572 5573 5574 5575 5576 5577
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

5578 5579 5580 5581 5582 5583
	event = perf_event_alloc(&attr, cpu, group_leader, NULL, NULL);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err_fd;
	}

5584 5585 5586 5587 5588
	/*
	 * Special case software events and allow them to be part of
	 * any hardware group.
	 */
	pmu = event->pmu;
5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611

	if (group_leader &&
	    (is_software_event(event) != is_software_event(group_leader))) {
		if (is_software_event(event)) {
			/*
			 * If event and group_leader are not both a software
			 * event, and event is, then group leader is not.
			 *
			 * Allow the addition of software events to !software
			 * groups, this is safe because software events never
			 * fail to schedule.
			 */
			pmu = group_leader->pmu;
		} else if (is_software_event(group_leader) &&
			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
			/*
			 * In case the group is a pure software group, and we
			 * try to add a hardware event, move the whole group to
			 * the hardware context.
			 */
			move_group = 1;
		}
	}
5612

M
Matt Helsley 已提交
5613 5614 5615
	if (pid != -1)
		task = find_lively_task_by_vpid(pid);

5616 5617 5618
	/*
	 * Get the target context (task or percpu):
	 */
M
Matt Helsley 已提交
5619
	ctx = find_get_context(pmu, task, cpu);
5620 5621 5622 5623 5624
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_group_fd;
	}

I
Ingo Molnar 已提交
5625
	/*
5626
	 * Look up the group leader (we will attach this event to it):
5627
	 */
5628
	if (group_leader) {
5629
		err = -EINVAL;
5630 5631

		/*
I
Ingo Molnar 已提交
5632 5633 5634 5635
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
5636
			goto err_context;
I
Ingo Molnar 已提交
5637 5638 5639
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5640
		 */
5641 5642 5643 5644 5645 5646 5647 5648
		if (move_group) {
			if (group_leader->ctx->type != ctx->type)
				goto err_context;
		} else {
			if (group_leader->ctx != ctx)
				goto err_context;
		}

5649 5650 5651
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5652
		if (attr.exclusive || attr.pinned)
5653
			goto err_context;
5654 5655 5656 5657 5658
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
5659
			goto err_context;
5660
	}
T
Thomas Gleixner 已提交
5661

5662 5663 5664
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5665
		goto err_context;
5666
	}
5667

5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
	if (move_group) {
		struct perf_event_context *gctx = group_leader->ctx;

		mutex_lock(&gctx->mutex);
		perf_event_remove_from_context(group_leader);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_event_remove_from_context(sibling);
			put_ctx(gctx);
		}
		mutex_unlock(&gctx->mutex);
		put_ctx(gctx);
	}

5682
	event->filp = event_file;
5683
	WARN_ON_ONCE(ctx->parent_ctx);
5684
	mutex_lock(&ctx->mutex);
5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695

	if (move_group) {
		perf_install_in_context(ctx, group_leader, cpu);
		get_ctx(ctx);
		list_for_each_entry(sibling, &group_leader->sibling_list,
				    group_entry) {
			perf_install_in_context(ctx, sibling, cpu);
			get_ctx(ctx);
		}
	}

5696
	perf_install_in_context(ctx, event, cpu);
5697
	++ctx->generation;
5698
	mutex_unlock(&ctx->mutex);
5699

5700
	event->owner = current;
5701
	get_task_struct(current);
5702 5703 5704
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5705

5706 5707 5708 5709 5710 5711
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5712 5713 5714
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5715

5716
err_context:
5717
	put_ctx(ctx);
5718 5719
err_group_fd:
	fput_light(group_file, fput_needed);
5720
	free_event(event);
5721 5722
err_fd:
	put_unused_fd(event_fd);
5723
	return err;
T
Thomas Gleixner 已提交
5724 5725
}

5726 5727 5728 5729 5730
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
M
Matt Helsley 已提交
5731
 * @task: task to profile (NULL for percpu)
5732 5733 5734
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
M
Matt Helsley 已提交
5735
				 struct task_struct *task,
5736
				 perf_overflow_handler_t overflow_handler)
5737 5738
{
	struct perf_event_context *ctx;
5739
	struct perf_event *event;
5740 5741 5742 5743 5744 5745
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

5746 5747 5748 5749 5750 5751
	event = perf_event_alloc(attr, cpu, NULL, NULL, overflow_handler);
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
		goto err;
	}

M
Matt Helsley 已提交
5752
	ctx = find_get_context(event->pmu, task, cpu);
5753 5754
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
5755
		goto err_free;
5756
	}
5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5773 5774 5775
err_free:
	free_event(event);
err:
5776
	return ERR_PTR(err);
5777 5778 5779
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5780
static void sync_child_event(struct perf_event *child_event,
5781
			       struct task_struct *child)
5782
{
5783
	struct perf_event *parent_event = child_event->parent;
5784
	u64 child_val;
5785

5786 5787
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5788

P
Peter Zijlstra 已提交
5789
	child_val = perf_event_count(child_event);
5790 5791 5792 5793

	/*
	 * Add back the child's count to the parent's count:
	 */
5794
	atomic64_add(child_val, &parent_event->child_count);
5795 5796 5797 5798
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5799 5800

	/*
5801
	 * Remove this event from the parent's list
5802
	 */
5803 5804 5805 5806
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5807 5808

	/*
5809
	 * Release the parent event, if this was the last
5810 5811
	 * reference to it.
	 */
5812
	fput(parent_event->filp);
5813 5814
}

5815
static void
5816 5817
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5818
			 struct task_struct *child)
5819
{
5820
	struct perf_event *parent_event;
5821

5822
	perf_event_remove_from_context(child_event);
5823

5824
	parent_event = child_event->parent;
5825
	/*
5826
	 * It can happen that parent exits first, and has events
5827
	 * that are still around due to the child reference. These
5828
	 * events need to be zapped - but otherwise linger.
5829
	 */
5830 5831 5832
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5833
	}
5834 5835
}

P
Peter Zijlstra 已提交
5836
static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5837
{
5838 5839
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5840
	unsigned long flags;
5841

P
Peter Zijlstra 已提交
5842
	if (likely(!child->perf_event_ctxp[ctxn])) {
5843
		perf_event_task(child, NULL, 0);
5844
		return;
P
Peter Zijlstra 已提交
5845
	}
5846

5847
	local_irq_save(flags);
5848 5849 5850 5851 5852 5853
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
P
Peter Zijlstra 已提交
5854
	child_ctx = child->perf_event_ctxp[ctxn];
5855
	__perf_event_task_sched_out(child_ctx);
5856 5857 5858

	/*
	 * Take the context lock here so that if find_get_context is
5859
	 * reading child->perf_event_ctxp, we wait until it has
5860 5861
	 * incremented the context's refcount before we do put_ctx below.
	 */
5862
	raw_spin_lock(&child_ctx->lock);
P
Peter Zijlstra 已提交
5863
	child->perf_event_ctxp[ctxn] = NULL;
5864 5865 5866
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5867
	 * the events from it.
5868 5869
	 */
	unclone_ctx(child_ctx);
5870
	update_context_time(child_ctx);
5871
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5872 5873

	/*
5874 5875 5876
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5877
	 */
5878
	perf_event_task(child, child_ctx, 0);
5879

5880 5881 5882
	/*
	 * We can recurse on the same lock type through:
	 *
5883 5884 5885
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5886 5887 5888 5889 5890
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5891
	mutex_lock(&child_ctx->mutex);
5892

5893
again:
5894 5895 5896 5897 5898
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5899
				 group_entry)
5900
		__perf_event_exit_task(child_event, child_ctx, child);
5901 5902

	/*
5903
	 * If the last event was a group event, it will have appended all
5904 5905 5906
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5907 5908
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5909
		goto again;
5910 5911 5912 5913

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5914 5915
}

P
Peter Zijlstra 已提交
5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926
/*
 * When a child task exits, feed back event values to parent events.
 */
void perf_event_exit_task(struct task_struct *child)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		perf_event_exit_task_context(child, ctxn);
}

5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5941
	perf_group_detach(event);
5942 5943 5944 5945
	list_del_event(event, ctx);
	free_event(event);
}

5946 5947
/*
 * free an unexposed, unused context as created by inheritance by
P
Peter Zijlstra 已提交
5948
 * perf_event_init_task below, used by fork() in case of fail.
5949
 */
5950
void perf_event_free_task(struct task_struct *task)
5951
{
P
Peter Zijlstra 已提交
5952
	struct perf_event_context *ctx;
5953
	struct perf_event *event, *tmp;
P
Peter Zijlstra 已提交
5954
	int ctxn;
5955

P
Peter Zijlstra 已提交
5956 5957 5958 5959
	for_each_task_context_nr(ctxn) {
		ctx = task->perf_event_ctxp[ctxn];
		if (!ctx)
			continue;
5960

P
Peter Zijlstra 已提交
5961
		mutex_lock(&ctx->mutex);
5962
again:
P
Peter Zijlstra 已提交
5963 5964 5965
		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
				group_entry)
			perf_free_event(event, ctx);
5966

P
Peter Zijlstra 已提交
5967 5968 5969
		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				group_entry)
			perf_free_event(event, ctx);
5970

P
Peter Zijlstra 已提交
5971 5972 5973
		if (!list_empty(&ctx->pinned_groups) ||
				!list_empty(&ctx->flexible_groups))
			goto again;
5974

P
Peter Zijlstra 已提交
5975
		mutex_unlock(&ctx->mutex);
5976

P
Peter Zijlstra 已提交
5977 5978
		put_ctx(ctx);
	}
5979 5980
}

5981 5982 5983 5984 5985 5986 5987 5988
void perf_event_delayed_put(struct task_struct *task)
{
	int ctxn;

	for_each_task_context_nr(ctxn)
		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
}

P
Peter Zijlstra 已提交
5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000
/*
 * inherit a event from parent task to child task:
 */
static struct perf_event *
inherit_event(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *child_event;
6001
	unsigned long flags;
P
Peter Zijlstra 已提交
6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045

	/*
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
	if (parent_event->parent)
		parent_event = parent_event->parent;

	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu,
					   group_leader, parent_event,
					   NULL);
	if (IS_ERR(child_event))
		return child_event;
	get_ctx(child_ctx);

	/*
	 * Make the child state follow the state of the parent event,
	 * not its attr.disabled bit.  We hold the parent's mutex,
	 * so we won't race with perf_event_{en, dis}able_family.
	 */
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
	else
		child_event->state = PERF_EVENT_STATE_OFF;

	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		local64_set(&hwc->period_left, sample_period);
	}

	child_event->ctx = child_ctx;
	child_event->overflow_handler = parent_event->overflow_handler;

	/*
	 * Link it up in the child's context:
	 */
6046
	raw_spin_lock_irqsave(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6047
	add_event_to_ctx(child_event, child_ctx);
6048
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091

	/*
	 * Get a reference to the parent filp - we will fput it
	 * when the child event exits. This is safe to do because
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
	atomic_long_inc(&parent_event->filp->f_count);

	/*
	 * Link this into the parent event's child list
	 */
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);

	return child_event;
}

static int inherit_group(struct perf_event *parent_event,
	      struct task_struct *parent,
	      struct perf_event_context *parent_ctx,
	      struct task_struct *child,
	      struct perf_event_context *child_ctx)
{
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;

	leader = inherit_event(parent_event, parent, parent_ctx,
				 child, NULL, child_ctx);
	if (IS_ERR(leader))
		return PTR_ERR(leader);
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
	}
	return 0;
}

6092 6093 6094
static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
P
Peter Zijlstra 已提交
6095
		   struct task_struct *child, int ctxn,
6096 6097 6098
		   int *inherited_all)
{
	int ret;
P
Peter Zijlstra 已提交
6099
	struct perf_event_context *child_ctx;
6100 6101 6102 6103

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
6104 6105
	}

P
Peter Zijlstra 已提交
6106
       	child_ctx = child->perf_event_ctxp[ctxn];
6107 6108 6109 6110 6111 6112 6113
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
6114

6115
		child_ctx = alloc_perf_context(event->pmu, child);
6116 6117
		if (!child_ctx)
			return -ENOMEM;
6118

P
Peter Zijlstra 已提交
6119
		child->perf_event_ctxp[ctxn] = child_ctx;
6120 6121 6122 6123 6124 6125 6126 6127 6128
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
6129 6130
}

6131
/*
6132
 * Initialize the perf_event context in task_struct
6133
 */
P
Peter Zijlstra 已提交
6134
int perf_event_init_context(struct task_struct *child, int ctxn)
6135
{
6136
	struct perf_event_context *child_ctx, *parent_ctx;
6137 6138
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
6139
	struct task_struct *parent = current;
6140
	int inherited_all = 1;
6141
	int ret = 0;
6142

P
Peter Zijlstra 已提交
6143
	child->perf_event_ctxp[ctxn] = NULL;
6144

6145 6146
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
6147

P
Peter Zijlstra 已提交
6148
	if (likely(!parent->perf_event_ctxp[ctxn]))
6149 6150
		return 0;

6151
	/*
6152 6153
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
6154
	 */
P
Peter Zijlstra 已提交
6155
	parent_ctx = perf_pin_task_context(parent, ctxn);
6156

6157 6158 6159 6160 6161 6162 6163
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

6164 6165 6166 6167
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
6168
	mutex_lock(&parent_ctx->mutex);
6169 6170 6171 6172 6173

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
6174
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
P
Peter Zijlstra 已提交
6175 6176
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6177 6178 6179
		if (ret)
			break;
	}
6180

6181
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
P
Peter Zijlstra 已提交
6182 6183
		ret = inherit_task_group(event, parent, parent_ctx,
					 child, ctxn, &inherited_all);
6184
		if (ret)
6185
			break;
6186 6187
	}

P
Peter Zijlstra 已提交
6188
	child_ctx = child->perf_event_ctxp[ctxn];
6189

6190
	if (child_ctx && inherited_all) {
6191 6192 6193
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
6194 6195
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
6196
		 * because the list of events and the generation
6197
		 * count can't have changed since we took the mutex.
6198
		 */
6199 6200 6201
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
6202
			child_ctx->parent_gen = parent_ctx->parent_gen;
6203 6204 6205 6206 6207
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
6208 6209
	}

6210
	mutex_unlock(&parent_ctx->mutex);
6211

6212
	perf_unpin_context(parent_ctx);
6213

6214
	return ret;
6215 6216
}

P
Peter Zijlstra 已提交
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
/*
 * Initialize the perf_event context in task_struct
 */
int perf_event_init_task(struct task_struct *child)
{
	int ctxn, ret;

	for_each_task_context_nr(ctxn) {
		ret = perf_event_init_context(child, ctxn);
		if (ret)
			return ret;
	}

	return 0;
}

6233 6234
static void __init perf_event_init_all_cpus(void)
{
6235 6236
	struct swevent_htable *swhash;
	int cpu;
6237 6238

	for_each_possible_cpu(cpu) {
6239 6240
		swhash = &per_cpu(swevent_htable, cpu);
		mutex_init(&swhash->hlist_mutex);
6241
		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6242 6243 6244
	}
}

6245
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
6246
{
P
Peter Zijlstra 已提交
6247
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6248 6249 6250

	mutex_lock(&swhash->hlist_mutex);
	if (swhash->hlist_refcount > 0) {
6251 6252
		struct swevent_hlist *hlist;

6253 6254 6255
		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
		WARN_ON(!hlist);
		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6256
	}
6257
	mutex_unlock(&swhash->hlist_mutex);
T
Thomas Gleixner 已提交
6258 6259 6260
}

#ifdef CONFIG_HOTPLUG_CPU
6261 6262 6263 6264 6265 6266 6267 6268 6269
static void perf_pmu_rotate_stop(struct pmu *pmu)
{
	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);

	WARN_ON(!irqs_disabled());

	list_del_init(&cpuctx->rotation_list);
}

P
Peter Zijlstra 已提交
6270
static void __perf_event_exit_context(void *__info)
T
Thomas Gleixner 已提交
6271
{
P
Peter Zijlstra 已提交
6272
	struct perf_event_context *ctx = __info;
6273
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
6274

P
Peter Zijlstra 已提交
6275
	perf_pmu_rotate_stop(ctx->pmu);
6276

6277 6278 6279
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6280
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
6281
}
P
Peter Zijlstra 已提交
6282 6283 6284 6285 6286 6287 6288 6289 6290

static void perf_event_exit_cpu_context(int cpu)
{
	struct perf_event_context *ctx;
	struct pmu *pmu;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
6291
		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
P
Peter Zijlstra 已提交
6292 6293 6294 6295 6296 6297 6298 6299

		mutex_lock(&ctx->mutex);
		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
		mutex_unlock(&ctx->mutex);
	}
	srcu_read_unlock(&pmus_srcu, idx);
}

6300
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
6301
{
6302
	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6303

6304 6305 6306
	mutex_lock(&swhash->hlist_mutex);
	swevent_hlist_release(swhash);
	mutex_unlock(&swhash->hlist_mutex);
6307

P
Peter Zijlstra 已提交
6308
	perf_event_exit_cpu_context(cpu);
T
Thomas Gleixner 已提交
6309 6310
}
#else
6311
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
6312 6313 6314 6315 6316 6317 6318
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
6319
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
6320 6321

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
6322
	case CPU_DOWN_FAILED:
6323
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
6324 6325
		break;

P
Peter Zijlstra 已提交
6326
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
6327
	case CPU_DOWN_PREPARE:
6328
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
6329 6330 6331 6332 6333 6334 6335 6336 6337
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

6338
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
6339
{
6340
	perf_event_init_all_cpus();
6341 6342 6343 6344 6345 6346
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
6347
}