perf_event.c 131.5 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
34
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
35

36 37
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
38
/*
39
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
40
 */
41
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
42

43
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
44 45 46
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

47 48 49 50
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
51

52
/*
53
 * perf event paranoia level:
54 55
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
56
 *   1 - disallow cpu events for unpriv
57
 *   2 - disallow kernel profiling for unpriv
58
 */
59
int sysctl_perf_event_paranoid __read_mostly = 1;
60

61
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
62 63

/*
64
 * max perf event sample rate
65
 */
66
int sysctl_perf_event_sample_rate __read_mostly = 100000;
67

68
static atomic64_t perf_event_id;
69

T
Thomas Gleixner 已提交
70
/*
71
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
72
 */
73
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
74 75 76 77

/*
 * Architecture provided APIs - weak aliases:
 */
78
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
79
{
80
	return NULL;
T
Thomas Gleixner 已提交
81 82
}

83 84 85
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

86
void __weak perf_event_print_debug(void)	{ }
87

88
static DEFINE_PER_CPU(int, perf_disable_count);
89 90 91

void perf_disable(void)
{
P
Peter Zijlstra 已提交
92 93
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
94 95 96 97
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
98
	if (!--__get_cpu_var(perf_disable_count))
99 100 101
		hw_perf_enable();
}

102
static void get_ctx(struct perf_event_context *ctx)
103
{
104
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
105 106
}

107 108
static void free_ctx(struct rcu_head *head)
{
109
	struct perf_event_context *ctx;
110

111
	ctx = container_of(head, struct perf_event_context, rcu_head);
112 113 114
	kfree(ctx);
}

115
static void put_ctx(struct perf_event_context *ctx)
116
{
117 118 119
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
120 121 122
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
123
	}
124 125
}

126
static void unclone_ctx(struct perf_event_context *ctx)
127 128 129 130 131 132 133
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

134
/*
135
 * If we inherit events we want to return the parent event id
136 137
 * to userspace.
 */
138
static u64 primary_event_id(struct perf_event *event)
139
{
140
	u64 id = event->id;
141

142 143
	if (event->parent)
		id = event->parent->id;
144 145 146 147

	return id;
}

148
/*
149
 * Get the perf_event_context for a task and lock it.
150 151 152
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
153
static struct perf_event_context *
154
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
155
{
156
	struct perf_event_context *ctx;
157 158 159

	rcu_read_lock();
 retry:
160
	ctx = rcu_dereference(task->perf_event_ctxp);
161 162 163 164
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
165
		 * perf_event_task_sched_out, though the
166 167 168 169 170 171
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
172
		raw_spin_lock_irqsave(&ctx->lock, *flags);
173
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
174
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
175 176
			goto retry;
		}
177 178

		if (!atomic_inc_not_zero(&ctx->refcount)) {
179
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
180 181
			ctx = NULL;
		}
182 183 184 185 186 187 188 189 190 191
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
192
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
193
{
194
	struct perf_event_context *ctx;
195 196 197 198 199
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
200
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
201 202 203 204
	}
	return ctx;
}

205
static void perf_unpin_context(struct perf_event_context *ctx)
206 207 208
{
	unsigned long flags;

209
	raw_spin_lock_irqsave(&ctx->lock, flags);
210
	--ctx->pin_count;
211
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
212 213 214
	put_ctx(ctx);
}

215 216
static inline u64 perf_clock(void)
{
217
	return cpu_clock(raw_smp_processor_id());
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

243 244 245 246 247 248
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
249 250 251 252 253 254 255 256 257

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

258 259 260 261 262 263 264 265 266 267 268 269
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

270 271 272 273 274 275 276 277 278
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

279
/*
280
 * Add a event from the lists for its context.
281 282
 * Must be called with ctx->mutex and ctx->lock held.
 */
283
static void
284
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
285
{
286
	struct perf_event *group_leader = event->group_leader;
287 288

	/*
289 290
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
291 292
	 * leader's sibling list:
	 */
293 294 295
	if (group_leader == event) {
		struct list_head *list;

296 297 298
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

299 300 301
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
302 303 304 305
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

306
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
307 308
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
309

310 311 312
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
313
		ctx->nr_stat++;
314 315
}

316
/*
317
 * Remove a event from the lists for its context.
318
 * Must be called with ctx->mutex and ctx->lock held.
319
 */
320
static void
321
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
322
{
323
	if (list_empty(&event->group_entry))
324
		return;
325 326
	ctx->nr_events--;
	if (event->attr.inherit_stat)
327
		ctx->nr_stat--;
328

329 330
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
331

332 333
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
334

335
	update_group_times(event);
336 337 338 339 340 341 342 343 344 345

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
346 347 348 349 350 351
}

static void
perf_destroy_group(struct perf_event *event, struct perf_event_context *ctx)
{
	struct perf_event *sibling, *tmp;
352

353
	/*
354 355
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
356 357
	 * to the context list directly:
	 */
358
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
359
		struct list_head *list;
360

361 362
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
363
		sibling->group_leader = sibling;
364 365 366

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
367 368 369
	}
}

370
static void
371
event_sched_out(struct perf_event *event,
372
		  struct perf_cpu_context *cpuctx,
373
		  struct perf_event_context *ctx)
374
{
375
	if (event->state != PERF_EVENT_STATE_ACTIVE)
376 377
		return;

378 379 380 381
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
382
	}
383 384 385
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
386

387
	if (!is_software_event(event))
388 389
		cpuctx->active_oncpu--;
	ctx->nr_active--;
390
	if (event->attr.exclusive || !cpuctx->active_oncpu)
391 392 393
		cpuctx->exclusive = 0;
}

394
static void
395
group_sched_out(struct perf_event *group_event,
396
		struct perf_cpu_context *cpuctx,
397
		struct perf_event_context *ctx)
398
{
399
	struct perf_event *event;
400

401
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
402 403
		return;

404
	event_sched_out(group_event, cpuctx, ctx);
405 406 407 408

	/*
	 * Schedule out siblings (if any):
	 */
409 410
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
411

412
	if (group_event->attr.exclusive)
413 414 415
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
416
/*
417
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
418
 *
419
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
420 421
 * remove it from the context list.
 */
422
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
423 424
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
425 426
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
427 428 429 430 431 432

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
433
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
434 435
		return;

436
	raw_spin_lock(&ctx->lock);
437 438
	/*
	 * Protect the list operation against NMI by disabling the
439
	 * events on a global level.
440 441
	 */
	perf_disable();
T
Thomas Gleixner 已提交
442

443
	event_sched_out(event, cpuctx, ctx);
444

445
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
446 447 448

	if (!ctx->task) {
		/*
449
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
450 451 452
		 * reservation:
		 */
		cpuctx->max_pertask =
453 454
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
455 456
	}

457
	perf_enable();
458
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
459 460 461 462
}


/*
463
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
464
 *
465
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
466
 *
467
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
468
 * call when the task is on a CPU.
469
 *
470 471
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
472 473
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
474
 * When called from perf_event_exit_task, it's OK because the
475
 * context has been detached from its task.
T
Thomas Gleixner 已提交
476
 */
477
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
478
{
479
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
480 481 482 483
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
484
		 * Per cpu events are removed via an smp call and
485
		 * the removal is always successful.
T
Thomas Gleixner 已提交
486
		 */
487 488 489
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
490 491 492 493
		return;
	}

retry:
494 495
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
496

497
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
498 499 500
	/*
	 * If the context is active we need to retry the smp call.
	 */
501
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
502
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
503 504 505 506 507
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
508
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
509 510
	 * succeed.
	 */
P
Peter Zijlstra 已提交
511
	if (!list_empty(&event->group_entry))
512
		list_del_event(event, ctx);
513
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
514 515
}

516
/*
517
 * Cross CPU call to disable a performance event
518
 */
519
static void __perf_event_disable(void *info)
520
{
521
	struct perf_event *event = info;
522
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
523
	struct perf_event_context *ctx = event->ctx;
524 525

	/*
526 527
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
528
	 */
529
	if (ctx->task && cpuctx->task_ctx != ctx)
530 531
		return;

532
	raw_spin_lock(&ctx->lock);
533 534

	/*
535
	 * If the event is on, turn it off.
536 537
	 * If it is in error state, leave it in error state.
	 */
538
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
539
		update_context_time(ctx);
540 541 542
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
543
		else
544 545
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
546 547
	}

548
	raw_spin_unlock(&ctx->lock);
549 550 551
}

/*
552
 * Disable a event.
553
 *
554 555
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
556
 * remains valid.  This condition is satisifed when called through
557 558 559 560
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
561
 * is the current context on this CPU and preemption is disabled,
562
 * hence we can't get into perf_event_task_sched_out for this context.
563
 */
564
void perf_event_disable(struct perf_event *event)
565
{
566
	struct perf_event_context *ctx = event->ctx;
567 568 569 570
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
571
		 * Disable the event on the cpu that it's on
572
		 */
573 574
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
575 576 577 578
		return;
	}

 retry:
579
	task_oncpu_function_call(task, __perf_event_disable, event);
580

581
	raw_spin_lock_irq(&ctx->lock);
582
	/*
583
	 * If the event is still active, we need to retry the cross-call.
584
	 */
585
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
586
		raw_spin_unlock_irq(&ctx->lock);
587 588 589 590 591 592 593
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
594 595 596
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
597
	}
598

599
	raw_spin_unlock_irq(&ctx->lock);
600 601
}

602
static int
603
event_sched_in(struct perf_event *event,
604
		 struct perf_cpu_context *cpuctx,
605
		 struct perf_event_context *ctx)
606
{
607
	if (event->state <= PERF_EVENT_STATE_OFF)
608 609
		return 0;

610
	event->state = PERF_EVENT_STATE_ACTIVE;
611
	event->oncpu = smp_processor_id();
612 613 614 615 616
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

617 618 619
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
620 621 622
		return -EAGAIN;
	}

623
	event->tstamp_running += ctx->time - event->tstamp_stopped;
624

625
	if (!is_software_event(event))
626
		cpuctx->active_oncpu++;
627 628
	ctx->nr_active++;

629
	if (event->attr.exclusive)
630 631
		cpuctx->exclusive = 1;

632 633 634
	return 0;
}

635
static int
636
group_sched_in(struct perf_event *group_event,
637
	       struct perf_cpu_context *cpuctx,
638
	       struct perf_event_context *ctx)
639
{
640 641 642
	struct perf_event *event, *partial_group = NULL;
	const struct pmu *pmu = group_event->pmu;
	bool txn = false;
643 644
	int ret;

645
	if (group_event->state == PERF_EVENT_STATE_OFF)
646 647
		return 0;

648 649 650 651 652 653
	/* Check if group transaction availabe */
	if (pmu->start_txn)
		txn = true;

	if (txn)
		pmu->start_txn(pmu);
654

655
	if (event_sched_in(group_event, cpuctx, ctx))
656 657 658 659 660
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
661
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
662
		if (event_sched_in(event, cpuctx, ctx)) {
663
			partial_group = event;
664 665 666 667
			goto group_error;
		}
	}

668 669
	if (!txn)
		return 0;
670

671 672 673 674
	ret = pmu->commit_txn(pmu);
	if (!ret) {
		pmu->cancel_txn(pmu);
		return 0;
675
	}
676 677

group_error:
678 679 680
	if (txn)
		pmu->cancel_txn(pmu);

681 682 683 684
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
685 686
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
687
			break;
688
		event_sched_out(event, cpuctx, ctx);
689
	}
690
	event_sched_out(group_event, cpuctx, ctx);
691 692 693 694

	return -EAGAIN;
}

695
/*
696
 * Work out whether we can put this event group on the CPU now.
697
 */
698
static int group_can_go_on(struct perf_event *event,
699 700 701 702
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
703
	 * Groups consisting entirely of software events can always go on.
704
	 */
705
	if (event->group_flags & PERF_GROUP_SOFTWARE)
706 707 708
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
709
	 * events can go on.
710 711 712 713 714
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
715
	 * events on the CPU, it can't go on.
716
	 */
717
	if (event->attr.exclusive && cpuctx->active_oncpu)
718 719 720 721 722 723 724 725
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

726 727
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
728
{
729 730 731 732
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
733 734
}

T
Thomas Gleixner 已提交
735
/*
736
 * Cross CPU call to install and enable a performance event
737 738
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
739 740 741 742
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
743 744 745
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
746
	int err;
T
Thomas Gleixner 已提交
747 748 749 750 751

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
752
	 * Or possibly this is the right context but it isn't
753
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
754
	 */
755
	if (ctx->task && cpuctx->task_ctx != ctx) {
756
		if (cpuctx->task_ctx || ctx->task != current)
757 758 759
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
760

761
	raw_spin_lock(&ctx->lock);
762
	ctx->is_active = 1;
763
	update_context_time(ctx);
T
Thomas Gleixner 已提交
764 765 766

	/*
	 * Protect the list operation against NMI by disabling the
767
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
768
	 */
769
	perf_disable();
T
Thomas Gleixner 已提交
770

771
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
772

773 774 775
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

776
	/*
777
	 * Don't put the event on if it is disabled or if
778 779
	 * it is in a group and the group isn't on.
	 */
780 781
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
782 783
		goto unlock;

784
	/*
785 786 787
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
788
	 */
789
	if (!group_can_go_on(event, cpuctx, 1))
790 791
		err = -EEXIST;
	else
792
		err = event_sched_in(event, cpuctx, ctx);
793

794 795
	if (err) {
		/*
796
		 * This event couldn't go on.  If it is in a group
797
		 * then we have to pull the whole group off.
798
		 * If the event group is pinned then put it in error state.
799
		 */
800
		if (leader != event)
801
			group_sched_out(leader, cpuctx, ctx);
802
		if (leader->attr.pinned) {
803
			update_group_times(leader);
804
			leader->state = PERF_EVENT_STATE_ERROR;
805
		}
806
	}
T
Thomas Gleixner 已提交
807

808
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
809 810
		cpuctx->max_pertask--;

811
 unlock:
812
	perf_enable();
813

814
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
815 816 817
}

/*
818
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
819
 *
820 821
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
822
 *
823
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
824 825
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
826 827
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
828 829
 */
static void
830 831
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
832 833 834 835 836 837
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
838
		 * Per cpu events are installed via an smp call and
839
		 * the install is always successful.
T
Thomas Gleixner 已提交
840 841
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
842
					 event, 1);
T
Thomas Gleixner 已提交
843 844 845 846 847
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
848
				 event);
T
Thomas Gleixner 已提交
849

850
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
851 852 853
	/*
	 * we need to retry the smp call.
	 */
854
	if (ctx->is_active && list_empty(&event->group_entry)) {
855
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
856 857 858 859 860
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
861
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
862 863
	 * succeed.
	 */
864 865
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
866
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
867 868
}

869
/*
870
 * Put a event into inactive state and update time fields.
871 872 873 874 875 876
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
877 878
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
879
{
880
	struct perf_event *sub;
881

882 883 884 885
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
886 887 888 889
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

890
/*
891
 * Cross CPU call to enable a performance event
892
 */
893
static void __perf_event_enable(void *info)
894
{
895
	struct perf_event *event = info;
896
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
897 898
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
899
	int err;
900

901
	/*
902 903
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
904
	 */
905
	if (ctx->task && cpuctx->task_ctx != ctx) {
906
		if (cpuctx->task_ctx || ctx->task != current)
907 908 909
			return;
		cpuctx->task_ctx = ctx;
	}
910

911
	raw_spin_lock(&ctx->lock);
912
	ctx->is_active = 1;
913
	update_context_time(ctx);
914

915
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
916
		goto unlock;
917
	__perf_event_mark_enabled(event, ctx);
918

919 920 921
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

922
	/*
923
	 * If the event is in a group and isn't the group leader,
924
	 * then don't put it on unless the group is on.
925
	 */
926
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
927
		goto unlock;
928

929
	if (!group_can_go_on(event, cpuctx, 1)) {
930
		err = -EEXIST;
931
	} else {
932
		perf_disable();
933
		if (event == leader)
934
			err = group_sched_in(event, cpuctx, ctx);
935
		else
936
			err = event_sched_in(event, cpuctx, ctx);
937
		perf_enable();
938
	}
939 940 941

	if (err) {
		/*
942
		 * If this event can't go on and it's part of a
943 944
		 * group, then the whole group has to come off.
		 */
945
		if (leader != event)
946
			group_sched_out(leader, cpuctx, ctx);
947
		if (leader->attr.pinned) {
948
			update_group_times(leader);
949
			leader->state = PERF_EVENT_STATE_ERROR;
950
		}
951 952 953
	}

 unlock:
954
	raw_spin_unlock(&ctx->lock);
955 956 957
}

/*
958
 * Enable a event.
959
 *
960 961
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
962
 * remains valid.  This condition is satisfied when called through
963 964
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
965
 */
966
void perf_event_enable(struct perf_event *event)
967
{
968
	struct perf_event_context *ctx = event->ctx;
969 970 971 972
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
973
		 * Enable the event on the cpu that it's on
974
		 */
975 976
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
977 978 979
		return;
	}

980
	raw_spin_lock_irq(&ctx->lock);
981
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
982 983 984
		goto out;

	/*
985 986
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
987 988 989 990
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
991 992
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
993 994

 retry:
995
	raw_spin_unlock_irq(&ctx->lock);
996
	task_oncpu_function_call(task, __perf_event_enable, event);
997

998
	raw_spin_lock_irq(&ctx->lock);
999 1000

	/*
1001
	 * If the context is active and the event is still off,
1002 1003
	 * we need to retry the cross-call.
	 */
1004
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1005 1006 1007 1008 1009 1010
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1011 1012
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1013

1014
 out:
1015
	raw_spin_unlock_irq(&ctx->lock);
1016 1017
}

1018
static int perf_event_refresh(struct perf_event *event, int refresh)
1019
{
1020
	/*
1021
	 * not supported on inherited events
1022
	 */
1023
	if (event->attr.inherit)
1024 1025
		return -EINVAL;

1026 1027
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1028 1029

	return 0;
1030 1031
}

1032 1033 1034 1035 1036 1037 1038 1039 1040
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1041
{
1042
	struct perf_event *event;
1043

1044
	raw_spin_lock(&ctx->lock);
1045
	ctx->is_active = 0;
1046
	if (likely(!ctx->nr_events))
1047
		goto out;
1048
	update_context_time(ctx);
1049

1050
	perf_disable();
1051 1052 1053 1054
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1055 1056 1057
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1058
	if (event_type & EVENT_FLEXIBLE)
1059
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1060
			group_sched_out(event, cpuctx, ctx);
1061 1062

 out_enable:
1063
	perf_enable();
1064
 out:
1065
	raw_spin_unlock(&ctx->lock);
1066 1067
}

1068 1069 1070
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1071 1072 1073 1074
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1075
 * in them directly with an fd; we can only enable/disable all
1076
 * events via prctl, or enable/disable all events in a family
1077 1078
 * via ioctl, which will have the same effect on both contexts.
 */
1079 1080
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1081 1082
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1083
		&& ctx1->parent_gen == ctx2->parent_gen
1084
		&& !ctx1->pin_count && !ctx2->pin_count;
1085 1086
}

1087 1088
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1089 1090 1091
{
	u64 value;

1092
	if (!event->attr.inherit_stat)
1093 1094 1095
		return;

	/*
1096
	 * Update the event value, we cannot use perf_event_read()
1097 1098
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1099
	 * we know the event must be on the current CPU, therefore we
1100 1101
	 * don't need to use it.
	 */
1102 1103
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1104 1105
		event->pmu->read(event);
		/* fall-through */
1106

1107 1108
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1109 1110 1111 1112 1113 1114 1115
		break;

	default:
		break;
	}

	/*
1116
	 * In order to keep per-task stats reliable we need to flip the event
1117 1118
	 * values when we flip the contexts.
	 */
1119 1120 1121
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1122

1123 1124
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1125

1126
	/*
1127
	 * Since we swizzled the values, update the user visible data too.
1128
	 */
1129 1130
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1131 1132 1133 1134 1135
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1136 1137
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1138
{
1139
	struct perf_event *event, *next_event;
1140 1141 1142 1143

	if (!ctx->nr_stat)
		return;

1144 1145
	update_context_time(ctx);

1146 1147
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1148

1149 1150
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1151

1152 1153
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1154

1155
		__perf_event_sync_stat(event, next_event);
1156

1157 1158
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1159 1160 1161
	}
}

T
Thomas Gleixner 已提交
1162
/*
1163
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1164 1165
 * with interrupts disabled.
 *
1166
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1167
 *
I
Ingo Molnar 已提交
1168
 * This does not protect us against NMI, but disable()
1169 1170 1171
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1172
 */
1173
void perf_event_task_sched_out(struct task_struct *task,
1174
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1175
{
1176
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1177 1178 1179
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1180
	int do_switch = 1;
T
Thomas Gleixner 已提交
1181

1182
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1183

1184
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1185 1186
		return;

1187 1188
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1189
	next_ctx = next->perf_event_ctxp;
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1201 1202
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1203
		if (context_equiv(ctx, next_ctx)) {
1204 1205
			/*
			 * XXX do we need a memory barrier of sorts
1206
			 * wrt to rcu_dereference() of perf_event_ctxp
1207
			 */
1208 1209
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1210 1211 1212
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1213

1214
			perf_event_sync_stat(ctx, next_ctx);
1215
		}
1216 1217
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1218
	}
1219
	rcu_read_unlock();
1220

1221
	if (do_switch) {
1222
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1223 1224
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1225 1226
}

1227 1228
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1229 1230 1231
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1232 1233
	if (!cpuctx->task_ctx)
		return;
1234 1235 1236 1237

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1238
	ctx_sched_out(ctx, cpuctx, event_type);
1239 1240 1241
	cpuctx->task_ctx = NULL;
}

1242 1243 1244
/*
 * Called with IRQs disabled
 */
1245
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1246
{
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1257 1258
}

1259
static void
1260
ctx_pinned_sched_in(struct perf_event_context *ctx,
1261
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1262
{
1263
	struct perf_event *event;
T
Thomas Gleixner 已提交
1264

1265 1266
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1267
			continue;
1268
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1269 1270
			continue;

1271
		if (group_can_go_on(event, cpuctx, 1))
1272
			group_sched_in(event, cpuctx, ctx);
1273 1274 1275 1276 1277

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1278 1279 1280
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1281
		}
1282
	}
1283 1284 1285 1286
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1287
		      struct perf_cpu_context *cpuctx)
1288 1289 1290
{
	struct perf_event *event;
	int can_add_hw = 1;
1291

1292 1293 1294
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1295
			continue;
1296 1297
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1298
		 * of events:
1299
		 */
1300
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1301 1302
			continue;

1303
		if (group_can_go_on(event, cpuctx, can_add_hw))
1304
			if (group_sched_in(event, cpuctx, ctx))
1305
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1306
	}
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1328
		ctx_pinned_sched_in(ctx, cpuctx);
1329 1330 1331

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1332
		ctx_flexible_sched_in(ctx, cpuctx);
1333

1334
	perf_enable();
1335
 out:
1336
	raw_spin_unlock(&ctx->lock);
1337 1338
}

1339 1340 1341 1342 1343 1344 1345 1346
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1360
/*
1361
 * Called from scheduler to add the events of the current task
1362 1363
 * with interrupts disabled.
 *
1364
 * We restore the event value and then enable it.
1365 1366
 *
 * This does not protect us against NMI, but enable()
1367 1368 1369
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1370
 */
1371
void perf_event_task_sched_in(struct task_struct *task)
1372
{
1373 1374
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1375

1376 1377
	if (likely(!ctx))
		return;
1378

1379 1380 1381
	if (cpuctx->task_ctx == ctx)
		return;

1382 1383
	perf_disable();

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1396 1397

	perf_enable();
1398 1399
}

1400 1401
#define MAX_INTERRUPTS (~0ULL)

1402
static void perf_log_throttle(struct perf_event *event, int enable);
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1490
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1491
{
1492
	struct hw_perf_event *hwc = &event->hw;
1493 1494 1495
	u64 period, sample_period;
	s64 delta;

1496
	period = perf_calculate_period(event, nsec, count);
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1507 1508 1509

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1510
		perf_event_stop(event);
1511
		atomic64_set(&hwc->period_left, 0);
1512
		perf_event_start(event);
1513 1514
		perf_enable();
	}
1515 1516
}

1517
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1518
{
1519 1520
	struct perf_event *event;
	struct hw_perf_event *hwc;
1521 1522
	u64 interrupts, now;
	s64 delta;
1523

1524
	raw_spin_lock(&ctx->lock);
1525
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1526
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1527 1528
			continue;

1529 1530 1531
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1532
		hwc = &event->hw;
1533 1534 1535

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1536

1537
		/*
1538
		 * unthrottle events on the tick
1539
		 */
1540
		if (interrupts == MAX_INTERRUPTS) {
1541
			perf_log_throttle(event, 1);
1542
			perf_disable();
1543
			event->pmu->unthrottle(event);
1544
			perf_enable();
1545 1546
		}

1547
		if (!event->attr.freq || !event->attr.sample_freq)
1548 1549
			continue;

1550
		perf_disable();
1551 1552 1553 1554
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1555

1556 1557
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1558
		perf_enable();
1559
	}
1560
	raw_spin_unlock(&ctx->lock);
1561 1562
}

1563
/*
1564
 * Round-robin a context's events:
1565
 */
1566
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1567
{
1568
	raw_spin_lock(&ctx->lock);
1569 1570 1571 1572

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1573
	raw_spin_unlock(&ctx->lock);
1574 1575
}

1576
void perf_event_task_tick(struct task_struct *curr)
1577
{
1578
	struct perf_cpu_context *cpuctx;
1579
	struct perf_event_context *ctx;
1580
	int rotate = 0;
1581

1582
	if (!atomic_read(&nr_events))
1583 1584
		return;

1585
	cpuctx = &__get_cpu_var(perf_cpu_context);
1586 1587 1588
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1589

1590 1591 1592
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1593

1594
	perf_ctx_adjust_freq(&cpuctx->ctx);
1595
	if (ctx)
1596
		perf_ctx_adjust_freq(ctx);
1597

1598 1599 1600 1601
	if (!rotate)
		return;

	perf_disable();
1602
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1603
	if (ctx)
1604
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1605

1606
	rotate_ctx(&cpuctx->ctx);
1607 1608
	if (ctx)
		rotate_ctx(ctx);
1609

1610
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1611
	if (ctx)
1612
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1613
	perf_enable();
T
Thomas Gleixner 已提交
1614 1615
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1631
/*
1632
 * Enable all of a task's events that have been marked enable-on-exec.
1633 1634
 * This expects task == current.
 */
1635
static void perf_event_enable_on_exec(struct task_struct *task)
1636
{
1637 1638
	struct perf_event_context *ctx;
	struct perf_event *event;
1639 1640
	unsigned long flags;
	int enabled = 0;
1641
	int ret;
1642 1643

	local_irq_save(flags);
1644 1645
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1646 1647
		goto out;

1648
	__perf_event_task_sched_out(ctx);
1649

1650
	raw_spin_lock(&ctx->lock);
1651

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1662 1663 1664
	}

	/*
1665
	 * Unclone this context if we enabled any event.
1666
	 */
1667 1668
	if (enabled)
		unclone_ctx(ctx);
1669

1670
	raw_spin_unlock(&ctx->lock);
1671

1672
	perf_event_task_sched_in(task);
1673 1674 1675 1676
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1677
/*
1678
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1679
 */
1680
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1681
{
1682
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1683 1684
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1685

1686 1687 1688 1689
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1690 1691
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1692 1693 1694 1695
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1696
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1697
	update_context_time(ctx);
1698
	update_event_times(event);
1699
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1700

P
Peter Zijlstra 已提交
1701
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1702 1703
}

1704
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1705 1706
{
	/*
1707 1708
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1709
	 */
1710 1711 1712 1713
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1714 1715 1716
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1717
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1718
		update_context_time(ctx);
1719
		update_event_times(event);
1720
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1721 1722
	}

1723
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1724 1725
}

1726
/*
1727
 * Initialize the perf_event context in a task_struct:
1728 1729
 */
static void
1730
__perf_event_init_context(struct perf_event_context *ctx,
1731 1732
			    struct task_struct *task)
{
1733
	raw_spin_lock_init(&ctx->lock);
1734
	mutex_init(&ctx->mutex);
1735 1736
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1737 1738 1739 1740 1741
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1742
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1743
{
1744
	struct perf_event_context *ctx;
1745
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1746
	struct task_struct *task;
1747
	unsigned long flags;
1748
	int err;
T
Thomas Gleixner 已提交
1749

1750
	if (pid == -1 && cpu != -1) {
1751
		/* Must be root to operate on a CPU event: */
1752
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1753 1754
			return ERR_PTR(-EACCES);

1755
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1756 1757 1758
			return ERR_PTR(-EINVAL);

		/*
1759
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1760 1761 1762
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1763
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1764 1765 1766 1767
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1768
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1785
	/*
1786
	 * Can't attach events to a dying task.
1787 1788 1789 1790 1791
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1792
	/* Reuse ptrace permission checks for now. */
1793 1794 1795 1796 1797
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1798
	ctx = perf_lock_task_context(task, &flags);
1799
	if (ctx) {
1800
		unclone_ctx(ctx);
1801
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1802 1803
	}

1804
	if (!ctx) {
1805
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1806 1807 1808
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1809
		__perf_event_init_context(ctx, task);
1810
		get_ctx(ctx);
1811
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1812 1813 1814 1815 1816
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1817
			goto retry;
1818
		}
1819
		get_task_struct(task);
1820 1821
	}

1822
	put_task_struct(task);
T
Thomas Gleixner 已提交
1823
	return ctx;
1824 1825 1826 1827

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1828 1829
}

L
Li Zefan 已提交
1830 1831
static void perf_event_free_filter(struct perf_event *event);

1832
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1833
{
1834
	struct perf_event *event;
P
Peter Zijlstra 已提交
1835

1836 1837 1838
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1839
	perf_event_free_filter(event);
1840
	kfree(event);
P
Peter Zijlstra 已提交
1841 1842
}

1843
static void perf_pending_sync(struct perf_event *event);
1844
static void perf_mmap_data_put(struct perf_mmap_data *data);
1845

1846
static void free_event(struct perf_event *event)
1847
{
1848
	perf_pending_sync(event);
1849

1850 1851 1852 1853 1854 1855 1856 1857
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1858
	}
1859

1860 1861 1862
	if (event->data) {
		perf_mmap_data_put(event->data);
		event->data = NULL;
1863 1864
	}

1865 1866
	if (event->destroy)
		event->destroy(event);
1867

1868 1869
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1870 1871
}

1872
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1873
{
1874
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1875

1876 1877 1878 1879 1880 1881
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

1882
	WARN_ON_ONCE(ctx->parent_ctx);
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
1896 1897 1898 1899
	raw_spin_lock_irq(&ctx->lock);
	list_del_event(event, ctx);
	perf_destroy_group(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
1900
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1901

1902 1903 1904 1905
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1906

1907
	free_event(event);
T
Thomas Gleixner 已提交
1908 1909 1910

	return 0;
}
1911
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1912

1913 1914 1915 1916
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1917
{
1918
	struct perf_event *event = file->private_data;
1919

1920
	file->private_data = NULL;
1921

1922
	return perf_event_release_kernel(event);
1923 1924
}

1925
static int perf_event_read_size(struct perf_event *event)
1926 1927 1928 1929 1930
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1931
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1932 1933
		size += sizeof(u64);

1934
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1935 1936
		size += sizeof(u64);

1937
	if (event->attr.read_format & PERF_FORMAT_ID)
1938 1939
		entry += sizeof(u64);

1940 1941
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1942 1943 1944 1945 1946 1947 1948 1949
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1950
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1951
{
1952
	struct perf_event *child;
1953 1954
	u64 total = 0;

1955 1956 1957
	*enabled = 0;
	*running = 0;

1958
	mutex_lock(&event->child_mutex);
1959
	total += perf_event_read(event);
1960 1961 1962 1963 1964 1965
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1966
		total += perf_event_read(child);
1967 1968 1969
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1970
	mutex_unlock(&event->child_mutex);
1971 1972 1973

	return total;
}
1974
EXPORT_SYMBOL_GPL(perf_event_read_value);
1975

1976
static int perf_event_read_group(struct perf_event *event,
1977 1978
				   u64 read_format, char __user *buf)
{
1979
	struct perf_event *leader = event->group_leader, *sub;
1980 1981
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1982
	u64 values[5];
1983
	u64 count, enabled, running;
1984

1985
	mutex_lock(&ctx->mutex);
1986
	count = perf_event_read_value(leader, &enabled, &running);
1987 1988

	values[n++] = 1 + leader->nr_siblings;
1989 1990 1991 1992
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1993 1994 1995
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1996 1997 1998 1999

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2000
		goto unlock;
2001

2002
	ret = size;
2003

2004
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2005
		n = 0;
2006

2007
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2008 2009 2010 2011 2012
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2013
		if (copy_to_user(buf + ret, values, size)) {
2014 2015 2016
			ret = -EFAULT;
			goto unlock;
		}
2017 2018

		ret += size;
2019
	}
2020 2021
unlock:
	mutex_unlock(&ctx->mutex);
2022

2023
	return ret;
2024 2025
}

2026
static int perf_event_read_one(struct perf_event *event,
2027 2028
				 u64 read_format, char __user *buf)
{
2029
	u64 enabled, running;
2030 2031 2032
	u64 values[4];
	int n = 0;

2033 2034 2035 2036 2037
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2038
	if (read_format & PERF_FORMAT_ID)
2039
		values[n++] = primary_event_id(event);
2040 2041 2042 2043 2044 2045 2046

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2047
/*
2048
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2049 2050
 */
static ssize_t
2051
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2052
{
2053
	u64 read_format = event->attr.read_format;
2054
	int ret;
T
Thomas Gleixner 已提交
2055

2056
	/*
2057
	 * Return end-of-file for a read on a event that is in
2058 2059 2060
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2061
	if (event->state == PERF_EVENT_STATE_ERROR)
2062 2063
		return 0;

2064
	if (count < perf_event_read_size(event))
2065 2066
		return -ENOSPC;

2067
	WARN_ON_ONCE(event->ctx->parent_ctx);
2068
	if (read_format & PERF_FORMAT_GROUP)
2069
		ret = perf_event_read_group(event, read_format, buf);
2070
	else
2071
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2072

2073
	return ret;
T
Thomas Gleixner 已提交
2074 2075 2076 2077 2078
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2079
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2080

2081
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2082 2083 2084 2085
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2086
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2087
	struct perf_mmap_data *data;
2088
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2089 2090

	rcu_read_lock();
2091
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2092
	if (data)
2093
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2094
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2095

2096
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2097 2098 2099 2100

	return events;
}

2101
static void perf_event_reset(struct perf_event *event)
2102
{
2103 2104 2105
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2106 2107
}

2108
/*
2109 2110 2111 2112
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2113
 */
2114 2115
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2116
{
2117
	struct perf_event *child;
P
Peter Zijlstra 已提交
2118

2119 2120 2121 2122
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2123
		func(child);
2124
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2125 2126
}

2127 2128
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2129
{
2130 2131
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2132

2133 2134
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2135
	event = event->group_leader;
2136

2137 2138 2139 2140
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2141
	mutex_unlock(&ctx->mutex);
2142 2143
}

2144
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2145
{
2146
	struct perf_event_context *ctx = event->ctx;
2147 2148 2149 2150
	unsigned long size;
	int ret = 0;
	u64 value;

2151
	if (!event->attr.sample_period)
2152 2153 2154 2155 2156 2157 2158 2159 2160
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2161
	raw_spin_lock_irq(&ctx->lock);
2162 2163
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2164 2165 2166 2167
			ret = -EINVAL;
			goto unlock;
		}

2168
		event->attr.sample_freq = value;
2169
	} else {
2170 2171
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2172 2173
	}
unlock:
2174
	raw_spin_unlock_irq(&ctx->lock);
2175 2176 2177 2178

	return ret;
}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2200
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2201

2202 2203
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2204 2205
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2206
	u32 flags = arg;
2207 2208

	switch (cmd) {
2209 2210
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2211
		break;
2212 2213
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2214
		break;
2215 2216
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2217
		break;
P
Peter Zijlstra 已提交
2218

2219 2220
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2221

2222 2223
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2224

2225
	case PERF_EVENT_IOC_SET_OUTPUT:
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2243

L
Li Zefan 已提交
2244 2245 2246
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2247
	default:
P
Peter Zijlstra 已提交
2248
		return -ENOTTY;
2249
	}
P
Peter Zijlstra 已提交
2250 2251

	if (flags & PERF_IOC_FLAG_GROUP)
2252
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2253
	else
2254
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2255 2256

	return 0;
2257 2258
}

2259
int perf_event_task_enable(void)
2260
{
2261
	struct perf_event *event;
2262

2263 2264 2265 2266
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2267 2268 2269 2270

	return 0;
}

2271
int perf_event_task_disable(void)
2272
{
2273
	struct perf_event *event;
2274

2275 2276 2277 2278
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2279 2280 2281 2282

	return 0;
}

2283 2284
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2285 2286
#endif

2287
static int perf_event_index(struct perf_event *event)
2288
{
2289
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2290 2291
		return 0;

2292
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2293 2294
}

2295 2296 2297 2298 2299
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2300
void perf_event_update_userpage(struct perf_event *event)
2301
{
2302
	struct perf_event_mmap_page *userpg;
2303
	struct perf_mmap_data *data;
2304 2305

	rcu_read_lock();
2306
	data = rcu_dereference(event->data);
2307 2308 2309 2310
	if (!data)
		goto unlock;

	userpg = data->user_page;
2311

2312 2313 2314 2315 2316
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2317
	++userpg->lock;
2318
	barrier();
2319 2320 2321 2322
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2323

2324 2325
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2326

2327 2328
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2329

2330
	barrier();
2331
	++userpg->lock;
2332
	preempt_enable();
2333
unlock:
2334
	rcu_read_unlock();
2335 2336
}

2337
#ifndef CONFIG_PERF_USE_VMALLOC
2338

2339 2340 2341
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2342

2343 2344 2345 2346 2347
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2348

2349 2350
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2351

2352
	return virt_to_page(data->data_pages[pgoff - 1]);
2353 2354
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2368 2369
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

2382
	data->user_page = perf_mmap_alloc_page(event->cpu);
2383 2384 2385 2386
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2387
		data->data_pages[i] = perf_mmap_alloc_page(event->cpu);
2388 2389 2390 2391 2392 2393
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

	data->nr_pages = nr_pages;

2394
	return data;
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2406
	return NULL;
2407 2408
}

2409 2410
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2411
	struct page *page = virt_to_page((void *)addr);
2412 2413 2414 2415 2416

	page->mapping = NULL;
	__free_page(page);
}

2417
static void perf_mmap_data_free(struct perf_mmap_data *data)
2418 2419 2420
{
	int i;

2421
	perf_mmap_free_page((unsigned long)data->user_page);
2422
	for (i = 0; i < data->nr_pages; i++)
2423
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2424
	kfree(data);
2425 2426
}

2427 2428 2429 2430 2431
static inline int page_order(struct perf_mmap_data *data)
{
	return 0;
}

2432 2433 2434 2435 2436 2437 2438 2439
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2440 2441 2442 2443 2444
static inline int page_order(struct perf_mmap_data *data)
{
	return data->page_order;
}

2445 2446 2447
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
2448
	if (pgoff > (1UL << page_order(data)))
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
2468
	nr = 1 << page_order(data);
2469 2470 2471 2472 2473 2474

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2475
	kfree(data);
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
2505
	data->page_order = ilog2(nr_pages);
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

2519 2520 2521 2522 2523
static unsigned long perf_data_size(struct perf_mmap_data *data)
{
	return data->nr_pages << (PAGE_SHIFT + page_order(data));
}

2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2570
		data->watermark = max_size / 2;
2571

2572
	atomic_set(&data->refcount, 1);
2573 2574 2575 2576 2577 2578 2579 2580 2581
	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2582 2583
}

2584
static struct perf_mmap_data *perf_mmap_data_get(struct perf_event *event)
2585
{
2586
	struct perf_mmap_data *data;
2587

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602
	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (data) {
		if (!atomic_inc_not_zero(&data->refcount))
			data = NULL;
	}
	rcu_read_unlock();

	return data;
}

static void perf_mmap_data_put(struct perf_mmap_data *data)
{
	if (!atomic_dec_and_test(&data->refcount))
		return;
2603

2604
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2605 2606 2607 2608
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2609
	struct perf_event *event = vma->vm_file->private_data;
2610

2611
	atomic_inc(&event->mmap_count);
2612 2613 2614 2615
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2616
	struct perf_event *event = vma->vm_file->private_data;
2617

2618
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2619
		unsigned long size = perf_data_size(event->data);
2620 2621
		struct user_struct *user = event->mmap_user;
		struct perf_mmap_data *data = event->data;
2622

2623
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2624 2625
		vma->vm_mm->locked_vm -= event->mmap_locked;
		rcu_assign_pointer(event->data, NULL);
2626
		mutex_unlock(&event->mmap_mutex);
2627 2628 2629

		perf_mmap_data_put(data);
		free_uid(user);
2630
	}
2631 2632
}

2633
static const struct vm_operations_struct perf_mmap_vmops = {
2634 2635 2636 2637
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2638 2639 2640 2641
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2642
	struct perf_event *event = file->private_data;
2643
	unsigned long user_locked, user_lock_limit;
2644
	struct user_struct *user = current_user();
2645
	unsigned long locked, lock_limit;
2646
	struct perf_mmap_data *data;
2647 2648
	unsigned long vma_size;
	unsigned long nr_pages;
2649
	long user_extra, extra;
2650
	int ret = 0;
2651

2652 2653 2654 2655 2656 2657 2658 2659
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2660
	if (!(vma->vm_flags & VM_SHARED))
2661
		return -EINVAL;
2662 2663 2664 2665

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2666 2667 2668 2669 2670
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2671 2672
		return -EINVAL;

2673
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2674 2675
		return -EINVAL;

2676 2677
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2678

2679 2680
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2681 2682 2683 2684
	if (event->data) {
		if (event->data->nr_pages == nr_pages)
			atomic_inc(&event->data->refcount);
		else
2685 2686 2687 2688
			ret = -EINVAL;
		goto unlock;
	}

2689
	user_extra = nr_pages + 1;
2690
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2691 2692 2693 2694 2695 2696

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2697
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2698

2699 2700 2701
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2702

2703
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2704
	lock_limit >>= PAGE_SHIFT;
2705
	locked = vma->vm_mm->locked_vm + extra;
2706

2707 2708
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2709 2710 2711
		ret = -EPERM;
		goto unlock;
	}
2712

2713
	WARN_ON(event->data);
2714 2715

	data = perf_mmap_data_alloc(event, nr_pages);
2716 2717
	if (!data) {
		ret = -ENOMEM;
2718
		goto unlock;
2719
	}
2720

2721
	perf_mmap_data_init(event, data);
2722
	if (vma->vm_flags & VM_WRITE)
2723
		event->data->writable = 1;
2724

2725 2726 2727 2728 2729
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

2730
unlock:
2731 2732
	if (!ret)
		atomic_inc(&event->mmap_count);
2733
	mutex_unlock(&event->mmap_mutex);
2734 2735 2736

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2737 2738

	return ret;
2739 2740
}

P
Peter Zijlstra 已提交
2741 2742 2743
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2744
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2745 2746 2747
	int retval;

	mutex_lock(&inode->i_mutex);
2748
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2749 2750 2751 2752 2753 2754 2755 2756
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2757
static const struct file_operations perf_fops = {
2758
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2759 2760 2761
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2762 2763
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2764
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2765
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2766 2767
};

2768
/*
2769
 * Perf event wakeup
2770 2771 2772 2773 2774
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2775
void perf_event_wakeup(struct perf_event *event)
2776
{
2777
	wake_up_all(&event->waitq);
2778

2779 2780 2781
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2782
	}
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2794
static void perf_pending_event(struct perf_pending_entry *entry)
2795
{
2796 2797
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2798

2799 2800 2801
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2802 2803
	}

2804 2805 2806
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2807 2808 2809
	}
}

2810
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2811

2812
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2813 2814 2815
	PENDING_TAIL,
};

2816 2817
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2818
{
2819
	struct perf_pending_entry **head;
2820

2821
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2822 2823
		return;

2824 2825 2826
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2827 2828

	do {
2829 2830
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2831

2832
	set_perf_event_pending();
2833

2834
	put_cpu_var(perf_pending_head);
2835 2836 2837 2838
}

static int __perf_pending_run(void)
{
2839
	struct perf_pending_entry *list;
2840 2841
	int nr = 0;

2842
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2843
	while (list != PENDING_TAIL) {
2844 2845
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2846 2847 2848

		list = list->next;

2849 2850
		func = entry->func;
		entry->next = NULL;
2851 2852 2853 2854 2855 2856 2857
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2858
		func(entry);
2859 2860 2861 2862 2863 2864
		nr++;
	}

	return nr;
}

2865
static inline int perf_not_pending(struct perf_event *event)
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2880
	return event->pending.next == NULL;
2881 2882
}

2883
static void perf_pending_sync(struct perf_event *event)
2884
{
2885
	wait_event(event->waitq, perf_not_pending(event));
2886 2887
}

2888
void perf_event_do_pending(void)
2889 2890 2891 2892
{
	__perf_pending_run();
}

2893 2894 2895 2896
/*
 * Callchain support -- arch specific
 */

2897
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2898 2899 2900 2901
{
	return NULL;
}

2902 2903 2904 2905
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}
2906

2907

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

2929 2930 2931
/*
 * Output
 */
2932 2933
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2934 2935 2936 2937 2938 2939
{
	unsigned long mask;

	if (!data->writable)
		return true;

2940
	mask = perf_data_size(data) - 1;
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2951
static void perf_output_wakeup(struct perf_output_handle *handle)
2952
{
2953 2954
	atomic_set(&handle->data->poll, POLL_IN);

2955
	if (handle->nmi) {
2956 2957 2958
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2959
	} else
2960
		perf_event_wakeup(handle->event);
2961 2962
}

2963
/*
2964
 * We need to ensure a later event_id doesn't publish a head when a former
2965
 * event isn't done writing. However since we need to deal with NMIs we
2966 2967 2968
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2969
 * event completes.
2970
 */
2971
static void perf_output_get_handle(struct perf_output_handle *handle)
2972 2973 2974
{
	struct perf_mmap_data *data = handle->data;

2975
	preempt_disable();
2976
	local_inc(&data->nest);
2977
	handle->wakeup = local_read(&data->wakeup);
2978 2979
}

2980
static void perf_output_put_handle(struct perf_output_handle *handle)
2981 2982
{
	struct perf_mmap_data *data = handle->data;
2983
	unsigned long head;
2984 2985

again:
2986
	head = local_read(&data->head);
2987 2988

	/*
2989
	 * IRQ/NMI can happen here, which means we can miss a head update.
2990 2991
	 */

2992
	if (!local_dec_and_test(&data->nest))
2993
		goto out;
2994 2995

	/*
2996 2997 2998
	 * Publish the known good head. Rely on the full barrier implied
	 * by atomic_dec_and_test() order the data->head read and this
	 * write.
2999
	 */
3000
	data->user_page->data_head = head;
3001

3002 3003 3004 3005
	/*
	 * Now check if we missed an update, rely on the (compiler)
	 * barrier in atomic_dec_and_test() to re-read data->head.
	 */
3006 3007
	if (unlikely(head != local_read(&data->head))) {
		local_inc(&data->nest);
3008 3009 3010
		goto again;
	}

3011
	if (handle->wakeup != local_read(&data->wakeup))
3012
		perf_output_wakeup(handle);
3013

3014
 out:
3015
	preempt_enable();
3016 3017
}

3018
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3019
		      const void *buf, unsigned int len)
3020
{
3021
	do {
3022
		unsigned long size = min_t(unsigned long, handle->size, len);
3023 3024 3025 3026 3027 3028 3029

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
		handle->size -= size;
		if (!handle->size) {
3030 3031
			struct perf_mmap_data *data = handle->data;

3032
			handle->page++;
3033 3034 3035
			handle->page &= data->nr_pages - 1;
			handle->addr = data->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(data);
3036 3037
		}
	} while (len);
3038 3039
}

3040
int perf_output_begin(struct perf_output_handle *handle,
3041
		      struct perf_event *event, unsigned int size,
3042
		      int nmi, int sample)
3043
{
3044
	struct perf_mmap_data *data;
3045
	unsigned long tail, offset, head;
3046 3047 3048 3049 3050 3051
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3052

3053
	rcu_read_lock();
3054
	/*
3055
	 * For inherited events we send all the output towards the parent.
3056
	 */
3057 3058
	if (event->parent)
		event = event->parent;
3059

3060
	data = rcu_dereference(event->data);
3061 3062 3063
	if (!data)
		goto out;

3064
	handle->data	= data;
3065
	handle->event	= event;
3066 3067
	handle->nmi	= nmi;
	handle->sample	= sample;
3068

3069
	if (!data->nr_pages)
3070
		goto out;
3071

3072
	have_lost = local_read(&data->lost);
3073 3074 3075
	if (have_lost)
		size += sizeof(lost_event);

3076
	perf_output_get_handle(handle);
3077

3078
	do {
3079 3080 3081 3082 3083 3084 3085
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
3086
		offset = head = local_read(&data->head);
P
Peter Zijlstra 已提交
3087
		head += size;
3088
		if (unlikely(!perf_output_space(data, tail, offset, head)))
3089
			goto fail;
3090
	} while (local_cmpxchg(&data->head, offset, head) != offset);
3091

3092 3093
	if (head - local_read(&data->wakeup) > data->watermark)
		local_add(data->watermark, &data->wakeup);
3094

3095
	handle->page = offset >> (PAGE_SHIFT + page_order(data));
3096
	handle->page &= data->nr_pages - 1;
3097
	handle->size = offset & ((PAGE_SIZE << page_order(data)) - 1);
3098 3099
	handle->addr = data->data_pages[handle->page];
	handle->addr += handle->size;
3100
	handle->size = (PAGE_SIZE << page_order(data)) - handle->size;
3101

3102
	if (have_lost) {
3103
		lost_event.header.type = PERF_RECORD_LOST;
3104 3105
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3106
		lost_event.id          = event->id;
3107
		lost_event.lost        = local_xchg(&data->lost, 0);
3108 3109 3110 3111

		perf_output_put(handle, lost_event);
	}

3112
	return 0;
3113

3114
fail:
3115
	local_inc(&data->lost);
3116
	perf_output_put_handle(handle);
3117 3118
out:
	rcu_read_unlock();
3119

3120 3121
	return -ENOSPC;
}
3122

3123
void perf_output_end(struct perf_output_handle *handle)
3124
{
3125
	struct perf_event *event = handle->event;
3126 3127
	struct perf_mmap_data *data = handle->data;

3128
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3129

3130
	if (handle->sample && wakeup_events) {
3131
		int events = local_inc_return(&data->events);
P
Peter Zijlstra 已提交
3132
		if (events >= wakeup_events) {
3133 3134
			local_sub(wakeup_events, &data->events);
			local_inc(&data->wakeup);
P
Peter Zijlstra 已提交
3135
		}
3136 3137
	}

3138
	perf_output_put_handle(handle);
3139
	rcu_read_unlock();
3140 3141
}

3142
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3143 3144
{
	/*
3145
	 * only top level events have the pid namespace they were created in
3146
	 */
3147 3148
	if (event->parent)
		event = event->parent;
3149

3150
	return task_tgid_nr_ns(p, event->ns);
3151 3152
}

3153
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3154 3155
{
	/*
3156
	 * only top level events have the pid namespace they were created in
3157
	 */
3158 3159
	if (event->parent)
		event = event->parent;
3160

3161
	return task_pid_nr_ns(p, event->ns);
3162 3163
}

3164
static void perf_output_read_one(struct perf_output_handle *handle,
3165
				 struct perf_event *event)
3166
{
3167
	u64 read_format = event->attr.read_format;
3168 3169 3170
	u64 values[4];
	int n = 0;

3171
	values[n++] = atomic64_read(&event->count);
3172
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3173 3174
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3175 3176
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3177 3178
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3179 3180
	}
	if (read_format & PERF_FORMAT_ID)
3181
		values[n++] = primary_event_id(event);
3182 3183 3184 3185 3186

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3187
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3188 3189
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3190
			    struct perf_event *event)
3191
{
3192 3193
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3205
	if (leader != event)
3206 3207 3208 3209
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3210
		values[n++] = primary_event_id(leader);
3211 3212 3213

	perf_output_copy(handle, values, n * sizeof(u64));

3214
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3215 3216
		n = 0;

3217
		if (sub != event)
3218 3219 3220 3221
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3222
			values[n++] = primary_event_id(sub);
3223 3224 3225 3226 3227 3228

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3229
			     struct perf_event *event)
3230
{
3231 3232
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3233
	else
3234
		perf_output_read_one(handle, event);
3235 3236
}

3237 3238 3239
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3240
			struct perf_event *event)
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3271
		perf_output_read(handle, event);
3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3309
			 struct perf_event *event,
3310
			 struct pt_regs *regs)
3311
{
3312
	u64 sample_type = event->attr.sample_type;
3313

3314
	data->type = sample_type;
3315

3316
	header->type = PERF_RECORD_SAMPLE;
3317 3318 3319 3320
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3321

3322
	if (sample_type & PERF_SAMPLE_IP) {
3323 3324 3325
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3326
	}
3327

3328
	if (sample_type & PERF_SAMPLE_TID) {
3329
		/* namespace issues */
3330 3331
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3332

3333
		header->size += sizeof(data->tid_entry);
3334 3335
	}

3336
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3337
		data->time = perf_clock();
3338

3339
		header->size += sizeof(data->time);
3340 3341
	}

3342
	if (sample_type & PERF_SAMPLE_ADDR)
3343
		header->size += sizeof(data->addr);
3344

3345
	if (sample_type & PERF_SAMPLE_ID) {
3346
		data->id = primary_event_id(event);
3347

3348 3349 3350 3351
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3352
		data->stream_id = event->id;
3353 3354 3355

		header->size += sizeof(data->stream_id);
	}
3356

3357
	if (sample_type & PERF_SAMPLE_CPU) {
3358 3359
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3360

3361
		header->size += sizeof(data->cpu_entry);
3362 3363
	}

3364
	if (sample_type & PERF_SAMPLE_PERIOD)
3365
		header->size += sizeof(data->period);
3366

3367
	if (sample_type & PERF_SAMPLE_READ)
3368
		header->size += perf_event_read_size(event);
3369

3370
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3371
		int size = 1;
3372

3373 3374 3375 3376 3377 3378
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3379 3380
	}

3381
	if (sample_type & PERF_SAMPLE_RAW) {
3382 3383 3384 3385 3386 3387 3388 3389
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3390
		header->size += size;
3391
	}
3392
}
3393

3394
static void perf_event_output(struct perf_event *event, int nmi,
3395 3396 3397 3398 3399
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3400

3401
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3402

3403
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3404
		return;
3405

3406
	perf_output_sample(&handle, &header, data, event);
3407

3408
	perf_output_end(&handle);
3409 3410
}

3411
/*
3412
 * read event_id
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3423
perf_event_read_event(struct perf_event *event,
3424 3425 3426
			struct task_struct *task)
{
	struct perf_output_handle handle;
3427
	struct perf_read_event read_event = {
3428
		.header = {
3429
			.type = PERF_RECORD_READ,
3430
			.misc = 0,
3431
			.size = sizeof(read_event) + perf_event_read_size(event),
3432
		},
3433 3434
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3435
	};
3436
	int ret;
3437

3438
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3439 3440 3441
	if (ret)
		return;

3442
	perf_output_put(&handle, read_event);
3443
	perf_output_read(&handle, event);
3444

3445 3446 3447
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3448
/*
P
Peter Zijlstra 已提交
3449 3450 3451
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3452 3453
 */

P
Peter Zijlstra 已提交
3454
struct perf_task_event {
3455
	struct task_struct		*task;
3456
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3457 3458 3459 3460 3461 3462

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3463 3464
		u32				tid;
		u32				ptid;
3465
		u64				time;
3466
	} event_id;
P
Peter Zijlstra 已提交
3467 3468
};

3469
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3470
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3471 3472
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3473
	struct task_struct *task = task_event->task;
3474 3475
	int size, ret;

3476 3477
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3478

3479
	if (ret)
P
Peter Zijlstra 已提交
3480 3481
		return;

3482 3483
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3484

3485 3486
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3487

3488
	perf_output_put(&handle, task_event->event_id);
3489

P
Peter Zijlstra 已提交
3490 3491 3492
	perf_output_end(&handle);
}

3493
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3494
{
P
Peter Zijlstra 已提交
3495
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3496 3497
		return 0;

3498 3499 3500
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3501
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3502 3503 3504 3505 3506
		return 1;

	return 0;
}

3507
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3508
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3509
{
3510
	struct perf_event *event;
P
Peter Zijlstra 已提交
3511

3512 3513 3514
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3515 3516 3517
	}
}

3518
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3519 3520
{
	struct perf_cpu_context *cpuctx;
3521
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3522

3523
	rcu_read_lock();
P
Peter Zijlstra 已提交
3524
	cpuctx = &get_cpu_var(perf_cpu_context);
3525
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3526
	if (!ctx)
P
Peter Zijlstra 已提交
3527
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3528
	if (ctx)
3529
		perf_event_task_ctx(ctx, task_event);
3530
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3531 3532 3533
	rcu_read_unlock();
}

3534 3535
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3536
			      int new)
P
Peter Zijlstra 已提交
3537
{
P
Peter Zijlstra 已提交
3538
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3539

3540 3541 3542
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3543 3544
		return;

P
Peter Zijlstra 已提交
3545
	task_event = (struct perf_task_event){
3546 3547
		.task	  = task,
		.task_ctx = task_ctx,
3548
		.event_id    = {
P
Peter Zijlstra 已提交
3549
			.header = {
3550
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3551
				.misc = 0,
3552
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3553
			},
3554 3555
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3556 3557
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3558
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3559 3560 3561
		},
	};

3562
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3563 3564
}

3565
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3566
{
3567
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3568 3569
}

3570 3571 3572 3573 3574
/*
 * comm tracking
 */

struct perf_comm_event {
3575 3576
	struct task_struct	*task;
	char			*comm;
3577 3578 3579 3580 3581 3582 3583
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3584
	} event_id;
3585 3586
};

3587
static void perf_event_comm_output(struct perf_event *event,
3588 3589 3590
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3591 3592
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3593 3594 3595 3596

	if (ret)
		return;

3597 3598
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3599

3600
	perf_output_put(&handle, comm_event->event_id);
3601 3602 3603 3604 3605
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3606
static int perf_event_comm_match(struct perf_event *event)
3607
{
P
Peter Zijlstra 已提交
3608
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3609 3610
		return 0;

3611 3612 3613
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3614
	if (event->attr.comm)
3615 3616 3617 3618 3619
		return 1;

	return 0;
}

3620
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3621 3622
				  struct perf_comm_event *comm_event)
{
3623
	struct perf_event *event;
3624

3625 3626 3627
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3628 3629 3630
	}
}

3631
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3632 3633
{
	struct perf_cpu_context *cpuctx;
3634
	struct perf_event_context *ctx;
3635
	unsigned int size;
3636
	char comm[TASK_COMM_LEN];
3637

3638
	memset(comm, 0, sizeof(comm));
3639
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3640
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3641 3642 3643 3644

	comm_event->comm = comm;
	comm_event->comm_size = size;

3645
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3646

3647
	rcu_read_lock();
3648
	cpuctx = &get_cpu_var(perf_cpu_context);
3649 3650
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3651
	if (ctx)
3652
		perf_event_comm_ctx(ctx, comm_event);
3653
	put_cpu_var(perf_cpu_context);
3654
	rcu_read_unlock();
3655 3656
}

3657
void perf_event_comm(struct task_struct *task)
3658
{
3659 3660
	struct perf_comm_event comm_event;

3661 3662
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3663

3664
	if (!atomic_read(&nr_comm_events))
3665
		return;
3666

3667
	comm_event = (struct perf_comm_event){
3668
		.task	= task,
3669 3670
		/* .comm      */
		/* .comm_size */
3671
		.event_id  = {
3672
			.header = {
3673
				.type = PERF_RECORD_COMM,
3674 3675 3676 3677 3678
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3679 3680 3681
		},
	};

3682
	perf_event_comm_event(&comm_event);
3683 3684
}

3685 3686 3687 3688 3689
/*
 * mmap tracking
 */

struct perf_mmap_event {
3690 3691 3692 3693
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3694 3695 3696 3697 3698 3699 3700 3701 3702

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3703
	} event_id;
3704 3705
};

3706
static void perf_event_mmap_output(struct perf_event *event,
3707 3708 3709
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3710 3711
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3712 3713 3714 3715

	if (ret)
		return;

3716 3717
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3718

3719
	perf_output_put(&handle, mmap_event->event_id);
3720 3721
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3722
	perf_output_end(&handle);
3723 3724
}

3725
static int perf_event_mmap_match(struct perf_event *event,
3726 3727
				   struct perf_mmap_event *mmap_event)
{
P
Peter Zijlstra 已提交
3728
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3729 3730
		return 0;

3731 3732 3733
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3734
	if (event->attr.mmap)
3735 3736 3737 3738 3739
		return 1;

	return 0;
}

3740
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3741 3742
				  struct perf_mmap_event *mmap_event)
{
3743
	struct perf_event *event;
3744

3745 3746 3747
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3748 3749 3750
	}
}

3751
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3752 3753
{
	struct perf_cpu_context *cpuctx;
3754
	struct perf_event_context *ctx;
3755 3756
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3757 3758 3759
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3760
	const char *name;
3761

3762 3763
	memset(tmp, 0, sizeof(tmp));

3764
	if (file) {
3765 3766 3767 3768 3769 3770
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3771 3772 3773 3774
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3775
		name = d_path(&file->f_path, buf, PATH_MAX);
3776 3777 3778 3779 3780
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3781 3782 3783
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3784
			goto got_name;
3785
		}
3786 3787 3788 3789 3790 3791

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3792 3793 3794 3795 3796
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3797
	size = ALIGN(strlen(name)+1, sizeof(u64));
3798 3799 3800 3801

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3802
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3803

3804
	rcu_read_lock();
3805
	cpuctx = &get_cpu_var(perf_cpu_context);
3806 3807
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3808
	if (ctx)
3809
		perf_event_mmap_ctx(ctx, mmap_event);
3810
	put_cpu_var(perf_cpu_context);
3811 3812
	rcu_read_unlock();

3813 3814 3815
	kfree(buf);
}

3816
void __perf_event_mmap(struct vm_area_struct *vma)
3817
{
3818 3819
	struct perf_mmap_event mmap_event;

3820
	if (!atomic_read(&nr_mmap_events))
3821 3822 3823
		return;

	mmap_event = (struct perf_mmap_event){
3824
		.vma	= vma,
3825 3826
		/* .file_name */
		/* .file_size */
3827
		.event_id  = {
3828
			.header = {
3829
				.type = PERF_RECORD_MMAP,
3830
				.misc = PERF_RECORD_MISC_USER,
3831 3832 3833 3834
				/* .size */
			},
			/* .pid */
			/* .tid */
3835 3836
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3837
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3838 3839 3840
		},
	};

3841
	perf_event_mmap_event(&mmap_event);
3842 3843
}

3844 3845 3846 3847
/*
 * IRQ throttle logging
 */

3848
static void perf_log_throttle(struct perf_event *event, int enable)
3849 3850 3851 3852 3853 3854 3855
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3856
		u64				id;
3857
		u64				stream_id;
3858 3859
	} throttle_event = {
		.header = {
3860
			.type = PERF_RECORD_THROTTLE,
3861 3862 3863
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3864
		.time		= perf_clock(),
3865 3866
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3867 3868
	};

3869
	if (enable)
3870
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3871

3872
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3873 3874 3875 3876 3877 3878 3879
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3880
/*
3881
 * Generic event overflow handling, sampling.
3882 3883
 */

3884
static int __perf_event_overflow(struct perf_event *event, int nmi,
3885 3886
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3887
{
3888 3889
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3890 3891
	int ret = 0;

3892
	throttle = (throttle && event->pmu->unthrottle != NULL);
3893

3894
	if (!throttle) {
3895
		hwc->interrupts++;
3896
	} else {
3897 3898
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3899
			if (HZ * hwc->interrupts >
3900
					(u64)sysctl_perf_event_sample_rate) {
3901
				hwc->interrupts = MAX_INTERRUPTS;
3902
				perf_log_throttle(event, 0);
3903 3904 3905 3906
				ret = 1;
			}
		} else {
			/*
3907
			 * Keep re-disabling events even though on the previous
3908
			 * pass we disabled it - just in case we raced with a
3909
			 * sched-in and the event got enabled again:
3910
			 */
3911 3912 3913
			ret = 1;
		}
	}
3914

3915
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3916
		u64 now = perf_clock();
3917
		s64 delta = now - hwc->freq_time_stamp;
3918

3919
		hwc->freq_time_stamp = now;
3920

3921 3922
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3923 3924
	}

3925 3926
	/*
	 * XXX event_limit might not quite work as expected on inherited
3927
	 * events
3928 3929
	 */

3930 3931
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3932
		ret = 1;
3933
		event->pending_kill = POLL_HUP;
3934
		if (nmi) {
3935 3936 3937
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3938
		} else
3939
			perf_event_disable(event);
3940 3941
	}

3942 3943 3944 3945 3946
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3947
	return ret;
3948 3949
}

3950
int perf_event_overflow(struct perf_event *event, int nmi,
3951 3952
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3953
{
3954
	return __perf_event_overflow(event, nmi, 1, data, regs);
3955 3956
}

3957
/*
3958
 * Generic software event infrastructure
3959 3960
 */

3961
/*
3962 3963
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3964 3965 3966 3967
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3968
static u64 perf_swevent_set_period(struct perf_event *event)
3969
{
3970
	struct hw_perf_event *hwc = &event->hw;
3971 3972 3973 3974 3975
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3976 3977

again:
3978 3979 3980
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3981

3982 3983 3984 3985 3986
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3987

3988
	return nr;
3989 3990
}

3991
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3992 3993
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3994
{
3995
	struct hw_perf_event *hwc = &event->hw;
3996
	int throttle = 0;
3997

3998
	data->period = event->hw.last_period;
3999 4000
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4001

4002 4003
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4004

4005
	for (; overflow; overflow--) {
4006
		if (__perf_event_overflow(event, nmi, throttle,
4007
					    data, regs)) {
4008 4009 4010 4011 4012 4013
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4014
		throttle = 1;
4015
	}
4016 4017
}

4018
static void perf_swevent_unthrottle(struct perf_event *event)
4019 4020
{
	/*
4021
	 * Nothing to do, we already reset hwc->interrupts.
4022
	 */
4023
}
4024

4025
static void perf_swevent_add(struct perf_event *event, u64 nr,
4026 4027
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4028
{
4029
	struct hw_perf_event *hwc = &event->hw;
4030

4031
	atomic64_add(nr, &event->count);
4032

4033 4034 4035
	if (!regs)
		return;

4036 4037
	if (!hwc->sample_period)
		return;
4038

4039 4040 4041 4042
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
4043
		return;
4044

4045
	perf_swevent_overflow(event, 0, nmi, data, regs);
4046 4047
}

4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4062
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4063
				enum perf_type_id type,
L
Li Zefan 已提交
4064 4065 4066
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4067
{
4068
	if (event->attr.type != type)
4069
		return 0;
4070

4071
	if (event->attr.config != event_id)
4072 4073
		return 0;

4074 4075
	if (perf_exclude_event(event, regs))
		return 0;
4076 4077 4078 4079

	return 1;
}

4080 4081 4082 4083 4084 4085 4086
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4087 4088
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4089
{
4090 4091 4092 4093
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4094

4095 4096 4097 4098 4099
/* For the read side: events when they trigger */
static inline struct hlist_head *
find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	struct swevent_hlist *hlist;
4100 4101 4102 4103 4104

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
	hlist = rcu_dereference_protected(ctx->swevent_hlist,
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4127 4128 4129 4130 4131 4132
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4133
{
4134
	struct perf_cpu_context *cpuctx;
4135
	struct perf_event *event;
4136 4137
	struct hlist_node *node;
	struct hlist_head *head;
4138

4139 4140 4141 4142
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

4143
	head = find_swevent_head_rcu(cpuctx, type, event_id);
4144 4145 4146 4147 4148

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4149
		if (perf_swevent_match(event, type, event_id, data, regs))
4150
			perf_swevent_add(event, nr, nmi, data, regs);
4151
	}
4152 4153
end:
	rcu_read_unlock();
4154 4155
}

4156
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4157
{
4158
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4159
	int rctx;
4160

P
Peter Zijlstra 已提交
4161
	if (in_nmi())
4162
		rctx = 3;
4163
	else if (in_irq())
4164
		rctx = 2;
4165
	else if (in_softirq())
4166
		rctx = 1;
4167
	else
4168
		rctx = 0;
P
Peter Zijlstra 已提交
4169

4170
	if (cpuctx->recursion[rctx])
4171
		return -1;
P
Peter Zijlstra 已提交
4172

4173 4174
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4175

4176
	return rctx;
P
Peter Zijlstra 已提交
4177
}
I
Ingo Molnar 已提交
4178
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4179

4180
void perf_swevent_put_recursion_context(int rctx)
4181
{
4182 4183
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4184
	cpuctx->recursion[rctx]--;
4185
}
I
Ingo Molnar 已提交
4186
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4187

4188

4189
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4190
			    struct pt_regs *regs, u64 addr)
4191
{
4192
	struct perf_sample_data data;
4193 4194
	int rctx;

4195
	preempt_disable_notrace();
4196 4197 4198
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4199

4200
	perf_sample_data_init(&data, addr);
4201

4202
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4203 4204

	perf_swevent_put_recursion_context(rctx);
4205
	preempt_enable_notrace();
4206 4207
}

4208
static void perf_swevent_read(struct perf_event *event)
4209 4210 4211
{
}

4212
static int perf_swevent_enable(struct perf_event *event)
4213
{
4214
	struct hw_perf_event *hwc = &event->hw;
4215 4216 4217 4218
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4219 4220 4221

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4222
		perf_swevent_set_period(event);
4223
	}
4224

4225
	head = find_swevent_head(cpuctx, event);
4226 4227 4228 4229 4230
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4231 4232 4233
	return 0;
}

4234
static void perf_swevent_disable(struct perf_event *event)
4235
{
4236
	hlist_del_rcu(&event->hlist_entry);
4237 4238
}

4239
static const struct pmu perf_ops_generic = {
4240 4241 4242 4243
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4244 4245
};

4246
/*
4247
 * hrtimer based swevent callback
4248 4249
 */

4250
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4251 4252 4253
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4254
	struct pt_regs *regs;
4255
	struct perf_event *event;
4256 4257
	u64 period;

4258
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4259
	event->pmu->read(event);
4260

4261
	perf_sample_data_init(&data, 0);
4262
	data.period = event->hw.last_period;
4263
	regs = get_irq_regs();
4264

4265
	if (regs && !perf_exclude_event(event, regs)) {
4266 4267 4268
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4269 4270
	}

4271
	period = max_t(u64, 10000, event->hw.sample_period);
4272 4273 4274 4275 4276
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4313
/*
4314
 * Software event: cpu wall time clock
4315 4316
 */

4317
static void cpu_clock_perf_event_update(struct perf_event *event)
4318 4319 4320 4321 4322 4323
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4324
	prev = atomic64_xchg(&event->hw.prev_count, now);
4325
	atomic64_add(now - prev, &event->count);
4326 4327
}

4328
static int cpu_clock_perf_event_enable(struct perf_event *event)
4329
{
4330
	struct hw_perf_event *hwc = &event->hw;
4331 4332 4333
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4334
	perf_swevent_start_hrtimer(event);
4335 4336 4337 4338

	return 0;
}

4339
static void cpu_clock_perf_event_disable(struct perf_event *event)
4340
{
4341
	perf_swevent_cancel_hrtimer(event);
4342
	cpu_clock_perf_event_update(event);
4343 4344
}

4345
static void cpu_clock_perf_event_read(struct perf_event *event)
4346
{
4347
	cpu_clock_perf_event_update(event);
4348 4349
}

4350
static const struct pmu perf_ops_cpu_clock = {
4351 4352 4353
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4354 4355
};

4356
/*
4357
 * Software event: task time clock
4358 4359
 */

4360
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4361
{
4362
	u64 prev;
I
Ingo Molnar 已提交
4363 4364
	s64 delta;

4365
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4366
	delta = now - prev;
4367
	atomic64_add(delta, &event->count);
4368 4369
}

4370
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4371
{
4372
	struct hw_perf_event *hwc = &event->hw;
4373 4374
	u64 now;

4375
	now = event->ctx->time;
4376

4377
	atomic64_set(&hwc->prev_count, now);
4378 4379

	perf_swevent_start_hrtimer(event);
4380 4381

	return 0;
I
Ingo Molnar 已提交
4382 4383
}

4384
static void task_clock_perf_event_disable(struct perf_event *event)
4385
{
4386
	perf_swevent_cancel_hrtimer(event);
4387
	task_clock_perf_event_update(event, event->ctx->time);
4388

4389
}
I
Ingo Molnar 已提交
4390

4391
static void task_clock_perf_event_read(struct perf_event *event)
4392
{
4393 4394 4395
	u64 time;

	if (!in_nmi()) {
4396 4397
		update_context_time(event->ctx);
		time = event->ctx->time;
4398 4399
	} else {
		u64 now = perf_clock();
4400 4401
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4402 4403
	}

4404
	task_clock_perf_event_update(event, time);
4405 4406
}

4407
static const struct pmu perf_ops_task_clock = {
4408 4409 4410
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4411 4412
};

4413 4414 4415 4416 4417 4418 4419 4420
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
swevent_hlist_deref(struct perf_cpu_context *cpuctx)
{
	return rcu_dereference_protected(cpuctx->swevent_hlist,
					 lockdep_is_held(&cpuctx->hlist_mutex));
}

4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
4431
	struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4432

4433
	if (!hlist)
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
		return;

	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

4472
	if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
 exit:
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
 fail:
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4519 4520
#ifdef CONFIG_EVENT_TRACING

4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
static const struct pmu perf_ops_tracepoint = {
	.enable		= perf_trace_enable,
	.disable	= perf_trace_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
};

static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4542 4543 4544 4545
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
		   struct pt_regs *regs, struct hlist_head *head)
4556 4557
{
	struct perf_sample_data data;
4558 4559 4560
	struct perf_event *event;
	struct hlist_node *node;

4561 4562 4563 4564 4565 4566 4567 4568
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4569 4570 4571 4572
	rcu_read_lock();
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
			perf_swevent_add(event, count, 1, &data, regs);
4573
	}
4574
	rcu_read_unlock();
4575 4576 4577
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4578
static void tp_perf_event_destroy(struct perf_event *event)
4579
{
4580
	perf_trace_destroy(event);
4581 4582
}

4583
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4584
{
4585 4586
	int err;

4587 4588 4589 4590
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4591
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4592
			perf_paranoid_tracepoint_raw() &&
4593 4594 4595
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4596 4597
	err = perf_trace_init(event);
	if (err)
4598 4599
		return NULL;

4600
	event->destroy = tp_perf_event_destroy;
4601

4602
	return &perf_ops_tracepoint;
4603
}
L
Li Zefan 已提交
4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4628
#else
L
Li Zefan 已提交
4629

4630
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4631 4632 4633
{
	return NULL;
}
L
Li Zefan 已提交
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4644
#endif /* CONFIG_EVENT_TRACING */
4645

4646 4647 4648 4649 4650 4651 4652 4653 4654
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4655 4656

	err = register_perf_hw_breakpoint(bp);
4657 4658 4659 4660 4661 4662 4663 4664
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4665
void perf_bp_event(struct perf_event *bp, void *data)
4666
{
4667 4668 4669
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4670
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4671 4672 4673

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4686
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4687

4688
static void sw_perf_event_destroy(struct perf_event *event)
4689
{
4690
	u64 event_id = event->attr.config;
4691

4692
	WARN_ON(event->parent);
4693

4694
	atomic_dec(&perf_swevent_enabled[event_id]);
4695
	swevent_hlist_put(event);
4696 4697
}

4698
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4699
{
4700
	const struct pmu *pmu = NULL;
4701
	u64 event_id = event->attr.config;
4702

4703
	/*
4704
	 * Software events (currently) can't in general distinguish
4705 4706 4707 4708 4709
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4710
	switch (event_id) {
4711
	case PERF_COUNT_SW_CPU_CLOCK:
4712
		pmu = &perf_ops_cpu_clock;
4713

4714
		break;
4715
	case PERF_COUNT_SW_TASK_CLOCK:
4716
		/*
4717 4718
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4719
		 */
4720
		if (event->ctx->task)
4721
			pmu = &perf_ops_task_clock;
4722
		else
4723
			pmu = &perf_ops_cpu_clock;
4724

4725
		break;
4726 4727 4728 4729 4730
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4731 4732
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4733
		if (!event->parent) {
4734 4735 4736 4737 4738 4739
			int err;

			err = swevent_hlist_get(event);
			if (err)
				return ERR_PTR(err);

4740 4741
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4742
		}
4743
		pmu = &perf_ops_generic;
4744
		break;
4745
	}
4746

4747
	return pmu;
4748 4749
}

T
Thomas Gleixner 已提交
4750
/*
4751
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4752
 */
4753 4754
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4755
		   int cpu,
4756 4757 4758
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4759
		   perf_overflow_handler_t overflow_handler,
4760
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4761
{
4762
	const struct pmu *pmu;
4763 4764
	struct perf_event *event;
	struct hw_perf_event *hwc;
4765
	long err;
T
Thomas Gleixner 已提交
4766

4767 4768
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4769
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4770

4771
	/*
4772
	 * Single events are their own group leaders, with an
4773 4774 4775
	 * empty sibling list:
	 */
	if (!group_leader)
4776
		group_leader = event;
4777

4778 4779
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4780

4781 4782 4783 4784
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4785

4786
	mutex_init(&event->mmap_mutex);
4787

4788 4789 4790 4791 4792 4793
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4794

4795
	event->parent		= parent_event;
4796

4797 4798
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4799

4800
	event->state		= PERF_EVENT_STATE_INACTIVE;
4801

4802 4803
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4804
	
4805
	event->overflow_handler	= overflow_handler;
4806

4807
	if (attr->disabled)
4808
		event->state = PERF_EVENT_STATE_OFF;
4809

4810
	pmu = NULL;
4811

4812
	hwc = &event->hw;
4813
	hwc->sample_period = attr->sample_period;
4814
	if (attr->freq && attr->sample_freq)
4815
		hwc->sample_period = 1;
4816
	hwc->last_period = hwc->sample_period;
4817 4818

	atomic64_set(&hwc->period_left, hwc->sample_period);
4819

4820
	/*
4821
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4822
	 */
4823
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4824 4825
		goto done;

4826
	switch (attr->type) {
4827
	case PERF_TYPE_RAW:
4828
	case PERF_TYPE_HARDWARE:
4829
	case PERF_TYPE_HW_CACHE:
4830
		pmu = hw_perf_event_init(event);
4831 4832 4833
		break;

	case PERF_TYPE_SOFTWARE:
4834
		pmu = sw_perf_event_init(event);
4835 4836 4837
		break;

	case PERF_TYPE_TRACEPOINT:
4838
		pmu = tp_perf_event_init(event);
4839
		break;
4840

4841 4842 4843 4844 4845
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4846 4847
	default:
		break;
4848
	}
4849 4850
done:
	err = 0;
4851
	if (!pmu)
4852
		err = -EINVAL;
4853 4854
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4855

4856
	if (err) {
4857 4858 4859
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4860
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4861
	}
4862

4863
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4864

4865 4866 4867 4868 4869 4870 4871 4872
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4873
	}
4874

4875
	return event;
T
Thomas Gleixner 已提交
4876 4877
}

4878 4879
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4880 4881
{
	u32 size;
4882
	int ret;
4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4907 4908 4909
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4910 4911
	 */
	if (size > sizeof(*attr)) {
4912 4913 4914
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4915

4916 4917
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4918

4919
		for (; addr < end; addr++) {
4920 4921 4922 4923 4924 4925
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4926
		size = sizeof(*attr);
4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4940
	if (attr->__reserved_1)
4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

4958 4959
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
4960
{
4961
	struct perf_mmap_data *data = NULL, *old_data = NULL;
4962 4963
	int ret = -EINVAL;

4964
	if (!output_event)
4965 4966
		goto set;

4967 4968
	/* don't allow circular references */
	if (event == output_event)
4969 4970
		goto out;

4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

4983
set:
4984
	mutex_lock(&event->mmap_mutex);
4985 4986 4987
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
4988

4989 4990 4991 4992 4993
	if (output_event) {
		/* get the buffer we want to redirect to */
		data = perf_mmap_data_get(output_event);
		if (!data)
			goto unlock;
4994 4995
	}

4996 4997
	old_data = event->data;
	rcu_assign_pointer(event->data, data);
4998
	ret = 0;
4999 5000 5001 5002 5003
unlock:
	mutex_unlock(&event->mmap_mutex);

	if (old_data)
		perf_mmap_data_put(old_data);
5004 5005 5006 5007
out:
	return ret;
}

T
Thomas Gleixner 已提交
5008
/**
5009
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5010
 *
5011
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5012
 * @pid:		target pid
I
Ingo Molnar 已提交
5013
 * @cpu:		target cpu
5014
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5015
 */
5016 5017
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5018
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5019
{
5020
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5021 5022 5023
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5024
	struct file *group_file = NULL;
5025
	int event_fd;
5026
	int fput_needed = 0;
5027
	int err;
T
Thomas Gleixner 已提交
5028

5029
	/* for future expandability... */
5030
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5031 5032
		return -EINVAL;

5033 5034 5035
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5036

5037 5038 5039 5040 5041
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5042
	if (attr.freq) {
5043
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5044 5045 5046
			return -EINVAL;
	}

5047 5048 5049 5050
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5051
	/*
I
Ingo Molnar 已提交
5052 5053 5054
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
5055 5056 5057 5058
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_fd;
	}
I
Ingo Molnar 已提交
5059

5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
			goto err_put_context;
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5073
	/*
5074
	 * Look up the group leader (we will attach this event to it):
5075
	 */
5076
	if (group_leader) {
5077
		err = -EINVAL;
5078 5079

		/*
I
Ingo Molnar 已提交
5080 5081 5082 5083 5084 5085 5086 5087
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5088
		 */
I
Ingo Molnar 已提交
5089 5090
		if (group_leader->ctx != ctx)
			goto err_put_context;
5091 5092 5093
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5094
		if (attr.exclusive || attr.pinned)
5095
			goto err_put_context;
5096 5097
	}

5098
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5099
				     NULL, NULL, GFP_KERNEL);
5100 5101
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
T
Thomas Gleixner 已提交
5102
		goto err_put_context;
5103 5104 5105 5106 5107 5108 5109
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
			goto err_free_put_context;
	}
T
Thomas Gleixner 已提交
5110

5111 5112 5113
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5114
		goto err_free_put_context;
5115
	}
5116

5117
	event->filp = event_file;
5118
	WARN_ON_ONCE(ctx->parent_ctx);
5119
	mutex_lock(&ctx->mutex);
5120
	perf_install_in_context(ctx, event, cpu);
5121
	++ctx->generation;
5122
	mutex_unlock(&ctx->mutex);
5123

5124
	event->owner = current;
5125
	get_task_struct(current);
5126 5127 5128
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5129

5130 5131 5132
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5133

5134
err_free_put_context:
5135
	free_event(event);
T
Thomas Gleixner 已提交
5136
err_put_context:
5137
	fput_light(group_file, fput_needed);
5138 5139 5140
	put_ctx(ctx);
err_fd:
	put_unused_fd(event_fd);
5141
	return err;
T
Thomas Gleixner 已提交
5142 5143
}

5144 5145 5146 5147 5148 5149 5150 5151 5152
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5153 5154
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5155 5156 5157 5158 5159 5160 5161 5162 5163 5164
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5165 5166 5167 5168
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5169 5170

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5171
				 NULL, overflow_handler, GFP_KERNEL);
5172 5173
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5174
		goto err_put_context;
5175
	}
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5192 5193 5194 5195
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5196 5197 5198
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5199
/*
5200
 * inherit a event from parent task to child task:
5201
 */
5202 5203
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5204
	      struct task_struct *parent,
5205
	      struct perf_event_context *parent_ctx,
5206
	      struct task_struct *child,
5207 5208
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5209
{
5210
	struct perf_event *child_event;
5211

5212
	/*
5213 5214
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5215 5216 5217
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5218 5219
	if (parent_event->parent)
		parent_event = parent_event->parent;
5220

5221 5222 5223
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5224
					   NULL, GFP_KERNEL);
5225 5226
	if (IS_ERR(child_event))
		return child_event;
5227
	get_ctx(child_ctx);
5228

5229
	/*
5230
	 * Make the child state follow the state of the parent event,
5231
	 * not its attr.disabled bit.  We hold the parent's mutex,
5232
	 * so we won't race with perf_event_{en, dis}able_family.
5233
	 */
5234 5235
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5236
	else
5237
		child_event->state = PERF_EVENT_STATE_OFF;
5238

5239 5240 5241 5242 5243 5244 5245 5246 5247
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5248

5249 5250
	child_event->overflow_handler = parent_event->overflow_handler;

5251 5252 5253
	/*
	 * Link it up in the child's context:
	 */
5254
	add_event_to_ctx(child_event, child_ctx);
5255 5256 5257

	/*
	 * Get a reference to the parent filp - we will fput it
5258
	 * when the child event exits. This is safe to do because
5259 5260 5261
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5262
	atomic_long_inc(&parent_event->filp->f_count);
5263

5264
	/*
5265
	 * Link this into the parent event's child list
5266
	 */
5267 5268 5269 5270
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5271

5272
	return child_event;
5273 5274
}

5275
static int inherit_group(struct perf_event *parent_event,
5276
	      struct task_struct *parent,
5277
	      struct perf_event_context *parent_ctx,
5278
	      struct task_struct *child,
5279
	      struct perf_event_context *child_ctx)
5280
{
5281 5282 5283
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5284

5285
	leader = inherit_event(parent_event, parent, parent_ctx,
5286
				 child, NULL, child_ctx);
5287 5288
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5289 5290
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5291 5292 5293
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5294
	}
5295 5296 5297
	return 0;
}

5298
static void sync_child_event(struct perf_event *child_event,
5299
			       struct task_struct *child)
5300
{
5301
	struct perf_event *parent_event = child_event->parent;
5302
	u64 child_val;
5303

5304 5305
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5306

5307
	child_val = atomic64_read(&child_event->count);
5308 5309 5310 5311

	/*
	 * Add back the child's count to the parent's count:
	 */
5312 5313 5314 5315 5316
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5317 5318

	/*
5319
	 * Remove this event from the parent's list
5320
	 */
5321 5322 5323 5324
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5325 5326

	/*
5327
	 * Release the parent event, if this was the last
5328 5329
	 * reference to it.
	 */
5330
	fput(parent_event->filp);
5331 5332
}

5333
static void
5334 5335
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5336
			 struct task_struct *child)
5337
{
5338
	struct perf_event *parent_event;
5339

5340
	perf_event_remove_from_context(child_event);
5341

5342
	parent_event = child_event->parent;
5343
	/*
5344
	 * It can happen that parent exits first, and has events
5345
	 * that are still around due to the child reference. These
5346
	 * events need to be zapped - but otherwise linger.
5347
	 */
5348 5349 5350
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5351
	}
5352 5353 5354
}

/*
5355
 * When a child task exits, feed back event values to parent events.
5356
 */
5357
void perf_event_exit_task(struct task_struct *child)
5358
{
5359 5360
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5361
	unsigned long flags;
5362

5363 5364
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5365
		return;
P
Peter Zijlstra 已提交
5366
	}
5367

5368
	local_irq_save(flags);
5369 5370 5371 5372 5373 5374
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5375 5376
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5377 5378 5379

	/*
	 * Take the context lock here so that if find_get_context is
5380
	 * reading child->perf_event_ctxp, we wait until it has
5381 5382
	 * incremented the context's refcount before we do put_ctx below.
	 */
5383
	raw_spin_lock(&child_ctx->lock);
5384
	child->perf_event_ctxp = NULL;
5385 5386 5387
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5388
	 * the events from it.
5389 5390
	 */
	unclone_ctx(child_ctx);
5391
	update_context_time(child_ctx);
5392
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5393 5394

	/*
5395 5396 5397
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5398
	 */
5399
	perf_event_task(child, child_ctx, 0);
5400

5401 5402 5403
	/*
	 * We can recurse on the same lock type through:
	 *
5404 5405 5406
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5407 5408 5409 5410 5411
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5412
	mutex_lock(&child_ctx->mutex);
5413

5414
again:
5415 5416 5417 5418 5419
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5420
				 group_entry)
5421
		__perf_event_exit_task(child_event, child_ctx, child);
5422 5423

	/*
5424
	 * If the last event was a group event, it will have appended all
5425 5426 5427
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5428 5429
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5430
		goto again;
5431 5432 5433 5434

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5435 5436
}

5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5455 5456 5457 5458
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5459
void perf_event_free_task(struct task_struct *task)
5460
{
5461 5462
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5463 5464 5465 5466 5467 5468

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5469 5470
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5471

5472 5473 5474
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5475

5476 5477 5478
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5479

5480
	mutex_unlock(&ctx->mutex);
5481

5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5497 5498
	}

5499 5500 5501 5502 5503 5504 5505
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5506

5507 5508 5509 5510
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5511

5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5524 5525
}

5526

5527
/*
5528
 * Initialize the perf_event context in task_struct
5529
 */
5530
int perf_event_init_task(struct task_struct *child)
5531
{
5532
	struct perf_event_context *child_ctx, *parent_ctx;
5533 5534
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5535
	struct task_struct *parent = current;
5536
	int inherited_all = 1;
5537
	int ret = 0;
5538

5539
	child->perf_event_ctxp = NULL;
5540

5541 5542
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5543

5544
	if (likely(!parent->perf_event_ctxp))
5545 5546
		return 0;

5547
	/*
5548 5549
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5550
	 */
5551 5552
	parent_ctx = perf_pin_task_context(parent);

5553 5554 5555 5556 5557 5558 5559
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5560 5561 5562 5563
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5564
	mutex_lock(&parent_ctx->mutex);
5565 5566 5567 5568 5569

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5570 5571 5572 5573 5574 5575
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5576

5577 5578 5579 5580
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5581
			break;
5582 5583
	}

5584 5585
	child_ctx = child->perf_event_ctxp;

5586
	if (child_ctx && inherited_all) {
5587 5588 5589
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5590 5591
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5592
		 * because the list of events and the generation
5593
		 * count can't have changed since we took the mutex.
5594
		 */
5595 5596 5597
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5598
			child_ctx->parent_gen = parent_ctx->parent_gen;
5599 5600 5601 5602 5603
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5604 5605
	}

5606
	mutex_unlock(&parent_ctx->mutex);
5607

5608
	perf_unpin_context(parent_ctx);
5609

5610
	return ret;
5611 5612
}

5613 5614 5615 5616 5617 5618 5619
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5620
		mutex_init(&cpuctx->hlist_mutex);
5621 5622 5623 5624
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5625
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5626
{
5627
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5628

5629
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5630

5631
	spin_lock(&perf_resource_lock);
5632
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5633
	spin_unlock(&perf_resource_lock);
5634 5635 5636 5637 5638 5639 5640 5641 5642 5643

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5644 5645 5646
}

#ifdef CONFIG_HOTPLUG_CPU
5647
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5648 5649
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5650 5651
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5652

5653 5654 5655
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5656
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5657
}
5658
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5659
{
5660
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5661
	struct perf_event_context *ctx = &cpuctx->ctx;
5662

5663 5664 5665 5666
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5667
	mutex_lock(&ctx->mutex);
5668
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5669
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5670 5671
}
#else
5672
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5684
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5685 5686 5687 5688
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5689
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5690 5691 5692 5693 5694 5695 5696 5697 5698
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5699 5700 5701
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5702 5703
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5704
	.priority		= 20,
T
Thomas Gleixner 已提交
5705 5706
};

5707
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5708
{
5709
	perf_event_init_all_cpus();
T
Thomas Gleixner 已提交
5710 5711
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5712 5713
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5714 5715 5716
	register_cpu_notifier(&perf_cpu_nb);
}

5717 5718 5719
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5720 5721 5722 5723 5724 5725
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5726
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5737
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5738 5739
		return -EINVAL;

5740
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5741 5742 5743
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5744
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5745 5746
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5747
		cpuctx->max_pertask = mpt;
5748
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5749
	}
5750
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5751 5752 5753 5754

	return count;
}

5755 5756 5757
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5758 5759 5760 5761 5762
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5763 5764 5765
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5766 5767 5768 5769 5770 5771 5772 5773 5774 5775
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5776
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5777
	perf_overcommit = val;
5778
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5805
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5806 5807
};

5808
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5809 5810 5811 5812
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5813
device_initcall(perf_event_sysfs_init);