perf_event.c 123.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38
 */
39
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
40

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
206
		raw_spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
209 210
			goto retry;
		}
211 212

		if (!atomic_inc_not_zero(&ctx->refcount)) {
213
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
214 215
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
234
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
235 236 237 238
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242
{
	unsigned long flags;

243
	raw_spin_lock_irqsave(&ctx->lock, flags);
244
	--ctx->pin_count;
245
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 247 248
	put_ctx(ctx);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline u64 perf_clock(void)
{
	return cpu_clock(smp_processor_id());
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

277 278 279 280 281 282
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
283 284 285 286 287 288 289 290 291

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

292 293 294 295 296 297 298 299 300
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

301
/*
302
 * Add a event from the lists for its context.
303 304
 * Must be called with ctx->mutex and ctx->lock held.
 */
305
static void
306
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
307
{
308
	struct perf_event *group_leader = event->group_leader;
309 310

	/*
311 312
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
313 314
	 * leader's sibling list:
	 */
315 316 317 318 319 320
	if (group_leader == event) {
		struct list_head *list;

		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
321
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
322 323
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
324

325 326 327
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
328
		ctx->nr_stat++;
329 330
}

331
/*
332
 * Remove a event from the lists for its context.
333
 * Must be called with ctx->mutex and ctx->lock held.
334
 */
335
static void
336
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
337
{
338
	struct perf_event *sibling, *tmp;
339

340
	if (list_empty(&event->group_entry))
341
		return;
342 343
	ctx->nr_events--;
	if (event->attr.inherit_stat)
344
		ctx->nr_stat--;
345

346 347
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
348

349 350
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
351

352
	update_event_times(event);
353 354 355 356 357 358 359 360 361 362

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
363

364
	/*
365 366
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
367 368
	 * to the context list directly:
	 */
369
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
370
		struct list_head *list;
371

372 373
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
374 375 376 377
		sibling->group_leader = sibling;
	}
}

378
static void
379
event_sched_out(struct perf_event *event,
380
		  struct perf_cpu_context *cpuctx,
381
		  struct perf_event_context *ctx)
382
{
383
	if (event->state != PERF_EVENT_STATE_ACTIVE)
384 385
		return;

386 387 388 389
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
390
	}
391 392 393
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
394

395
	if (!is_software_event(event))
396 397
		cpuctx->active_oncpu--;
	ctx->nr_active--;
398
	if (event->attr.exclusive || !cpuctx->active_oncpu)
399 400 401
		cpuctx->exclusive = 0;
}

402
static void
403
group_sched_out(struct perf_event *group_event,
404
		struct perf_cpu_context *cpuctx,
405
		struct perf_event_context *ctx)
406
{
407
	struct perf_event *event;
408

409
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
410 411
		return;

412
	event_sched_out(group_event, cpuctx, ctx);
413 414 415 416

	/*
	 * Schedule out siblings (if any):
	 */
417 418
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
419

420
	if (group_event->attr.exclusive)
421 422 423
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
424
/*
425
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
426
 *
427
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
428 429
 * remove it from the context list.
 */
430
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
431 432
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
433 434
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
435 436 437 438 439 440

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
441
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
442 443
		return;

444
	raw_spin_lock(&ctx->lock);
445 446
	/*
	 * Protect the list operation against NMI by disabling the
447
	 * events on a global level.
448 449
	 */
	perf_disable();
T
Thomas Gleixner 已提交
450

451
	event_sched_out(event, cpuctx, ctx);
452

453
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
454 455 456

	if (!ctx->task) {
		/*
457
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
458 459 460
		 * reservation:
		 */
		cpuctx->max_pertask =
461 462
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
463 464
	}

465
	perf_enable();
466
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
467 468 469 470
}


/*
471
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
472
 *
473
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
474
 *
475
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
476
 * call when the task is on a CPU.
477
 *
478 479
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
480 481
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
482
 * When called from perf_event_exit_task, it's OK because the
483
 * context has been detached from its task.
T
Thomas Gleixner 已提交
484
 */
485
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
486
{
487
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
488 489 490 491
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
492
		 * Per cpu events are removed via an smp call and
493
		 * the removal is always successful.
T
Thomas Gleixner 已提交
494
		 */
495 496 497
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
498 499 500 501
		return;
	}

retry:
502 503
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
504

505
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
506 507 508
	/*
	 * If the context is active we need to retry the smp call.
	 */
509
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
510
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
511 512 513 514 515
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
516
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
517 518
	 * succeed.
	 */
P
Peter Zijlstra 已提交
519
	if (!list_empty(&event->group_entry))
520
		list_del_event(event, ctx);
521
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
522 523
}

524
/*
525
 * Update total_time_enabled and total_time_running for all events in a group.
526
 */
527
static void update_group_times(struct perf_event *leader)
528
{
529
	struct perf_event *event;
530

531 532 533
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
534 535
}

536
/*
537
 * Cross CPU call to disable a performance event
538
 */
539
static void __perf_event_disable(void *info)
540
{
541
	struct perf_event *event = info;
542
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
543
	struct perf_event_context *ctx = event->ctx;
544 545

	/*
546 547
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
548
	 */
549
	if (ctx->task && cpuctx->task_ctx != ctx)
550 551
		return;

552
	raw_spin_lock(&ctx->lock);
553 554

	/*
555
	 * If the event is on, turn it off.
556 557
	 * If it is in error state, leave it in error state.
	 */
558
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
559
		update_context_time(ctx);
560 561 562
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
563
		else
564 565
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
566 567
	}

568
	raw_spin_unlock(&ctx->lock);
569 570 571
}

/*
572
 * Disable a event.
573
 *
574 575
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
576
 * remains valid.  This condition is satisifed when called through
577 578 579 580
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
581
 * is the current context on this CPU and preemption is disabled,
582
 * hence we can't get into perf_event_task_sched_out for this context.
583
 */
584
void perf_event_disable(struct perf_event *event)
585
{
586
	struct perf_event_context *ctx = event->ctx;
587 588 589 590
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
591
		 * Disable the event on the cpu that it's on
592
		 */
593 594
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
595 596 597 598
		return;
	}

 retry:
599
	task_oncpu_function_call(task, __perf_event_disable, event);
600

601
	raw_spin_lock_irq(&ctx->lock);
602
	/*
603
	 * If the event is still active, we need to retry the cross-call.
604
	 */
605
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
606
		raw_spin_unlock_irq(&ctx->lock);
607 608 609 610 611 612 613
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
614 615 616
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
617
	}
618

619
	raw_spin_unlock_irq(&ctx->lock);
620 621
}

622
static int
623
event_sched_in(struct perf_event *event,
624
		 struct perf_cpu_context *cpuctx,
625
		 struct perf_event_context *ctx,
626 627
		 int cpu)
{
628
	if (event->state <= PERF_EVENT_STATE_OFF)
629 630
		return 0;

631 632
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
633 634 635 636 637
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

638 639 640
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
641 642 643
		return -EAGAIN;
	}

644
	event->tstamp_running += ctx->time - event->tstamp_stopped;
645

646
	if (!is_software_event(event))
647
		cpuctx->active_oncpu++;
648 649
	ctx->nr_active++;

650
	if (event->attr.exclusive)
651 652
		cpuctx->exclusive = 1;

653 654 655
	return 0;
}

656
static int
657
group_sched_in(struct perf_event *group_event,
658
	       struct perf_cpu_context *cpuctx,
659
	       struct perf_event_context *ctx,
660 661
	       int cpu)
{
662
	struct perf_event *event, *partial_group;
663 664
	int ret;

665
	if (group_event->state == PERF_EVENT_STATE_OFF)
666 667
		return 0;

668
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
669 670 671
	if (ret)
		return ret < 0 ? ret : 0;

672
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
673 674 675 676 677
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
678 679 680
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
681 682 683 684 685 686 687 688 689 690 691
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
692 693
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
694
			break;
695
		event_sched_out(event, cpuctx, ctx);
696
	}
697
	event_sched_out(group_event, cpuctx, ctx);
698 699 700 701

	return -EAGAIN;
}

702
/*
703 704
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
705
 */
706
static int is_software_only_group(struct perf_event *leader)
707
{
708
	struct perf_event *event;
709

710
	if (!is_software_event(leader))
711
		return 0;
P
Peter Zijlstra 已提交
712

713 714
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
715
			return 0;
P
Peter Zijlstra 已提交
716

717 718 719 720
	return 1;
}

/*
721
 * Work out whether we can put this event group on the CPU now.
722
 */
723
static int group_can_go_on(struct perf_event *event,
724 725 726 727
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
728
	 * Groups consisting entirely of software events can always go on.
729
	 */
730
	if (is_software_only_group(event))
731 732 733
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
734
	 * events can go on.
735 736 737 738 739
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
740
	 * events on the CPU, it can't go on.
741
	 */
742
	if (event->attr.exclusive && cpuctx->active_oncpu)
743 744 745 746 747 748 749 750
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

751 752
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
753
{
754 755 756 757
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
758 759
}

T
Thomas Gleixner 已提交
760
/*
761
 * Cross CPU call to install and enable a performance event
762 763
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
764 765 766 767
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
768 769 770
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
771
	int cpu = smp_processor_id();
772
	int err;
T
Thomas Gleixner 已提交
773 774 775 776 777

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
778
	 * Or possibly this is the right context but it isn't
779
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
780
	 */
781
	if (ctx->task && cpuctx->task_ctx != ctx) {
782
		if (cpuctx->task_ctx || ctx->task != current)
783 784 785
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
786

787
	raw_spin_lock(&ctx->lock);
788
	ctx->is_active = 1;
789
	update_context_time(ctx);
T
Thomas Gleixner 已提交
790 791 792

	/*
	 * Protect the list operation against NMI by disabling the
793
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
794
	 */
795
	perf_disable();
T
Thomas Gleixner 已提交
796

797
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
798

799 800 801
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

802
	/*
803
	 * Don't put the event on if it is disabled or if
804 805
	 * it is in a group and the group isn't on.
	 */
806 807
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808 809
		goto unlock;

810
	/*
811 812 813
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
814
	 */
815
	if (!group_can_go_on(event, cpuctx, 1))
816 817
		err = -EEXIST;
	else
818
		err = event_sched_in(event, cpuctx, ctx, cpu);
819

820 821
	if (err) {
		/*
822
		 * This event couldn't go on.  If it is in a group
823
		 * then we have to pull the whole group off.
824
		 * If the event group is pinned then put it in error state.
825
		 */
826
		if (leader != event)
827
			group_sched_out(leader, cpuctx, ctx);
828
		if (leader->attr.pinned) {
829
			update_group_times(leader);
830
			leader->state = PERF_EVENT_STATE_ERROR;
831
		}
832
	}
T
Thomas Gleixner 已提交
833

834
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
835 836
		cpuctx->max_pertask--;

837
 unlock:
838
	perf_enable();
839

840
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
841 842 843
}

/*
844
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
845
 *
846 847
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
848
 *
849
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
850 851
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
852 853
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
854 855
 */
static void
856 857
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
858 859 860 861 862 863
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
864
		 * Per cpu events are installed via an smp call and
865
		 * the install is always successful.
T
Thomas Gleixner 已提交
866 867
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
868
					 event, 1);
T
Thomas Gleixner 已提交
869 870 871 872 873
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
874
				 event);
T
Thomas Gleixner 已提交
875

876
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
877 878 879
	/*
	 * we need to retry the smp call.
	 */
880
	if (ctx->is_active && list_empty(&event->group_entry)) {
881
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
882 883 884 885 886
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
887
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
888 889
	 * succeed.
	 */
890 891
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
892
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
893 894
}

895
/*
896
 * Put a event into inactive state and update time fields.
897 898 899 900 901 902
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
903 904
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
905
{
906
	struct perf_event *sub;
907

908 909 910 911
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
912 913 914 915
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

916
/*
917
 * Cross CPU call to enable a performance event
918
 */
919
static void __perf_event_enable(void *info)
920
{
921
	struct perf_event *event = info;
922
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
923 924
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
925
	int err;
926

927
	/*
928 929
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
930
	 */
931
	if (ctx->task && cpuctx->task_ctx != ctx) {
932
		if (cpuctx->task_ctx || ctx->task != current)
933 934 935
			return;
		cpuctx->task_ctx = ctx;
	}
936

937
	raw_spin_lock(&ctx->lock);
938
	ctx->is_active = 1;
939
	update_context_time(ctx);
940

941
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
942
		goto unlock;
943
	__perf_event_mark_enabled(event, ctx);
944

945 946 947
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

948
	/*
949
	 * If the event is in a group and isn't the group leader,
950
	 * then don't put it on unless the group is on.
951
	 */
952
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
953
		goto unlock;
954

955
	if (!group_can_go_on(event, cpuctx, 1)) {
956
		err = -EEXIST;
957
	} else {
958
		perf_disable();
959 960
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
961 962
					     smp_processor_id());
		else
963
			err = event_sched_in(event, cpuctx, ctx,
964
					       smp_processor_id());
965
		perf_enable();
966
	}
967 968 969

	if (err) {
		/*
970
		 * If this event can't go on and it's part of a
971 972
		 * group, then the whole group has to come off.
		 */
973
		if (leader != event)
974
			group_sched_out(leader, cpuctx, ctx);
975
		if (leader->attr.pinned) {
976
			update_group_times(leader);
977
			leader->state = PERF_EVENT_STATE_ERROR;
978
		}
979 980 981
	}

 unlock:
982
	raw_spin_unlock(&ctx->lock);
983 984 985
}

/*
986
 * Enable a event.
987
 *
988 989
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
990
 * remains valid.  This condition is satisfied when called through
991 992
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
993
 */
994
void perf_event_enable(struct perf_event *event)
995
{
996
	struct perf_event_context *ctx = event->ctx;
997 998 999 1000
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
1001
		 * Enable the event on the cpu that it's on
1002
		 */
1003 1004
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1005 1006 1007
		return;
	}

1008
	raw_spin_lock_irq(&ctx->lock);
1009
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1010 1011 1012
		goto out;

	/*
1013 1014
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1015 1016 1017 1018
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1019 1020
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1021 1022

 retry:
1023
	raw_spin_unlock_irq(&ctx->lock);
1024
	task_oncpu_function_call(task, __perf_event_enable, event);
1025

1026
	raw_spin_lock_irq(&ctx->lock);
1027 1028

	/*
1029
	 * If the context is active and the event is still off,
1030 1031
	 * we need to retry the cross-call.
	 */
1032
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1033 1034 1035 1036 1037 1038
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1039 1040
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1041

1042
 out:
1043
	raw_spin_unlock_irq(&ctx->lock);
1044 1045
}

1046
static int perf_event_refresh(struct perf_event *event, int refresh)
1047
{
1048
	/*
1049
	 * not supported on inherited events
1050
	 */
1051
	if (event->attr.inherit)
1052 1053
		return -EINVAL;

1054 1055
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1056 1057

	return 0;
1058 1059
}

1060
void __perf_event_sched_out(struct perf_event_context *ctx,
1061 1062
			      struct perf_cpu_context *cpuctx)
{
1063
	struct perf_event *event;
1064

1065
	raw_spin_lock(&ctx->lock);
1066
	ctx->is_active = 0;
1067
	if (likely(!ctx->nr_events))
1068
		goto out;
1069
	update_context_time(ctx);
1070

1071
	perf_disable();
P
Peter Zijlstra 已提交
1072
	if (ctx->nr_active) {
1073 1074 1075 1076
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1077
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1078
	}
1079
	perf_enable();
1080
 out:
1081
	raw_spin_unlock(&ctx->lock);
1082 1083
}

1084 1085 1086
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1087 1088 1089 1090
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1091
 * in them directly with an fd; we can only enable/disable all
1092
 * events via prctl, or enable/disable all events in a family
1093 1094
 * via ioctl, which will have the same effect on both contexts.
 */
1095 1096
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1097 1098
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1099
		&& ctx1->parent_gen == ctx2->parent_gen
1100
		&& !ctx1->pin_count && !ctx2->pin_count;
1101 1102
}

1103 1104
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1105 1106 1107
{
	u64 value;

1108
	if (!event->attr.inherit_stat)
1109 1110 1111
		return;

	/*
1112
	 * Update the event value, we cannot use perf_event_read()
1113 1114
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1115
	 * we know the event must be on the current CPU, therefore we
1116 1117
	 * don't need to use it.
	 */
1118 1119
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1120 1121
		event->pmu->read(event);
		/* fall-through */
1122

1123 1124
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1125 1126 1127 1128 1129 1130 1131
		break;

	default:
		break;
	}

	/*
1132
	 * In order to keep per-task stats reliable we need to flip the event
1133 1134
	 * values when we flip the contexts.
	 */
1135 1136 1137
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1138

1139 1140
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1141

1142
	/*
1143
	 * Since we swizzled the values, update the user visible data too.
1144
	 */
1145 1146
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1147 1148 1149 1150 1151
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1152 1153
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1154
{
1155
	struct perf_event *event, *next_event;
1156 1157 1158 1159

	if (!ctx->nr_stat)
		return;

1160 1161
	update_context_time(ctx);

1162 1163
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1164

1165 1166
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1167

1168 1169
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1170

1171
		__perf_event_sync_stat(event, next_event);
1172

1173 1174
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1175 1176 1177
	}
}

T
Thomas Gleixner 已提交
1178
/*
1179
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1180 1181
 * with interrupts disabled.
 *
1182
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1183
 *
I
Ingo Molnar 已提交
1184
 * This does not protect us against NMI, but disable()
1185 1186 1187
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1188
 */
1189
void perf_event_task_sched_out(struct task_struct *task,
1190
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1191
{
1192
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1193 1194 1195
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1196
	struct pt_regs *regs;
1197
	int do_switch = 1;
T
Thomas Gleixner 已提交
1198

1199
	regs = task_pt_regs(task);
1200
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1201

1202
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1203 1204
		return;

1205 1206
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1207
	next_ctx = next->perf_event_ctxp;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1219 1220
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1221
		if (context_equiv(ctx, next_ctx)) {
1222 1223
			/*
			 * XXX do we need a memory barrier of sorts
1224
			 * wrt to rcu_dereference() of perf_event_ctxp
1225
			 */
1226 1227
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1228 1229 1230
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1231

1232
			perf_event_sync_stat(ctx, next_ctx);
1233
		}
1234 1235
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1236
	}
1237
	rcu_read_unlock();
1238

1239
	if (do_switch) {
1240
		__perf_event_sched_out(ctx, cpuctx);
1241 1242
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1243 1244
}

1245 1246 1247
/*
 * Called with IRQs disabled
 */
1248
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1249 1250 1251
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1252 1253
	if (!cpuctx->task_ctx)
		return;
1254 1255 1256 1257

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1258
	__perf_event_sched_out(ctx, cpuctx);
1259 1260 1261
	cpuctx->task_ctx = NULL;
}

1262 1263 1264
/*
 * Called with IRQs disabled
 */
1265
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1266
{
1267
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1268 1269
}

1270
static void
1271
__perf_event_sched_in(struct perf_event_context *ctx,
1272
			struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1273
{
1274
	int cpu = smp_processor_id();
1275
	struct perf_event *event;
1276
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1277

1278
	raw_spin_lock(&ctx->lock);
1279
	ctx->is_active = 1;
1280
	if (likely(!ctx->nr_events))
1281
		goto out;
T
Thomas Gleixner 已提交
1282

1283
	ctx->timestamp = perf_clock();
1284

1285
	perf_disable();
1286 1287 1288 1289 1290

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1291 1292
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1293
			continue;
1294
		if (event->cpu != -1 && event->cpu != cpu)
1295 1296
			continue;

1297 1298
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1299 1300 1301 1302 1303

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1304 1305 1306
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1307
		}
1308 1309
	}

1310 1311 1312
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1313
			continue;
1314 1315
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1316
		 * of events:
1317
		 */
1318
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1319 1320
			continue;

1321 1322
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1323
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1324
	}
1325
	perf_enable();
1326
 out:
1327
	raw_spin_unlock(&ctx->lock);
1328 1329 1330
}

/*
1331
 * Called from scheduler to add the events of the current task
1332 1333
 * with interrupts disabled.
 *
1334
 * We restore the event value and then enable it.
1335 1336
 *
 * This does not protect us against NMI, but enable()
1337 1338 1339
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1340
 */
1341
void perf_event_task_sched_in(struct task_struct *task)
1342
{
1343
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1344
	struct perf_event_context *ctx = task->perf_event_ctxp;
1345

1346 1347
	if (likely(!ctx))
		return;
1348 1349
	if (cpuctx->task_ctx == ctx)
		return;
1350
	__perf_event_sched_in(ctx, cpuctx);
T
Thomas Gleixner 已提交
1351 1352 1353
	cpuctx->task_ctx = ctx;
}

1354
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx)
1355
{
1356
	struct perf_event_context *ctx = &cpuctx->ctx;
1357

1358
	__perf_event_sched_in(ctx, cpuctx);
1359 1360
}

1361 1362
#define MAX_INTERRUPTS (~0ULL)

1363
static void perf_log_throttle(struct perf_event *event, int enable);
1364

1365
static void perf_adjust_period(struct perf_event *event, u64 events)
1366
{
1367
	struct hw_perf_event *hwc = &event->hw;
1368 1369 1370 1371
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1372
	period = div64_u64(events, event->attr.sample_freq);
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1385
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1386
{
1387 1388
	struct perf_event *event;
	struct hw_perf_event *hwc;
1389
	u64 interrupts, freq;
1390

1391
	raw_spin_lock(&ctx->lock);
1392
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1393
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1394 1395
			continue;

1396 1397 1398
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1399
		hwc = &event->hw;
1400 1401 1402

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1403

1404
		/*
1405
		 * unthrottle events on the tick
1406
		 */
1407
		if (interrupts == MAX_INTERRUPTS) {
1408 1409 1410
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1411 1412
		}

1413
		if (!event->attr.freq || !event->attr.sample_freq)
1414 1415
			continue;

1416 1417 1418
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1419 1420
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1434
		perf_adjust_period(event, freq * interrupts);
1435

1436 1437 1438 1439 1440 1441 1442
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1443
			event->pmu->disable(event);
1444
			atomic64_set(&hwc->period_left, 0);
1445
			event->pmu->enable(event);
1446 1447
			perf_enable();
		}
1448
	}
1449
	raw_spin_unlock(&ctx->lock);
1450 1451
}

1452
/*
1453
 * Round-robin a context's events:
1454
 */
1455
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1456
{
1457
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1458 1459
		return;

1460
	raw_spin_lock(&ctx->lock);
1461 1462

	/* Rotate the first entry last of non-pinned groups */
1463
	perf_disable();
1464

1465 1466
	list_rotate_left(&ctx->flexible_groups);

1467
	perf_enable();
T
Thomas Gleixner 已提交
1468

1469
	raw_spin_unlock(&ctx->lock);
1470 1471
}

1472
void perf_event_task_tick(struct task_struct *curr)
1473
{
1474
	struct perf_cpu_context *cpuctx;
1475
	struct perf_event_context *ctx;
1476

1477
	if (!atomic_read(&nr_events))
1478 1479
		return;

1480
	cpuctx = &__get_cpu_var(perf_cpu_context);
1481
	ctx = curr->perf_event_ctxp;
1482

1483
	perf_ctx_adjust_freq(&cpuctx->ctx);
1484
	if (ctx)
1485
		perf_ctx_adjust_freq(ctx);
1486

1487
	perf_event_cpu_sched_out(cpuctx);
1488
	if (ctx)
1489
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1490

1491
	rotate_ctx(&cpuctx->ctx);
1492 1493
	if (ctx)
		rotate_ctx(ctx);
1494

1495
	perf_event_cpu_sched_in(cpuctx);
1496
	if (ctx)
1497
		perf_event_task_sched_in(curr);
T
Thomas Gleixner 已提交
1498 1499
}

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1515
/*
1516
 * Enable all of a task's events that have been marked enable-on-exec.
1517 1518
 * This expects task == current.
 */
1519
static void perf_event_enable_on_exec(struct task_struct *task)
1520
{
1521 1522
	struct perf_event_context *ctx;
	struct perf_event *event;
1523 1524
	unsigned long flags;
	int enabled = 0;
1525
	int ret;
1526 1527

	local_irq_save(flags);
1528 1529
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1530 1531
		goto out;

1532
	__perf_event_task_sched_out(ctx);
1533

1534
	raw_spin_lock(&ctx->lock);
1535

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1546 1547 1548
	}

	/*
1549
	 * Unclone this context if we enabled any event.
1550
	 */
1551 1552
	if (enabled)
		unclone_ctx(ctx);
1553

1554
	raw_spin_unlock(&ctx->lock);
1555

1556
	perf_event_task_sched_in(task);
1557 1558 1559 1560
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1561
/*
1562
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1563
 */
1564
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1565
{
1566
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1567 1568
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1569

1570 1571 1572 1573
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1574 1575
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1576 1577 1578 1579
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1580
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1581
	update_context_time(ctx);
1582
	update_event_times(event);
1583
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1584

P
Peter Zijlstra 已提交
1585
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1586 1587
}

1588
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1589 1590
{
	/*
1591 1592
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1593
	 */
1594 1595 1596 1597
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1598 1599 1600
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1601
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1602
		update_context_time(ctx);
1603
		update_event_times(event);
1604
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1605 1606
	}

1607
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1608 1609
}

1610
/*
1611
 * Initialize the perf_event context in a task_struct:
1612 1613
 */
static void
1614
__perf_event_init_context(struct perf_event_context *ctx,
1615 1616
			    struct task_struct *task)
{
1617
	raw_spin_lock_init(&ctx->lock);
1618
	mutex_init(&ctx->mutex);
1619 1620
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1621 1622 1623 1624 1625
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1626
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1627
{
1628
	struct perf_event_context *ctx;
1629
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1630
	struct task_struct *task;
1631
	unsigned long flags;
1632
	int err;
T
Thomas Gleixner 已提交
1633

1634
	if (pid == -1 && cpu != -1) {
1635
		/* Must be root to operate on a CPU event: */
1636
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1637 1638
			return ERR_PTR(-EACCES);

1639
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1640 1641 1642
			return ERR_PTR(-EINVAL);

		/*
1643
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1644 1645 1646
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1647
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1648 1649 1650 1651
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1652
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1669
	/*
1670
	 * Can't attach events to a dying task.
1671 1672 1673 1674 1675
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1676
	/* Reuse ptrace permission checks for now. */
1677 1678 1679 1680 1681
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1682
	ctx = perf_lock_task_context(task, &flags);
1683
	if (ctx) {
1684
		unclone_ctx(ctx);
1685
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1686 1687
	}

1688
	if (!ctx) {
1689
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1690 1691 1692
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1693
		__perf_event_init_context(ctx, task);
1694
		get_ctx(ctx);
1695
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1696 1697 1698 1699 1700
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1701
			goto retry;
1702
		}
1703
		get_task_struct(task);
1704 1705
	}

1706
	put_task_struct(task);
T
Thomas Gleixner 已提交
1707
	return ctx;
1708 1709 1710 1711

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1712 1713
}

L
Li Zefan 已提交
1714 1715
static void perf_event_free_filter(struct perf_event *event);

1716
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1717
{
1718
	struct perf_event *event;
P
Peter Zijlstra 已提交
1719

1720 1721 1722
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1723
	perf_event_free_filter(event);
1724
	kfree(event);
P
Peter Zijlstra 已提交
1725 1726
}

1727
static void perf_pending_sync(struct perf_event *event);
1728

1729
static void free_event(struct perf_event *event)
1730
{
1731
	perf_pending_sync(event);
1732

1733 1734 1735 1736 1737 1738 1739 1740
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1741
	}
1742

1743 1744 1745
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1746 1747
	}

1748 1749
	if (event->destroy)
		event->destroy(event);
1750

1751 1752
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1753 1754
}

1755
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1756
{
1757
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1758

1759
	WARN_ON_ONCE(ctx->parent_ctx);
1760
	mutex_lock(&ctx->mutex);
1761
	perf_event_remove_from_context(event);
1762
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1763

1764 1765 1766 1767
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1768

1769
	free_event(event);
T
Thomas Gleixner 已提交
1770 1771 1772

	return 0;
}
1773
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1774

1775 1776 1777 1778
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1779
{
1780
	struct perf_event *event = file->private_data;
1781

1782
	file->private_data = NULL;
1783

1784
	return perf_event_release_kernel(event);
1785 1786
}

1787
static int perf_event_read_size(struct perf_event *event)
1788 1789 1790 1791 1792
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1793
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1794 1795
		size += sizeof(u64);

1796
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1797 1798
		size += sizeof(u64);

1799
	if (event->attr.read_format & PERF_FORMAT_ID)
1800 1801
		entry += sizeof(u64);

1802 1803
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1804 1805 1806 1807 1808 1809 1810 1811
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1812
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1813
{
1814
	struct perf_event *child;
1815 1816
	u64 total = 0;

1817 1818 1819
	*enabled = 0;
	*running = 0;

1820
	mutex_lock(&event->child_mutex);
1821
	total += perf_event_read(event);
1822 1823 1824 1825 1826 1827
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1828
		total += perf_event_read(child);
1829 1830 1831
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1832
	mutex_unlock(&event->child_mutex);
1833 1834 1835

	return total;
}
1836
EXPORT_SYMBOL_GPL(perf_event_read_value);
1837

1838
static int perf_event_read_group(struct perf_event *event,
1839 1840
				   u64 read_format, char __user *buf)
{
1841
	struct perf_event *leader = event->group_leader, *sub;
1842 1843
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1844
	u64 values[5];
1845
	u64 count, enabled, running;
1846

1847
	mutex_lock(&ctx->mutex);
1848
	count = perf_event_read_value(leader, &enabled, &running);
1849 1850

	values[n++] = 1 + leader->nr_siblings;
1851 1852 1853 1854
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1855 1856 1857
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1858 1859 1860 1861

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1862
		goto unlock;
1863

1864
	ret = size;
1865

1866
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1867
		n = 0;
1868

1869
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1870 1871 1872 1873 1874
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1875
		if (copy_to_user(buf + ret, values, size)) {
1876 1877 1878
			ret = -EFAULT;
			goto unlock;
		}
1879 1880

		ret += size;
1881
	}
1882 1883
unlock:
	mutex_unlock(&ctx->mutex);
1884

1885
	return ret;
1886 1887
}

1888
static int perf_event_read_one(struct perf_event *event,
1889 1890
				 u64 read_format, char __user *buf)
{
1891
	u64 enabled, running;
1892 1893 1894
	u64 values[4];
	int n = 0;

1895 1896 1897 1898 1899
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1900
	if (read_format & PERF_FORMAT_ID)
1901
		values[n++] = primary_event_id(event);
1902 1903 1904 1905 1906 1907 1908

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1909
/*
1910
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1911 1912
 */
static ssize_t
1913
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1914
{
1915
	u64 read_format = event->attr.read_format;
1916
	int ret;
T
Thomas Gleixner 已提交
1917

1918
	/*
1919
	 * Return end-of-file for a read on a event that is in
1920 1921 1922
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1923
	if (event->state == PERF_EVENT_STATE_ERROR)
1924 1925
		return 0;

1926
	if (count < perf_event_read_size(event))
1927 1928
		return -ENOSPC;

1929
	WARN_ON_ONCE(event->ctx->parent_ctx);
1930
	if (read_format & PERF_FORMAT_GROUP)
1931
		ret = perf_event_read_group(event, read_format, buf);
1932
	else
1933
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
1934

1935
	return ret;
T
Thomas Gleixner 已提交
1936 1937 1938 1939 1940
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1941
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1942

1943
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1944 1945 1946 1947
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1948
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1949
	struct perf_mmap_data *data;
1950
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1951 1952

	rcu_read_lock();
1953
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1954
	if (data)
1955
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1956
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1957

1958
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1959 1960 1961 1962

	return events;
}

1963
static void perf_event_reset(struct perf_event *event)
1964
{
1965 1966 1967
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1968 1969
}

1970
/*
1971 1972 1973 1974
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1975
 */
1976 1977
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1978
{
1979
	struct perf_event *child;
P
Peter Zijlstra 已提交
1980

1981 1982 1983 1984
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1985
		func(child);
1986
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1987 1988
}

1989 1990
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1991
{
1992 1993
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1994

1995 1996
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1997
	event = event->group_leader;
1998

1999 2000 2001 2002
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2003
	mutex_unlock(&ctx->mutex);
2004 2005
}

2006
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2007
{
2008
	struct perf_event_context *ctx = event->ctx;
2009 2010 2011 2012
	unsigned long size;
	int ret = 0;
	u64 value;

2013
	if (!event->attr.sample_period)
2014 2015 2016 2017 2018 2019 2020 2021 2022
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2023
	raw_spin_lock_irq(&ctx->lock);
2024 2025
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2026 2027 2028 2029
			ret = -EINVAL;
			goto unlock;
		}

2030
		event->attr.sample_freq = value;
2031
	} else {
2032 2033
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2034 2035
	}
unlock:
2036
	raw_spin_unlock_irq(&ctx->lock);
2037 2038 2039 2040

	return ret;
}

L
Li Zefan 已提交
2041 2042
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2043

2044 2045
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2046 2047
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2048
	u32 flags = arg;
2049 2050

	switch (cmd) {
2051 2052
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2053
		break;
2054 2055
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2056
		break;
2057 2058
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2059
		break;
P
Peter Zijlstra 已提交
2060

2061 2062
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2063

2064 2065
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2066

2067 2068
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2069

L
Li Zefan 已提交
2070 2071 2072
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2073
	default:
P
Peter Zijlstra 已提交
2074
		return -ENOTTY;
2075
	}
P
Peter Zijlstra 已提交
2076 2077

	if (flags & PERF_IOC_FLAG_GROUP)
2078
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2079
	else
2080
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2081 2082

	return 0;
2083 2084
}

2085
int perf_event_task_enable(void)
2086
{
2087
	struct perf_event *event;
2088

2089 2090 2091 2092
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2093 2094 2095 2096

	return 0;
}

2097
int perf_event_task_disable(void)
2098
{
2099
	struct perf_event *event;
2100

2101 2102 2103 2104
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2105 2106 2107 2108

	return 0;
}

2109 2110
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2111 2112
#endif

2113
static int perf_event_index(struct perf_event *event)
2114
{
2115
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2116 2117
		return 0;

2118
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2119 2120
}

2121 2122 2123 2124 2125
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2126
void perf_event_update_userpage(struct perf_event *event)
2127
{
2128
	struct perf_event_mmap_page *userpg;
2129
	struct perf_mmap_data *data;
2130 2131

	rcu_read_lock();
2132
	data = rcu_dereference(event->data);
2133 2134 2135 2136
	if (!data)
		goto unlock;

	userpg = data->user_page;
2137

2138 2139 2140 2141 2142
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2143
	++userpg->lock;
2144
	barrier();
2145 2146 2147 2148
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2149

2150 2151
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2152

2153 2154
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2155

2156
	barrier();
2157
	++userpg->lock;
2158
	preempt_enable();
2159
unlock:
2160
	rcu_read_unlock();
2161 2162
}

2163
static unsigned long perf_data_size(struct perf_mmap_data *data)
2164
{
2165 2166
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2167

2168
#ifndef CONFIG_PERF_USE_VMALLOC
2169

2170 2171 2172
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2173

2174 2175 2176 2177 2178
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2179

2180 2181
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2182

2183
	return virt_to_page(data->data_pages[pgoff - 1]);
2184 2185
}

2186 2187
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2188 2189 2190 2191 2192
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2193
	WARN_ON(atomic_read(&event->mmap_count));
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2212
	data->data_order = 0;
2213 2214
	data->nr_pages = nr_pages;

2215
	return data;
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2227
	return NULL;
2228 2229
}

2230 2231
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2232
	struct page *page = virt_to_page((void *)addr);
2233 2234 2235 2236 2237

	page->mapping = NULL;
	__free_page(page);
}

2238
static void perf_mmap_data_free(struct perf_mmap_data *data)
2239 2240 2241
{
	int i;

2242
	perf_mmap_free_page((unsigned long)data->user_page);
2243
	for (i = 0; i < data->nr_pages; i++)
2244
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2245
	kfree(data);
2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2286
	kfree(data);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2302

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2380
		data->watermark = max_size / 2;
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2392 2393
}

2394
static void perf_mmap_data_release(struct perf_event *event)
2395
{
2396
	struct perf_mmap_data *data = event->data;
2397

2398
	WARN_ON(atomic_read(&event->mmap_count));
2399

2400
	rcu_assign_pointer(event->data, NULL);
2401
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2402 2403 2404 2405
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2406
	struct perf_event *event = vma->vm_file->private_data;
2407

2408
	atomic_inc(&event->mmap_count);
2409 2410 2411 2412
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2413
	struct perf_event *event = vma->vm_file->private_data;
2414

2415 2416
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2417
		unsigned long size = perf_data_size(event->data);
2418 2419
		struct user_struct *user = current_user();

2420
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2421
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2422
		perf_mmap_data_release(event);
2423
		mutex_unlock(&event->mmap_mutex);
2424
	}
2425 2426
}

2427
static const struct vm_operations_struct perf_mmap_vmops = {
2428 2429 2430 2431
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2432 2433 2434 2435
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2436
	struct perf_event *event = file->private_data;
2437
	unsigned long user_locked, user_lock_limit;
2438
	struct user_struct *user = current_user();
2439
	unsigned long locked, lock_limit;
2440
	struct perf_mmap_data *data;
2441 2442
	unsigned long vma_size;
	unsigned long nr_pages;
2443
	long user_extra, extra;
2444
	int ret = 0;
2445

2446
	if (!(vma->vm_flags & VM_SHARED))
2447
		return -EINVAL;
2448 2449 2450 2451

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2452 2453 2454 2455 2456
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2457 2458
		return -EINVAL;

2459
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2460 2461
		return -EINVAL;

2462 2463
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2464

2465 2466 2467
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2468 2469 2470 2471
		ret = -EINVAL;
		goto unlock;
	}

2472 2473
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2474 2475 2476 2477
			ret = -EINVAL;
		goto unlock;
	}

2478
	user_extra = nr_pages + 1;
2479
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2480 2481 2482 2483 2484 2485

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2486
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2487

2488 2489 2490
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2491 2492 2493

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2494
	locked = vma->vm_mm->locked_vm + extra;
2495

2496 2497
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2498 2499 2500
		ret = -EPERM;
		goto unlock;
	}
2501

2502
	WARN_ON(event->data);
2503 2504 2505 2506

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2507 2508
		goto unlock;

2509 2510 2511
	ret = 0;
	perf_mmap_data_init(event, data);

2512
	atomic_set(&event->mmap_count, 1);
2513
	atomic_long_add(user_extra, &user->locked_vm);
2514
	vma->vm_mm->locked_vm += extra;
2515
	event->data->nr_locked = extra;
2516
	if (vma->vm_flags & VM_WRITE)
2517
		event->data->writable = 1;
2518

2519
unlock:
2520
	mutex_unlock(&event->mmap_mutex);
2521 2522 2523

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2524 2525

	return ret;
2526 2527
}

P
Peter Zijlstra 已提交
2528 2529 2530
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2531
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2532 2533 2534
	int retval;

	mutex_lock(&inode->i_mutex);
2535
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2536 2537 2538 2539 2540 2541 2542 2543
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2544 2545 2546 2547
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2548 2549
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2550
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2551
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2552 2553
};

2554
/*
2555
 * Perf event wakeup
2556 2557 2558 2559 2560
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2561
void perf_event_wakeup(struct perf_event *event)
2562
{
2563
	wake_up_all(&event->waitq);
2564

2565 2566 2567
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2568
	}
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2580
static void perf_pending_event(struct perf_pending_entry *entry)
2581
{
2582 2583
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2584

2585 2586 2587
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2588 2589
	}

2590 2591 2592
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2593 2594 2595
	}
}

2596
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2597

2598
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2599 2600 2601
	PENDING_TAIL,
};

2602 2603
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2604
{
2605
	struct perf_pending_entry **head;
2606

2607
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2608 2609
		return;

2610 2611 2612
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2613 2614

	do {
2615 2616
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2617

2618
	set_perf_event_pending();
2619

2620
	put_cpu_var(perf_pending_head);
2621 2622 2623 2624
}

static int __perf_pending_run(void)
{
2625
	struct perf_pending_entry *list;
2626 2627
	int nr = 0;

2628
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2629
	while (list != PENDING_TAIL) {
2630 2631
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2632 2633 2634

		list = list->next;

2635 2636
		func = entry->func;
		entry->next = NULL;
2637 2638 2639 2640 2641 2642 2643
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2644
		func(entry);
2645 2646 2647 2648 2649 2650
		nr++;
	}

	return nr;
}

2651
static inline int perf_not_pending(struct perf_event *event)
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2666
	return event->pending.next == NULL;
2667 2668
}

2669
static void perf_pending_sync(struct perf_event *event)
2670
{
2671
	wait_event(event->waitq, perf_not_pending(event));
2672 2673
}

2674
void perf_event_do_pending(void)
2675 2676 2677 2678
{
	__perf_pending_run();
}

2679 2680 2681 2682
/*
 * Callchain support -- arch specific
 */

2683
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2684 2685 2686 2687
{
	return NULL;
}

2688 2689 2690
/*
 * Output
 */
2691 2692
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2693 2694 2695 2696 2697 2698
{
	unsigned long mask;

	if (!data->writable)
		return true;

2699
	mask = perf_data_size(data) - 1;
2700 2701 2702 2703 2704 2705 2706 2707 2708 2709

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2710
static void perf_output_wakeup(struct perf_output_handle *handle)
2711
{
2712 2713
	atomic_set(&handle->data->poll, POLL_IN);

2714
	if (handle->nmi) {
2715 2716 2717
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2718
	} else
2719
		perf_event_wakeup(handle->event);
2720 2721
}

2722 2723 2724
/*
 * Curious locking construct.
 *
2725 2726
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2727 2728 2729 2730 2731 2732
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2733
 * event_id completes.
2734 2735 2736 2737
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2738
	int cur, cpu = get_cpu();
2739 2740 2741

	handle->locked = 0;

2742 2743 2744 2745 2746 2747 2748 2749
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2750 2751

		cpu_relax();
2752
	}
2753 2754 2755 2756 2757
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2758 2759
	unsigned long head;
	int cpu;
2760

2761
	data->done_head = data->head;
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2772
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2773 2774 2775
		data->user_page->data_head = head;

	/*
2776
	 * NMI can happen here, which means we can miss a done_head update.
2777 2778
	 */

2779
	cpu = atomic_xchg(&data->lock, -1);
2780 2781 2782 2783 2784
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2785
	if (unlikely(atomic_long_read(&data->done_head))) {
2786 2787 2788
		/*
		 * Since we had it locked, we can lock it again.
		 */
2789
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2790 2791 2792 2793 2794
			cpu_relax();

		goto again;
	}

2795
	if (atomic_xchg(&data->wakeup, 0))
2796 2797
		perf_output_wakeup(handle);
out:
2798
	put_cpu();
2799 2800
}

2801 2802
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2803 2804
{
	unsigned int pages_mask;
2805
	unsigned long offset;
2806 2807 2808 2809 2810 2811 2812 2813
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2814 2815
		unsigned long page_offset;
		unsigned long page_size;
2816 2817 2818
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2819 2820 2821
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2839
int perf_output_begin(struct perf_output_handle *handle,
2840
		      struct perf_event *event, unsigned int size,
2841
		      int nmi, int sample)
2842
{
2843
	struct perf_event *output_event;
2844
	struct perf_mmap_data *data;
2845
	unsigned long tail, offset, head;
2846 2847 2848 2849 2850 2851
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2852

2853
	rcu_read_lock();
2854
	/*
2855
	 * For inherited events we send all the output towards the parent.
2856
	 */
2857 2858
	if (event->parent)
		event = event->parent;
2859

2860 2861 2862
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2863

2864
	data = rcu_dereference(event->data);
2865 2866 2867
	if (!data)
		goto out;

2868
	handle->data	= data;
2869
	handle->event	= event;
2870 2871
	handle->nmi	= nmi;
	handle->sample	= sample;
2872

2873
	if (!data->nr_pages)
2874
		goto fail;
2875

2876 2877 2878 2879
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2880 2881
	perf_output_lock(handle);

2882
	do {
2883 2884 2885 2886 2887 2888 2889
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2890
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2891
		head += size;
2892
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2893
			goto fail;
2894
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2895

2896
	handle->offset	= offset;
2897
	handle->head	= head;
2898

2899
	if (head - tail > data->watermark)
2900
		atomic_set(&data->wakeup, 1);
2901

2902
	if (have_lost) {
2903
		lost_event.header.type = PERF_RECORD_LOST;
2904 2905
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2906
		lost_event.id          = event->id;
2907 2908 2909 2910 2911
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2912
	return 0;
2913

2914
fail:
2915 2916
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2917 2918
out:
	rcu_read_unlock();
2919

2920 2921
	return -ENOSPC;
}
2922

2923
void perf_output_end(struct perf_output_handle *handle)
2924
{
2925
	struct perf_event *event = handle->event;
2926 2927
	struct perf_mmap_data *data = handle->data;

2928
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2929

2930
	if (handle->sample && wakeup_events) {
2931
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2932
		if (events >= wakeup_events) {
2933
			atomic_sub(wakeup_events, &data->events);
2934
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2935
		}
2936 2937 2938
	}

	perf_output_unlock(handle);
2939
	rcu_read_unlock();
2940 2941
}

2942
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2943 2944
{
	/*
2945
	 * only top level events have the pid namespace they were created in
2946
	 */
2947 2948
	if (event->parent)
		event = event->parent;
2949

2950
	return task_tgid_nr_ns(p, event->ns);
2951 2952
}

2953
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2954 2955
{
	/*
2956
	 * only top level events have the pid namespace they were created in
2957
	 */
2958 2959
	if (event->parent)
		event = event->parent;
2960

2961
	return task_pid_nr_ns(p, event->ns);
2962 2963
}

2964
static void perf_output_read_one(struct perf_output_handle *handle,
2965
				 struct perf_event *event)
2966
{
2967
	u64 read_format = event->attr.read_format;
2968 2969 2970
	u64 values[4];
	int n = 0;

2971
	values[n++] = atomic64_read(&event->count);
2972
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2973 2974
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2975 2976
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2977 2978
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2979 2980
	}
	if (read_format & PERF_FORMAT_ID)
2981
		values[n++] = primary_event_id(event);
2982 2983 2984 2985 2986

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2987
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2988 2989
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2990
			    struct perf_event *event)
2991
{
2992 2993
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3005
	if (leader != event)
3006 3007 3008 3009
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3010
		values[n++] = primary_event_id(leader);
3011 3012 3013

	perf_output_copy(handle, values, n * sizeof(u64));

3014
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3015 3016
		n = 0;

3017
		if (sub != event)
3018 3019 3020 3021
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3022
			values[n++] = primary_event_id(sub);
3023 3024 3025 3026 3027 3028

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3029
			     struct perf_event *event)
3030
{
3031 3032
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3033
	else
3034
		perf_output_read_one(handle, event);
3035 3036
}

3037 3038 3039
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3040
			struct perf_event *event)
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3071
		perf_output_read(handle, event);
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3109
			 struct perf_event *event,
3110
			 struct pt_regs *regs)
3111
{
3112
	u64 sample_type = event->attr.sample_type;
3113

3114
	data->type = sample_type;
3115

3116
	header->type = PERF_RECORD_SAMPLE;
3117 3118 3119 3120
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3121

3122
	if (sample_type & PERF_SAMPLE_IP) {
3123 3124 3125
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3126
	}
3127

3128
	if (sample_type & PERF_SAMPLE_TID) {
3129
		/* namespace issues */
3130 3131
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3132

3133
		header->size += sizeof(data->tid_entry);
3134 3135
	}

3136
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3137
		data->time = perf_clock();
3138

3139
		header->size += sizeof(data->time);
3140 3141
	}

3142
	if (sample_type & PERF_SAMPLE_ADDR)
3143
		header->size += sizeof(data->addr);
3144

3145
	if (sample_type & PERF_SAMPLE_ID) {
3146
		data->id = primary_event_id(event);
3147

3148 3149 3150 3151
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3152
		data->stream_id = event->id;
3153 3154 3155

		header->size += sizeof(data->stream_id);
	}
3156

3157
	if (sample_type & PERF_SAMPLE_CPU) {
3158 3159
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3160

3161
		header->size += sizeof(data->cpu_entry);
3162 3163
	}

3164
	if (sample_type & PERF_SAMPLE_PERIOD)
3165
		header->size += sizeof(data->period);
3166

3167
	if (sample_type & PERF_SAMPLE_READ)
3168
		header->size += perf_event_read_size(event);
3169

3170
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3171
		int size = 1;
3172

3173 3174 3175 3176 3177 3178
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3179 3180
	}

3181
	if (sample_type & PERF_SAMPLE_RAW) {
3182 3183 3184 3185 3186 3187 3188 3189
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3190
		header->size += size;
3191
	}
3192
}
3193

3194
static void perf_event_output(struct perf_event *event, int nmi,
3195 3196 3197 3198 3199
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3200

3201
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3202

3203
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3204
		return;
3205

3206
	perf_output_sample(&handle, &header, data, event);
3207

3208
	perf_output_end(&handle);
3209 3210
}

3211
/*
3212
 * read event_id
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3223
perf_event_read_event(struct perf_event *event,
3224 3225 3226
			struct task_struct *task)
{
	struct perf_output_handle handle;
3227
	struct perf_read_event read_event = {
3228
		.header = {
3229
			.type = PERF_RECORD_READ,
3230
			.misc = 0,
3231
			.size = sizeof(read_event) + perf_event_read_size(event),
3232
		},
3233 3234
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3235
	};
3236
	int ret;
3237

3238
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3239 3240 3241
	if (ret)
		return;

3242
	perf_output_put(&handle, read_event);
3243
	perf_output_read(&handle, event);
3244

3245 3246 3247
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3248
/*
P
Peter Zijlstra 已提交
3249 3250 3251
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3252 3253
 */

P
Peter Zijlstra 已提交
3254
struct perf_task_event {
3255
	struct task_struct		*task;
3256
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3257 3258 3259 3260 3261 3262

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3263 3264
		u32				tid;
		u32				ptid;
3265
		u64				time;
3266
	} event_id;
P
Peter Zijlstra 已提交
3267 3268
};

3269
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3270
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3271 3272
{
	struct perf_output_handle handle;
3273
	int size;
P
Peter Zijlstra 已提交
3274
	struct task_struct *task = task_event->task;
3275 3276
	int ret;

3277 3278
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3279 3280 3281 3282

	if (ret)
		return;

3283 3284
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3285

3286 3287
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3288

3289
	task_event->event_id.time = perf_clock();
3290

3291
	perf_output_put(&handle, task_event->event_id);
3292

P
Peter Zijlstra 已提交
3293 3294 3295
	perf_output_end(&handle);
}

3296
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3297
{
3298 3299 3300
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3301
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3302 3303 3304 3305 3306
		return 1;

	return 0;
}

3307
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3308
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3309
{
3310
	struct perf_event *event;
P
Peter Zijlstra 已提交
3311

3312 3313 3314
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3315 3316 3317
	}
}

3318
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3319 3320
{
	struct perf_cpu_context *cpuctx;
3321
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3322

3323
	rcu_read_lock();
P
Peter Zijlstra 已提交
3324
	cpuctx = &get_cpu_var(perf_cpu_context);
3325
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3326
	if (!ctx)
3327
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3328
	if (ctx)
3329
		perf_event_task_ctx(ctx, task_event);
3330
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3331 3332 3333
	rcu_read_unlock();
}

3334 3335
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3336
			      int new)
P
Peter Zijlstra 已提交
3337
{
P
Peter Zijlstra 已提交
3338
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3339

3340 3341 3342
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3343 3344
		return;

P
Peter Zijlstra 已提交
3345
	task_event = (struct perf_task_event){
3346 3347
		.task	  = task,
		.task_ctx = task_ctx,
3348
		.event_id    = {
P
Peter Zijlstra 已提交
3349
			.header = {
3350
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3351
				.misc = 0,
3352
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3353
			},
3354 3355
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3356 3357
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3358 3359 3360
		},
	};

3361
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3362 3363
}

3364
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3365
{
3366
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3367 3368
}

3369 3370 3371 3372 3373
/*
 * comm tracking
 */

struct perf_comm_event {
3374 3375
	struct task_struct	*task;
	char			*comm;
3376 3377 3378 3379 3380 3381 3382
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3383
	} event_id;
3384 3385
};

3386
static void perf_event_comm_output(struct perf_event *event,
3387 3388 3389
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3390 3391
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3392 3393 3394 3395

	if (ret)
		return;

3396 3397
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3398

3399
	perf_output_put(&handle, comm_event->event_id);
3400 3401 3402 3403 3404
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3405
static int perf_event_comm_match(struct perf_event *event)
3406
{
3407 3408 3409
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3410
	if (event->attr.comm)
3411 3412 3413 3414 3415
		return 1;

	return 0;
}

3416
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3417 3418
				  struct perf_comm_event *comm_event)
{
3419
	struct perf_event *event;
3420

3421 3422 3423
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3424 3425 3426
	}
}

3427
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3428 3429
{
	struct perf_cpu_context *cpuctx;
3430
	struct perf_event_context *ctx;
3431
	unsigned int size;
3432
	char comm[TASK_COMM_LEN];
3433

3434
	memset(comm, 0, sizeof(comm));
3435
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3436
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3437 3438 3439 3440

	comm_event->comm = comm;
	comm_event->comm_size = size;

3441
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3442

3443
	rcu_read_lock();
3444
	cpuctx = &get_cpu_var(perf_cpu_context);
3445 3446
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3447
	if (ctx)
3448
		perf_event_comm_ctx(ctx, comm_event);
3449
	put_cpu_var(perf_cpu_context);
3450
	rcu_read_unlock();
3451 3452
}

3453
void perf_event_comm(struct task_struct *task)
3454
{
3455 3456
	struct perf_comm_event comm_event;

3457 3458
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3459

3460
	if (!atomic_read(&nr_comm_events))
3461
		return;
3462

3463
	comm_event = (struct perf_comm_event){
3464
		.task	= task,
3465 3466
		/* .comm      */
		/* .comm_size */
3467
		.event_id  = {
3468
			.header = {
3469
				.type = PERF_RECORD_COMM,
3470 3471 3472 3473 3474
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3475 3476 3477
		},
	};

3478
	perf_event_comm_event(&comm_event);
3479 3480
}

3481 3482 3483 3484 3485
/*
 * mmap tracking
 */

struct perf_mmap_event {
3486 3487 3488 3489
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3490 3491 3492 3493 3494 3495 3496 3497 3498

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3499
	} event_id;
3500 3501
};

3502
static void perf_event_mmap_output(struct perf_event *event,
3503 3504 3505
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3506 3507
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3508 3509 3510 3511

	if (ret)
		return;

3512 3513
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3514

3515
	perf_output_put(&handle, mmap_event->event_id);
3516 3517
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3518
	perf_output_end(&handle);
3519 3520
}

3521
static int perf_event_mmap_match(struct perf_event *event,
3522 3523
				   struct perf_mmap_event *mmap_event)
{
3524 3525 3526
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3527
	if (event->attr.mmap)
3528 3529 3530 3531 3532
		return 1;

	return 0;
}

3533
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3534 3535
				  struct perf_mmap_event *mmap_event)
{
3536
	struct perf_event *event;
3537

3538 3539 3540
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3541 3542 3543
	}
}

3544
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3545 3546
{
	struct perf_cpu_context *cpuctx;
3547
	struct perf_event_context *ctx;
3548 3549
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3550 3551 3552
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3553
	const char *name;
3554

3555 3556
	memset(tmp, 0, sizeof(tmp));

3557
	if (file) {
3558 3559 3560 3561 3562 3563
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3564 3565 3566 3567
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3568
		name = d_path(&file->f_path, buf, PATH_MAX);
3569 3570 3571 3572 3573
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3574 3575 3576
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3577
			goto got_name;
3578
		}
3579 3580 3581 3582 3583 3584

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3585 3586 3587 3588 3589
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3590
	size = ALIGN(strlen(name)+1, sizeof(u64));
3591 3592 3593 3594

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3595
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3596

3597
	rcu_read_lock();
3598
	cpuctx = &get_cpu_var(perf_cpu_context);
3599 3600
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3601
	if (ctx)
3602
		perf_event_mmap_ctx(ctx, mmap_event);
3603
	put_cpu_var(perf_cpu_context);
3604 3605
	rcu_read_unlock();

3606 3607 3608
	kfree(buf);
}

3609
void __perf_event_mmap(struct vm_area_struct *vma)
3610
{
3611 3612
	struct perf_mmap_event mmap_event;

3613
	if (!atomic_read(&nr_mmap_events))
3614 3615 3616
		return;

	mmap_event = (struct perf_mmap_event){
3617
		.vma	= vma,
3618 3619
		/* .file_name */
		/* .file_size */
3620
		.event_id  = {
3621
			.header = {
3622
				.type = PERF_RECORD_MMAP,
3623 3624 3625 3626 3627
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3628 3629 3630
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3631 3632 3633
		},
	};

3634
	perf_event_mmap_event(&mmap_event);
3635 3636
}

3637 3638 3639 3640
/*
 * IRQ throttle logging
 */

3641
static void perf_log_throttle(struct perf_event *event, int enable)
3642 3643 3644 3645 3646 3647 3648
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3649
		u64				id;
3650
		u64				stream_id;
3651 3652
	} throttle_event = {
		.header = {
3653
			.type = PERF_RECORD_THROTTLE,
3654 3655 3656
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3657
		.time		= perf_clock(),
3658 3659
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3660 3661
	};

3662
	if (enable)
3663
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3664

3665
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3666 3667 3668 3669 3670 3671 3672
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3673
/*
3674
 * Generic event overflow handling, sampling.
3675 3676
 */

3677
static int __perf_event_overflow(struct perf_event *event, int nmi,
3678 3679
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3680
{
3681 3682
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3683 3684
	int ret = 0;

3685
	throttle = (throttle && event->pmu->unthrottle != NULL);
3686

3687
	if (!throttle) {
3688
		hwc->interrupts++;
3689
	} else {
3690 3691
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3692
			if (HZ * hwc->interrupts >
3693
					(u64)sysctl_perf_event_sample_rate) {
3694
				hwc->interrupts = MAX_INTERRUPTS;
3695
				perf_log_throttle(event, 0);
3696 3697 3698 3699
				ret = 1;
			}
		} else {
			/*
3700
			 * Keep re-disabling events even though on the previous
3701
			 * pass we disabled it - just in case we raced with a
3702
			 * sched-in and the event got enabled again:
3703
			 */
3704 3705 3706
			ret = 1;
		}
	}
3707

3708
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3709
		u64 now = perf_clock();
3710 3711 3712 3713 3714
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3715
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3716 3717
	}

3718 3719
	/*
	 * XXX event_limit might not quite work as expected on inherited
3720
	 * events
3721 3722
	 */

3723 3724
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3725
		ret = 1;
3726
		event->pending_kill = POLL_HUP;
3727
		if (nmi) {
3728 3729 3730
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3731
		} else
3732
			perf_event_disable(event);
3733 3734
	}

3735 3736 3737 3738 3739
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3740
	return ret;
3741 3742
}

3743
int perf_event_overflow(struct perf_event *event, int nmi,
3744 3745
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3746
{
3747
	return __perf_event_overflow(event, nmi, 1, data, regs);
3748 3749
}

3750
/*
3751
 * Generic software event infrastructure
3752 3753
 */

3754
/*
3755 3756
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3757 3758 3759 3760
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3761
static u64 perf_swevent_set_period(struct perf_event *event)
3762
{
3763
	struct hw_perf_event *hwc = &event->hw;
3764 3765 3766 3767 3768
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3769 3770

again:
3771 3772 3773
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3774

3775 3776 3777 3778 3779
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3780

3781
	return nr;
3782 3783
}

3784
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3785 3786
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3787
{
3788
	struct hw_perf_event *hwc = &event->hw;
3789
	int throttle = 0;
3790

3791
	data->period = event->hw.last_period;
3792 3793
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3794

3795 3796
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3797

3798
	for (; overflow; overflow--) {
3799
		if (__perf_event_overflow(event, nmi, throttle,
3800
					    data, regs)) {
3801 3802 3803 3804 3805 3806
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3807
		throttle = 1;
3808
	}
3809 3810
}

3811
static void perf_swevent_unthrottle(struct perf_event *event)
3812 3813
{
	/*
3814
	 * Nothing to do, we already reset hwc->interrupts.
3815
	 */
3816
}
3817

3818
static void perf_swevent_add(struct perf_event *event, u64 nr,
3819 3820
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3821
{
3822
	struct hw_perf_event *hwc = &event->hw;
3823

3824
	atomic64_add(nr, &event->count);
3825

3826 3827 3828
	if (!regs)
		return;

3829 3830
	if (!hwc->sample_period)
		return;
3831

3832 3833 3834 3835
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3836
		return;
3837

3838
	perf_swevent_overflow(event, 0, nmi, data, regs);
3839 3840
}

3841
static int perf_swevent_is_counting(struct perf_event *event)
3842
{
3843
	/*
3844
	 * The event is active, we're good!
3845
	 */
3846
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3847 3848
		return 1;

3849
	/*
3850
	 * The event is off/error, not counting.
3851
	 */
3852
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3853 3854 3855
		return 0;

	/*
3856
	 * The event is inactive, if the context is active
3857 3858
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3859
	 */
3860
	if (event->ctx->is_active)
3861 3862 3863 3864 3865 3866 3867 3868
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3869 3870
}

L
Li Zefan 已提交
3871 3872 3873
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

3888
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3889
				enum perf_type_id type,
L
Li Zefan 已提交
3890 3891 3892
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3893
{
3894 3895 3896
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3897
	if (!perf_swevent_is_counting(event))
3898 3899
		return 0;

3900
	if (event->attr.type != type)
3901
		return 0;
3902

3903
	if (event->attr.config != event_id)
3904 3905
		return 0;

3906 3907
	if (perf_exclude_event(event, regs))
		return 0;
3908

L
Li Zefan 已提交
3909 3910 3911 3912
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3913 3914 3915
	return 1;
}

3916
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3917
				     enum perf_type_id type,
3918
				     u32 event_id, u64 nr, int nmi,
3919 3920
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3921
{
3922
	struct perf_event *event;
3923

3924
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3925
		if (perf_swevent_match(event, type, event_id, data, regs))
3926
			perf_swevent_add(event, nr, nmi, data, regs);
3927 3928 3929
	}
}

3930
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
3931
{
3932 3933
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
3934

P
Peter Zijlstra 已提交
3935
	if (in_nmi())
3936
		rctx = 3;
3937
	else if (in_irq())
3938
		rctx = 2;
3939
	else if (in_softirq())
3940
		rctx = 1;
3941
	else
3942
		rctx = 0;
P
Peter Zijlstra 已提交
3943

3944 3945
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
3946
		return -1;
3947
	}
P
Peter Zijlstra 已提交
3948

3949 3950
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
3951

3952
	return rctx;
P
Peter Zijlstra 已提交
3953
}
I
Ingo Molnar 已提交
3954
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
3955

3956
void perf_swevent_put_recursion_context(int rctx)
3957
{
3958 3959
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
3960
	cpuctx->recursion[rctx]--;
3961
	put_cpu_var(perf_cpu_context);
3962
}
I
Ingo Molnar 已提交
3963
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
3964

3965 3966 3967 3968
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3969
{
3970
	struct perf_cpu_context *cpuctx;
3971
	struct perf_event_context *ctx;
3972

3973
	cpuctx = &__get_cpu_var(perf_cpu_context);
3974
	rcu_read_lock();
3975
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3976
				 nr, nmi, data, regs);
3977 3978 3979 3980
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3981
	ctx = rcu_dereference(current->perf_event_ctxp);
3982
	if (ctx)
3983
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3984
	rcu_read_unlock();
3985
}
3986

3987
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3988
			    struct pt_regs *regs, u64 addr)
3989
{
3990
	struct perf_sample_data data;
3991 3992 3993 3994 3995
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
3996 3997 3998

	data.addr = addr;
	data.raw  = NULL;
3999

4000
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4001 4002

	perf_swevent_put_recursion_context(rctx);
4003 4004
}

4005
static void perf_swevent_read(struct perf_event *event)
4006 4007 4008
{
}

4009
static int perf_swevent_enable(struct perf_event *event)
4010
{
4011
	struct hw_perf_event *hwc = &event->hw;
4012 4013 4014

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4015
		perf_swevent_set_period(event);
4016
	}
4017 4018 4019
	return 0;
}

4020
static void perf_swevent_disable(struct perf_event *event)
4021 4022 4023
{
}

4024
static const struct pmu perf_ops_generic = {
4025 4026 4027 4028
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4029 4030
};

4031
/*
4032
 * hrtimer based swevent callback
4033 4034
 */

4035
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4036 4037 4038
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4039
	struct pt_regs *regs;
4040
	struct perf_event *event;
4041 4042
	u64 period;

4043 4044
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4045 4046

	data.addr = 0;
4047
	data.raw = NULL;
4048
	data.period = event->hw.last_period;
4049
	regs = get_irq_regs();
4050 4051 4052 4053
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4054 4055
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4056
		regs = task_pt_regs(current);
4057

4058
	if (regs) {
4059 4060 4061
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4062 4063
	}

4064
	period = max_t(u64, 10000, event->hw.sample_period);
4065 4066 4067 4068 4069
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4106
/*
4107
 * Software event: cpu wall time clock
4108 4109
 */

4110
static void cpu_clock_perf_event_update(struct perf_event *event)
4111 4112 4113 4114 4115 4116
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4117
	prev = atomic64_xchg(&event->hw.prev_count, now);
4118
	atomic64_add(now - prev, &event->count);
4119 4120
}

4121
static int cpu_clock_perf_event_enable(struct perf_event *event)
4122
{
4123
	struct hw_perf_event *hwc = &event->hw;
4124 4125 4126
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4127
	perf_swevent_start_hrtimer(event);
4128 4129 4130 4131

	return 0;
}

4132
static void cpu_clock_perf_event_disable(struct perf_event *event)
4133
{
4134
	perf_swevent_cancel_hrtimer(event);
4135
	cpu_clock_perf_event_update(event);
4136 4137
}

4138
static void cpu_clock_perf_event_read(struct perf_event *event)
4139
{
4140
	cpu_clock_perf_event_update(event);
4141 4142
}

4143
static const struct pmu perf_ops_cpu_clock = {
4144 4145 4146
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4147 4148
};

4149
/*
4150
 * Software event: task time clock
4151 4152
 */

4153
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4154
{
4155
	u64 prev;
I
Ingo Molnar 已提交
4156 4157
	s64 delta;

4158
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4159
	delta = now - prev;
4160
	atomic64_add(delta, &event->count);
4161 4162
}

4163
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4164
{
4165
	struct hw_perf_event *hwc = &event->hw;
4166 4167
	u64 now;

4168
	now = event->ctx->time;
4169

4170
	atomic64_set(&hwc->prev_count, now);
4171 4172

	perf_swevent_start_hrtimer(event);
4173 4174

	return 0;
I
Ingo Molnar 已提交
4175 4176
}

4177
static void task_clock_perf_event_disable(struct perf_event *event)
4178
{
4179
	perf_swevent_cancel_hrtimer(event);
4180
	task_clock_perf_event_update(event, event->ctx->time);
4181

4182
}
I
Ingo Molnar 已提交
4183

4184
static void task_clock_perf_event_read(struct perf_event *event)
4185
{
4186 4187 4188
	u64 time;

	if (!in_nmi()) {
4189 4190
		update_context_time(event->ctx);
		time = event->ctx->time;
4191 4192
	} else {
		u64 now = perf_clock();
4193 4194
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4195 4196
	}

4197
	task_clock_perf_event_update(event, time);
4198 4199
}

4200
static const struct pmu perf_ops_task_clock = {
4201 4202 4203
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4204 4205
};

4206
#ifdef CONFIG_EVENT_TRACING
L
Li Zefan 已提交
4207

4208
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4209
			  int entry_size)
4210
{
4211
	struct perf_raw_record raw = {
4212
		.size = entry_size,
4213
		.data = record,
4214 4215
	};

4216
	struct perf_sample_data data = {
4217
		.addr = addr,
4218
		.raw = &raw,
4219
	};
4220

4221 4222 4223 4224
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4225

4226
	/* Trace events already protected against recursion */
4227
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4228
				&data, regs);
4229
}
4230
EXPORT_SYMBOL_GPL(perf_tp_event);
4231

L
Li Zefan 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4241

4242
static void tp_perf_event_destroy(struct perf_event *event)
4243
{
4244
	ftrace_profile_disable(event->attr.config);
4245 4246
}

4247
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4248
{
4249 4250 4251 4252
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4253
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4254
			perf_paranoid_tracepoint_raw() &&
4255 4256 4257
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4258
	if (ftrace_profile_enable(event->attr.config))
4259 4260
		return NULL;

4261
	event->destroy = tp_perf_event_destroy;
4262 4263 4264

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4289
#else
L
Li Zefan 已提交
4290 4291 4292 4293 4294 4295 4296

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4297
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4298 4299 4300
{
	return NULL;
}
L
Li Zefan 已提交
4301 4302 4303 4304 4305 4306 4307 4308 4309 4310

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4311
#endif /* CONFIG_EVENT_TRACING */
4312

4313 4314 4315 4316 4317 4318 4319 4320 4321
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4322 4323

	err = register_perf_hw_breakpoint(bp);
4324 4325 4326 4327 4328 4329 4330 4331
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4332
void perf_bp_event(struct perf_event *bp, void *data)
4333
{
4334 4335 4336
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4337
	sample.raw = NULL;
4338 4339 4340 4341
	sample.addr = bp->attr.bp_addr;

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4354
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4355

4356
static void sw_perf_event_destroy(struct perf_event *event)
4357
{
4358
	u64 event_id = event->attr.config;
4359

4360
	WARN_ON(event->parent);
4361

4362
	atomic_dec(&perf_swevent_enabled[event_id]);
4363 4364
}

4365
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4366
{
4367
	const struct pmu *pmu = NULL;
4368
	u64 event_id = event->attr.config;
4369

4370
	/*
4371
	 * Software events (currently) can't in general distinguish
4372 4373 4374 4375 4376
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4377
	switch (event_id) {
4378
	case PERF_COUNT_SW_CPU_CLOCK:
4379
		pmu = &perf_ops_cpu_clock;
4380

4381
		break;
4382
	case PERF_COUNT_SW_TASK_CLOCK:
4383
		/*
4384 4385
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4386
		 */
4387
		if (event->ctx->task)
4388
			pmu = &perf_ops_task_clock;
4389
		else
4390
			pmu = &perf_ops_cpu_clock;
4391

4392
		break;
4393 4394 4395 4396 4397
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4398 4399
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4400 4401 4402
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4403
		}
4404
		pmu = &perf_ops_generic;
4405
		break;
4406
	}
4407

4408
	return pmu;
4409 4410
}

T
Thomas Gleixner 已提交
4411
/*
4412
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4413
 */
4414 4415
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4416
		   int cpu,
4417 4418 4419
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4420
		   perf_overflow_handler_t overflow_handler,
4421
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4422
{
4423
	const struct pmu *pmu;
4424 4425
	struct perf_event *event;
	struct hw_perf_event *hwc;
4426
	long err;
T
Thomas Gleixner 已提交
4427

4428 4429
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4430
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4431

4432
	/*
4433
	 * Single events are their own group leaders, with an
4434 4435 4436
	 * empty sibling list:
	 */
	if (!group_leader)
4437
		group_leader = event;
4438

4439 4440
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4441

4442 4443 4444 4445
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4446

4447
	mutex_init(&event->mmap_mutex);
4448

4449 4450 4451 4452 4453 4454
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4455

4456
	event->parent		= parent_event;
4457

4458 4459
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4460

4461
	event->state		= PERF_EVENT_STATE_INACTIVE;
4462

4463 4464
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4465
	
4466
	event->overflow_handler	= overflow_handler;
4467

4468
	if (attr->disabled)
4469
		event->state = PERF_EVENT_STATE_OFF;
4470

4471
	pmu = NULL;
4472

4473
	hwc = &event->hw;
4474
	hwc->sample_period = attr->sample_period;
4475
	if (attr->freq && attr->sample_freq)
4476
		hwc->sample_period = 1;
4477
	hwc->last_period = hwc->sample_period;
4478 4479

	atomic64_set(&hwc->period_left, hwc->sample_period);
4480

4481
	/*
4482
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4483
	 */
4484
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4485 4486
		goto done;

4487
	switch (attr->type) {
4488
	case PERF_TYPE_RAW:
4489
	case PERF_TYPE_HARDWARE:
4490
	case PERF_TYPE_HW_CACHE:
4491
		pmu = hw_perf_event_init(event);
4492 4493 4494
		break;

	case PERF_TYPE_SOFTWARE:
4495
		pmu = sw_perf_event_init(event);
4496 4497 4498
		break;

	case PERF_TYPE_TRACEPOINT:
4499
		pmu = tp_perf_event_init(event);
4500
		break;
4501

4502 4503 4504 4505 4506
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4507 4508
	default:
		break;
4509
	}
4510 4511
done:
	err = 0;
4512
	if (!pmu)
4513
		err = -EINVAL;
4514 4515
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4516

4517
	if (err) {
4518 4519 4520
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4521
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4522
	}
4523

4524
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4525

4526 4527 4528 4529 4530 4531 4532 4533
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4534
	}
4535

4536
	return event;
T
Thomas Gleixner 已提交
4537 4538
}

4539 4540
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4541 4542
{
	u32 size;
4543
	int ret;
4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4568 4569 4570
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4571 4572
	 */
	if (size > sizeof(*attr)) {
4573 4574 4575
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4576

4577 4578
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4579

4580
		for (; addr < end; addr++) {
4581 4582 4583 4584 4585 4586
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4587
		size = sizeof(*attr);
4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4601
	if (attr->__reserved_1 || attr->__reserved_2)
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4619
static int perf_event_set_output(struct perf_event *event, int output_fd)
4620
{
4621
	struct perf_event *output_event = NULL;
4622
	struct file *output_file = NULL;
4623
	struct perf_event *old_output;
4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4637
	output_event = output_file->private_data;
4638 4639

	/* Don't chain output fds */
4640
	if (output_event->output)
4641 4642 4643
		goto out;

	/* Don't set an output fd when we already have an output channel */
4644
	if (event->data)
4645 4646 4647 4648 4649
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4650 4651 4652 4653
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4654 4655 4656 4657

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4658
		 * is still referencing this event.
4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4670
/**
4671
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4672
 *
4673
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4674
 * @pid:		target pid
I
Ingo Molnar 已提交
4675
 * @cpu:		target cpu
4676
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4677
 */
4678 4679
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4680
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4681
{
4682 4683 4684 4685
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4686 4687
	struct file *group_file = NULL;
	int fput_needed = 0;
4688
	int fput_needed2 = 0;
4689
	int err;
T
Thomas Gleixner 已提交
4690

4691
	/* for future expandability... */
4692
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4693 4694
		return -EINVAL;

4695 4696 4697
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4698

4699 4700 4701 4702 4703
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4704
	if (attr.freq) {
4705
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4706 4707 4708
			return -EINVAL;
	}

4709
	/*
I
Ingo Molnar 已提交
4710 4711 4712 4713 4714 4715 4716
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4717
	 * Look up the group leader (we will attach this event to it):
4718 4719
	 */
	group_leader = NULL;
4720
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4721
		err = -EINVAL;
4722 4723
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4724
			goto err_put_context;
4725
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4726
			goto err_put_context;
4727 4728 4729

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4730 4731 4732 4733 4734 4735 4736 4737
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4738
		 */
I
Ingo Molnar 已提交
4739 4740
		if (group_leader->ctx != ctx)
			goto err_put_context;
4741 4742 4743
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4744
		if (attr.exclusive || attr.pinned)
4745
			goto err_put_context;
4746 4747
	}

4748
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4749
				     NULL, NULL, GFP_KERNEL);
4750 4751
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4752 4753
		goto err_put_context;

4754
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4755
	if (err < 0)
4756 4757
		goto err_free_put_context;

4758 4759
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4760 4761
		goto err_free_put_context;

4762
	if (flags & PERF_FLAG_FD_OUTPUT) {
4763
		err = perf_event_set_output(event, group_fd);
4764 4765
		if (err)
			goto err_fput_free_put_context;
4766 4767
	}

4768
	event->filp = event_file;
4769
	WARN_ON_ONCE(ctx->parent_ctx);
4770
	mutex_lock(&ctx->mutex);
4771
	perf_install_in_context(ctx, event, cpu);
4772
	++ctx->generation;
4773
	mutex_unlock(&ctx->mutex);
4774

4775
	event->owner = current;
4776
	get_task_struct(current);
4777 4778 4779
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4780

4781
err_fput_free_put_context:
4782
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4783

4784
err_free_put_context:
4785
	if (err < 0)
4786
		kfree(event);
T
Thomas Gleixner 已提交
4787 4788

err_put_context:
4789 4790 4791 4792
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4793

4794
	return err;
T
Thomas Gleixner 已提交
4795 4796
}

4797 4798 4799 4800 4801 4802 4803 4804 4805
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4806 4807
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4818 4819 4820 4821
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4822 4823

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4824
				 NULL, overflow_handler, GFP_KERNEL);
4825 4826
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4827
		goto err_put_context;
4828
	}
4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4845 4846 4847 4848
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4849 4850 4851
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4852
/*
4853
 * inherit a event from parent task to child task:
4854
 */
4855 4856
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4857
	      struct task_struct *parent,
4858
	      struct perf_event_context *parent_ctx,
4859
	      struct task_struct *child,
4860 4861
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4862
{
4863
	struct perf_event *child_event;
4864

4865
	/*
4866 4867
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4868 4869 4870
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4871 4872
	if (parent_event->parent)
		parent_event = parent_event->parent;
4873

4874 4875 4876
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4877
					   NULL, GFP_KERNEL);
4878 4879
	if (IS_ERR(child_event))
		return child_event;
4880
	get_ctx(child_ctx);
4881

4882
	/*
4883
	 * Make the child state follow the state of the parent event,
4884
	 * not its attr.disabled bit.  We hold the parent's mutex,
4885
	 * so we won't race with perf_event_{en, dis}able_family.
4886
	 */
4887 4888
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4889
	else
4890
		child_event->state = PERF_EVENT_STATE_OFF;
4891

4892 4893
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4894

4895 4896
	child_event->overflow_handler = parent_event->overflow_handler;

4897 4898 4899
	/*
	 * Link it up in the child's context:
	 */
4900
	add_event_to_ctx(child_event, child_ctx);
4901 4902 4903

	/*
	 * Get a reference to the parent filp - we will fput it
4904
	 * when the child event exits. This is safe to do because
4905 4906 4907
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4908
	atomic_long_inc(&parent_event->filp->f_count);
4909

4910
	/*
4911
	 * Link this into the parent event's child list
4912
	 */
4913 4914 4915 4916
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4917

4918
	return child_event;
4919 4920
}

4921
static int inherit_group(struct perf_event *parent_event,
4922
	      struct task_struct *parent,
4923
	      struct perf_event_context *parent_ctx,
4924
	      struct task_struct *child,
4925
	      struct perf_event_context *child_ctx)
4926
{
4927 4928 4929
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4930

4931
	leader = inherit_event(parent_event, parent, parent_ctx,
4932
				 child, NULL, child_ctx);
4933 4934
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4935 4936
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4937 4938 4939
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4940
	}
4941 4942 4943
	return 0;
}

4944
static void sync_child_event(struct perf_event *child_event,
4945
			       struct task_struct *child)
4946
{
4947
	struct perf_event *parent_event = child_event->parent;
4948
	u64 child_val;
4949

4950 4951
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4952

4953
	child_val = atomic64_read(&child_event->count);
4954 4955 4956 4957

	/*
	 * Add back the child's count to the parent's count:
	 */
4958 4959 4960 4961 4962
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4963 4964

	/*
4965
	 * Remove this event from the parent's list
4966
	 */
4967 4968 4969 4970
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4971 4972

	/*
4973
	 * Release the parent event, if this was the last
4974 4975
	 * reference to it.
	 */
4976
	fput(parent_event->filp);
4977 4978
}

4979
static void
4980 4981
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4982
			 struct task_struct *child)
4983
{
4984
	struct perf_event *parent_event;
4985

4986
	perf_event_remove_from_context(child_event);
4987

4988
	parent_event = child_event->parent;
4989
	/*
4990
	 * It can happen that parent exits first, and has events
4991
	 * that are still around due to the child reference. These
4992
	 * events need to be zapped - but otherwise linger.
4993
	 */
4994 4995 4996
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4997
	}
4998 4999 5000
}

/*
5001
 * When a child task exits, feed back event values to parent events.
5002
 */
5003
void perf_event_exit_task(struct task_struct *child)
5004
{
5005 5006
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5007
	unsigned long flags;
5008

5009 5010
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5011
		return;
P
Peter Zijlstra 已提交
5012
	}
5013

5014
	local_irq_save(flags);
5015 5016 5017 5018 5019 5020
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5021 5022
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5023 5024 5025

	/*
	 * Take the context lock here so that if find_get_context is
5026
	 * reading child->perf_event_ctxp, we wait until it has
5027 5028
	 * incremented the context's refcount before we do put_ctx below.
	 */
5029
	raw_spin_lock(&child_ctx->lock);
5030
	child->perf_event_ctxp = NULL;
5031 5032 5033
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5034
	 * the events from it.
5035 5036
	 */
	unclone_ctx(child_ctx);
5037
	update_context_time(child_ctx);
5038
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5039 5040

	/*
5041 5042 5043
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5044
	 */
5045
	perf_event_task(child, child_ctx, 0);
5046

5047 5048 5049
	/*
	 * We can recurse on the same lock type through:
	 *
5050 5051 5052
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5053 5054 5055 5056 5057 5058
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5059

5060
again:
5061 5062 5063 5064 5065
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5066
				 group_entry)
5067
		__perf_event_exit_task(child_event, child_ctx, child);
5068 5069

	/*
5070
	 * If the last event was a group event, it will have appended all
5071 5072 5073
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5074 5075
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5076
		goto again;
5077 5078 5079 5080

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5081 5082
}

5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5101 5102 5103 5104
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5105
void perf_event_free_task(struct task_struct *task)
5106
{
5107 5108
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5109 5110 5111 5112 5113 5114

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5115 5116
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5117

5118 5119 5120
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5121

5122 5123 5124
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5125

5126
	mutex_unlock(&ctx->mutex);
5127

5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5143 5144
	}

5145 5146 5147 5148 5149 5150 5151
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5152

5153 5154 5155 5156
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5157

5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5170 5171
}

5172

5173
/*
5174
 * Initialize the perf_event context in task_struct
5175
 */
5176
int perf_event_init_task(struct task_struct *child)
5177
{
5178
	struct perf_event_context *child_ctx, *parent_ctx;
5179 5180
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5181
	struct task_struct *parent = current;
5182
	int inherited_all = 1;
5183
	int ret = 0;
5184

5185
	child->perf_event_ctxp = NULL;
5186

5187 5188
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5189

5190
	if (likely(!parent->perf_event_ctxp))
5191 5192
		return 0;

5193
	/*
5194 5195
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5196
	 */
5197 5198
	parent_ctx = perf_pin_task_context(parent);

5199 5200 5201 5202 5203 5204 5205
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5206 5207 5208 5209
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5210
	mutex_lock(&parent_ctx->mutex);
5211 5212 5213 5214 5215

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5216 5217 5218 5219 5220 5221
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5222

5223 5224 5225 5226
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5227
			break;
5228 5229
	}

5230 5231
	child_ctx = child->perf_event_ctxp;

5232
	if (child_ctx && inherited_all) {
5233 5234 5235
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5236 5237
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5238
		 * because the list of events and the generation
5239
		 * count can't have changed since we took the mutex.
5240
		 */
5241 5242 5243
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5244
			child_ctx->parent_gen = parent_ctx->parent_gen;
5245 5246 5247 5248 5249
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5250 5251
	}

5252
	mutex_unlock(&parent_ctx->mutex);
5253

5254
	perf_unpin_context(parent_ctx);
5255

5256
	return ret;
5257 5258
}

5259
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5260
{
5261
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5262

5263
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5264
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5265

5266
	spin_lock(&perf_resource_lock);
5267
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5268
	spin_unlock(&perf_resource_lock);
5269

5270
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5271 5272 5273
}

#ifdef CONFIG_HOTPLUG_CPU
5274
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5275 5276
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5277 5278
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5279

5280 5281 5282
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5283
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5284
}
5285
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5286
{
5287
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5288
	struct perf_event_context *ctx = &cpuctx->ctx;
5289 5290

	mutex_lock(&ctx->mutex);
5291
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5292
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5293 5294
}
#else
5295
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5307
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5308 5309
		break;

5310 5311
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5312
		hw_perf_event_setup_online(cpu);
5313 5314
		break;

T
Thomas Gleixner 已提交
5315 5316
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5317
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5318 5319 5320 5321 5322 5323 5324 5325 5326
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5327 5328 5329
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5330 5331
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5332
	.priority		= 20,
T
Thomas Gleixner 已提交
5333 5334
};

5335
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5336 5337 5338
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5339 5340
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5361
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5362 5363
		return -EINVAL;

5364
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5365 5366 5367
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5368
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5369 5370
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5371
		cpuctx->max_pertask = mpt;
5372
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5373
	}
5374
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5396
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5397
	perf_overcommit = val;
5398
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5425
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5426 5427
};

5428
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5429 5430 5431 5432
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5433
device_initcall(perf_event_sysfs_init);