perf_event.c 137.0 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17
#include <linux/poll.h>
18
#include <linux/slab.h>
19
#include <linux/hash.h>
T
Thomas Gleixner 已提交
20
#include <linux/sysfs.h>
21
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
22
#include <linux/percpu.h>
23
#include <linux/ptrace.h>
24
#include <linux/vmstat.h>
25
#include <linux/vmalloc.h>
26 27
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
28 29 30
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
31
#include <linux/kernel_stat.h>
32
#include <linux/perf_event.h>
L
Li Zefan 已提交
33
#include <linux/ftrace_event.h>
T
Thomas Gleixner 已提交
34

35 36
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
37
/*
38
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
39
 */
40
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
41

42
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
43 44 45
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

46 47 48 49
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
50

51
/*
52
 * perf event paranoia level:
53 54
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
55
 *   1 - disallow cpu events for unpriv
56
 *   2 - disallow kernel profiling for unpriv
57
 */
58
int sysctl_perf_event_paranoid __read_mostly = 1;
59

60
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
61 62

/*
63
 * max perf event sample rate
64
 */
65
int sysctl_perf_event_sample_rate __read_mostly = 100000;
66

67
static atomic64_t perf_event_id;
68

T
Thomas Gleixner 已提交
69
/*
70
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
71
 */
72
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
73

74
void __weak perf_event_print_debug(void)	{ }
75

P
Peter Zijlstra 已提交
76
void perf_pmu_disable(struct pmu *pmu)
77
{
P
Peter Zijlstra 已提交
78 79 80
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!(*count)++)
		pmu->pmu_disable(pmu);
81 82
}

P
Peter Zijlstra 已提交
83
void perf_pmu_enable(struct pmu *pmu)
84
{
P
Peter Zijlstra 已提交
85 86 87
	int *count = this_cpu_ptr(pmu->pmu_disable_count);
	if (!--(*count))
		pmu->pmu_enable(pmu);
88 89
}

90
static void get_ctx(struct perf_event_context *ctx)
91
{
92
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
93 94
}

95 96
static void free_ctx(struct rcu_head *head)
{
97
	struct perf_event_context *ctx;
98

99
	ctx = container_of(head, struct perf_event_context, rcu_head);
100 101 102
	kfree(ctx);
}

103
static void put_ctx(struct perf_event_context *ctx)
104
{
105 106 107
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
108 109 110
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
111
	}
112 113
}

114
static void unclone_ctx(struct perf_event_context *ctx)
115 116 117 118 119 120 121
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

122
/*
123
 * If we inherit events we want to return the parent event id
124 125
 * to userspace.
 */
126
static u64 primary_event_id(struct perf_event *event)
127
{
128
	u64 id = event->id;
129

130 131
	if (event->parent)
		id = event->parent->id;
132 133 134 135

	return id;
}

136
/*
137
 * Get the perf_event_context for a task and lock it.
138 139 140
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
141
static struct perf_event_context *
142
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
143
{
144
	struct perf_event_context *ctx;
145 146

	rcu_read_lock();
P
Peter Zijlstra 已提交
147
retry:
148
	ctx = rcu_dereference(task->perf_event_ctxp);
149 150 151 152
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
153
		 * perf_event_task_sched_out, though the
154 155 156 157 158 159
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
160
		raw_spin_lock_irqsave(&ctx->lock, *flags);
161
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
162
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
163 164
			goto retry;
		}
165 166

		if (!atomic_inc_not_zero(&ctx->refcount)) {
167
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
168 169
			ctx = NULL;
		}
170 171 172 173 174 175 176 177 178 179
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
180
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
181
{
182
	struct perf_event_context *ctx;
183 184 185 186 187
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
188
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
189 190 191 192
	}
	return ctx;
}

193
static void perf_unpin_context(struct perf_event_context *ctx)
194 195 196
{
	unsigned long flags;

197
	raw_spin_lock_irqsave(&ctx->lock, flags);
198
	--ctx->pin_count;
199
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
200 201 202
	put_ctx(ctx);
}

203 204
static inline u64 perf_clock(void)
{
205
	return local_clock();
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

231 232 233 234 235 236
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
237 238 239 240 241 242 243 244 245

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

246 247 248 249 250 251 252 253 254 255 256 257
/*
 * Update total_time_enabled and total_time_running for all events in a group.
 */
static void update_group_times(struct perf_event *leader)
{
	struct perf_event *event;

	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
}

258 259 260 261 262 263 264 265 266
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

267
/*
268
 * Add a event from the lists for its context.
269 270
 * Must be called with ctx->mutex and ctx->lock held.
 */
271
static void
272
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
273
{
274 275
	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
	event->attach_state |= PERF_ATTACH_CONTEXT;
276 277

	/*
278 279 280
	 * If we're a stand alone event or group leader, we go to the context
	 * list, group events are kept attached to the group so that
	 * perf_group_detach can, at all times, locate all siblings.
281
	 */
282
	if (event->group_leader == event) {
283 284
		struct list_head *list;

285 286 287
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

288 289
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
P
Peter Zijlstra 已提交
290
	}
P
Peter Zijlstra 已提交
291

292 293 294
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
295
		ctx->nr_stat++;
296 297
}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
static void perf_group_attach(struct perf_event *event)
{
	struct perf_event *group_leader = event->group_leader;

	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_GROUP);
	event->attach_state |= PERF_ATTACH_GROUP;

	if (group_leader == event)
		return;

	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
			!is_software_event(event))
		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

	list_add_tail(&event->group_entry, &group_leader->sibling_list);
	group_leader->nr_siblings++;
}

316
/*
317
 * Remove a event from the lists for its context.
318
 * Must be called with ctx->mutex and ctx->lock held.
319
 */
320
static void
321
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
322
{
323 324 325 326
	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
327
		return;
328 329 330

	event->attach_state &= ~PERF_ATTACH_CONTEXT;

331 332
	ctx->nr_events--;
	if (event->attr.inherit_stat)
333
		ctx->nr_stat--;
334

335
	list_del_rcu(&event->event_entry);
336

337 338
	if (event->group_leader == event)
		list_del_init(&event->group_entry);
P
Peter Zijlstra 已提交
339

340
	update_group_times(event);
341 342 343 344 345 346 347 348 349 350

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
351 352
}

353
static void perf_group_detach(struct perf_event *event)
354 355
{
	struct perf_event *sibling, *tmp;
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
	struct list_head *list = NULL;

	/*
	 * We can have double detach due to exit/hot-unplug + close.
	 */
	if (!(event->attach_state & PERF_ATTACH_GROUP))
		return;

	event->attach_state &= ~PERF_ATTACH_GROUP;

	/*
	 * If this is a sibling, remove it from its group.
	 */
	if (event->group_leader != event) {
		list_del_init(&event->group_entry);
		event->group_leader->nr_siblings--;
		return;
	}

	if (!list_empty(&event->group_entry))
		list = &event->group_entry;
377

378
	/*
379 380
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
381
	 * to whatever list we are on.
382
	 */
383
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
384 385
		if (list)
			list_move_tail(&sibling->group_entry, list);
386
		sibling->group_leader = sibling;
387 388 389

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
390 391 392
	}
}

393 394 395 396 397 398
static inline int
event_filter_match(struct perf_event *event)
{
	return event->cpu == -1 || event->cpu == smp_processor_id();
}

399
static void
400
event_sched_out(struct perf_event *event,
401
		  struct perf_cpu_context *cpuctx,
402
		  struct perf_event_context *ctx)
403
{
404 405 406 407 408 409 410 411 412 413 414 415 416 417
	u64 delta;
	/*
	 * An event which could not be activated because of
	 * filter mismatch still needs to have its timings
	 * maintained, otherwise bogus information is return
	 * via read() for time_enabled, time_running:
	 */
	if (event->state == PERF_EVENT_STATE_INACTIVE
	    && !event_filter_match(event)) {
		delta = ctx->time - event->tstamp_stopped;
		event->tstamp_running += delta;
		event->tstamp_stopped = ctx->time;
	}

418
	if (event->state != PERF_EVENT_STATE_ACTIVE)
419 420
		return;

421 422 423 424
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
425
	}
426 427 428
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
429

430
	if (!is_software_event(event))
431 432
		cpuctx->active_oncpu--;
	ctx->nr_active--;
433
	if (event->attr.exclusive || !cpuctx->active_oncpu)
434 435 436
		cpuctx->exclusive = 0;
}

437
static void
438
group_sched_out(struct perf_event *group_event,
439
		struct perf_cpu_context *cpuctx,
440
		struct perf_event_context *ctx)
441
{
442
	struct perf_event *event;
443
	int state = group_event->state;
444

445
	event_sched_out(group_event, cpuctx, ctx);
446 447 448 449

	/*
	 * Schedule out siblings (if any):
	 */
450 451
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
452

453
	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
454 455 456
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
457
/*
458
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
459
 *
460
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
461 462
 * remove it from the context list.
 */
463
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
464 465
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
466 467
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
468 469 470 471 472 473

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
474
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
475 476
		return;

477
	raw_spin_lock(&ctx->lock);
T
Thomas Gleixner 已提交
478

479
	event_sched_out(event, cpuctx, ctx);
480

481
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
482 483 484

	if (!ctx->task) {
		/*
485
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
486 487 488
		 * reservation:
		 */
		cpuctx->max_pertask =
489 490
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
491 492
	}

493
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
494 495 496 497
}


/*
498
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
499
 *
500
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
501
 *
502
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
503
 * call when the task is on a CPU.
504
 *
505 506
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
507 508
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
509
 * When called from perf_event_exit_task, it's OK because the
510
 * context has been detached from its task.
T
Thomas Gleixner 已提交
511
 */
512
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
513
{
514
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
515 516 517 518
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
519
		 * Per cpu events are removed via an smp call and
520
		 * the removal is always successful.
T
Thomas Gleixner 已提交
521
		 */
522 523 524
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
525 526 527 528
		return;
	}

retry:
529 530
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
531

532
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
533 534 535
	/*
	 * If the context is active we need to retry the smp call.
	 */
536
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
537
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
538 539 540 541 542
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
543
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
544 545
	 * succeed.
	 */
P
Peter Zijlstra 已提交
546
	if (!list_empty(&event->group_entry))
547
		list_del_event(event, ctx);
548
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
549 550
}

551
/*
552
 * Cross CPU call to disable a performance event
553
 */
554
static void __perf_event_disable(void *info)
555
{
556
	struct perf_event *event = info;
557
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
558
	struct perf_event_context *ctx = event->ctx;
559 560

	/*
561 562
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
563
	 */
564
	if (ctx->task && cpuctx->task_ctx != ctx)
565 566
		return;

567
	raw_spin_lock(&ctx->lock);
568 569

	/*
570
	 * If the event is on, turn it off.
571 572
	 * If it is in error state, leave it in error state.
	 */
573
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
574
		update_context_time(ctx);
575 576 577
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
578
		else
579 580
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
581 582
	}

583
	raw_spin_unlock(&ctx->lock);
584 585 586
}

/*
587
 * Disable a event.
588
 *
589 590
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
591
 * remains valid.  This condition is satisifed when called through
592 593 594 595
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
596
 * is the current context on this CPU and preemption is disabled,
597
 * hence we can't get into perf_event_task_sched_out for this context.
598
 */
599
void perf_event_disable(struct perf_event *event)
600
{
601
	struct perf_event_context *ctx = event->ctx;
602 603 604 605
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
606
		 * Disable the event on the cpu that it's on
607
		 */
608 609
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
610 611 612
		return;
	}

P
Peter Zijlstra 已提交
613
retry:
614
	task_oncpu_function_call(task, __perf_event_disable, event);
615

616
	raw_spin_lock_irq(&ctx->lock);
617
	/*
618
	 * If the event is still active, we need to retry the cross-call.
619
	 */
620
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
621
		raw_spin_unlock_irq(&ctx->lock);
622 623 624 625 626 627 628
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
629 630 631
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
632
	}
633

634
	raw_spin_unlock_irq(&ctx->lock);
635 636
}

637
static int
638
event_sched_in(struct perf_event *event,
639
		 struct perf_cpu_context *cpuctx,
640
		 struct perf_event_context *ctx)
641
{
642
	if (event->state <= PERF_EVENT_STATE_OFF)
643 644
		return 0;

645
	event->state = PERF_EVENT_STATE_ACTIVE;
646
	event->oncpu = smp_processor_id();
647 648 649 650 651
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

652 653 654
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
655 656 657
		return -EAGAIN;
	}

658
	event->tstamp_running += ctx->time - event->tstamp_stopped;
659

660
	if (!is_software_event(event))
661
		cpuctx->active_oncpu++;
662 663
	ctx->nr_active++;

664
	if (event->attr.exclusive)
665 666
		cpuctx->exclusive = 1;

667 668 669
	return 0;
}

670
static int
671
group_sched_in(struct perf_event *group_event,
672
	       struct perf_cpu_context *cpuctx,
673
	       struct perf_event_context *ctx)
674
{
675
	struct perf_event *event, *partial_group = NULL;
P
Peter Zijlstra 已提交
676
	struct pmu *pmu = group_event->pmu;
677
	bool txn = false;
678

679
	if (group_event->state == PERF_EVENT_STATE_OFF)
680 681
		return 0;

682 683 684 685 686 687
	/* Check if group transaction availabe */
	if (pmu->start_txn)
		txn = true;

	if (txn)
		pmu->start_txn(pmu);
688

689 690 691
	if (event_sched_in(group_event, cpuctx, ctx)) {
		if (txn)
			pmu->cancel_txn(pmu);
692
		return -EAGAIN;
693
	}
694 695 696 697

	/*
	 * Schedule in siblings as one group (if any):
	 */
698
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
699
		if (event_sched_in(event, cpuctx, ctx)) {
700
			partial_group = event;
701 702 703 704
			goto group_error;
		}
	}

705
	if (!txn || !pmu->commit_txn(pmu))
706
		return 0;
707

708 709 710 711 712
group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
713 714
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
715
			break;
716
		event_sched_out(event, cpuctx, ctx);
717
	}
718
	event_sched_out(group_event, cpuctx, ctx);
719

720 721 722
	if (txn)
		pmu->cancel_txn(pmu);

723 724 725
	return -EAGAIN;
}

726
/*
727
 * Work out whether we can put this event group on the CPU now.
728
 */
729
static int group_can_go_on(struct perf_event *event,
730 731 732 733
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
734
	 * Groups consisting entirely of software events can always go on.
735
	 */
736
	if (event->group_flags & PERF_GROUP_SOFTWARE)
737 738 739
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
740
	 * events can go on.
741 742 743 744 745
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
746
	 * events on the CPU, it can't go on.
747
	 */
748
	if (event->attr.exclusive && cpuctx->active_oncpu)
749 750 751 752 753 754 755 756
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

757 758
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
759
{
760
	list_add_event(event, ctx);
761
	perf_group_attach(event);
762 763 764
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
765 766
}

T
Thomas Gleixner 已提交
767
/*
768
 * Cross CPU call to install and enable a performance event
769 770
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
771 772 773 774
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
775 776 777
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
778
	int err;
T
Thomas Gleixner 已提交
779 780 781 782 783

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
784
	 * Or possibly this is the right context but it isn't
785
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
786
	 */
787
	if (ctx->task && cpuctx->task_ctx != ctx) {
788
		if (cpuctx->task_ctx || ctx->task != current)
789 790 791
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
792

793
	raw_spin_lock(&ctx->lock);
794
	ctx->is_active = 1;
795
	update_context_time(ctx);
T
Thomas Gleixner 已提交
796

797
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
798

799 800 801
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

802
	/*
803
	 * Don't put the event on if it is disabled or if
804 805
	 * it is in a group and the group isn't on.
	 */
806 807
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808 809
		goto unlock;

810
	/*
811 812 813
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
814
	 */
815
	if (!group_can_go_on(event, cpuctx, 1))
816 817
		err = -EEXIST;
	else
818
		err = event_sched_in(event, cpuctx, ctx);
819

820 821
	if (err) {
		/*
822
		 * This event couldn't go on.  If it is in a group
823
		 * then we have to pull the whole group off.
824
		 * If the event group is pinned then put it in error state.
825
		 */
826
		if (leader != event)
827
			group_sched_out(leader, cpuctx, ctx);
828
		if (leader->attr.pinned) {
829
			update_group_times(leader);
830
			leader->state = PERF_EVENT_STATE_ERROR;
831
		}
832
	}
T
Thomas Gleixner 已提交
833

834
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
835 836
		cpuctx->max_pertask--;

P
Peter Zijlstra 已提交
837
unlock:
838
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
839 840 841
}

/*
842
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
843
 *
844 845
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
846
 *
847
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
848 849
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
850 851
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
852 853
 */
static void
854 855
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
856 857 858 859 860 861
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
862
		 * Per cpu events are installed via an smp call and
863
		 * the install is always successful.
T
Thomas Gleixner 已提交
864 865
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
866
					 event, 1);
T
Thomas Gleixner 已提交
867 868 869 870 871
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
872
				 event);
T
Thomas Gleixner 已提交
873

874
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
875 876 877
	/*
	 * we need to retry the smp call.
	 */
878
	if (ctx->is_active && list_empty(&event->group_entry)) {
879
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
880 881 882 883 884
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
885
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
886 887
	 * succeed.
	 */
888 889
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
890
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
891 892
}

893
/*
894
 * Put a event into inactive state and update time fields.
895 896 897 898 899 900
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
901 902
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
903
{
904
	struct perf_event *sub;
905

906 907
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
P
Peter Zijlstra 已提交
908 909
	list_for_each_entry(sub, &event->sibling_list, group_entry) {
		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
910 911
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
P
Peter Zijlstra 已提交
912 913
		}
	}
914 915
}

916
/*
917
 * Cross CPU call to enable a performance event
918
 */
919
static void __perf_event_enable(void *info)
920
{
921
	struct perf_event *event = info;
922
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
923 924
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
925
	int err;
926

927
	/*
928 929
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
930
	 */
931
	if (ctx->task && cpuctx->task_ctx != ctx) {
932
		if (cpuctx->task_ctx || ctx->task != current)
933 934 935
			return;
		cpuctx->task_ctx = ctx;
	}
936

937
	raw_spin_lock(&ctx->lock);
938
	ctx->is_active = 1;
939
	update_context_time(ctx);
940

941
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
942
		goto unlock;
943
	__perf_event_mark_enabled(event, ctx);
944

945 946 947
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

948
	/*
949
	 * If the event is in a group and isn't the group leader,
950
	 * then don't put it on unless the group is on.
951
	 */
952
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
953
		goto unlock;
954

955
	if (!group_can_go_on(event, cpuctx, 1)) {
956
		err = -EEXIST;
957
	} else {
958
		if (event == leader)
959
			err = group_sched_in(event, cpuctx, ctx);
960
		else
961
			err = event_sched_in(event, cpuctx, ctx);
962
	}
963 964 965

	if (err) {
		/*
966
		 * If this event can't go on and it's part of a
967 968
		 * group, then the whole group has to come off.
		 */
969
		if (leader != event)
970
			group_sched_out(leader, cpuctx, ctx);
971
		if (leader->attr.pinned) {
972
			update_group_times(leader);
973
			leader->state = PERF_EVENT_STATE_ERROR;
974
		}
975 976
	}

P
Peter Zijlstra 已提交
977
unlock:
978
	raw_spin_unlock(&ctx->lock);
979 980 981
}

/*
982
 * Enable a event.
983
 *
984 985
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
986
 * remains valid.  This condition is satisfied when called through
987 988
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
989
 */
990
void perf_event_enable(struct perf_event *event)
991
{
992
	struct perf_event_context *ctx = event->ctx;
993 994 995 996
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
997
		 * Enable the event on the cpu that it's on
998
		 */
999 1000
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
1001 1002 1003
		return;
	}

1004
	raw_spin_lock_irq(&ctx->lock);
1005
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1006 1007 1008
		goto out;

	/*
1009 1010
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
1011 1012 1013 1014
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
1015 1016
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1017

P
Peter Zijlstra 已提交
1018
retry:
1019
	raw_spin_unlock_irq(&ctx->lock);
1020
	task_oncpu_function_call(task, __perf_event_enable, event);
1021

1022
	raw_spin_lock_irq(&ctx->lock);
1023 1024

	/*
1025
	 * If the context is active and the event is still off,
1026 1027
	 * we need to retry the cross-call.
	 */
1028
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1029 1030 1031 1032 1033 1034
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1035 1036
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1037

P
Peter Zijlstra 已提交
1038
out:
1039
	raw_spin_unlock_irq(&ctx->lock);
1040 1041
}

1042
static int perf_event_refresh(struct perf_event *event, int refresh)
1043
{
1044
	/*
1045
	 * not supported on inherited events
1046
	 */
1047
	if (event->attr.inherit)
1048 1049
		return -EINVAL;

1050 1051
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1052 1053

	return 0;
1054 1055
}

1056 1057 1058 1059 1060 1061 1062 1063 1064
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1065
{
1066
	struct perf_event *event;
1067

1068
	raw_spin_lock(&ctx->lock);
1069
	ctx->is_active = 0;
1070
	if (likely(!ctx->nr_events))
1071
		goto out;
1072
	update_context_time(ctx);
1073

1074
	if (!ctx->nr_active)
1075
		goto out;
1076

P
Peter Zijlstra 已提交
1077
	if (event_type & EVENT_PINNED) {
1078 1079
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1080
	}
1081

P
Peter Zijlstra 已提交
1082
	if (event_type & EVENT_FLEXIBLE) {
1083
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1084
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1085 1086
	}
out:
1087
	raw_spin_unlock(&ctx->lock);
1088 1089
}

1090 1091 1092
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1093 1094 1095 1096
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1097
 * in them directly with an fd; we can only enable/disable all
1098
 * events via prctl, or enable/disable all events in a family
1099 1100
 * via ioctl, which will have the same effect on both contexts.
 */
1101 1102
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1103 1104
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1105
		&& ctx1->parent_gen == ctx2->parent_gen
1106
		&& !ctx1->pin_count && !ctx2->pin_count;
1107 1108
}

1109 1110
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1111 1112 1113
{
	u64 value;

1114
	if (!event->attr.inherit_stat)
1115 1116 1117
		return;

	/*
1118
	 * Update the event value, we cannot use perf_event_read()
1119 1120
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1121
	 * we know the event must be on the current CPU, therefore we
1122 1123
	 * don't need to use it.
	 */
1124 1125
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1126 1127
		event->pmu->read(event);
		/* fall-through */
1128

1129 1130
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1131 1132 1133 1134 1135 1136 1137
		break;

	default:
		break;
	}

	/*
1138
	 * In order to keep per-task stats reliable we need to flip the event
1139 1140
	 * values when we flip the contexts.
	 */
1141 1142 1143
	value = local64_read(&next_event->count);
	value = local64_xchg(&event->count, value);
	local64_set(&next_event->count, value);
1144

1145 1146
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1147

1148
	/*
1149
	 * Since we swizzled the values, update the user visible data too.
1150
	 */
1151 1152
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1153 1154 1155 1156 1157
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1158 1159
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1160
{
1161
	struct perf_event *event, *next_event;
1162 1163 1164 1165

	if (!ctx->nr_stat)
		return;

1166 1167
	update_context_time(ctx);

1168 1169
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1170

1171 1172
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1173

1174 1175
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1176

1177
		__perf_event_sync_stat(event, next_event);
1178

1179 1180
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1181 1182 1183
	}
}

T
Thomas Gleixner 已提交
1184
/*
1185
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1186 1187
 * with interrupts disabled.
 *
1188
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1189
 *
I
Ingo Molnar 已提交
1190
 * This does not protect us against NMI, but disable()
1191 1192 1193
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1194
 */
1195
void perf_event_task_sched_out(struct task_struct *task,
1196
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1197
{
1198
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1199 1200 1201
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1202
	int do_switch = 1;
T
Thomas Gleixner 已提交
1203

1204
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, NULL, 0);
1205

1206
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1207 1208
		return;

1209 1210
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1211
	next_ctx = next->perf_event_ctxp;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1223 1224
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1225
		if (context_equiv(ctx, next_ctx)) {
1226 1227
			/*
			 * XXX do we need a memory barrier of sorts
1228
			 * wrt to rcu_dereference() of perf_event_ctxp
1229
			 */
1230 1231
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1232 1233 1234
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1235

1236
			perf_event_sync_stat(ctx, next_ctx);
1237
		}
1238 1239
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1240
	}
1241
	rcu_read_unlock();
1242

1243
	if (do_switch) {
1244
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1245 1246
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1247 1248
}

1249 1250
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1251 1252 1253
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1254 1255
	if (!cpuctx->task_ctx)
		return;
1256 1257 1258 1259

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1260
	ctx_sched_out(ctx, cpuctx, event_type);
1261 1262 1263
	cpuctx->task_ctx = NULL;
}

1264 1265 1266
/*
 * Called with IRQs disabled
 */
1267
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1268
{
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1279 1280
}

1281
static void
1282
ctx_pinned_sched_in(struct perf_event_context *ctx,
1283
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1284
{
1285
	struct perf_event *event;
T
Thomas Gleixner 已提交
1286

1287 1288
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1289
			continue;
1290
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1291 1292
			continue;

1293
		if (group_can_go_on(event, cpuctx, 1))
1294
			group_sched_in(event, cpuctx, ctx);
1295 1296 1297 1298 1299

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1300 1301 1302
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1303
		}
1304
	}
1305 1306 1307 1308
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1309
		      struct perf_cpu_context *cpuctx)
1310 1311 1312
{
	struct perf_event *event;
	int can_add_hw = 1;
1313

1314 1315 1316
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1317
			continue;
1318 1319
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1320
		 * of events:
1321
		 */
1322
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1323 1324
			continue;

P
Peter Zijlstra 已提交
1325
		if (group_can_go_on(event, cpuctx, can_add_hw)) {
1326
			if (group_sched_in(event, cpuctx, ctx))
1327
				can_add_hw = 0;
P
Peter Zijlstra 已提交
1328
		}
T
Thomas Gleixner 已提交
1329
	}
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1349
		ctx_pinned_sched_in(ctx, cpuctx);
1350 1351 1352

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1353
		ctx_flexible_sched_in(ctx, cpuctx);
1354

P
Peter Zijlstra 已提交
1355
out:
1356
	raw_spin_unlock(&ctx->lock);
1357 1358
}

1359 1360 1361 1362 1363 1364 1365 1366
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1380
/*
1381
 * Called from scheduler to add the events of the current task
1382 1383
 * with interrupts disabled.
 *
1384
 * We restore the event value and then enable it.
1385 1386
 *
 * This does not protect us against NMI, but enable()
1387 1388 1389
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1390
 */
1391
void perf_event_task_sched_in(struct task_struct *task)
1392
{
1393 1394
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1395

1396 1397
	if (likely(!ctx))
		return;
1398

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	if (cpuctx->task_ctx == ctx)
		return;

	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1414 1415
}

1416 1417
#define MAX_INTERRUPTS (~0ULL)

1418
static void perf_log_throttle(struct perf_event *event, int enable);
1419

1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

1487 1488 1489
	if (!divisor)
		return dividend;

1490 1491 1492
	return div64_u64(dividend, divisor);
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1509
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1510
{
1511
	struct hw_perf_event *hwc = &event->hw;
1512
	s64 period, sample_period;
1513 1514
	s64 delta;

1515
	period = perf_calculate_period(event, nsec, count);
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1526

1527
	if (local64_read(&hwc->period_left) > 8*sample_period) {
1528
		perf_event_stop(event);
1529
		local64_set(&hwc->period_left, 0);
1530
		perf_event_start(event);
1531
	}
1532 1533
}

1534
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1535
{
1536 1537
	struct perf_event *event;
	struct hw_perf_event *hwc;
1538 1539
	u64 interrupts, now;
	s64 delta;
1540

1541
	raw_spin_lock(&ctx->lock);
1542
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1543
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1544 1545
			continue;

1546 1547 1548
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1549
		hwc = &event->hw;
1550 1551 1552

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1553

1554
		/*
1555
		 * unthrottle events on the tick
1556
		 */
1557
		if (interrupts == MAX_INTERRUPTS) {
1558 1559
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
1560 1561
		}

1562
		if (!event->attr.freq || !event->attr.sample_freq)
1563 1564
			continue;

1565
		event->pmu->read(event);
1566
		now = local64_read(&event->count);
1567 1568
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1569

1570 1571
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1572
	}
1573
	raw_spin_unlock(&ctx->lock);
1574 1575
}

1576
/*
1577
 * Round-robin a context's events:
1578
 */
1579
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1580
{
1581
	raw_spin_lock(&ctx->lock);
1582 1583 1584 1585

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1586
	raw_spin_unlock(&ctx->lock);
1587 1588
}

1589
void perf_event_task_tick(struct task_struct *curr)
1590
{
1591
	struct perf_cpu_context *cpuctx;
1592
	struct perf_event_context *ctx;
1593
	int rotate = 0;
1594

1595
	if (!atomic_read(&nr_events))
1596 1597
		return;

1598
	cpuctx = &__get_cpu_var(perf_cpu_context);
1599 1600 1601
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1602

1603 1604 1605
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1606

1607
	perf_ctx_adjust_freq(&cpuctx->ctx);
1608
	if (ctx)
1609
		perf_ctx_adjust_freq(ctx);
1610

1611 1612 1613
	if (!rotate)
		return;

1614
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1615
	if (ctx)
1616
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1617

1618
	rotate_ctx(&cpuctx->ctx);
1619 1620
	if (ctx)
		rotate_ctx(ctx);
1621

1622
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1623
	if (ctx)
1624
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1625 1626
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1642
/*
1643
 * Enable all of a task's events that have been marked enable-on-exec.
1644 1645
 * This expects task == current.
 */
1646
static void perf_event_enable_on_exec(struct task_struct *task)
1647
{
1648 1649
	struct perf_event_context *ctx;
	struct perf_event *event;
1650 1651
	unsigned long flags;
	int enabled = 0;
1652
	int ret;
1653 1654

	local_irq_save(flags);
1655 1656
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1657 1658
		goto out;

1659
	__perf_event_task_sched_out(ctx);
1660

1661
	raw_spin_lock(&ctx->lock);
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1673 1674 1675
	}

	/*
1676
	 * Unclone this context if we enabled any event.
1677
	 */
1678 1679
	if (enabled)
		unclone_ctx(ctx);
1680

1681
	raw_spin_unlock(&ctx->lock);
1682

1683
	perf_event_task_sched_in(task);
P
Peter Zijlstra 已提交
1684
out:
1685 1686 1687
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1688
/*
1689
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1690
 */
1691
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1692
{
1693
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1694 1695
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1696

1697 1698 1699 1700
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1701 1702
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1703 1704 1705 1706
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1707
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1708
	update_context_time(ctx);
1709
	update_event_times(event);
1710
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1711

P
Peter Zijlstra 已提交
1712
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1713 1714
}

P
Peter Zijlstra 已提交
1715 1716
static inline u64 perf_event_count(struct perf_event *event)
{
1717
	return local64_read(&event->count) + atomic64_read(&event->child_count);
P
Peter Zijlstra 已提交
1718 1719
}

1720
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1721 1722
{
	/*
1723 1724
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1725
	 */
1726 1727 1728 1729
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1730 1731 1732
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1733
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1734
		update_context_time(ctx);
1735
		update_event_times(event);
1736
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1737 1738
	}

P
Peter Zijlstra 已提交
1739
	return perf_event_count(event);
T
Thomas Gleixner 已提交
1740 1741
}

1742 1743 1744 1745 1746 1747 1748 1749 1750
/*
 * Callchain support
 */

struct callchain_cpus_entries {
	struct rcu_head			rcu_head;
	struct perf_callchain_entry	*cpu_entries[0];
};

1751
static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
static atomic_t nr_callchain_events;
static DEFINE_MUTEX(callchain_mutex);
struct callchain_cpus_entries *callchain_cpus_entries;


__weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
				  struct pt_regs *regs)
{
}

__weak void perf_callchain_user(struct perf_callchain_entry *entry,
				struct pt_regs *regs)
{
}

static void release_callchain_buffers_rcu(struct rcu_head *head)
{
	struct callchain_cpus_entries *entries;
	int cpu;

	entries = container_of(head, struct callchain_cpus_entries, rcu_head);

	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);

	kfree(entries);
}

static void release_callchain_buffers(void)
{
	struct callchain_cpus_entries *entries;

	entries = callchain_cpus_entries;
	rcu_assign_pointer(callchain_cpus_entries, NULL);
	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
}

static int alloc_callchain_buffers(void)
{
	int cpu;
	int size;
	struct callchain_cpus_entries *entries;

	/*
	 * We can't use the percpu allocation API for data that can be
	 * accessed from NMI. Use a temporary manual per cpu allocation
	 * until that gets sorted out.
	 */
	size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
		num_possible_cpus();

	entries = kzalloc(size, GFP_KERNEL);
	if (!entries)
		return -ENOMEM;

1807
	size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951

	for_each_possible_cpu(cpu) {
		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
							 cpu_to_node(cpu));
		if (!entries->cpu_entries[cpu])
			goto fail;
	}

	rcu_assign_pointer(callchain_cpus_entries, entries);

	return 0;

fail:
	for_each_possible_cpu(cpu)
		kfree(entries->cpu_entries[cpu]);
	kfree(entries);

	return -ENOMEM;
}

static int get_callchain_buffers(void)
{
	int err = 0;
	int count;

	mutex_lock(&callchain_mutex);

	count = atomic_inc_return(&nr_callchain_events);
	if (WARN_ON_ONCE(count < 1)) {
		err = -EINVAL;
		goto exit;
	}

	if (count > 1) {
		/* If the allocation failed, give up */
		if (!callchain_cpus_entries)
			err = -ENOMEM;
		goto exit;
	}

	err = alloc_callchain_buffers();
	if (err)
		release_callchain_buffers();
exit:
	mutex_unlock(&callchain_mutex);

	return err;
}

static void put_callchain_buffers(void)
{
	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
		release_callchain_buffers();
		mutex_unlock(&callchain_mutex);
	}
}

static int get_recursion_context(int *recursion)
{
	int rctx;

	if (in_nmi())
		rctx = 3;
	else if (in_irq())
		rctx = 2;
	else if (in_softirq())
		rctx = 1;
	else
		rctx = 0;

	if (recursion[rctx])
		return -1;

	recursion[rctx]++;
	barrier();

	return rctx;
}

static inline void put_recursion_context(int *recursion, int rctx)
{
	barrier();
	recursion[rctx]--;
}

static struct perf_callchain_entry *get_callchain_entry(int *rctx)
{
	int cpu;
	struct callchain_cpus_entries *entries;

	*rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
	if (*rctx == -1)
		return NULL;

	entries = rcu_dereference(callchain_cpus_entries);
	if (!entries)
		return NULL;

	cpu = smp_processor_id();

	return &entries->cpu_entries[cpu][*rctx];
}

static void
put_callchain_entry(int rctx)
{
	put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
}

static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
	int rctx;
	struct perf_callchain_entry *entry;


	entry = get_callchain_entry(&rctx);
	if (rctx == -1)
		return NULL;

	if (!entry)
		goto exit_put;

	entry->nr = 0;

	if (!user_mode(regs)) {
		perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
		perf_callchain_kernel(entry, regs);
		if (current->mm)
			regs = task_pt_regs(current);
		else
			regs = NULL;
	}

	if (regs) {
		perf_callchain_store(entry, PERF_CONTEXT_USER);
		perf_callchain_user(entry, regs);
	}

exit_put:
	put_callchain_entry(rctx);

	return entry;
}

1952
/*
1953
 * Initialize the perf_event context in a task_struct:
1954 1955
 */
static void
1956
__perf_event_init_context(struct perf_event_context *ctx,
1957 1958
			    struct task_struct *task)
{
1959
	raw_spin_lock_init(&ctx->lock);
1960
	mutex_init(&ctx->mutex);
1961 1962
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1963 1964 1965 1966 1967
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1968
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1969
{
1970
	struct perf_event_context *ctx;
1971
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1972
	struct task_struct *task;
1973
	unsigned long flags;
1974
	int err;
T
Thomas Gleixner 已提交
1975

1976
	if (pid == -1 && cpu != -1) {
1977
		/* Must be root to operate on a CPU event: */
1978
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1979 1980
			return ERR_PTR(-EACCES);

1981
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1982 1983 1984
			return ERR_PTR(-EINVAL);

		/*
1985
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1986 1987 1988
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1989
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1990 1991 1992 1993
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1994
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

2011
	/*
2012
	 * Can't attach events to a dying task.
2013 2014 2015 2016 2017
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
2018
	/* Reuse ptrace permission checks for now. */
2019 2020 2021 2022
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

P
Peter Zijlstra 已提交
2023
retry:
2024
	ctx = perf_lock_task_context(task, &flags);
2025
	if (ctx) {
2026
		unclone_ctx(ctx);
2027
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
2028 2029
	}

2030
	if (!ctx) {
2031
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2032 2033 2034
		err = -ENOMEM;
		if (!ctx)
			goto errout;
2035
		__perf_event_init_context(ctx, task);
2036
		get_ctx(ctx);
2037
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
2038 2039 2040 2041 2042
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
2043
			goto retry;
2044
		}
2045
		get_task_struct(task);
2046 2047
	}

2048
	put_task_struct(task);
T
Thomas Gleixner 已提交
2049
	return ctx;
2050

P
Peter Zijlstra 已提交
2051
errout:
2052 2053
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
2054 2055
}

L
Li Zefan 已提交
2056 2057
static void perf_event_free_filter(struct perf_event *event);

2058
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
2059
{
2060
	struct perf_event *event;
P
Peter Zijlstra 已提交
2061

2062 2063 2064
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
2065
	perf_event_free_filter(event);
2066
	kfree(event);
P
Peter Zijlstra 已提交
2067 2068
}

2069
static void perf_pending_sync(struct perf_event *event);
2070
static void perf_buffer_put(struct perf_buffer *buffer);
2071

2072
static void free_event(struct perf_event *event)
2073
{
2074
	perf_pending_sync(event);
2075

2076 2077
	if (!event->parent) {
		atomic_dec(&nr_events);
2078
		if (event->attr.mmap || event->attr.mmap_data)
2079 2080 2081 2082 2083
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
2084 2085
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
			put_callchain_buffers();
2086
	}
2087

2088 2089 2090
	if (event->buffer) {
		perf_buffer_put(event->buffer);
		event->buffer = NULL;
2091 2092
	}

2093 2094
	if (event->destroy)
		event->destroy(event);
2095

2096 2097
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
2098 2099
}

2100
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
2101
{
2102
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
2103

2104 2105 2106 2107 2108 2109
	/*
	 * Remove from the PMU, can't get re-enabled since we got
	 * here because the last ref went.
	 */
	perf_event_disable(event);

2110
	WARN_ON_ONCE(ctx->parent_ctx);
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	/*
	 * There are two ways this annotation is useful:
	 *
	 *  1) there is a lock recursion from perf_event_exit_task
	 *     see the comment there.
	 *
	 *  2) there is a lock-inversion with mmap_sem through
	 *     perf_event_read_group(), which takes faults while
	 *     holding ctx->mutex, however this is called after
	 *     the last filedesc died, so there is no possibility
	 *     to trigger the AB-BA case.
	 */
	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2124
	raw_spin_lock_irq(&ctx->lock);
2125
	perf_group_detach(event);
2126 2127
	list_del_event(event, ctx);
	raw_spin_unlock_irq(&ctx->lock);
2128
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
2129

2130 2131 2132 2133
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
2134

2135
	free_event(event);
T
Thomas Gleixner 已提交
2136 2137 2138

	return 0;
}
2139
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
2140

2141 2142 2143 2144
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
2145
{
2146
	struct perf_event *event = file->private_data;
2147

2148
	file->private_data = NULL;
2149

2150
	return perf_event_release_kernel(event);
2151 2152
}

2153
static int perf_event_read_size(struct perf_event *event)
2154 2155 2156 2157 2158
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

2159
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2160 2161
		size += sizeof(u64);

2162
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2163 2164
		size += sizeof(u64);

2165
	if (event->attr.read_format & PERF_FORMAT_ID)
2166 2167
		entry += sizeof(u64);

2168 2169
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
2170 2171 2172 2173 2174 2175 2176 2177
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

2178
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2179
{
2180
	struct perf_event *child;
2181 2182
	u64 total = 0;

2183 2184 2185
	*enabled = 0;
	*running = 0;

2186
	mutex_lock(&event->child_mutex);
2187
	total += perf_event_read(event);
2188 2189 2190 2191 2192 2193
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
2194
		total += perf_event_read(child);
2195 2196 2197
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
2198
	mutex_unlock(&event->child_mutex);
2199 2200 2201

	return total;
}
2202
EXPORT_SYMBOL_GPL(perf_event_read_value);
2203

2204
static int perf_event_read_group(struct perf_event *event,
2205 2206
				   u64 read_format, char __user *buf)
{
2207
	struct perf_event *leader = event->group_leader, *sub;
2208 2209
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
2210
	u64 values[5];
2211
	u64 count, enabled, running;
2212

2213
	mutex_lock(&ctx->mutex);
2214
	count = perf_event_read_value(leader, &enabled, &running);
2215 2216

	values[n++] = 1 + leader->nr_siblings;
2217 2218 2219 2220
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2221 2222 2223
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
2224 2225 2226 2227

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
2228
		goto unlock;
2229

2230
	ret = size;
2231

2232
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2233
		n = 0;
2234

2235
		values[n++] = perf_event_read_value(sub, &enabled, &running);
2236 2237 2238 2239 2240
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

2241
		if (copy_to_user(buf + ret, values, size)) {
2242 2243 2244
			ret = -EFAULT;
			goto unlock;
		}
2245 2246

		ret += size;
2247
	}
2248 2249
unlock:
	mutex_unlock(&ctx->mutex);
2250

2251
	return ret;
2252 2253
}

2254
static int perf_event_read_one(struct perf_event *event,
2255 2256
				 u64 read_format, char __user *buf)
{
2257
	u64 enabled, running;
2258 2259 2260
	u64 values[4];
	int n = 0;

2261 2262 2263 2264 2265
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2266
	if (read_format & PERF_FORMAT_ID)
2267
		values[n++] = primary_event_id(event);
2268 2269 2270 2271 2272 2273 2274

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2275
/*
2276
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2277 2278
 */
static ssize_t
2279
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2280
{
2281
	u64 read_format = event->attr.read_format;
2282
	int ret;
T
Thomas Gleixner 已提交
2283

2284
	/*
2285
	 * Return end-of-file for a read on a event that is in
2286 2287 2288
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2289
	if (event->state == PERF_EVENT_STATE_ERROR)
2290 2291
		return 0;

2292
	if (count < perf_event_read_size(event))
2293 2294
		return -ENOSPC;

2295
	WARN_ON_ONCE(event->ctx->parent_ctx);
2296
	if (read_format & PERF_FORMAT_GROUP)
2297
		ret = perf_event_read_group(event, read_format, buf);
2298
	else
2299
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2300

2301
	return ret;
T
Thomas Gleixner 已提交
2302 2303 2304 2305 2306
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2307
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2308

2309
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2310 2311 2312 2313
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2314
	struct perf_event *event = file->private_data;
2315
	struct perf_buffer *buffer;
2316
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2317 2318

	rcu_read_lock();
2319 2320 2321
	buffer = rcu_dereference(event->buffer);
	if (buffer)
		events = atomic_xchg(&buffer->poll, 0);
P
Peter Zijlstra 已提交
2322
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2323

2324
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2325 2326 2327 2328

	return events;
}

2329
static void perf_event_reset(struct perf_event *event)
2330
{
2331
	(void)perf_event_read(event);
2332
	local64_set(&event->count, 0);
2333
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2334 2335
}

2336
/*
2337 2338 2339 2340
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2341
 */
2342 2343
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2344
{
2345
	struct perf_event *child;
P
Peter Zijlstra 已提交
2346

2347 2348 2349 2350
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2351
		func(child);
2352
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2353 2354
}

2355 2356
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2357
{
2358 2359
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2360

2361 2362
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2363
	event = event->group_leader;
2364

2365 2366 2367 2368
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2369
	mutex_unlock(&ctx->mutex);
2370 2371
}

2372
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2373
{
2374
	struct perf_event_context *ctx = event->ctx;
2375 2376 2377 2378
	unsigned long size;
	int ret = 0;
	u64 value;

2379
	if (!event->attr.sample_period)
2380 2381 2382 2383 2384 2385 2386 2387 2388
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2389
	raw_spin_lock_irq(&ctx->lock);
2390 2391
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2392 2393 2394 2395
			ret = -EINVAL;
			goto unlock;
		}

2396
		event->attr.sample_freq = value;
2397
	} else {
2398 2399
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2400 2401
	}
unlock:
2402
	raw_spin_unlock_irq(&ctx->lock);
2403 2404 2405 2406

	return ret;
}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
static const struct file_operations perf_fops;

static struct perf_event *perf_fget_light(int fd, int *fput_needed)
{
	struct file *file;

	file = fget_light(fd, fput_needed);
	if (!file)
		return ERR_PTR(-EBADF);

	if (file->f_op != &perf_fops) {
		fput_light(file, *fput_needed);
		*fput_needed = 0;
		return ERR_PTR(-EBADF);
	}

	return file->private_data;
}

static int perf_event_set_output(struct perf_event *event,
				 struct perf_event *output_event);
L
Li Zefan 已提交
2428
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2429

2430 2431
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2432 2433
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2434
	u32 flags = arg;
2435 2436

	switch (cmd) {
2437 2438
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2439
		break;
2440 2441
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2442
		break;
2443 2444
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2445
		break;
P
Peter Zijlstra 已提交
2446

2447 2448
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2449

2450 2451
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2452

2453
	case PERF_EVENT_IOC_SET_OUTPUT:
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
	{
		struct perf_event *output_event = NULL;
		int fput_needed = 0;
		int ret;

		if (arg != -1) {
			output_event = perf_fget_light(arg, &fput_needed);
			if (IS_ERR(output_event))
				return PTR_ERR(output_event);
		}

		ret = perf_event_set_output(event, output_event);
		if (output_event)
			fput_light(output_event->filp, fput_needed);

		return ret;
	}
2471

L
Li Zefan 已提交
2472 2473 2474
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2475
	default:
P
Peter Zijlstra 已提交
2476
		return -ENOTTY;
2477
	}
P
Peter Zijlstra 已提交
2478 2479

	if (flags & PERF_IOC_FLAG_GROUP)
2480
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2481
	else
2482
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2483 2484

	return 0;
2485 2486
}

2487
int perf_event_task_enable(void)
2488
{
2489
	struct perf_event *event;
2490

2491 2492 2493 2494
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2495 2496 2497 2498

	return 0;
}

2499
int perf_event_task_disable(void)
2500
{
2501
	struct perf_event *event;
2502

2503 2504 2505 2506
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2507 2508 2509 2510

	return 0;
}

2511 2512
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2513 2514
#endif

2515
static int perf_event_index(struct perf_event *event)
2516
{
2517
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2518 2519
		return 0;

2520
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2521 2522
}

2523 2524 2525 2526 2527
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2528
void perf_event_update_userpage(struct perf_event *event)
2529
{
2530
	struct perf_event_mmap_page *userpg;
2531
	struct perf_buffer *buffer;
2532 2533

	rcu_read_lock();
2534 2535
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2536 2537
		goto unlock;

2538
	userpg = buffer->user_page;
2539

2540 2541 2542 2543 2544
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2545
	++userpg->lock;
2546
	barrier();
2547
	userpg->index = perf_event_index(event);
P
Peter Zijlstra 已提交
2548
	userpg->offset = perf_event_count(event);
2549
	if (event->state == PERF_EVENT_STATE_ACTIVE)
2550
		userpg->offset -= local64_read(&event->hw.prev_count);
2551

2552 2553
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2554

2555 2556
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2557

2558
	barrier();
2559
	++userpg->lock;
2560
	preempt_enable();
2561
unlock:
2562
	rcu_read_unlock();
2563 2564
}

2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
static unsigned long perf_data_size(struct perf_buffer *buffer);

static void
perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
{
	long max_size = perf_data_size(buffer);

	if (watermark)
		buffer->watermark = min(max_size, watermark);

	if (!buffer->watermark)
		buffer->watermark = max_size / 2;

	if (flags & PERF_BUFFER_WRITABLE)
		buffer->writable = 1;

	atomic_set(&buffer->refcount, 1);
}

2584
#ifndef CONFIG_PERF_USE_VMALLOC
2585

2586 2587 2588
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2589

2590
static struct page *
2591
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2592
{
2593
	if (pgoff > buffer->nr_pages)
2594
		return NULL;
2595

2596
	if (pgoff == 0)
2597
		return virt_to_page(buffer->user_page);
2598

2599
	return virt_to_page(buffer->data_pages[pgoff - 1]);
2600 2601
}

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
static void *perf_mmap_alloc_page(int cpu)
{
	struct page *page;
	int node;

	node = (cpu == -1) ? cpu : cpu_to_node(cpu);
	page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
	if (!page)
		return NULL;

	return page_address(page);
}

2615
static struct perf_buffer *
2616
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2617
{
2618
	struct perf_buffer *buffer;
2619 2620 2621
	unsigned long size;
	int i;

2622
	size = sizeof(struct perf_buffer);
2623 2624
	size += nr_pages * sizeof(void *);

2625 2626
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2627 2628
		goto fail;

2629
	buffer->user_page = perf_mmap_alloc_page(cpu);
2630
	if (!buffer->user_page)
2631 2632 2633
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
2634
		buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2635
		if (!buffer->data_pages[i])
2636 2637 2638
			goto fail_data_pages;
	}

2639
	buffer->nr_pages = nr_pages;
2640

2641 2642
	perf_buffer_init(buffer, watermark, flags);

2643
	return buffer;
2644 2645 2646

fail_data_pages:
	for (i--; i >= 0; i--)
2647
		free_page((unsigned long)buffer->data_pages[i]);
2648

2649
	free_page((unsigned long)buffer->user_page);
2650 2651

fail_user_page:
2652
	kfree(buffer);
2653 2654

fail:
2655
	return NULL;
2656 2657
}

2658 2659
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2660
	struct page *page = virt_to_page((void *)addr);
2661 2662 2663 2664 2665

	page->mapping = NULL;
	__free_page(page);
}

2666
static void perf_buffer_free(struct perf_buffer *buffer)
2667 2668 2669
{
	int i;

2670 2671 2672 2673
	perf_mmap_free_page((unsigned long)buffer->user_page);
	for (i = 0; i < buffer->nr_pages; i++)
		perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
	kfree(buffer);
2674 2675
}

2676
static inline int page_order(struct perf_buffer *buffer)
2677 2678 2679 2680
{
	return 0;
}

2681 2682 2683 2684 2685 2686 2687 2688
#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

2689
static inline int page_order(struct perf_buffer *buffer)
2690
{
2691
	return buffer->page_order;
2692 2693
}

2694
static struct page *
2695
perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2696
{
2697
	if (pgoff > (1UL << page_order(buffer)))
2698 2699
		return NULL;

2700
	return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2701 2702 2703 2704 2705 2706 2707 2708 2709
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

2710
static void perf_buffer_free_work(struct work_struct *work)
2711
{
2712
	struct perf_buffer *buffer;
2713 2714 2715
	void *base;
	int i, nr;

2716 2717
	buffer = container_of(work, struct perf_buffer, work);
	nr = 1 << page_order(buffer);
2718

2719
	base = buffer->user_page;
2720 2721 2722 2723
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2724
	kfree(buffer);
2725 2726
}

2727
static void perf_buffer_free(struct perf_buffer *buffer)
2728
{
2729
	schedule_work(&buffer->work);
2730 2731
}

2732
static struct perf_buffer *
2733
perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2734
{
2735
	struct perf_buffer *buffer;
2736 2737 2738
	unsigned long size;
	void *all_buf;

2739
	size = sizeof(struct perf_buffer);
2740 2741
	size += sizeof(void *);

2742 2743
	buffer = kzalloc(size, GFP_KERNEL);
	if (!buffer)
2744 2745
		goto fail;

2746
	INIT_WORK(&buffer->work, perf_buffer_free_work);
2747 2748 2749 2750 2751

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

2752 2753 2754 2755
	buffer->user_page = all_buf;
	buffer->data_pages[0] = all_buf + PAGE_SIZE;
	buffer->page_order = ilog2(nr_pages);
	buffer->nr_pages = 1;
2756

2757 2758
	perf_buffer_init(buffer, watermark, flags);

2759
	return buffer;
2760 2761

fail_all_buf:
2762
	kfree(buffer);
2763 2764 2765 2766 2767 2768 2769

fail:
	return NULL;
}

#endif

2770
static unsigned long perf_data_size(struct perf_buffer *buffer)
2771
{
2772
	return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2773 2774
}

2775 2776 2777
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
2778
	struct perf_buffer *buffer;
2779 2780 2781 2782 2783 2784 2785 2786 2787
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
2788 2789
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
2790 2791 2792 2793 2794
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

2795
	vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

2810
static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
2811
{
2812
	struct perf_buffer *buffer;
2813

2814 2815
	buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
	perf_buffer_free(buffer);
2816 2817
}

2818
static struct perf_buffer *perf_buffer_get(struct perf_event *event)
2819
{
2820
	struct perf_buffer *buffer;
2821

2822
	rcu_read_lock();
2823 2824 2825 2826
	buffer = rcu_dereference(event->buffer);
	if (buffer) {
		if (!atomic_inc_not_zero(&buffer->refcount))
			buffer = NULL;
2827 2828 2829
	}
	rcu_read_unlock();

2830
	return buffer;
2831 2832
}

2833
static void perf_buffer_put(struct perf_buffer *buffer)
2834
{
2835
	if (!atomic_dec_and_test(&buffer->refcount))
2836
		return;
2837

2838
	call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
2839 2840 2841 2842
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2843
	struct perf_event *event = vma->vm_file->private_data;
2844

2845
	atomic_inc(&event->mmap_count);
2846 2847 2848 2849
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2850
	struct perf_event *event = vma->vm_file->private_data;
2851

2852
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2853
		unsigned long size = perf_data_size(event->buffer);
2854
		struct user_struct *user = event->mmap_user;
2855
		struct perf_buffer *buffer = event->buffer;
2856

2857
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2858
		vma->vm_mm->locked_vm -= event->mmap_locked;
2859
		rcu_assign_pointer(event->buffer, NULL);
2860
		mutex_unlock(&event->mmap_mutex);
2861

2862
		perf_buffer_put(buffer);
2863
		free_uid(user);
2864
	}
2865 2866
}

2867
static const struct vm_operations_struct perf_mmap_vmops = {
2868 2869 2870 2871
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2872 2873 2874 2875
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2876
	struct perf_event *event = file->private_data;
2877
	unsigned long user_locked, user_lock_limit;
2878
	struct user_struct *user = current_user();
2879
	unsigned long locked, lock_limit;
2880
	struct perf_buffer *buffer;
2881 2882
	unsigned long vma_size;
	unsigned long nr_pages;
2883
	long user_extra, extra;
2884
	int ret = 0, flags = 0;
2885

2886 2887 2888 2889 2890 2891 2892 2893
	/*
	 * Don't allow mmap() of inherited per-task counters. This would
	 * create a performance issue due to all children writing to the
	 * same buffer.
	 */
	if (event->cpu == -1 && event->attr.inherit)
		return -EINVAL;

2894
	if (!(vma->vm_flags & VM_SHARED))
2895
		return -EINVAL;
2896 2897 2898 2899

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2900
	/*
2901
	 * If we have buffer pages ensure they're a power-of-two number, so we
2902 2903 2904
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2905 2906
		return -EINVAL;

2907
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2908 2909
		return -EINVAL;

2910 2911
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2912

2913 2914
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
2915 2916 2917
	if (event->buffer) {
		if (event->buffer->nr_pages == nr_pages)
			atomic_inc(&event->buffer->refcount);
2918
		else
2919 2920 2921 2922
			ret = -EINVAL;
		goto unlock;
	}

2923
	user_extra = nr_pages + 1;
2924
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2925 2926 2927 2928 2929 2930

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2931
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2932

2933 2934 2935
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2936

2937
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2938
	lock_limit >>= PAGE_SHIFT;
2939
	locked = vma->vm_mm->locked_vm + extra;
2940

2941 2942
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2943 2944 2945
		ret = -EPERM;
		goto unlock;
	}
2946

2947
	WARN_ON(event->buffer);
2948

2949 2950 2951 2952 2953
	if (vma->vm_flags & VM_WRITE)
		flags |= PERF_BUFFER_WRITABLE;

	buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
				   event->cpu, flags);
2954
	if (!buffer) {
2955
		ret = -ENOMEM;
2956
		goto unlock;
2957
	}
2958
	rcu_assign_pointer(event->buffer, buffer);
2959

2960 2961 2962 2963 2964
	atomic_long_add(user_extra, &user->locked_vm);
	event->mmap_locked = extra;
	event->mmap_user = get_current_user();
	vma->vm_mm->locked_vm += event->mmap_locked;

2965
unlock:
2966 2967
	if (!ret)
		atomic_inc(&event->mmap_count);
2968
	mutex_unlock(&event->mmap_mutex);
2969 2970 2971

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2972 2973

	return ret;
2974 2975
}

P
Peter Zijlstra 已提交
2976 2977 2978
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2979
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2980 2981 2982
	int retval;

	mutex_lock(&inode->i_mutex);
2983
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2984 2985 2986 2987 2988 2989 2990 2991
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2992
static const struct file_operations perf_fops = {
2993
	.llseek			= no_llseek,
T
Thomas Gleixner 已提交
2994 2995 2996
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2997 2998
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2999
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
3000
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
3001 3002
};

3003
/*
3004
 * Perf event wakeup
3005 3006 3007 3008 3009
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

3010
void perf_event_wakeup(struct perf_event *event)
3011
{
3012
	wake_up_all(&event->waitq);
3013

3014 3015 3016
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
3017
	}
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

3029
static void perf_pending_event(struct perf_pending_entry *entry)
3030
{
3031 3032
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
3033

3034 3035 3036
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
3037 3038
	}

3039 3040 3041
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
3042 3043 3044
	}
}

3045
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
3046

3047
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
3048 3049 3050
	PENDING_TAIL,
};

3051 3052
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
3053
{
3054
	struct perf_pending_entry **head;
3055

3056
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
3057 3058
		return;

3059 3060 3061
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
3062 3063

	do {
3064 3065
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
3066

3067
	set_perf_event_pending();
3068

3069
	put_cpu_var(perf_pending_head);
3070 3071 3072 3073
}

static int __perf_pending_run(void)
{
3074
	struct perf_pending_entry *list;
3075 3076
	int nr = 0;

3077
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
3078
	while (list != PENDING_TAIL) {
3079 3080
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
3081 3082 3083

		list = list->next;

3084 3085
		func = entry->func;
		entry->next = NULL;
3086 3087 3088 3089 3090 3091 3092
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

3093
		func(entry);
3094 3095 3096 3097 3098 3099
		nr++;
	}

	return nr;
}

3100
static inline int perf_not_pending(struct perf_event *event)
3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
3115
	return event->pending.next == NULL;
3116 3117
}

3118
static void perf_pending_sync(struct perf_event *event)
3119
{
3120
	wait_event(event->waitq, perf_not_pending(event));
3121 3122
}

3123
void perf_event_do_pending(void)
3124 3125 3126 3127
{
	__perf_pending_run();
}

3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
/*
 * We assume there is only KVM supporting the callbacks.
 * Later on, we might change it to a list if there is
 * another virtualization implementation supporting the callbacks.
 */
struct perf_guest_info_callbacks *perf_guest_cbs;

int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = cbs;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);

int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
{
	perf_guest_cbs = NULL;
	return 0;
}
EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);

3149 3150 3151
/*
 * Output
 */
3152
static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3153
			      unsigned long offset, unsigned long head)
3154 3155 3156
{
	unsigned long mask;

3157
	if (!buffer->writable)
3158 3159
		return true;

3160
	mask = perf_data_size(buffer) - 1;
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

3171
static void perf_output_wakeup(struct perf_output_handle *handle)
3172
{
3173
	atomic_set(&handle->buffer->poll, POLL_IN);
3174

3175
	if (handle->nmi) {
3176 3177 3178
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
3179
	} else
3180
		perf_event_wakeup(handle->event);
3181 3182
}

3183
/*
3184
 * We need to ensure a later event_id doesn't publish a head when a former
3185
 * event isn't done writing. However since we need to deal with NMIs we
3186 3187 3188
 * cannot fully serialize things.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
3189
 * event completes.
3190
 */
3191
static void perf_output_get_handle(struct perf_output_handle *handle)
3192
{
3193
	struct perf_buffer *buffer = handle->buffer;
3194

3195
	preempt_disable();
3196 3197
	local_inc(&buffer->nest);
	handle->wakeup = local_read(&buffer->wakeup);
3198 3199
}

3200
static void perf_output_put_handle(struct perf_output_handle *handle)
3201
{
3202
	struct perf_buffer *buffer = handle->buffer;
3203
	unsigned long head;
3204 3205

again:
3206
	head = local_read(&buffer->head);
3207 3208

	/*
3209
	 * IRQ/NMI can happen here, which means we can miss a head update.
3210 3211
	 */

3212
	if (!local_dec_and_test(&buffer->nest))
3213
		goto out;
3214 3215

	/*
3216
	 * Publish the known good head. Rely on the full barrier implied
3217
	 * by atomic_dec_and_test() order the buffer->head read and this
3218
	 * write.
3219
	 */
3220
	buffer->user_page->data_head = head;
3221

3222 3223
	/*
	 * Now check if we missed an update, rely on the (compiler)
3224
	 * barrier in atomic_dec_and_test() to re-read buffer->head.
3225
	 */
3226 3227
	if (unlikely(head != local_read(&buffer->head))) {
		local_inc(&buffer->nest);
3228 3229 3230
		goto again;
	}

3231
	if (handle->wakeup != local_read(&buffer->wakeup))
3232
		perf_output_wakeup(handle);
3233

P
Peter Zijlstra 已提交
3234
out:
3235
	preempt_enable();
3236 3237
}

3238
__always_inline void perf_output_copy(struct perf_output_handle *handle,
3239
		      const void *buf, unsigned int len)
3240
{
3241
	do {
3242
		unsigned long size = min_t(unsigned long, handle->size, len);
3243 3244 3245 3246 3247

		memcpy(handle->addr, buf, size);

		len -= size;
		handle->addr += size;
3248
		buf += size;
3249 3250
		handle->size -= size;
		if (!handle->size) {
3251
			struct perf_buffer *buffer = handle->buffer;
3252

3253
			handle->page++;
3254 3255 3256
			handle->page &= buffer->nr_pages - 1;
			handle->addr = buffer->data_pages[handle->page];
			handle->size = PAGE_SIZE << page_order(buffer);
3257 3258
		}
	} while (len);
3259 3260
}

3261
int perf_output_begin(struct perf_output_handle *handle,
3262
		      struct perf_event *event, unsigned int size,
3263
		      int nmi, int sample)
3264
{
3265
	struct perf_buffer *buffer;
3266
	unsigned long tail, offset, head;
3267 3268 3269 3270 3271 3272
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
3273

3274
	rcu_read_lock();
3275
	/*
3276
	 * For inherited events we send all the output towards the parent.
3277
	 */
3278 3279
	if (event->parent)
		event = event->parent;
3280

3281 3282
	buffer = rcu_dereference(event->buffer);
	if (!buffer)
3283 3284
		goto out;

3285
	handle->buffer	= buffer;
3286
	handle->event	= event;
3287 3288
	handle->nmi	= nmi;
	handle->sample	= sample;
3289

3290
	if (!buffer->nr_pages)
3291
		goto out;
3292

3293
	have_lost = local_read(&buffer->lost);
3294 3295 3296
	if (have_lost)
		size += sizeof(lost_event);

3297
	perf_output_get_handle(handle);
3298

3299
	do {
3300 3301 3302 3303 3304
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
3305
		tail = ACCESS_ONCE(buffer->user_page->data_tail);
3306
		smp_rmb();
3307
		offset = head = local_read(&buffer->head);
P
Peter Zijlstra 已提交
3308
		head += size;
3309
		if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3310
			goto fail;
3311
	} while (local_cmpxchg(&buffer->head, offset, head) != offset);
3312

3313 3314
	if (head - local_read(&buffer->wakeup) > buffer->watermark)
		local_add(buffer->watermark, &buffer->wakeup);
3315

3316 3317 3318 3319
	handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
	handle->page &= buffer->nr_pages - 1;
	handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
	handle->addr = buffer->data_pages[handle->page];
3320
	handle->addr += handle->size;
3321
	handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3322

3323
	if (have_lost) {
3324
		lost_event.header.type = PERF_RECORD_LOST;
3325 3326
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3327
		lost_event.id          = event->id;
3328
		lost_event.lost        = local_xchg(&buffer->lost, 0);
3329 3330 3331 3332

		perf_output_put(handle, lost_event);
	}

3333
	return 0;
3334

3335
fail:
3336
	local_inc(&buffer->lost);
3337
	perf_output_put_handle(handle);
3338 3339
out:
	rcu_read_unlock();
3340

3341 3342
	return -ENOSPC;
}
3343

3344
void perf_output_end(struct perf_output_handle *handle)
3345
{
3346
	struct perf_event *event = handle->event;
3347
	struct perf_buffer *buffer = handle->buffer;
3348

3349
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3350

3351
	if (handle->sample && wakeup_events) {
3352
		int events = local_inc_return(&buffer->events);
P
Peter Zijlstra 已提交
3353
		if (events >= wakeup_events) {
3354 3355
			local_sub(wakeup_events, &buffer->events);
			local_inc(&buffer->wakeup);
P
Peter Zijlstra 已提交
3356
		}
3357 3358
	}

3359
	perf_output_put_handle(handle);
3360
	rcu_read_unlock();
3361 3362
}

3363
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3364 3365
{
	/*
3366
	 * only top level events have the pid namespace they were created in
3367
	 */
3368 3369
	if (event->parent)
		event = event->parent;
3370

3371
	return task_tgid_nr_ns(p, event->ns);
3372 3373
}

3374
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3375 3376
{
	/*
3377
	 * only top level events have the pid namespace they were created in
3378
	 */
3379 3380
	if (event->parent)
		event = event->parent;
3381

3382
	return task_pid_nr_ns(p, event->ns);
3383 3384
}

3385
static void perf_output_read_one(struct perf_output_handle *handle,
3386
				 struct perf_event *event)
3387
{
3388
	u64 read_format = event->attr.read_format;
3389 3390 3391
	u64 values[4];
	int n = 0;

P
Peter Zijlstra 已提交
3392
	values[n++] = perf_event_count(event);
3393
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3394 3395
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3396 3397
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3398 3399
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3400 3401
	}
	if (read_format & PERF_FORMAT_ID)
3402
		values[n++] = primary_event_id(event);
3403 3404 3405 3406 3407

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3408
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3409 3410
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3411
			    struct perf_event *event)
3412
{
3413 3414
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3426
	if (leader != event)
3427 3428
		leader->pmu->read(leader);

P
Peter Zijlstra 已提交
3429
	values[n++] = perf_event_count(leader);
3430
	if (read_format & PERF_FORMAT_ID)
3431
		values[n++] = primary_event_id(leader);
3432 3433 3434

	perf_output_copy(handle, values, n * sizeof(u64));

3435
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3436 3437
		n = 0;

3438
		if (sub != event)
3439 3440
			sub->pmu->read(sub);

P
Peter Zijlstra 已提交
3441
		values[n++] = perf_event_count(sub);
3442
		if (read_format & PERF_FORMAT_ID)
3443
			values[n++] = primary_event_id(sub);
3444 3445 3446 3447 3448 3449

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3450
			     struct perf_event *event)
3451
{
3452 3453
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3454
	else
3455
		perf_output_read_one(handle, event);
3456 3457
}

3458 3459 3460
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3461
			struct perf_event *event)
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3492
		perf_output_read(handle, event);
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3530
			 struct perf_event *event,
3531
			 struct pt_regs *regs)
3532
{
3533
	u64 sample_type = event->attr.sample_type;
3534

3535
	data->type = sample_type;
3536

3537
	header->type = PERF_RECORD_SAMPLE;
3538 3539 3540 3541
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3542

3543
	if (sample_type & PERF_SAMPLE_IP) {
3544 3545 3546
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3547
	}
3548

3549
	if (sample_type & PERF_SAMPLE_TID) {
3550
		/* namespace issues */
3551 3552
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3553

3554
		header->size += sizeof(data->tid_entry);
3555 3556
	}

3557
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3558
		data->time = perf_clock();
3559

3560
		header->size += sizeof(data->time);
3561 3562
	}

3563
	if (sample_type & PERF_SAMPLE_ADDR)
3564
		header->size += sizeof(data->addr);
3565

3566
	if (sample_type & PERF_SAMPLE_ID) {
3567
		data->id = primary_event_id(event);
3568

3569 3570 3571 3572
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3573
		data->stream_id = event->id;
3574 3575 3576

		header->size += sizeof(data->stream_id);
	}
3577

3578
	if (sample_type & PERF_SAMPLE_CPU) {
3579 3580
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3581

3582
		header->size += sizeof(data->cpu_entry);
3583 3584
	}

3585
	if (sample_type & PERF_SAMPLE_PERIOD)
3586
		header->size += sizeof(data->period);
3587

3588
	if (sample_type & PERF_SAMPLE_READ)
3589
		header->size += perf_event_read_size(event);
3590

3591
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3592
		int size = 1;
3593

3594 3595 3596 3597 3598 3599
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3600 3601
	}

3602
	if (sample_type & PERF_SAMPLE_RAW) {
3603 3604 3605 3606 3607 3608 3609 3610
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3611
		header->size += size;
3612
	}
3613
}
3614

3615
static void perf_event_output(struct perf_event *event, int nmi,
3616 3617 3618 3619 3620
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3621

3622 3623 3624
	/* protect the callchain buffers */
	rcu_read_lock();

3625
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3626

3627
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3628
		goto exit;
3629

3630
	perf_output_sample(&handle, &header, data, event);
3631

3632
	perf_output_end(&handle);
3633 3634 3635

exit:
	rcu_read_unlock();
3636 3637
}

3638
/*
3639
 * read event_id
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3650
perf_event_read_event(struct perf_event *event,
3651 3652 3653
			struct task_struct *task)
{
	struct perf_output_handle handle;
3654
	struct perf_read_event read_event = {
3655
		.header = {
3656
			.type = PERF_RECORD_READ,
3657
			.misc = 0,
3658
			.size = sizeof(read_event) + perf_event_read_size(event),
3659
		},
3660 3661
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3662
	};
3663
	int ret;
3664

3665
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3666 3667 3668
	if (ret)
		return;

3669
	perf_output_put(&handle, read_event);
3670
	perf_output_read(&handle, event);
3671

3672 3673 3674
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3675
/*
P
Peter Zijlstra 已提交
3676 3677
 * task tracking -- fork/exit
 *
3678
 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
P
Peter Zijlstra 已提交
3679 3680
 */

P
Peter Zijlstra 已提交
3681
struct perf_task_event {
3682
	struct task_struct		*task;
3683
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3684 3685 3686 3687 3688 3689

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3690 3691
		u32				tid;
		u32				ptid;
3692
		u64				time;
3693
	} event_id;
P
Peter Zijlstra 已提交
3694 3695
};

3696
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3697
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3698 3699
{
	struct perf_output_handle handle;
P
Peter Zijlstra 已提交
3700
	struct task_struct *task = task_event->task;
3701 3702
	int size, ret;

3703 3704
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3705

3706
	if (ret)
P
Peter Zijlstra 已提交
3707 3708
		return;

3709 3710
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3711

3712 3713
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3714

3715
	perf_output_put(&handle, task_event->event_id);
3716

P
Peter Zijlstra 已提交
3717 3718 3719
	perf_output_end(&handle);
}

3720
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3721
{
P
Peter Zijlstra 已提交
3722
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3723 3724
		return 0;

3725 3726 3727
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3728 3729
	if (event->attr.comm || event->attr.mmap ||
	    event->attr.mmap_data || event->attr.task)
P
Peter Zijlstra 已提交
3730 3731 3732 3733 3734
		return 1;

	return 0;
}

3735
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3736
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3737
{
3738
	struct perf_event *event;
P
Peter Zijlstra 已提交
3739

3740 3741 3742
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3743 3744 3745
	}
}

3746
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3747 3748
{
	struct perf_cpu_context *cpuctx;
3749
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3750

3751
	rcu_read_lock();
P
Peter Zijlstra 已提交
3752
	cpuctx = &get_cpu_var(perf_cpu_context);
3753
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3754
	if (!ctx)
P
Peter Zijlstra 已提交
3755
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3756
	if (ctx)
3757
		perf_event_task_ctx(ctx, task_event);
3758
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3759 3760 3761
	rcu_read_unlock();
}

3762 3763
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3764
			      int new)
P
Peter Zijlstra 已提交
3765
{
P
Peter Zijlstra 已提交
3766
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3767

3768 3769 3770
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3771 3772
		return;

P
Peter Zijlstra 已提交
3773
	task_event = (struct perf_task_event){
3774 3775
		.task	  = task,
		.task_ctx = task_ctx,
3776
		.event_id    = {
P
Peter Zijlstra 已提交
3777
			.header = {
3778
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3779
				.misc = 0,
3780
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3781
			},
3782 3783
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3784 3785
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3786
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3787 3788 3789
		},
	};

3790
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3791 3792
}

3793
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3794
{
3795
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3796 3797
}

3798 3799 3800 3801 3802
/*
 * comm tracking
 */

struct perf_comm_event {
3803 3804
	struct task_struct	*task;
	char			*comm;
3805 3806 3807 3808 3809 3810 3811
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3812
	} event_id;
3813 3814
};

3815
static void perf_event_comm_output(struct perf_event *event,
3816 3817 3818
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3819 3820
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3821 3822 3823 3824

	if (ret)
		return;

3825 3826
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3827

3828
	perf_output_put(&handle, comm_event->event_id);
3829 3830 3831 3832 3833
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3834
static int perf_event_comm_match(struct perf_event *event)
3835
{
P
Peter Zijlstra 已提交
3836
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3837 3838
		return 0;

3839 3840 3841
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3842
	if (event->attr.comm)
3843 3844 3845 3846 3847
		return 1;

	return 0;
}

3848
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3849 3850
				  struct perf_comm_event *comm_event)
{
3851
	struct perf_event *event;
3852

3853 3854 3855
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3856 3857 3858
	}
}

3859
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3860 3861
{
	struct perf_cpu_context *cpuctx;
3862
	struct perf_event_context *ctx;
3863
	unsigned int size;
3864
	char comm[TASK_COMM_LEN];
3865

3866
	memset(comm, 0, sizeof(comm));
3867
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3868
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3869 3870 3871 3872

	comm_event->comm = comm;
	comm_event->comm_size = size;

3873
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3874

3875
	rcu_read_lock();
3876
	cpuctx = &get_cpu_var(perf_cpu_context);
3877 3878
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3879
	if (ctx)
3880
		perf_event_comm_ctx(ctx, comm_event);
3881
	put_cpu_var(perf_cpu_context);
3882
	rcu_read_unlock();
3883 3884
}

3885
void perf_event_comm(struct task_struct *task)
3886
{
3887 3888
	struct perf_comm_event comm_event;

3889 3890
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3891

3892
	if (!atomic_read(&nr_comm_events))
3893
		return;
3894

3895
	comm_event = (struct perf_comm_event){
3896
		.task	= task,
3897 3898
		/* .comm      */
		/* .comm_size */
3899
		.event_id  = {
3900
			.header = {
3901
				.type = PERF_RECORD_COMM,
3902 3903 3904 3905 3906
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3907 3908 3909
		},
	};

3910
	perf_event_comm_event(&comm_event);
3911 3912
}

3913 3914 3915 3916 3917
/*
 * mmap tracking
 */

struct perf_mmap_event {
3918 3919 3920 3921
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3922 3923 3924 3925 3926 3927 3928 3929 3930

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3931
	} event_id;
3932 3933
};

3934
static void perf_event_mmap_output(struct perf_event *event,
3935 3936 3937
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3938 3939
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3940 3941 3942 3943

	if (ret)
		return;

3944 3945
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3946

3947
	perf_output_put(&handle, mmap_event->event_id);
3948 3949
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3950
	perf_output_end(&handle);
3951 3952
}

3953
static int perf_event_mmap_match(struct perf_event *event,
3954 3955
				   struct perf_mmap_event *mmap_event,
				   int executable)
3956
{
P
Peter Zijlstra 已提交
3957
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3958 3959
		return 0;

3960 3961 3962
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3963 3964
	if ((!executable && event->attr.mmap_data) ||
	    (executable && event->attr.mmap))
3965 3966 3967 3968 3969
		return 1;

	return 0;
}

3970
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3971 3972
				  struct perf_mmap_event *mmap_event,
				  int executable)
3973
{
3974
	struct perf_event *event;
3975

3976
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3977
		if (perf_event_mmap_match(event, mmap_event, executable))
3978
			perf_event_mmap_output(event, mmap_event);
3979 3980 3981
	}
}

3982
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3983 3984
{
	struct perf_cpu_context *cpuctx;
3985
	struct perf_event_context *ctx;
3986 3987
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3988 3989 3990
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3991
	const char *name;
3992

3993 3994
	memset(tmp, 0, sizeof(tmp));

3995
	if (file) {
3996 3997 3998 3999 4000 4001
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4002 4003 4004 4005
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
4006
		name = d_path(&file->f_path, buf, PATH_MAX);
4007 4008 4009 4010 4011
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
4012 4013 4014
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
4015
			goto got_name;
4016
		}
4017 4018 4019 4020

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
4021 4022 4023 4024 4025 4026 4027 4028
		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
				vma->vm_end >= vma->vm_mm->brk) {
			name = strncpy(tmp, "[heap]", sizeof(tmp));
			goto got_name;
		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
				vma->vm_end >= vma->vm_mm->start_stack) {
			name = strncpy(tmp, "[stack]", sizeof(tmp));
			goto got_name;
4029 4030
		}

4031 4032 4033 4034 4035
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
4036
	size = ALIGN(strlen(name)+1, sizeof(u64));
4037 4038 4039 4040

	mmap_event->file_name = name;
	mmap_event->file_size = size;

4041
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4042

4043
	rcu_read_lock();
4044
	cpuctx = &get_cpu_var(perf_cpu_context);
4045
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event, vma->vm_flags & VM_EXEC);
4046
	ctx = rcu_dereference(current->perf_event_ctxp);
4047
	if (ctx)
4048
		perf_event_mmap_ctx(ctx, mmap_event, vma->vm_flags & VM_EXEC);
4049
	put_cpu_var(perf_cpu_context);
4050 4051
	rcu_read_unlock();

4052 4053 4054
	kfree(buf);
}

4055
void perf_event_mmap(struct vm_area_struct *vma)
4056
{
4057 4058
	struct perf_mmap_event mmap_event;

4059
	if (!atomic_read(&nr_mmap_events))
4060 4061 4062
		return;

	mmap_event = (struct perf_mmap_event){
4063
		.vma	= vma,
4064 4065
		/* .file_name */
		/* .file_size */
4066
		.event_id  = {
4067
			.header = {
4068
				.type = PERF_RECORD_MMAP,
4069
				.misc = PERF_RECORD_MISC_USER,
4070 4071 4072 4073
				/* .size */
			},
			/* .pid */
			/* .tid */
4074 4075
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
4076
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4077 4078 4079
		},
	};

4080
	perf_event_mmap_event(&mmap_event);
4081 4082
}

4083 4084 4085 4086
/*
 * IRQ throttle logging
 */

4087
static void perf_log_throttle(struct perf_event *event, int enable)
4088 4089 4090 4091 4092 4093 4094
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
4095
		u64				id;
4096
		u64				stream_id;
4097 4098
	} throttle_event = {
		.header = {
4099
			.type = PERF_RECORD_THROTTLE,
4100 4101 4102
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
4103
		.time		= perf_clock(),
4104 4105
		.id		= primary_event_id(event),
		.stream_id	= event->id,
4106 4107
	};

4108
	if (enable)
4109
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4110

4111
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
4112 4113 4114 4115 4116 4117 4118
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

4119
/*
4120
 * Generic event overflow handling, sampling.
4121 4122
 */

4123
static int __perf_event_overflow(struct perf_event *event, int nmi,
4124 4125
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
4126
{
4127 4128
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
4129 4130
	int ret = 0;

4131
	throttle = (throttle && event->pmu->unthrottle != NULL);
4132

4133
	if (!throttle) {
4134
		hwc->interrupts++;
4135
	} else {
4136 4137
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
4138
			if (HZ * hwc->interrupts >
4139
					(u64)sysctl_perf_event_sample_rate) {
4140
				hwc->interrupts = MAX_INTERRUPTS;
4141
				perf_log_throttle(event, 0);
4142 4143 4144 4145
				ret = 1;
			}
		} else {
			/*
4146
			 * Keep re-disabling events even though on the previous
4147
			 * pass we disabled it - just in case we raced with a
4148
			 * sched-in and the event got enabled again:
4149
			 */
4150 4151 4152
			ret = 1;
		}
	}
4153

4154
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
4155
		u64 now = perf_clock();
4156
		s64 delta = now - hwc->freq_time_stamp;
4157

4158
		hwc->freq_time_stamp = now;
4159

4160 4161
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
4162 4163
	}

4164 4165
	/*
	 * XXX event_limit might not quite work as expected on inherited
4166
	 * events
4167 4168
	 */

4169 4170
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
4171
		ret = 1;
4172
		event->pending_kill = POLL_HUP;
4173
		if (nmi) {
4174 4175 4176
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
4177
		} else
4178
			perf_event_disable(event);
4179 4180
	}

4181 4182 4183 4184 4185
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

4186
	return ret;
4187 4188
}

4189
int perf_event_overflow(struct perf_event *event, int nmi,
4190 4191
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
4192
{
4193
	return __perf_event_overflow(event, nmi, 1, data, regs);
4194 4195
}

4196
/*
4197
 * Generic software event infrastructure
4198 4199
 */

4200
/*
4201 4202
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
4203 4204 4205 4206
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

4207
static u64 perf_swevent_set_period(struct perf_event *event)
4208
{
4209
	struct hw_perf_event *hwc = &event->hw;
4210 4211 4212 4213 4214
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
4215 4216

again:
4217
	old = val = local64_read(&hwc->period_left);
4218 4219
	if (val < 0)
		return 0;
4220

4221 4222 4223
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
4224
	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4225
		goto again;
4226

4227
	return nr;
4228 4229
}

4230
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4231 4232
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
4233
{
4234
	struct hw_perf_event *hwc = &event->hw;
4235
	int throttle = 0;
4236

4237
	data->period = event->hw.last_period;
4238 4239
	if (!overflow)
		overflow = perf_swevent_set_period(event);
4240

4241 4242
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
4243

4244
	for (; overflow; overflow--) {
4245
		if (__perf_event_overflow(event, nmi, throttle,
4246
					    data, regs)) {
4247 4248 4249 4250 4251 4252
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
4253
		throttle = 1;
4254
	}
4255 4256
}

4257
static void perf_swevent_add(struct perf_event *event, u64 nr,
4258 4259
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
4260
{
4261
	struct hw_perf_event *hwc = &event->hw;
4262

4263
	local64_add(nr, &event->count);
4264

4265 4266 4267
	if (!regs)
		return;

4268 4269
	if (!hwc->sample_period)
		return;
4270

4271 4272 4273
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

4274
	if (local64_add_negative(nr, &hwc->period_left))
4275
		return;
4276

4277
	perf_swevent_overflow(event, 0, nmi, data, regs);
4278 4279
}

4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4294
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4295
				enum perf_type_id type,
L
Li Zefan 已提交
4296 4297 4298
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4299
{
4300
	if (event->attr.type != type)
4301
		return 0;
4302

4303
	if (event->attr.config != event_id)
4304 4305
		return 0;

4306 4307
	if (perf_exclude_event(event, regs))
		return 0;
4308 4309 4310 4311

	return 1;
}

4312 4313 4314 4315 4316 4317 4318
static inline u64 swevent_hash(u64 type, u32 event_id)
{
	u64 val = event_id | (type << 32);

	return hash_64(val, SWEVENT_HLIST_BITS);
}

4319 4320
static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4321
{
4322 4323 4324 4325
	u64 hash = swevent_hash(type, event_id);

	return &hlist->heads[hash];
}
4326

4327 4328 4329 4330 4331
/* For the read side: events when they trigger */
static inline struct hlist_head *
find_swevent_head_rcu(struct perf_cpu_context *ctx, u64 type, u32 event_id)
{
	struct swevent_hlist *hlist;
4332 4333 4334 4335 4336

	hlist = rcu_dereference(ctx->swevent_hlist);
	if (!hlist)
		return NULL;

4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
	return __find_swevent_head(hlist, type, event_id);
}

/* For the event head insertion and removal in the hlist */
static inline struct hlist_head *
find_swevent_head(struct perf_cpu_context *ctx, struct perf_event *event)
{
	struct swevent_hlist *hlist;
	u32 event_id = event->attr.config;
	u64 type = event->attr.type;

	/*
	 * Event scheduling is always serialized against hlist allocation
	 * and release. Which makes the protected version suitable here.
	 * The context lock guarantees that.
	 */
	hlist = rcu_dereference_protected(ctx->swevent_hlist,
					  lockdep_is_held(&event->ctx->lock));
	if (!hlist)
		return NULL;

	return __find_swevent_head(hlist, type, event_id);
4359 4360 4361 4362 4363 4364
}

static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4365
{
4366
	struct perf_cpu_context *cpuctx;
4367
	struct perf_event *event;
4368 4369
	struct hlist_node *node;
	struct hlist_head *head;
4370

4371 4372 4373 4374
	cpuctx = &__get_cpu_var(perf_cpu_context);

	rcu_read_lock();

4375
	head = find_swevent_head_rcu(cpuctx, type, event_id);
4376 4377 4378 4379 4380

	if (!head)
		goto end;

	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
L
Li Zefan 已提交
4381
		if (perf_swevent_match(event, type, event_id, data, regs))
4382
			perf_swevent_add(event, nr, nmi, data, regs);
4383
	}
4384 4385
end:
	rcu_read_unlock();
4386 4387
}

4388
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4389
{
4390
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4391

4392
	return get_recursion_context(cpuctx->recursion);
P
Peter Zijlstra 已提交
4393
}
I
Ingo Molnar 已提交
4394
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4395

4396
void inline perf_swevent_put_recursion_context(int rctx)
4397
{
4398
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
4399 4400

	put_recursion_context(cpuctx->recursion, rctx);
4401
}
4402

4403
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4404
			    struct pt_regs *regs, u64 addr)
4405
{
4406
	struct perf_sample_data data;
4407 4408
	int rctx;

4409
	preempt_disable_notrace();
4410 4411 4412
	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4413

4414
	perf_sample_data_init(&data, addr);
4415

4416
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4417 4418

	perf_swevent_put_recursion_context(rctx);
4419
	preempt_enable_notrace();
4420 4421
}

4422
static void perf_swevent_read(struct perf_event *event)
4423 4424 4425
{
}

4426
static int perf_swevent_enable(struct perf_event *event)
4427
{
4428
	struct hw_perf_event *hwc = &event->hw;
4429 4430 4431 4432
	struct perf_cpu_context *cpuctx;
	struct hlist_head *head;

	cpuctx = &__get_cpu_var(perf_cpu_context);
4433 4434 4435

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4436
		perf_swevent_set_period(event);
4437
	}
4438

4439
	head = find_swevent_head(cpuctx, event);
4440 4441 4442 4443 4444
	if (WARN_ON_ONCE(!head))
		return -EINVAL;

	hlist_add_head_rcu(&event->hlist_entry, head);

4445 4446 4447
	return 0;
}

4448
static void perf_swevent_disable(struct perf_event *event)
4449
{
4450
	hlist_del_rcu(&event->hlist_entry);
4451 4452
}

P
Peter Zijlstra 已提交
4453 4454 4455 4456 4457 4458 4459 4460 4461
static void perf_swevent_void(struct perf_event *event)
{
}

static int perf_swevent_int(struct perf_event *event)
{
	return 0;
}

4462 4463 4464 4465 4466 4467 4468 4469
/* Deref the hlist from the update side */
static inline struct swevent_hlist *
swevent_hlist_deref(struct perf_cpu_context *cpuctx)
{
	return rcu_dereference_protected(cpuctx->swevent_hlist,
					 lockdep_is_held(&cpuctx->hlist_mutex));
}

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
{
	struct swevent_hlist *hlist;

	hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
	kfree(hlist);
}

static void swevent_hlist_release(struct perf_cpu_context *cpuctx)
{
4480
	struct swevent_hlist *hlist = swevent_hlist_deref(cpuctx);
4481

4482
	if (!hlist)
4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
		return;

	rcu_assign_pointer(cpuctx->swevent_hlist, NULL);
	call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
}

static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);

	mutex_lock(&cpuctx->hlist_mutex);

	if (!--cpuctx->hlist_refcount)
		swevent_hlist_release(cpuctx);

	mutex_unlock(&cpuctx->hlist_mutex);
}

static void swevent_hlist_put(struct perf_event *event)
{
	int cpu;

	if (event->cpu != -1) {
		swevent_hlist_put_cpu(event, event->cpu);
		return;
	}

	for_each_possible_cpu(cpu)
		swevent_hlist_put_cpu(event, cpu);
}

static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
	int err = 0;

	mutex_lock(&cpuctx->hlist_mutex);

4521
	if (!swevent_hlist_deref(cpuctx) && cpu_online(cpu)) {
4522 4523 4524 4525 4526 4527 4528 4529 4530 4531
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		if (!hlist) {
			err = -ENOMEM;
			goto exit;
		}
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	cpuctx->hlist_refcount++;
P
Peter Zijlstra 已提交
4532
exit:
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
	mutex_unlock(&cpuctx->hlist_mutex);

	return err;
}

static int swevent_hlist_get(struct perf_event *event)
{
	int err;
	int cpu, failed_cpu;

	if (event->cpu != -1)
		return swevent_hlist_get_cpu(event, event->cpu);

	get_online_cpus();
	for_each_possible_cpu(cpu) {
		err = swevent_hlist_get_cpu(event, cpu);
		if (err) {
			failed_cpu = cpu;
			goto fail;
		}
	}
	put_online_cpus();

	return 0;
P
Peter Zijlstra 已提交
4557
fail:
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567
	for_each_possible_cpu(cpu) {
		if (cpu == failed_cpu)
			break;
		swevent_hlist_put_cpu(event, cpu);
	}

	put_online_cpus();
	return err;
}

4568
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4569

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
static void sw_perf_event_destroy(struct perf_event *event)
{
	u64 event_id = event->attr.config;

	WARN_ON(event->parent);

	atomic_dec(&perf_swevent_enabled[event_id]);
	swevent_hlist_put(event);
}

static int perf_swevent_init(struct perf_event *event)
{
	int event_id = event->attr.config;

	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	switch (event_id) {
	case PERF_COUNT_SW_CPU_CLOCK:
	case PERF_COUNT_SW_TASK_CLOCK:
		return -ENOENT;

	default:
		break;
	}

	if (event_id > PERF_COUNT_SW_MAX)
		return -ENOENT;

	if (!event->parent) {
		int err;

		err = swevent_hlist_get(event);
		if (err)
			return err;

		atomic_inc(&perf_swevent_enabled[event_id]);
		event->destroy = sw_perf_event_destroy;
	}

	return 0;
}

static struct pmu perf_swevent = {
	.event_init	= perf_swevent_init,
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
P
Peter Zijlstra 已提交
4617 4618
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
4619
	.read		= perf_swevent_read,
4620
	.unthrottle	= perf_swevent_void, /* hwc->interrupts already reset */
4621 4622
};

4623 4624
#ifdef CONFIG_EVENT_TRACING

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
static int perf_tp_filter_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
4639 4640 4641 4642
	/*
	 * All tracepoints are from kernel-space.
	 */
	if (event->attr.exclude_kernel)
4643 4644 4645 4646 4647 4648 4649 4650 4651
		return 0;

	if (!perf_tp_filter_match(event, data))
		return 0;

	return 1;
}

void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4652
		   struct pt_regs *regs, struct hlist_head *head, int rctx)
4653 4654
{
	struct perf_sample_data data;
4655 4656 4657
	struct perf_event *event;
	struct hlist_node *node;

4658 4659 4660 4661 4662 4663 4664 4665
	struct perf_raw_record raw = {
		.size = entry_size,
		.data = record,
	};

	perf_sample_data_init(&data, addr);
	data.raw = &raw;

4666 4667 4668
	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
		if (perf_tp_event_match(event, &data, regs))
			perf_swevent_add(event, count, 1, &data, regs);
4669
	}
4670 4671

	perf_swevent_put_recursion_context(rctx);
4672 4673 4674
}
EXPORT_SYMBOL_GPL(perf_tp_event);

4675
static void tp_perf_event_destroy(struct perf_event *event)
4676
{
4677
	perf_trace_destroy(event);
4678 4679
}

4680
static int perf_tp_event_init(struct perf_event *event)
4681
{
4682 4683
	int err;

4684 4685 4686
	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -ENOENT;

4687 4688 4689 4690
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4691
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4692
			perf_paranoid_tracepoint_raw() &&
4693
			!capable(CAP_SYS_ADMIN))
4694
		return -EPERM;
4695

4696 4697
	err = perf_trace_init(event);
	if (err)
4698
		return err;
4699

4700
	event->destroy = tp_perf_event_destroy;
4701

4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
	return 0;
}

static struct pmu perf_tracepoint = {
	.event_init	= perf_tp_event_init,
	.enable		= perf_trace_enable,
	.disable	= perf_trace_disable,
	.start		= perf_swevent_int,
	.stop		= perf_swevent_void,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_void,
};

static inline void perf_tp_register(void)
{
	perf_pmu_register(&perf_tracepoint);
4718
}
L
Li Zefan 已提交
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4743
#else
L
Li Zefan 已提交
4744

4745
static inline void perf_tp_register(void)
4746 4747
{
}
L
Li Zefan 已提交
4748 4749 4750 4751 4752 4753 4754 4755 4756 4757

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4758
#endif /* CONFIG_EVENT_TRACING */
4759

4760
#ifdef CONFIG_HAVE_HW_BREAKPOINT
4761
void perf_bp_event(struct perf_event *bp, void *data)
4762
{
4763 4764 4765 4766 4767 4768 4769
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	perf_sample_data_init(&sample, bp->attr.bp_addr);

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4770
}
4771 4772 4773 4774 4775
#endif

/*
 * hrtimer based swevent callback
 */
4776

4777
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4778
{
4779 4780 4781 4782 4783
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
	struct pt_regs *regs;
	struct perf_event *event;
	u64 period;
4784

4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);

	perf_sample_data_init(&data, 0);
	data.period = event->hw.last_period;
	regs = get_irq_regs();

	if (regs && !perf_exclude_event(event, regs)) {
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
	}
4797

4798 4799
	period = max_t(u64, 10000, event->hw.sample_period);
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4800

4801
	return ret;
4802 4803
}

4804
static void perf_swevent_start_hrtimer(struct perf_event *event)
4805
{
4806
	struct hw_perf_event *hwc = &event->hw;
4807

4808 4809 4810 4811
	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;
4812

4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825
		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
4826
}
4827 4828

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4829
{
4830 4831 4832 4833 4834 4835 4836 4837
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
4838 4839
}

4840 4841 4842 4843 4844
/*
 * Software event: cpu wall time clock
 */

static void cpu_clock_event_update(struct perf_event *event)
4845
{
4846 4847 4848 4849 4850 4851 4852
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
	prev = local64_xchg(&event->hw.prev_count, now);
	local64_add(now - prev, &event->count);
4853 4854
}

4855 4856 4857 4858
static int cpu_clock_event_enable(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	int cpu = raw_smp_processor_id();
4859

4860 4861 4862 4863 4864 4865 4866
	local64_set(&hwc->prev_count, cpu_clock(cpu));
	perf_swevent_start_hrtimer(event);

	return 0;
}

static void cpu_clock_event_disable(struct perf_event *event)
4867
{
4868 4869 4870
	perf_swevent_cancel_hrtimer(event);
	cpu_clock_event_update(event);
}
4871

4872 4873 4874 4875
static void cpu_clock_event_read(struct perf_event *event)
{
	cpu_clock_event_update(event);
}
4876

4877 4878 4879 4880 4881 4882 4883 4884 4885
static int cpu_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
		return -ENOENT;

	return 0;
4886 4887
}

4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
static struct pmu perf_cpu_clock = {
	.event_init	= cpu_clock_event_init,
	.enable		= cpu_clock_event_enable,
	.disable	= cpu_clock_event_disable,
	.read		= cpu_clock_event_read,
};

/*
 * Software event: task time clock
 */

static void task_clock_event_update(struct perf_event *event, u64 now)
4900
{
4901 4902
	u64 prev;
	s64 delta;
4903

4904 4905 4906 4907
	prev = local64_xchg(&event->hw.prev_count, now);
	delta = now - prev;
	local64_add(delta, &event->count);
}
4908

4909 4910 4911 4912
static int task_clock_event_enable(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	u64 now;
4913

4914
	now = event->ctx->time;
4915

4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
	local64_set(&hwc->prev_count, now);

	perf_swevent_start_hrtimer(event);

	return 0;
}

static void task_clock_event_disable(struct perf_event *event)
{
	perf_swevent_cancel_hrtimer(event);
	task_clock_event_update(event, event->ctx->time);

}

static void task_clock_event_read(struct perf_event *event)
{
	u64 time;

	if (!in_nmi()) {
		update_context_time(event->ctx);
		time = event->ctx->time;
	} else {
		u64 now = perf_clock();
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
	}

	task_clock_event_update(event, time);
}

static int task_clock_event_init(struct perf_event *event)
{
	if (event->attr.type != PERF_TYPE_SOFTWARE)
		return -ENOENT;

	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
		return -ENOENT;

	return 0;
}

static struct pmu perf_task_clock = {
	.event_init	= task_clock_event_init,
	.enable		= task_clock_event_enable,
	.disable	= task_clock_event_disable,
	.read		= task_clock_event_read,
};

static LIST_HEAD(pmus);
static DEFINE_MUTEX(pmus_lock);
static struct srcu_struct pmus_srcu;

int perf_pmu_register(struct pmu *pmu)
{
P
Peter Zijlstra 已提交
4970 4971
	int ret;

4972
	mutex_lock(&pmus_lock);
P
Peter Zijlstra 已提交
4973 4974 4975 4976
	ret = -ENOMEM;
	pmu->pmu_disable_count = alloc_percpu(int);
	if (!pmu->pmu_disable_count)
		goto unlock;
4977
	list_add_rcu(&pmu->entry, &pmus);
P
Peter Zijlstra 已提交
4978 4979
	ret = 0;
unlock:
4980 4981
	mutex_unlock(&pmus_lock);

P
Peter Zijlstra 已提交
4982
	return ret;
4983 4984 4985 4986 4987 4988 4989 4990 4991
}

void perf_pmu_unregister(struct pmu *pmu)
{
	mutex_lock(&pmus_lock);
	list_del_rcu(&pmu->entry);
	mutex_unlock(&pmus_lock);

	synchronize_srcu(&pmus_srcu);
P
Peter Zijlstra 已提交
4992 4993

	free_percpu(pmu->pmu_disable_count);
4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
}

struct pmu *perf_init_event(struct perf_event *event)
{
	struct pmu *pmu = NULL;
	int idx;

	idx = srcu_read_lock(&pmus_srcu);
	list_for_each_entry_rcu(pmu, &pmus, entry) {
		int ret = pmu->event_init(event);
		if (!ret)
			break;
		if (ret != -ENOENT) {
			pmu = ERR_PTR(ret);
			break;
5009
		}
5010
	}
5011
	srcu_read_unlock(&pmus_srcu, idx);
5012

5013
	return pmu;
5014 5015
}

T
Thomas Gleixner 已提交
5016
/*
5017
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
5018
 */
5019 5020
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
5021
		   int cpu,
5022 5023 5024
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
5025
		   perf_overflow_handler_t overflow_handler,
5026
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
5027
{
P
Peter Zijlstra 已提交
5028
	struct pmu *pmu;
5029 5030
	struct perf_event *event;
	struct hw_perf_event *hwc;
5031
	long err;
T
Thomas Gleixner 已提交
5032

5033 5034
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
5035
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
5036

5037
	/*
5038
	 * Single events are their own group leaders, with an
5039 5040 5041
	 * empty sibling list:
	 */
	if (!group_leader)
5042
		group_leader = event;
5043

5044 5045
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
5046

5047 5048 5049 5050
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
5051

5052
	mutex_init(&event->mmap_mutex);
5053

5054 5055 5056 5057 5058 5059
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
5060

5061
	event->parent		= parent_event;
5062

5063 5064
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
5065

5066
	event->state		= PERF_EVENT_STATE_INACTIVE;
5067

5068 5069
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
5070
	
5071
	event->overflow_handler	= overflow_handler;
5072

5073
	if (attr->disabled)
5074
		event->state = PERF_EVENT_STATE_OFF;
5075

5076
	pmu = NULL;
5077

5078
	hwc = &event->hw;
5079
	hwc->sample_period = attr->sample_period;
5080
	if (attr->freq && attr->sample_freq)
5081
		hwc->sample_period = 1;
5082
	hwc->last_period = hwc->sample_period;
5083

5084
	local64_set(&hwc->period_left, hwc->sample_period);
5085

5086
	/*
5087
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5088
	 */
5089
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5090 5091
		goto done;

5092
	pmu = perf_init_event(event);
5093

5094 5095
done:
	err = 0;
5096
	if (!pmu)
5097
		err = -EINVAL;
5098 5099
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
5100

5101
	if (err) {
5102 5103 5104
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
5105
		return ERR_PTR(err);
I
Ingo Molnar 已提交
5106
	}
5107

5108
	event->pmu = pmu;
T
Thomas Gleixner 已提交
5109

5110 5111
	if (!event->parent) {
		atomic_inc(&nr_events);
5112
		if (event->attr.mmap || event->attr.mmap_data)
5113 5114 5115 5116 5117
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
5118 5119 5120 5121 5122 5123 5124
		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
			err = get_callchain_buffers();
			if (err) {
				free_event(event);
				return ERR_PTR(err);
			}
		}
5125
	}
5126

5127
	return event;
T
Thomas Gleixner 已提交
5128 5129
}

5130 5131
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
5132 5133
{
	u32 size;
5134
	int ret;
5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
5159 5160 5161
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
5162 5163
	 */
	if (size > sizeof(*attr)) {
5164 5165 5166
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
5167

5168 5169
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
5170

5171
		for (; addr < end; addr++) {
5172 5173 5174 5175 5176 5177
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
5178
		size = sizeof(*attr);
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

5192
	if (attr->__reserved_1)
5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

5210 5211
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5212
{
5213
	struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5214 5215
	int ret = -EINVAL;

5216
	if (!output_event)
5217 5218
		goto set;

5219 5220
	/* don't allow circular references */
	if (event == output_event)
5221 5222
		goto out;

5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234
	/*
	 * Don't allow cross-cpu buffers
	 */
	if (output_event->cpu != event->cpu)
		goto out;

	/*
	 * If its not a per-cpu buffer, it must be the same task.
	 */
	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
		goto out;

5235
set:
5236
	mutex_lock(&event->mmap_mutex);
5237 5238 5239
	/* Can't redirect output if we've got an active mmap() */
	if (atomic_read(&event->mmap_count))
		goto unlock;
5240

5241 5242
	if (output_event) {
		/* get the buffer we want to redirect to */
5243 5244
		buffer = perf_buffer_get(output_event);
		if (!buffer)
5245
			goto unlock;
5246 5247
	}

5248 5249
	old_buffer = event->buffer;
	rcu_assign_pointer(event->buffer, buffer);
5250
	ret = 0;
5251 5252 5253
unlock:
	mutex_unlock(&event->mmap_mutex);

5254 5255
	if (old_buffer)
		perf_buffer_put(old_buffer);
5256 5257 5258 5259
out:
	return ret;
}

T
Thomas Gleixner 已提交
5260
/**
5261
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
5262
 *
5263
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
5264
 * @pid:		target pid
I
Ingo Molnar 已提交
5265
 * @cpu:		target cpu
5266
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
5267
 */
5268 5269
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
5270
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
5271
{
5272
	struct perf_event *event, *group_leader = NULL, *output_event = NULL;
5273 5274 5275
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
5276
	struct file *group_file = NULL;
5277
	int event_fd;
5278
	int fput_needed = 0;
5279
	int err;
T
Thomas Gleixner 已提交
5280

5281
	/* for future expandability... */
5282
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5283 5284
		return -EINVAL;

5285 5286 5287
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
5288

5289 5290 5291 5292 5293
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

5294
	if (attr.freq) {
5295
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
5296 5297 5298
			return -EINVAL;
	}

5299 5300 5301 5302
	event_fd = get_unused_fd_flags(O_RDWR);
	if (event_fd < 0)
		return event_fd;

5303
	/*
I
Ingo Molnar 已提交
5304 5305 5306
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
5307 5308 5309 5310
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_fd;
	}
I
Ingo Molnar 已提交
5311

5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324
	if (group_fd != -1) {
		group_leader = perf_fget_light(group_fd, &fput_needed);
		if (IS_ERR(group_leader)) {
			err = PTR_ERR(group_leader);
			goto err_put_context;
		}
		group_file = group_leader->filp;
		if (flags & PERF_FLAG_FD_OUTPUT)
			output_event = group_leader;
		if (flags & PERF_FLAG_FD_NO_GROUP)
			group_leader = NULL;
	}

I
Ingo Molnar 已提交
5325
	/*
5326
	 * Look up the group leader (we will attach this event to it):
5327
	 */
5328
	if (group_leader) {
5329
		err = -EINVAL;
5330 5331

		/*
I
Ingo Molnar 已提交
5332 5333 5334 5335 5336 5337 5338 5339
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
5340
		 */
I
Ingo Molnar 已提交
5341 5342
		if (group_leader->ctx != ctx)
			goto err_put_context;
5343 5344 5345
		/*
		 * Only a group leader can be exclusive or pinned
		 */
5346
		if (attr.exclusive || attr.pinned)
5347
			goto err_put_context;
5348 5349
	}

5350
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
5351
				     NULL, NULL, GFP_KERNEL);
5352 5353
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
T
Thomas Gleixner 已提交
5354
		goto err_put_context;
5355 5356 5357 5358 5359 5360 5361
	}

	if (output_event) {
		err = perf_event_set_output(event, output_event);
		if (err)
			goto err_free_put_context;
	}
T
Thomas Gleixner 已提交
5362

5363 5364 5365
	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
	if (IS_ERR(event_file)) {
		err = PTR_ERR(event_file);
5366
		goto err_free_put_context;
5367
	}
5368

5369
	event->filp = event_file;
5370
	WARN_ON_ONCE(ctx->parent_ctx);
5371
	mutex_lock(&ctx->mutex);
5372
	perf_install_in_context(ctx, event, cpu);
5373
	++ctx->generation;
5374
	mutex_unlock(&ctx->mutex);
5375

5376
	event->owner = current;
5377
	get_task_struct(current);
5378 5379 5380
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
5381

5382 5383 5384 5385 5386 5387
	/*
	 * Drop the reference on the group_event after placing the
	 * new event on the sibling_list. This ensures destruction
	 * of the group leader will find the pointer to itself in
	 * perf_group_detach().
	 */
5388 5389 5390
	fput_light(group_file, fput_needed);
	fd_install(event_fd, event_file);
	return event_fd;
T
Thomas Gleixner 已提交
5391

5392
err_free_put_context:
5393
	free_event(event);
T
Thomas Gleixner 已提交
5394
err_put_context:
5395
	fput_light(group_file, fput_needed);
5396 5397 5398
	put_ctx(ctx);
err_fd:
	put_unused_fd(event_fd);
5399
	return err;
T
Thomas Gleixner 已提交
5400 5401
}

5402 5403 5404 5405 5406 5407 5408 5409 5410
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5411 5412
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
5423 5424 5425 5426
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
5427 5428

	event = perf_event_alloc(attr, cpu, ctx, NULL,
5429
				 NULL, overflow_handler, GFP_KERNEL);
5430 5431
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
5432
		goto err_put_context;
5433
	}
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

5450 5451 5452 5453
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
5454 5455 5456
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

5457
/*
5458
 * inherit a event from parent task to child task:
5459
 */
5460 5461
static struct perf_event *
inherit_event(struct perf_event *parent_event,
5462
	      struct task_struct *parent,
5463
	      struct perf_event_context *parent_ctx,
5464
	      struct task_struct *child,
5465 5466
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
5467
{
5468
	struct perf_event *child_event;
5469

5470
	/*
5471 5472
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
5473 5474 5475
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
5476 5477
	if (parent_event->parent)
		parent_event = parent_event->parent;
5478

5479 5480 5481
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
5482
					   NULL, GFP_KERNEL);
5483 5484
	if (IS_ERR(child_event))
		return child_event;
5485
	get_ctx(child_ctx);
5486

5487
	/*
5488
	 * Make the child state follow the state of the parent event,
5489
	 * not its attr.disabled bit.  We hold the parent's mutex,
5490
	 * so we won't race with perf_event_{en, dis}able_family.
5491
	 */
5492 5493
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
5494
	else
5495
		child_event->state = PERF_EVENT_STATE_OFF;
5496

5497 5498 5499 5500 5501 5502 5503
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

5504
		local64_set(&hwc->period_left, sample_period);
5505
	}
5506

5507 5508
	child_event->overflow_handler = parent_event->overflow_handler;

5509 5510 5511
	/*
	 * Link it up in the child's context:
	 */
5512
	add_event_to_ctx(child_event, child_ctx);
5513 5514 5515

	/*
	 * Get a reference to the parent filp - we will fput it
5516
	 * when the child event exits. This is safe to do because
5517 5518 5519
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5520
	atomic_long_inc(&parent_event->filp->f_count);
5521

5522
	/*
5523
	 * Link this into the parent event's child list
5524
	 */
5525 5526 5527 5528
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5529

5530
	return child_event;
5531 5532
}

5533
static int inherit_group(struct perf_event *parent_event,
5534
	      struct task_struct *parent,
5535
	      struct perf_event_context *parent_ctx,
5536
	      struct task_struct *child,
5537
	      struct perf_event_context *child_ctx)
5538
{
5539 5540 5541
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5542

5543
	leader = inherit_event(parent_event, parent, parent_ctx,
5544
				 child, NULL, child_ctx);
5545 5546
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5547 5548
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5549 5550 5551
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5552
	}
5553 5554 5555
	return 0;
}

5556
static void sync_child_event(struct perf_event *child_event,
5557
			       struct task_struct *child)
5558
{
5559
	struct perf_event *parent_event = child_event->parent;
5560
	u64 child_val;
5561

5562 5563
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5564

P
Peter Zijlstra 已提交
5565
	child_val = perf_event_count(child_event);
5566 5567 5568 5569

	/*
	 * Add back the child's count to the parent's count:
	 */
5570
	atomic64_add(child_val, &parent_event->child_count);
5571 5572 5573 5574
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5575 5576

	/*
5577
	 * Remove this event from the parent's list
5578
	 */
5579 5580 5581 5582
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5583 5584

	/*
5585
	 * Release the parent event, if this was the last
5586 5587
	 * reference to it.
	 */
5588
	fput(parent_event->filp);
5589 5590
}

5591
static void
5592 5593
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5594
			 struct task_struct *child)
5595
{
5596
	struct perf_event *parent_event;
5597

5598
	perf_event_remove_from_context(child_event);
5599

5600
	parent_event = child_event->parent;
5601
	/*
5602
	 * It can happen that parent exits first, and has events
5603
	 * that are still around due to the child reference. These
5604
	 * events need to be zapped - but otherwise linger.
5605
	 */
5606 5607 5608
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5609
	}
5610 5611 5612
}

/*
5613
 * When a child task exits, feed back event values to parent events.
5614
 */
5615
void perf_event_exit_task(struct task_struct *child)
5616
{
5617 5618
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5619
	unsigned long flags;
5620

5621 5622
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5623
		return;
P
Peter Zijlstra 已提交
5624
	}
5625

5626
	local_irq_save(flags);
5627 5628 5629 5630 5631 5632
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5633 5634
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5635 5636 5637

	/*
	 * Take the context lock here so that if find_get_context is
5638
	 * reading child->perf_event_ctxp, we wait until it has
5639 5640
	 * incremented the context's refcount before we do put_ctx below.
	 */
5641
	raw_spin_lock(&child_ctx->lock);
5642
	child->perf_event_ctxp = NULL;
5643 5644 5645
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5646
	 * the events from it.
5647 5648
	 */
	unclone_ctx(child_ctx);
5649
	update_context_time(child_ctx);
5650
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5651 5652

	/*
5653 5654 5655
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5656
	 */
5657
	perf_event_task(child, child_ctx, 0);
5658

5659 5660 5661
	/*
	 * We can recurse on the same lock type through:
	 *
5662 5663 5664
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5665 5666 5667 5668 5669
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
5670
	mutex_lock(&child_ctx->mutex);
5671

5672
again:
5673 5674 5675 5676 5677
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5678
				 group_entry)
5679
		__perf_event_exit_task(child_event, child_ctx, child);
5680 5681

	/*
5682
	 * If the last event was a group event, it will have appended all
5683 5684 5685
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5686 5687
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5688
		goto again;
5689 5690 5691 5692

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5693 5694
}

5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

5709
	perf_group_detach(event);
5710 5711 5712 5713
	list_del_event(event, ctx);
	free_event(event);
}

5714 5715 5716 5717
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5718
void perf_event_free_task(struct task_struct *task)
5719
{
5720 5721
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5722 5723 5724 5725 5726 5727

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5728 5729
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5730

5731 5732 5733
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5734

5735 5736 5737
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5738

5739
	mutex_unlock(&ctx->mutex);
5740

5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5756 5757
	}

5758 5759 5760 5761 5762 5763 5764
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5765

5766 5767 5768 5769
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5770

5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5783 5784
}

5785

5786
/*
5787
 * Initialize the perf_event context in task_struct
5788
 */
5789
int perf_event_init_task(struct task_struct *child)
5790
{
5791
	struct perf_event_context *child_ctx, *parent_ctx;
5792 5793
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5794
	struct task_struct *parent = current;
5795
	int inherited_all = 1;
5796
	int ret = 0;
5797

5798
	child->perf_event_ctxp = NULL;
5799

5800 5801
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5802

5803
	if (likely(!parent->perf_event_ctxp))
5804 5805
		return 0;

5806
	/*
5807 5808
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5809
	 */
5810 5811
	parent_ctx = perf_pin_task_context(parent);

5812 5813 5814 5815 5816 5817 5818
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5819 5820 5821 5822
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5823
	mutex_lock(&parent_ctx->mutex);
5824 5825 5826 5827 5828

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5829 5830 5831 5832 5833 5834
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5835

5836 5837 5838 5839
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5840
			break;
5841 5842
	}

5843 5844
	child_ctx = child->perf_event_ctxp;

5845
	if (child_ctx && inherited_all) {
5846 5847 5848
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5849 5850
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5851
		 * because the list of events and the generation
5852
		 * count can't have changed since we took the mutex.
5853
		 */
5854 5855 5856
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5857
			child_ctx->parent_gen = parent_ctx->parent_gen;
5858 5859 5860 5861 5862
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5863 5864
	}

5865
	mutex_unlock(&parent_ctx->mutex);
5866

5867
	perf_unpin_context(parent_ctx);
5868

5869
	return ret;
5870 5871
}

5872 5873 5874 5875 5876 5877 5878
static void __init perf_event_init_all_cpus(void)
{
	int cpu;
	struct perf_cpu_context *cpuctx;

	for_each_possible_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5879
		mutex_init(&cpuctx->hlist_mutex);
5880 5881 5882 5883
		__perf_event_init_context(&cpuctx->ctx, NULL);
	}
}

5884
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5885
{
5886
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5887

5888
	cpuctx = &per_cpu(perf_cpu_context, cpu);
T
Thomas Gleixner 已提交
5889

5890
	spin_lock(&perf_resource_lock);
5891
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5892
	spin_unlock(&perf_resource_lock);
5893 5894 5895 5896 5897 5898 5899 5900 5901 5902

	mutex_lock(&cpuctx->hlist_mutex);
	if (cpuctx->hlist_refcount > 0) {
		struct swevent_hlist *hlist;

		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
		WARN_ON_ONCE(!hlist);
		rcu_assign_pointer(cpuctx->swevent_hlist, hlist);
	}
	mutex_unlock(&cpuctx->hlist_mutex);
T
Thomas Gleixner 已提交
5903 5904 5905
}

#ifdef CONFIG_HOTPLUG_CPU
5906
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5907 5908
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5909 5910
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5911

5912 5913 5914
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5915
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5916
}
5917
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5918
{
5919
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5920
	struct perf_event_context *ctx = &cpuctx->ctx;
5921

5922 5923 5924 5925
	mutex_lock(&cpuctx->hlist_mutex);
	swevent_hlist_release(cpuctx);
	mutex_unlock(&cpuctx->hlist_mutex);

5926
	mutex_lock(&ctx->mutex);
5927
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5928
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5929 5930
}
#else
5931
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5932 5933 5934 5935 5936 5937 5938
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

P
Peter Zijlstra 已提交
5939
	switch (action & ~CPU_TASKS_FROZEN) {
T
Thomas Gleixner 已提交
5940 5941

	case CPU_UP_PREPARE:
P
Peter Zijlstra 已提交
5942
	case CPU_DOWN_FAILED:
5943
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5944 5945
		break;

P
Peter Zijlstra 已提交
5946
	case CPU_UP_CANCELED:
T
Thomas Gleixner 已提交
5947
	case CPU_DOWN_PREPARE:
5948
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5949 5950 5951 5952 5953 5954 5955 5956 5957
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5958
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5959
{
5960
	perf_event_init_all_cpus();
5961 5962 5963 5964 5965 5966
	init_srcu_struct(&pmus_srcu);
	perf_pmu_register(&perf_swevent);
	perf_pmu_register(&perf_cpu_clock);
	perf_pmu_register(&perf_task_clock);
	perf_tp_register();
	perf_cpu_notifier(perf_cpu_notify);
T
Thomas Gleixner 已提交
5967 5968
}

5969 5970 5971
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5972 5973 5974 5975 5976 5977
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5978
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5989
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5990 5991
		return -EINVAL;

5992
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5993 5994 5995
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5996
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5997 5998
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5999
		cpuctx->max_pertask = mpt;
6000
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
6001
	}
6002
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6003 6004 6005 6006

	return count;
}

6007 6008 6009
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
6010 6011 6012 6013 6014
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
6015 6016 6017
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

6028
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6029
	perf_overcommit = val;
6030
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
6057
	.name			= "perf_events",
T
Thomas Gleixner 已提交
6058 6059
};

6060
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
6061 6062 6063 6064
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
6065
device_initcall(perf_event_sysfs_init);