memcontrol.c 131.0 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
B
Balbir Singh 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
27
#include <linux/mm.h>
28
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
29
#include <linux/pagemap.h>
30
#include <linux/smp.h>
31
#include <linux/page-flags.h>
32
#include <linux/backing-dev.h>
33 34
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
35
#include <linux/limits.h>
36
#include <linux/mutex.h>
37
#include <linux/rbtree.h>
38
#include <linux/slab.h>
39
#include <linux/swap.h>
40
#include <linux/swapops.h>
41
#include <linux/spinlock.h>
42 43
#include <linux/eventfd.h>
#include <linux/sort.h>
44
#include <linux/fs.h>
45
#include <linux/seq_file.h>
46
#include <linux/vmalloc.h>
47
#include <linux/mm_inline.h>
48
#include <linux/page_cgroup.h>
49
#include <linux/cpu.h>
50
#include <linux/oom.h>
K
KAMEZAWA Hiroyuki 已提交
51
#include "internal.h"
B
Balbir Singh 已提交
52

53 54
#include <asm/uaccess.h>

55 56
#include <trace/events/vmscan.h>

57 58
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES	5
59
struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
60

61
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
L
Li Zefan 已提交
62
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63
int do_swap_account __read_mostly;
64 65 66 67 68 69 70 71

/* for remember boot option*/
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

72 73 74 75
#else
#define do_swap_account		(0)
#endif

76 77 78 79 80 81 82 83 84
/*
 * Per memcg event counter is incremented at every pagein/pageout. This counter
 * is used for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 *
 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
 */
#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85

86 87 88 89 90 91 92 93
/*
 * Statistics for memory cgroup.
 */
enum mem_cgroup_stat_index {
	/*
	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
	 */
	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94
	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95
	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 97
	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98
	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 100 101
	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
	/* incremented at every  pagein/pageout */
	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102
	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 104 105 106 107 108 109 110

	MEM_CGROUP_STAT_NSTATS,
};

struct mem_cgroup_stat_cpu {
	s64 count[MEM_CGROUP_STAT_NSTATS];
};

111 112 113 114
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
115 116 117
	/*
	 * spin_lock to protect the per cgroup LRU
	 */
118 119
	struct list_head	lists[NR_LRU_LISTS];
	unsigned long		count[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
120 121

	struct zone_reclaim_stat reclaim_stat;
122 123 124 125
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
126 127
	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
						/* use container_of	   */
128 129 130 131 132 133 134 135 136 137 138 139
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

struct mem_cgroup_lru_info {
	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
};

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

160 161 162 163 164
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
165
/* For threshold */
166 167
struct mem_cgroup_threshold_ary {
	/* An array index points to threshold just below usage. */
168
	int current_threshold;
169 170 171 172 173
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
174 175 176 177 178 179 180 181 182 183 184 185

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
186 187 188 189 190
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
191 192

static void mem_cgroup_threshold(struct mem_cgroup *mem);
K
KAMEZAWA Hiroyuki 已提交
193
static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194

B
Balbir Singh 已提交
195 196 197 198 199 200 201
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 203 204
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
205 206 207 208 209 210 211
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
212 213 214 215
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
216 217 218 219
	/*
	 * Per cgroup active and inactive list, similar to the
	 * per zone LRU lists.
	 */
220
	struct mem_cgroup_lru_info info;
221

K
KOSAKI Motohiro 已提交
222 223 224 225 226
	/*
	  protect against reclaim related member.
	*/
	spinlock_t reclaim_param_lock;

227
	/*
228
	 * While reclaiming in a hierarchy, we cache the last child we
K
KAMEZAWA Hiroyuki 已提交
229
	 * reclaimed from.
230
	 */
K
KAMEZAWA Hiroyuki 已提交
231
	int last_scanned_child;
232 233 234 235
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
236
	atomic_t	oom_lock;
237
	atomic_t	refcnt;
238

K
KOSAKI Motohiro 已提交
239
	unsigned int	swappiness;
240 241
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
242

243 244 245
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

246 247 248 249
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
250
	struct mem_cgroup_thresholds thresholds;
251

252
	/* thresholds for mem+swap usage. RCU-protected */
253
	struct mem_cgroup_thresholds memsw_thresholds;
254

K
KAMEZAWA Hiroyuki 已提交
255 256 257
	/* For oom notifier event fd */
	struct list_head oom_notify;

258 259 260 261 262
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
	unsigned long 	move_charge_at_immigrate;
263
	/*
264
	 * percpu counter.
265
	 */
266
	struct mem_cgroup_stat_cpu *stat;
267 268 269 270 271 272
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
B
Balbir Singh 已提交
273 274
};

275 276 277 278 279 280
/* Stuffs for move charges at task migration. */
/*
 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
 * left-shifted bitmap of these types.
 */
enum move_type {
281
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 284 285
	NR_MOVE_TYPE,
};

286 287
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
288
	spinlock_t	  lock; /* for from, to */
289 290 291
	struct mem_cgroup *from;
	struct mem_cgroup *to;
	unsigned long precharge;
292
	unsigned long moved_charge;
293
	unsigned long moved_swap;
294 295 296
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
297
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 299
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
300

D
Daisuke Nishimura 已提交
301 302 303 304 305 306
static bool move_anon(void)
{
	return test_bit(MOVE_CHARGE_TYPE_ANON,
					&mc.to->move_charge_at_immigrate);
}

307 308 309 310 311 312
static bool move_file(void)
{
	return test_bit(MOVE_CHARGE_TYPE_FILE,
					&mc.to->move_charge_at_immigrate);
}

313 314 315 316 317 318 319
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)

320 321 322
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323
	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324
	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
K
KAMEZAWA Hiroyuki 已提交
325
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
326
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 328 329
	NR_CHARGE_TYPE,
};

330 331 332
/* for encoding cft->private value on file */
#define _MEM			(0)
#define _MEMSWAP		(1)
K
KAMEZAWA Hiroyuki 已提交
333
#define _OOM_TYPE		(2)
334 335 336
#define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
#define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
337 338
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
339

340 341 342 343 344 345 346
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347 348
#define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
#define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
349

350 351
static void mem_cgroup_get(struct mem_cgroup *mem);
static void mem_cgroup_put(struct mem_cgroup *mem);
352
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353
static void drain_all_stock_async(void);
354

355 356 357 358 359 360
static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}

361 362 363 364 365
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
{
	return &mem->css;
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
	struct mem_cgroup *mem = pc->mem_cgroup;
	int nid = page_cgroup_nid(pc);
	int zid = page_cgroup_zid(pc);

	if (!mem)
		return NULL;

	return mem_cgroup_zoneinfo(mem, nid, zid);
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
395
__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
396
				struct mem_cgroup_per_zone *mz,
397 398
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
399 400 401 402 403 404 405 406
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

407 408 409
	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
426 427 428 429 430 431 432 433 434 435 436 437 438
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

439 440 441 442 443 444
static void
mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
445
	__mem_cgroup_remove_exceeded(mem, mz, mctz);
446 447 448 449 450 451
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
{
452
	unsigned long long excess;
453 454
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
455 456
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
457 458 459
	mctz = soft_limit_tree_from_page(page);

	/*
460 461
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
462
	 */
463 464
	for (; mem; mem = parent_mem_cgroup(mem)) {
		mz = mem_cgroup_zoneinfo(mem, nid, zid);
465
		excess = res_counter_soft_limit_excess(&mem->res);
466 467 468 469
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
470
		if (excess || mz->on_tree) {
471 472 473 474 475
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(mem, mz, mctz);
			/*
476 477
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
478
			 */
479
			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
480 481
			spin_unlock(&mctz->lock);
		}
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node_state(node, N_POSSIBLE) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(mem, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(mem, mz, mctz);
		}
	}
}

500 501 502 503
static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
504
	struct mem_cgroup_per_zone *mz;
505 506

retry:
507
	mz = NULL;
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
		!css_tryget(&mz->mem->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
556 557 558 559 560 561
static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
		enum mem_cgroup_stat_index idx)
{
	int cpu;
	s64 val = 0;

562 563
	get_online_cpus();
	for_each_online_cpu(cpu)
564
		val += per_cpu(mem->stat->count[idx], cpu);
565 566 567 568 569 570
#ifdef CONFIG_HOTPLUG_CPU
	spin_lock(&mem->pcp_counter_lock);
	val += mem->nocpu_base.count[idx];
	spin_unlock(&mem->pcp_counter_lock);
#endif
	put_online_cpus();
571 572 573 574 575 576 577 578 579 580 581 582
	return val;
}

static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
{
	s64 ret;

	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
	return ret;
}

583 584 585 586
static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
					 bool charge)
{
	int val = (charge) ? 1 : -1;
587
	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
588 589
}

590
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
591
					 bool file, int nr_pages)
592
{
593 594
	preempt_disable();

595 596
	if (file)
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
597
	else
598
		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
599

600 601
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
602
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
603
	else {
604
		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
605 606
		nr_pages = -nr_pages; /* for event */
	}
607 608

	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
609

610
	preempt_enable();
611 612
}

K
KAMEZAWA Hiroyuki 已提交
613
static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
614
					enum lru_list idx)
615 616 617 618 619 620 621 622 623 624 625
{
	int nid, zid;
	struct mem_cgroup_per_zone *mz;
	u64 total = 0;

	for_each_online_node(nid)
		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
			mz = mem_cgroup_zoneinfo(mem, nid, zid);
			total += MEM_CGROUP_ZSTAT(mz, idx);
		}
	return total;
626 627
}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
{
	s64 val;

	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);

	return !(val & ((1 << event_mask_shift) - 1));
}

/*
 * Check events in order.
 *
 */
static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
{
	/* threshold event is triggered in finer grain than soft limit */
	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
		mem_cgroup_threshold(mem);
		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
			mem_cgroup_update_tree(mem, page);
	}
}

651
static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
B
Balbir Singh 已提交
652 653 654 655 656 657
{
	return container_of(cgroup_subsys_state(cont,
				mem_cgroup_subsys_id), struct mem_cgroup,
				css);
}

658
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
659
{
660 661 662 663 664 665 666 667
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

668 669 670 671
	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
				struct mem_cgroup, css);
}

672 673 674
static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
	struct mem_cgroup *mem = NULL;
675 676 677

	if (!mm)
		return NULL;
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!mem))
			break;
	} while (!css_tryget(&mem->css));
	rcu_read_unlock();
	return mem;
}

K
KAMEZAWA Hiroyuki 已提交
693 694
/* The caller has to guarantee "mem" exists before calling this */
static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
695
{
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	struct cgroup_subsys_state *css;
	int found;

	if (!mem) /* ROOT cgroup has the smallest ID */
		return root_mem_cgroup; /*css_put/get against root is ignored*/
	if (!mem->use_hierarchy) {
		if (css_tryget(&mem->css))
			return mem;
		return NULL;
	}
	rcu_read_lock();
	/*
	 * searching a memory cgroup which has the smallest ID under given
	 * ROOT cgroup. (ID >= 1)
	 */
	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
	if (css && css_tryget(css))
		mem = container_of(css, struct mem_cgroup, css);
	else
		mem = NULL;
	rcu_read_unlock();
	return mem;
K
KAMEZAWA Hiroyuki 已提交
718 719 720 721 722 723 724 725 726
}

static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
					struct mem_cgroup *root,
					bool cond)
{
	int nextid = css_id(&iter->css) + 1;
	int found;
	int hierarchy_used;
K
KAMEZAWA Hiroyuki 已提交
727 728
	struct cgroup_subsys_state *css;

K
KAMEZAWA Hiroyuki 已提交
729
	hierarchy_used = iter->use_hierarchy;
K
KAMEZAWA Hiroyuki 已提交
730

K
KAMEZAWA Hiroyuki 已提交
731
	css_put(&iter->css);
732 733
	/* If no ROOT, walk all, ignore hierarchy */
	if (!cond || (root && !hierarchy_used))
K
KAMEZAWA Hiroyuki 已提交
734
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
735

736 737 738
	if (!root)
		root = root_mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
739 740
	do {
		iter = NULL;
K
KAMEZAWA Hiroyuki 已提交
741
		rcu_read_lock();
K
KAMEZAWA Hiroyuki 已提交
742 743 744

		css = css_get_next(&mem_cgroup_subsys, nextid,
				&root->css, &found);
K
KAMEZAWA Hiroyuki 已提交
745
		if (css && css_tryget(css))
K
KAMEZAWA Hiroyuki 已提交
746
			iter = container_of(css, struct mem_cgroup, css);
K
KAMEZAWA Hiroyuki 已提交
747
		rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
748
		/* If css is NULL, no more cgroups will be found */
K
KAMEZAWA Hiroyuki 已提交
749
		nextid = found + 1;
K
KAMEZAWA Hiroyuki 已提交
750
	} while (css && !iter);
K
KAMEZAWA Hiroyuki 已提交
751

K
KAMEZAWA Hiroyuki 已提交
752
	return iter;
K
KAMEZAWA Hiroyuki 已提交
753
}
K
KAMEZAWA Hiroyuki 已提交
754 755 756 757 758 759 760 761 762 763 764 765 766
/*
 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
 * be careful that "break" loop is not allowed. We have reference count.
 * Instead of that modify "cond" to be false and "continue" to exit the loop.
 */
#define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
	for (iter = mem_cgroup_start_loop(root);\
	     iter != NULL;\
	     iter = mem_cgroup_get_next(iter, root, cond))

#define for_each_mem_cgroup_tree(iter, root) \
	for_each_mem_cgroup_tree_cond(iter, root, true)

767 768 769
#define for_each_mem_cgroup_all(iter) \
	for_each_mem_cgroup_tree_cond(iter, NULL, true)

K
KAMEZAWA Hiroyuki 已提交
770

771 772 773 774 775
static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
{
	return (mem == root_mem_cgroup);
}

K
KAMEZAWA Hiroyuki 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
789

K
KAMEZAWA Hiroyuki 已提交
790 791 792 793
void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
794

795
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
796 797 798
		return;
	pc = lookup_page_cgroup(page);
	/* can happen while we handle swapcache. */
799
	if (!TestClearPageCgroupAcctLRU(pc))
K
KAMEZAWA Hiroyuki 已提交
800
		return;
801
	VM_BUG_ON(!pc->mem_cgroup);
802 803 804 805
	/*
	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
	 * removed from global LRU.
	 */
K
KAMEZAWA Hiroyuki 已提交
806
	mz = page_cgroup_zoneinfo(pc);
807 808
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
809 810 811
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	VM_BUG_ON(list_empty(&pc->lru));
K
KAMEZAWA Hiroyuki 已提交
812
	list_del_init(&pc->lru);
813 814
}

K
KAMEZAWA Hiroyuki 已提交
815
void mem_cgroup_del_lru(struct page *page)
816
{
K
KAMEZAWA Hiroyuki 已提交
817 818
	mem_cgroup_del_lru_list(page, page_lru(page));
}
819

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
/*
 * Writeback is about to end against a page which has been marked for immediate
 * reclaim.  If it still appears to be reclaimable, move it to the tail of the
 * inactive list.
 */
void mem_cgroup_rotate_reclaimable_page(struct page *page)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
	enum lru_list lru = page_lru(page);

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(page);
	/* unused or root page is not rotated. */
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move_tail(&pc->lru, &mz->lists[lru]);
}

K
KAMEZAWA Hiroyuki 已提交
846 847 848 849
void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
{
	struct mem_cgroup_per_zone *mz;
	struct page_cgroup *pc;
850

851
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
852
		return;
853

K
KAMEZAWA Hiroyuki 已提交
854
	pc = lookup_page_cgroup(page);
855
	/* unused or root page is not rotated. */
856 857 858 859 860
	if (!PageCgroupUsed(pc))
		return;
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
	if (mem_cgroup_is_root(pc->mem_cgroup))
K
KAMEZAWA Hiroyuki 已提交
861 862 863
		return;
	mz = page_cgroup_zoneinfo(pc);
	list_move(&pc->lru, &mz->lists[lru]);
864 865
}

K
KAMEZAWA Hiroyuki 已提交
866
void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
867
{
K
KAMEZAWA Hiroyuki 已提交
868 869
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;
870

871
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
872 873
		return;
	pc = lookup_page_cgroup(page);
874
	VM_BUG_ON(PageCgroupAcctLRU(pc));
K
KAMEZAWA Hiroyuki 已提交
875
	if (!PageCgroupUsed(pc))
L
Lee Schermerhorn 已提交
876
		return;
877 878
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
K
KAMEZAWA Hiroyuki 已提交
879
	mz = page_cgroup_zoneinfo(pc);
880 881
	/* huge page split is done under lru_lock. so, we have no races. */
	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
882 883 884
	SetPageCgroupAcctLRU(pc);
	if (mem_cgroup_is_root(pc->mem_cgroup))
		return;
K
KAMEZAWA Hiroyuki 已提交
885 886
	list_add(&pc->lru, &mz->lists[lru]);
}
887

K
KAMEZAWA Hiroyuki 已提交
888
/*
889 890 891 892 893
 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
 * lru because the page may.be reused after it's fully uncharged (because of
 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
 * it again. This function is only used to charge SwapCache. It's done under
 * lock_page and expected that zone->lru_lock is never held.
K
KAMEZAWA Hiroyuki 已提交
894
 */
895
static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
K
KAMEZAWA Hiroyuki 已提交
896
{
897 898 899 900 901 902 903 904 905 906 907 908
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/*
	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
	 * is guarded by lock_page() because the page is SwapCache.
	 */
	if (!PageCgroupUsed(pc))
		mem_cgroup_del_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
K
KAMEZAWA Hiroyuki 已提交
909 910
}

911 912 913 914 915 916 917 918
static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
{
	unsigned long flags;
	struct zone *zone = page_zone(page);
	struct page_cgroup *pc = lookup_page_cgroup(page);

	spin_lock_irqsave(&zone->lru_lock, flags);
	/* link when the page is linked to LRU but page_cgroup isn't */
919
	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
920 921 922 923 924
		mem_cgroup_add_lru_list(page, page_lru(page));
	spin_unlock_irqrestore(&zone->lru_lock, flags);
}


K
KAMEZAWA Hiroyuki 已提交
925 926 927
void mem_cgroup_move_lists(struct page *page,
			   enum lru_list from, enum lru_list to)
{
928
	if (mem_cgroup_disabled())
K
KAMEZAWA Hiroyuki 已提交
929 930 931
		return;
	mem_cgroup_del_lru_list(page, from);
	mem_cgroup_add_lru_list(page, to);
932 933
}

934 935 936
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
{
	int ret;
937
	struct mem_cgroup *curr = NULL;
938
	struct task_struct *p;
939

940 941 942 943 944
	p = find_lock_task_mm(task);
	if (!p)
		return 0;
	curr = try_get_mem_cgroup_from_mm(p->mm);
	task_unlock(p);
945 946
	if (!curr)
		return 0;
947 948 949 950 951 952 953
	/*
	 * We should check use_hierarchy of "mem" not "curr". Because checking
	 * use_hierarchy of "curr" here make this function true if hierarchy is
	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "mem").
	 */
	if (mem->use_hierarchy)
954 955 956 957
		ret = css_is_ancestor(&curr->css, &mem->css);
	else
		ret = (curr == mem);
	css_put(&curr->css);
958 959 960
	return ret;
}

961
static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
962 963 964
{
	unsigned long active;
	unsigned long inactive;
965 966
	unsigned long gb;
	unsigned long inactive_ratio;
967

K
KAMEZAWA Hiroyuki 已提交
968 969
	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
970

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

	if (present_pages) {
		present_pages[0] = inactive;
		present_pages[1] = active;
	}

	return inactive_ratio;
}

int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;
	unsigned long present_pages[2];
	unsigned long inactive_ratio;

	inactive_ratio = calc_inactive_ratio(memcg, present_pages);

	inactive = present_pages[0];
	active = present_pages[1];

	if (inactive * inactive_ratio < active)
998 999 1000 1001 1002
		return 1;

	return 0;
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
{
	unsigned long active;
	unsigned long inactive;

	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);

	return (active > inactive);
}

1014 1015 1016 1017
unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
				       struct zone *zone,
				       enum lru_list lru)
{
1018
	int nid = zone_to_nid(zone);
1019 1020 1021 1022 1023 1024
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return MEM_CGROUP_ZSTAT(mz, lru);
}

K
KOSAKI Motohiro 已提交
1025 1026 1027
struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
						      struct zone *zone)
{
1028
	int nid = zone_to_nid(zone);
K
KOSAKI Motohiro 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	int zid = zone_idx(zone);
	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);

	return &mz->reclaim_stat;
}

struct zone_reclaim_stat *
mem_cgroup_get_reclaim_stat_from_page(struct page *page)
{
	struct page_cgroup *pc;
	struct mem_cgroup_per_zone *mz;

	if (mem_cgroup_disabled())
		return NULL;

	pc = lookup_page_cgroup(page);
1045 1046
	if (!PageCgroupUsed(pc))
		return NULL;
1047 1048
	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
	smp_rmb();
K
KOSAKI Motohiro 已提交
1049 1050 1051 1052 1053 1054 1055
	mz = page_cgroup_zoneinfo(pc);
	if (!mz)
		return NULL;

	return &mz->reclaim_stat;
}

1056 1057 1058 1059 1060
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
1061
					int active, int file)
1062 1063 1064 1065 1066 1067
{
	unsigned long nr_taken = 0;
	struct page *page;
	unsigned long scan;
	LIST_HEAD(pc_list);
	struct list_head *src;
1068
	struct page_cgroup *pc, *tmp;
1069
	int nid = zone_to_nid(z);
1070 1071
	int zid = zone_idx(z);
	struct mem_cgroup_per_zone *mz;
1072
	int lru = LRU_FILE * file + active;
1073
	int ret;
1074

1075
	BUG_ON(!mem_cont);
1076
	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1077
	src = &mz->lists[lru];
1078

1079 1080
	scan = 0;
	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
H
Hugh Dickins 已提交
1081
		if (scan >= nr_to_scan)
1082
			break;
K
KAMEZAWA Hiroyuki 已提交
1083 1084

		page = pc->page;
1085 1086
		if (unlikely(!PageCgroupUsed(pc)))
			continue;
H
Hugh Dickins 已提交
1087
		if (unlikely(!PageLRU(page)))
1088 1089
			continue;

H
Hugh Dickins 已提交
1090
		scan++;
1091 1092 1093
		ret = __isolate_lru_page(page, mode, file);
		switch (ret) {
		case 0:
1094
			list_move(&page->lru, dst);
1095
			mem_cgroup_del_lru(page);
1096
			nr_taken += hpage_nr_pages(page);
1097 1098 1099 1100 1101 1102 1103
			break;
		case -EBUSY:
			/* we don't affect global LRU but rotate in our LRU */
			mem_cgroup_rotate_lru_list(page, page_lru(page));
			break;
		default:
			break;
1104 1105 1106 1107
		}
	}

	*scanned = scan;
1108 1109 1110 1111

	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
				      0, 0, 0, mode);

1112 1113 1114
	return nr_taken;
}

1115 1116 1117
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1118
/**
1119 1120
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
 * @mem: the memory cgroup
1121
 *
1122 1123
 * Returns the maximum amount of memory @mem can be charged with, in
 * bytes.
1124
 */
1125
static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1126
{
1127 1128 1129 1130 1131 1132
	unsigned long long margin;

	margin = res_counter_margin(&mem->res);
	if (do_swap_account)
		margin = min(margin, res_counter_margin(&mem->memsw));
	return margin;
1133 1134
}

K
KOSAKI Motohiro 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
static unsigned int get_swappiness(struct mem_cgroup *memcg)
{
	struct cgroup *cgrp = memcg->css.cgroup;
	unsigned int swappiness;

	/* root ? */
	if (cgrp->parent == NULL)
		return vm_swappiness;

	spin_lock(&memcg->reclaim_param_lock);
	swappiness = memcg->swappiness;
	spin_unlock(&memcg->reclaim_param_lock);

	return swappiness;
}

1151 1152 1153
static void mem_cgroup_start_move(struct mem_cgroup *mem)
{
	int cpu;
1154 1155 1156 1157

	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1158
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1159 1160 1161
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171

	synchronize_rcu();
}

static void mem_cgroup_end_move(struct mem_cgroup *mem)
{
	int cpu;

	if (!mem)
		return;
1172 1173 1174
	get_online_cpus();
	spin_lock(&mem->pcp_counter_lock);
	for_each_online_cpu(cpu)
1175
		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1176 1177 1178
	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
	spin_unlock(&mem->pcp_counter_lock);
	put_online_cpus();
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
}
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
 *			  for avoiding race in accounting. If true,
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

static bool mem_cgroup_stealed(struct mem_cgroup *mem)
{
	VM_BUG_ON(!rcu_read_lock_held());
	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
}
1197 1198 1199

static bool mem_cgroup_under_move(struct mem_cgroup *mem)
{
1200 1201
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1202
	bool ret = false;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
	if (from == mem || to == mem
	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
		ret = true;
unlock:
	spin_unlock(&mc.lock);
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
	return ret;
}

static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
{
	if (mc.moving_task && current != mc.moving_task) {
		if (mem_cgroup_under_move(mem)) {
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1237
/**
1238
 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;

1257
	if (!memcg || !p)
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
		return;


	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	printk(KERN_INFO "Task in %s killed", memcg_name);

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
done:

	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
		"failcnt %llu\n",
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
}

1304 1305 1306 1307 1308 1309 1310
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
static int mem_cgroup_count_children(struct mem_cgroup *mem)
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1311 1312 1313 1314
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		num++;
1315 1316 1317
	return num;
}

D
David Rientjes 已提交
1318 1319 1320 1321 1322 1323 1324 1325
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
{
	u64 limit;
	u64 memsw;

1326 1327 1328
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	limit += total_swap_pages << PAGE_SHIFT;

D
David Rientjes 已提交
1329 1330 1331 1332 1333 1334 1335 1336
	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	/*
	 * If memsw is finite and limits the amount of swap space available
	 * to this memcg, return that limit.
	 */
	return min(limit, memsw);
}

1337
/*
K
KAMEZAWA Hiroyuki 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
 * Visit the first child (need not be the first child as per the ordering
 * of the cgroup list, since we track last_scanned_child) of @mem and use
 * that to reclaim free pages from.
 */
static struct mem_cgroup *
mem_cgroup_select_victim(struct mem_cgroup *root_mem)
{
	struct mem_cgroup *ret = NULL;
	struct cgroup_subsys_state *css;
	int nextid, found;

	if (!root_mem->use_hierarchy) {
		css_get(&root_mem->css);
		ret = root_mem;
	}

	while (!ret) {
		rcu_read_lock();
		nextid = root_mem->last_scanned_child + 1;
		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
				   &found);
		if (css && css_tryget(css))
			ret = container_of(css, struct mem_cgroup, css);

		rcu_read_unlock();
		/* Updates scanning parameter */
		spin_lock(&root_mem->reclaim_param_lock);
		if (!css) {
			/* this means start scan from ID:1 */
			root_mem->last_scanned_child = 0;
		} else
			root_mem->last_scanned_child = found;
		spin_unlock(&root_mem->reclaim_param_lock);
	}

	return ret;
}

/*
 * Scan the hierarchy if needed to reclaim memory. We remember the last child
 * we reclaimed from, so that we don't end up penalizing one child extensively
 * based on its position in the children list.
1380 1381
 *
 * root_mem is the original ancestor that we've been reclaim from.
K
KAMEZAWA Hiroyuki 已提交
1382 1383 1384
 *
 * We give up and return to the caller when we visit root_mem twice.
 * (other groups can be removed while we're walking....)
1385 1386
 *
 * If shrink==true, for avoiding to free too much, this returns immedieately.
1387 1388
 */
static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1389
						struct zone *zone,
1390 1391
						gfp_t gfp_mask,
						unsigned long reclaim_options)
1392
{
K
KAMEZAWA Hiroyuki 已提交
1393 1394 1395
	struct mem_cgroup *victim;
	int ret, total = 0;
	int loop = 0;
1396 1397
	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1398
	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1399 1400 1401
	unsigned long excess;

	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
K
KAMEZAWA Hiroyuki 已提交
1402

1403 1404 1405 1406
	/* If memsw_is_minimum==1, swap-out is of-no-use. */
	if (root_mem->memsw_is_minimum)
		noswap = true;

1407
	while (1) {
K
KAMEZAWA Hiroyuki 已提交
1408
		victim = mem_cgroup_select_victim(root_mem);
1409
		if (victim == root_mem) {
K
KAMEZAWA Hiroyuki 已提交
1410
			loop++;
1411 1412
			if (loop >= 1)
				drain_all_stock_async();
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!check_soft || !total) {
					css_put(&victim->css);
					break;
				}
				/*
				 * We want to do more targetted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
					css_put(&victim->css);
					break;
				}
			}
		}
1436
		if (!mem_cgroup_local_usage(victim)) {
K
KAMEZAWA Hiroyuki 已提交
1437 1438
			/* this cgroup's local usage == 0 */
			css_put(&victim->css);
1439 1440
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
1441
		/* we use swappiness of local cgroup */
1442 1443
		if (check_soft)
			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1444
				noswap, get_swappiness(victim), zone);
1445 1446 1447
		else
			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
						noswap, get_swappiness(victim));
K
KAMEZAWA Hiroyuki 已提交
1448
		css_put(&victim->css);
1449 1450 1451 1452 1453 1454 1455
		/*
		 * At shrinking usage, we can't check we should stop here or
		 * reclaim more. It's depends on callers. last_scanned_child
		 * will work enough for keeping fairness under tree.
		 */
		if (shrink)
			return ret;
K
KAMEZAWA Hiroyuki 已提交
1456
		total += ret;
1457
		if (check_soft) {
1458
			if (!res_counter_soft_limit_excess(&root_mem->res))
1459
				return total;
1460
		} else if (mem_cgroup_margin(root_mem))
K
KAMEZAWA Hiroyuki 已提交
1461
			return 1 + total;
1462
	}
K
KAMEZAWA Hiroyuki 已提交
1463
	return total;
1464 1465
}

K
KAMEZAWA Hiroyuki 已提交
1466 1467 1468 1469 1470 1471
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
1472 1473
	int x, lock_count = 0;
	struct mem_cgroup *iter;
1474

K
KAMEZAWA Hiroyuki 已提交
1475 1476 1477 1478
	for_each_mem_cgroup_tree(iter, mem) {
		x = atomic_inc_return(&iter->oom_lock);
		lock_count = max(x, lock_count);
	}
K
KAMEZAWA Hiroyuki 已提交
1479 1480 1481 1482

	if (lock_count == 1)
		return true;
	return false;
1483
}
1484

K
KAMEZAWA Hiroyuki 已提交
1485
static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1486
{
K
KAMEZAWA Hiroyuki 已提交
1487 1488
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
1489 1490 1491 1492 1493
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
K
KAMEZAWA Hiroyuki 已提交
1494 1495
	for_each_mem_cgroup_tree(iter, mem)
		atomic_add_unless(&iter->oom_lock, -1, 0);
1496 1497 1498
	return 0;
}

K
KAMEZAWA Hiroyuki 已提交
1499 1500 1501 1502

static DEFINE_MUTEX(memcg_oom_mutex);
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
struct oom_wait_info {
	struct mem_cgroup *mem;
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);

	if (oom_wait_info->mem == wake_mem)
		goto wakeup;
	/* if no hierarchy, no match */
	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
		return 0;
	/*
	 * Both of oom_wait_info->mem and wake_mem are stable under us.
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
		return 0;

wakeup:
	return autoremove_wake_function(wait, mode, sync, arg);
}

static void memcg_wakeup_oom(struct mem_cgroup *mem)
{
	/* for filtering, pass "mem" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
}

1539 1540
static void memcg_oom_recover(struct mem_cgroup *mem)
{
1541
	if (mem && atomic_read(&mem->oom_lock))
1542 1543 1544
		memcg_wakeup_oom(mem);
}

K
KAMEZAWA Hiroyuki 已提交
1545 1546 1547 1548
/*
 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
 */
bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1549
{
K
KAMEZAWA Hiroyuki 已提交
1550
	struct oom_wait_info owait;
1551
	bool locked, need_to_kill;
K
KAMEZAWA Hiroyuki 已提交
1552

K
KAMEZAWA Hiroyuki 已提交
1553 1554 1555 1556 1557
	owait.mem = mem;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
1558
	need_to_kill = true;
K
KAMEZAWA Hiroyuki 已提交
1559 1560 1561 1562 1563 1564 1565 1566
	/* At first, try to OOM lock hierarchy under mem.*/
	mutex_lock(&memcg_oom_mutex);
	locked = mem_cgroup_oom_lock(mem);
	/*
	 * Even if signal_pending(), we can't quit charge() loop without
	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
	 * under OOM is always welcomed, use TASK_KILLABLE here.
	 */
1567 1568 1569 1570
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
	if (!locked || mem->oom_kill_disable)
		need_to_kill = false;
	if (locked)
K
KAMEZAWA Hiroyuki 已提交
1571
		mem_cgroup_oom_notify(mem);
K
KAMEZAWA Hiroyuki 已提交
1572 1573
	mutex_unlock(&memcg_oom_mutex);

1574 1575
	if (need_to_kill) {
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1576
		mem_cgroup_out_of_memory(mem, mask);
1577
	} else {
K
KAMEZAWA Hiroyuki 已提交
1578
		schedule();
K
KAMEZAWA Hiroyuki 已提交
1579
		finish_wait(&memcg_oom_waitq, &owait.wait);
K
KAMEZAWA Hiroyuki 已提交
1580 1581 1582
	}
	mutex_lock(&memcg_oom_mutex);
	mem_cgroup_oom_unlock(mem);
K
KAMEZAWA Hiroyuki 已提交
1583
	memcg_wakeup_oom(mem);
K
KAMEZAWA Hiroyuki 已提交
1584 1585 1586 1587 1588 1589 1590
	mutex_unlock(&memcg_oom_mutex);

	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
		return false;
	/* Give chance to dying process */
	schedule_timeout(1);
	return true;
1591 1592
}

1593 1594 1595
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
 * possibility of race condition. If there is, we take a lock.
1615
 */
1616

1617 1618
void mem_cgroup_update_page_stat(struct page *page,
				 enum mem_cgroup_page_stat_item idx, int val)
1619 1620
{
	struct mem_cgroup *mem;
1621 1622
	struct page_cgroup *pc = lookup_page_cgroup(page);
	bool need_unlock = false;
1623
	unsigned long uninitialized_var(flags);
1624 1625 1626 1627

	if (unlikely(!pc))
		return;

1628
	rcu_read_lock();
1629
	mem = pc->mem_cgroup;
1630 1631 1632
	if (unlikely(!mem || !PageCgroupUsed(pc)))
		goto out;
	/* pc->mem_cgroup is unstable ? */
1633
	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1634
		/* take a lock against to access pc->mem_cgroup */
1635
		move_lock_page_cgroup(pc, &flags);
1636 1637 1638 1639 1640
		need_unlock = true;
		mem = pc->mem_cgroup;
		if (!mem || !PageCgroupUsed(pc))
			goto out;
	}
1641 1642

	switch (idx) {
1643
	case MEMCG_NR_FILE_MAPPED:
1644 1645 1646
		if (val > 0)
			SetPageCgroupFileMapped(pc);
		else if (!page_mapped(page))
1647
			ClearPageCgroupFileMapped(pc);
1648
		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1649 1650 1651
		break;
	default:
		BUG();
1652
	}
1653

1654 1655
	this_cpu_add(mem->stat->count[idx], val);

1656 1657
out:
	if (unlikely(need_unlock))
1658
		move_unlock_page_cgroup(pc, &flags);
1659 1660
	rcu_read_unlock();
	return;
1661
}
1662
EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1663

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
#define CHARGE_SIZE	(32 * PAGE_SIZE)
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
	int charge;
	struct work_struct work;
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
static atomic_t memcg_drain_count;

/*
 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
 * from local stock and true is returned. If the stock is 0 or charges from a
 * cgroup which is not current target, returns false. This stock will be
 * refilled.
 */
static bool consume_stock(struct mem_cgroup *mem)
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

	stock = &get_cpu_var(memcg_stock);
	if (mem == stock->cached && stock->charge)
		stock->charge -= PAGE_SIZE;
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

	if (stock->charge) {
		res_counter_uncharge(&old->res, stock->charge);
		if (do_swap_account)
			res_counter_uncharge(&old->memsw, stock->charge);
	}
	stock->cached = NULL;
	stock->charge = 0;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
}

/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
1725
 * This will be consumed by consume_stock() function, later.
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
 */
static void refill_stock(struct mem_cgroup *mem, int val)
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

	if (stock->cached != mem) { /* reset if necessary */
		drain_stock(stock);
		stock->cached = mem;
	}
	stock->charge += val;
	put_cpu_var(memcg_stock);
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
static void drain_all_stock_async(void)
{
	int cpu;
	/* This function is for scheduling "drain" in asynchronous way.
	 * The result of "drain" is not directly handled by callers. Then,
	 * if someone is calling drain, we don't have to call drain more.
	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
	 * there is a race. We just do loose check here.
	 */
	if (atomic_read(&memcg_drain_count))
		return;
	/* Notify other cpus that system-wide "drain" is running */
	atomic_inc(&memcg_drain_count);
	get_online_cpus();
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
		schedule_work_on(cpu, &stock->work);
	}
 	put_online_cpus();
	atomic_dec(&memcg_drain_count);
	/* We don't wait for flush_work */
}

/* This is a synchronous drain interface. */
static void drain_all_stock_sync(void)
{
	/* called when force_empty is called */
	atomic_inc(&memcg_drain_count);
	schedule_on_each_cpu(drain_local_stock);
	atomic_dec(&memcg_drain_count);
}

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
{
	int i;

	spin_lock(&mem->pcp_counter_lock);
	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
		s64 x = per_cpu(mem->stat->count[i], cpu);

		per_cpu(mem->stat->count[i], cpu) = 0;
		mem->nocpu_base.count[i] += x;
	}
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	/* need to clear ON_MOVE value, works as a kind of lock. */
	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
	spin_unlock(&mem->pcp_counter_lock);
}

static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
{
	int idx = MEM_CGROUP_ON_MOVE;

	spin_lock(&mem->pcp_counter_lock);
	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1803 1804 1805 1806
	spin_unlock(&mem->pcp_counter_lock);
}

static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1807 1808 1809 1810 1811
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
1812
	struct mem_cgroup *iter;
1813

1814 1815 1816 1817 1818 1819
	if ((action == CPU_ONLINE)) {
		for_each_mem_cgroup_all(iter)
			synchronize_mem_cgroup_on_move(iter, cpu);
		return NOTIFY_OK;
	}

1820
	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1821
		return NOTIFY_OK;
1822 1823 1824 1825

	for_each_mem_cgroup_all(iter)
		mem_cgroup_drain_pcp_counter(iter, cpu);

1826 1827 1828 1829 1830
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
};

static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
				int csize, bool oom_check)
{
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

	ret = res_counter_charge(&mem->res, csize, &fail_res);

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
		if (likely(!ret))
			return CHARGE_OK;

1858
		res_counter_uncharge(&mem->res, csize);
1859 1860 1861 1862
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1863 1864 1865 1866 1867 1868 1869 1870 1871
	/*
	 * csize can be either a huge page (HPAGE_SIZE), a batch of
	 * regular pages (CHARGE_SIZE), or a single regular page
	 * (PAGE_SIZE).
	 *
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
	if (csize == CHARGE_SIZE)
1872 1873 1874 1875 1876 1877
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1878
					      gfp_mask, flags);
1879
	if (mem_cgroup_margin(mem_over_limit) >= csize)
1880
		return CHARGE_RETRY;
1881
	/*
1882 1883 1884 1885 1886 1887 1888
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
1889
	 */
1890
	if (csize == PAGE_SIZE && ret)
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

	/* If we don't need to call oom-killer at el, return immediately */
	if (!oom_check)
		return CHARGE_NOMEM;
	/* check OOM */
	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
		return CHARGE_OOM_DIE;

	return CHARGE_RETRY;
}

1910 1911 1912
/*
 * Unlike exported interface, "oom" parameter is added. if oom==true,
 * oom-killer can be invoked.
1913
 */
1914
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
1915 1916 1917
				   gfp_t gfp_mask,
				   struct mem_cgroup **memcg, bool oom,
				   int page_size)
1918
{
1919 1920 1921
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct mem_cgroup *mem = NULL;
	int ret;
A
Andrea Arcangeli 已提交
1922
	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1923

K
KAMEZAWA Hiroyuki 已提交
1924 1925 1926 1927 1928 1929 1930 1931
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
1932

1933
	/*
1934 1935
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
1936 1937 1938
	 * thread group leader migrates. It's possible that mm is not
	 * set, if so charge the init_mm (happens for pagecache usage).
	 */
K
KAMEZAWA Hiroyuki 已提交
1939 1940 1941 1942
	if (!*memcg && !mm)
		goto bypass;
again:
	if (*memcg) { /* css should be a valid one */
1943
		mem = *memcg;
K
KAMEZAWA Hiroyuki 已提交
1944 1945 1946
		VM_BUG_ON(css_is_removed(&mem->css));
		if (mem_cgroup_is_root(mem))
			goto done;
A
Andrea Arcangeli 已提交
1947
		if (page_size == PAGE_SIZE && consume_stock(mem))
K
KAMEZAWA Hiroyuki 已提交
1948
			goto done;
1949 1950
		css_get(&mem->css);
	} else {
K
KAMEZAWA Hiroyuki 已提交
1951
		struct task_struct *p;
1952

K
KAMEZAWA Hiroyuki 已提交
1953 1954 1955
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
1956 1957 1958 1959 1960 1961 1962 1963
		 * Because we don't have task_lock(), "p" can exit.
		 * In that case, "mem" can point to root or p can be NULL with
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
1964 1965
		 */
		mem = mem_cgroup_from_task(p);
1966
		if (!mem || mem_cgroup_is_root(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1967 1968 1969
			rcu_read_unlock();
			goto done;
		}
A
Andrea Arcangeli 已提交
1970
		if (page_size == PAGE_SIZE && consume_stock(mem)) {
K
KAMEZAWA Hiroyuki 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
		if (!css_tryget(&mem->css)) {
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
1989

1990 1991
	do {
		bool oom_check;
1992

1993
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
1994 1995
		if (fatal_signal_pending(current)) {
			css_put(&mem->css);
1996
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
1997
		}
1998

1999 2000 2001 2002
		oom_check = false;
		if (oom && !nr_oom_retries) {
			oom_check = true;
			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2003
		}
2004

2005
		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2006

2007 2008 2009 2010
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
A
Andrea Arcangeli 已提交
2011
			csize = page_size;
K
KAMEZAWA Hiroyuki 已提交
2012 2013 2014
			css_put(&mem->css);
			mem = NULL;
			goto again;
2015
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
K
KAMEZAWA Hiroyuki 已提交
2016
			css_put(&mem->css);
2017 2018
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
K
KAMEZAWA Hiroyuki 已提交
2019 2020
			if (!oom) {
				css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2021
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2022
			}
2023 2024 2025 2026
			/* If oom, we never return -ENOMEM */
			nr_oom_retries--;
			break;
		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
K
KAMEZAWA Hiroyuki 已提交
2027
			css_put(&mem->css);
K
KAMEZAWA Hiroyuki 已提交
2028
			goto bypass;
2029
		}
2030 2031
	} while (ret != CHARGE_OK);

A
Andrea Arcangeli 已提交
2032 2033
	if (csize > page_size)
		refill_stock(mem, csize - page_size);
K
KAMEZAWA Hiroyuki 已提交
2034
	css_put(&mem->css);
2035
done:
K
KAMEZAWA Hiroyuki 已提交
2036
	*memcg = mem;
2037 2038
	return 0;
nomem:
K
KAMEZAWA Hiroyuki 已提交
2039
	*memcg = NULL;
2040
	return -ENOMEM;
K
KAMEZAWA Hiroyuki 已提交
2041 2042 2043
bypass:
	*memcg = NULL;
	return 0;
2044
}
2045

2046 2047 2048 2049 2050
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2051 2052
static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
							unsigned long count)
2053 2054
{
	if (!mem_cgroup_is_root(mem)) {
2055
		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2056
		if (do_swap_account)
2057
			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2058
	}
2059 2060
}

A
Andrea Arcangeli 已提交
2061 2062
static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
				     int page_size)
2063
{
A
Andrea Arcangeli 已提交
2064
	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2065 2066
}

2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
/*
 * A helper function to get mem_cgroup from ID. must be called under
 * rcu_read_lock(). The caller must check css_is_removed() or some if
 * it's concern. (dropping refcnt from swap can be called against removed
 * memcg.)
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
	return container_of(css, struct mem_cgroup, css);
}

2086
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2087
{
2088
	struct mem_cgroup *mem = NULL;
2089
	struct page_cgroup *pc;
2090
	unsigned short id;
2091 2092
	swp_entry_t ent;

2093 2094 2095
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2096
	lock_page_cgroup(pc);
2097
	if (PageCgroupUsed(pc)) {
2098
		mem = pc->mem_cgroup;
2099 2100
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
2101
	} else if (PageSwapCache(page)) {
2102
		ent.val = page_private(page);
2103 2104 2105 2106 2107 2108
		id = lookup_swap_cgroup(ent);
		rcu_read_lock();
		mem = mem_cgroup_lookup(id);
		if (mem && !css_tryget(&mem->css))
			mem = NULL;
		rcu_read_unlock();
2109
	}
2110
	unlock_page_cgroup(pc);
2111 2112 2113
	return mem;
}

2114 2115 2116 2117
static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
				       struct page_cgroup *pc,
				       enum charge_type ctype,
				       int page_size)
2118
{
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
	int nr_pages = page_size >> PAGE_SHIFT;

	lock_page_cgroup(pc);
	if (unlikely(PageCgroupUsed(pc))) {
		unlock_page_cgroup(pc);
		mem_cgroup_cancel_charge(mem, page_size);
		return;
	}
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2131
	pc->mem_cgroup = mem;
2132 2133 2134 2135 2136 2137 2138
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
 	 */
K
KAMEZAWA Hiroyuki 已提交
2139
	smp_wmb();
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_CACHE:
	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
		SetPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
		ClearPageCgroupCache(pc);
		SetPageCgroupUsed(pc);
		break;
	default:
		break;
	}
2153

2154
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2155
	unlock_page_cgroup(pc);
2156 2157 2158 2159 2160
	/*
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
	 */
2161
	memcg_check_events(mem, pc->page);
2162
}
2163

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
/*
 * Because tail pages are not marked as "used", set it. We're under
 * zone->lru_lock, 'splitting on pmd' and compund_lock.
 */
void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
	unsigned long flags;

2178 2179
	if (mem_cgroup_disabled())
		return;
2180
	/*
2181
	 * We have no races with charge/uncharge but will have races with
2182 2183 2184 2185 2186 2187
	 * page state accounting.
	 */
	move_lock_page_cgroup(head_pc, &flags);

	tail_pc->mem_cgroup = head_pc->mem_cgroup;
	smp_wmb(); /* see __commit_charge() */
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	if (PageCgroupAcctLRU(head_pc)) {
		enum lru_list lru;
		struct mem_cgroup_per_zone *mz;

		/*
		 * LRU flags cannot be copied because we need to add tail
		 *.page to LRU by generic call and our hook will be called.
		 * We hold lru_lock, then, reduce counter directly.
		 */
		lru = page_lru(head);
		mz = page_cgroup_zoneinfo(head_pc);
		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
	}
2201 2202 2203 2204 2205
	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	move_unlock_page_cgroup(head_pc, &flags);
}
#endif

2206
/**
2207
 * __mem_cgroup_move_account - move account of the page
2208 2209 2210
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
2211
 * @uncharge: whether we should call uncharge and css_put against @from.
2212 2213
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
2214
 * - page is not on LRU (isolate_page() is useful.)
2215
 * - the pc is locked, used, and ->mem_cgroup points to @from.
2216
 *
2217 2218 2219 2220
 * This function doesn't do "charge" nor css_get to new cgroup. It should be
 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
 * true, this function does "uncharge" from old cgroup, but it doesn't if
 * @uncharge is false, so a caller should do "uncharge".
2221 2222
 */

2223
static void __mem_cgroup_move_account(struct page_cgroup *pc,
2224 2225
	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
	int charge_size)
2226
{
2227 2228
	int nr_pages = charge_size >> PAGE_SHIFT;

2229
	VM_BUG_ON(from == to);
K
KAMEZAWA Hiroyuki 已提交
2230
	VM_BUG_ON(PageLRU(pc->page));
2231
	VM_BUG_ON(!page_is_cgroup_locked(pc));
2232 2233
	VM_BUG_ON(!PageCgroupUsed(pc));
	VM_BUG_ON(pc->mem_cgroup != from);
2234

2235
	if (PageCgroupFileMapped(pc)) {
2236 2237 2238 2239 2240
		/* Update mapped_file data for mem_cgroup */
		preempt_disable();
		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
		preempt_enable();
2241
	}
2242
	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2243 2244
	if (uncharge)
		/* This is not "cancel", but cancel_charge does all we need. */
2245
		mem_cgroup_cancel_charge(from, charge_size);
2246

2247
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
2248
	pc->mem_cgroup = to;
2249
	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2250 2251 2252
	/*
	 * We charges against "to" which may not have any tasks. Then, "to"
	 * can be under rmdir(). But in current implementation, caller of
2253 2254 2255
	 * this function is just force_empty() and move charge, so it's
	 * garanteed that "to" is never removed. So, we don't check rmdir
	 * status here.
2256
	 */
2257 2258 2259 2260 2261 2262 2263
}

/*
 * check whether the @pc is valid for moving account and call
 * __mem_cgroup_move_account()
 */
static int mem_cgroup_move_account(struct page_cgroup *pc,
2264 2265
		struct mem_cgroup *from, struct mem_cgroup *to,
		bool uncharge, int charge_size)
2266 2267
{
	int ret = -EINVAL;
2268
	unsigned long flags;
2269 2270 2271 2272 2273 2274
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
2275 2276 2277
	if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
		return -EBUSY;

2278 2279
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2280
		move_lock_page_cgroup(pc, &flags);
2281
		__mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2282
		move_unlock_page_cgroup(pc, &flags);
2283 2284 2285
		ret = 0;
	}
	unlock_page_cgroup(pc);
2286 2287 2288 2289 2290
	/*
	 * check events
	 */
	memcg_check_events(to, pc->page);
	memcg_check_events(from, pc->page);
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	return ret;
}

/*
 * move charges to its parent.
 */

static int mem_cgroup_move_parent(struct page_cgroup *pc,
				  struct mem_cgroup *child,
				  gfp_t gfp_mask)
{
K
KAMEZAWA Hiroyuki 已提交
2302
	struct page *page = pc->page;
2303 2304 2305
	struct cgroup *cg = child->css.cgroup;
	struct cgroup *pcg = cg->parent;
	struct mem_cgroup *parent;
2306
	int page_size = PAGE_SIZE;
2307
	unsigned long flags;
2308 2309 2310 2311 2312 2313
	int ret;

	/* Is ROOT ? */
	if (!pcg)
		return -EINVAL;

2314 2315 2316 2317 2318
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
2319 2320 2321

	if (PageTransHuge(page))
		page_size = HPAGE_SIZE;
K
KAMEZAWA Hiroyuki 已提交
2322

2323
	parent = mem_cgroup_from_cont(pcg);
2324 2325
	ret = __mem_cgroup_try_charge(NULL, gfp_mask,
				&parent, false, page_size);
2326
	if (ret || !parent)
2327
		goto put_back;
2328

2329
	if (page_size > PAGE_SIZE)
2330 2331
		flags = compound_lock_irqsave(page);

2332
	ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2333
	if (ret)
2334
		mem_cgroup_cancel_charge(parent, page_size);
2335

2336
	if (page_size > PAGE_SIZE)
2337
		compound_unlock_irqrestore(page, flags);
2338
put_back:
K
KAMEZAWA Hiroyuki 已提交
2339
	putback_lru_page(page);
2340
put:
2341
	put_page(page);
2342
out:
2343 2344 2345
	return ret;
}

2346 2347 2348 2349 2350 2351 2352
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2353
				gfp_t gfp_mask, enum charge_type ctype)
2354
{
2355
	struct mem_cgroup *mem = NULL;
2356
	int page_size = PAGE_SIZE;
2357
	struct page_cgroup *pc;
2358
	bool oom = true;
2359
	int ret;
A
Andrea Arcangeli 已提交
2360

A
Andrea Arcangeli 已提交
2361
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2362
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2363
		VM_BUG_ON(!PageTransHuge(page));
2364 2365 2366 2367 2368
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
2369
	}
2370 2371 2372 2373 2374 2375 2376

	pc = lookup_page_cgroup(page);
	/* can happen at boot */
	if (unlikely(!pc))
		return 0;
	prefetchw(pc);

2377
	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2378
	if (ret || !mem)
2379 2380
		return ret;

A
Andrea Arcangeli 已提交
2381
	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2382 2383 2384
	return 0;
}

2385 2386
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
2387
{
2388
	if (mem_cgroup_disabled())
2389
		return 0;
2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	/*
	 * If already mapped, we don't have to account.
	 * If page cache, page->mapping has address_space.
	 * But page->mapping may have out-of-use anon_vma pointer,
	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
	 * is NULL.
  	 */
	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
		return 0;
	if (unlikely(!mm))
		mm = &init_mm;
2401
	return mem_cgroup_charge_common(page, mm, gfp_mask,
2402
				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2403 2404
}

D
Daisuke Nishimura 已提交
2405 2406 2407 2408
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype);

2409 2410
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
2411
{
2412 2413
	int ret;

2414
	if (mem_cgroup_disabled())
2415
		return 0;
2416 2417
	if (PageCompound(page))
		return 0;
2418 2419 2420 2421 2422 2423 2424 2425
	/*
	 * Corner case handling. This is called from add_to_page_cache()
	 * in usual. But some FS (shmem) precharges this page before calling it
	 * and call add_to_page_cache() with GFP_NOWAIT.
	 *
	 * For GFP_NOWAIT case, the page may be pre-charged before calling
	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
	 * charge twice. (It works but has to pay a bit larger cost.)
2426 2427
	 * And when the page is SwapCache, it should take swap information
	 * into account. This is under lock_page() now.
2428 2429 2430 2431
	 */
	if (!(gfp_mask & __GFP_WAIT)) {
		struct page_cgroup *pc;

2432 2433 2434 2435 2436 2437
		pc = lookup_page_cgroup(page);
		if (!pc)
			return 0;
		lock_page_cgroup(pc);
		if (PageCgroupUsed(pc)) {
			unlock_page_cgroup(pc);
2438 2439
			return 0;
		}
2440
		unlock_page_cgroup(pc);
2441 2442
	}

2443
	if (unlikely(!mm))
2444
		mm = &init_mm;
2445

2446 2447
	if (page_is_file_cache(page))
		return mem_cgroup_charge_common(page, mm, gfp_mask,
2448
				MEM_CGROUP_CHARGE_TYPE_CACHE);
2449

D
Daisuke Nishimura 已提交
2450 2451
	/* shmem */
	if (PageSwapCache(page)) {
2452
		struct mem_cgroup *mem;
2453

D
Daisuke Nishimura 已提交
2454 2455 2456 2457 2458 2459
		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, mem,
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
	} else
		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2460
					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2461 2462

	return ret;
2463 2464
}

2465 2466 2467
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
2468
 * struct page_cgroup is acquired. This refcnt will be consumed by
2469 2470
 * "commit()" or removed by "cancel()"
 */
2471 2472 2473 2474 2475
int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
				 struct page *page,
				 gfp_t mask, struct mem_cgroup **ptr)
{
	struct mem_cgroup *mem;
2476
	int ret;
2477

2478 2479
	*ptr = NULL;

2480
	if (mem_cgroup_disabled())
2481 2482 2483 2484 2485 2486
		return 0;

	if (!do_swap_account)
		goto charge_cur_mm;
	/*
	 * A racing thread's fault, or swapoff, may have already updated
H
Hugh Dickins 已提交
2487 2488 2489
	 * the pte, and even removed page from swap cache: in those cases
	 * do_swap_page()'s pte_same() test will fail; but there's also a
	 * KSM case which does need to charge the page.
2490 2491
	 */
	if (!PageSwapCache(page))
H
Hugh Dickins 已提交
2492
		goto charge_cur_mm;
2493
	mem = try_get_mem_cgroup_from_page(page);
2494 2495
	if (!mem)
		goto charge_cur_mm;
2496
	*ptr = mem;
A
Andrea Arcangeli 已提交
2497
	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2498 2499
	css_put(&mem->css);
	return ret;
2500 2501 2502
charge_cur_mm:
	if (unlikely(!mm))
		mm = &init_mm;
A
Andrea Arcangeli 已提交
2503
	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2504 2505
}

D
Daisuke Nishimura 已提交
2506 2507 2508
static void
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
					enum charge_type ctype)
2509 2510 2511
{
	struct page_cgroup *pc;

2512
	if (mem_cgroup_disabled())
2513 2514 2515
		return;
	if (!ptr)
		return;
2516
	cgroup_exclude_rmdir(&ptr->css);
2517
	pc = lookup_page_cgroup(page);
2518
	mem_cgroup_lru_del_before_commit_swapcache(page);
A
Andrea Arcangeli 已提交
2519
	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2520
	mem_cgroup_lru_add_after_commit_swapcache(page);
2521 2522 2523
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
2524 2525 2526
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
2527
	 */
2528
	if (do_swap_account && PageSwapCache(page)) {
2529
		swp_entry_t ent = {.val = page_private(page)};
2530
		unsigned short id;
2531
		struct mem_cgroup *memcg;
2532 2533 2534 2535

		id = swap_cgroup_record(ent, 0);
		rcu_read_lock();
		memcg = mem_cgroup_lookup(id);
2536
		if (memcg) {
2537 2538 2539 2540
			/*
			 * This recorded memcg can be obsolete one. So, avoid
			 * calling css_tryget
			 */
2541
			if (!mem_cgroup_is_root(memcg))
2542
				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2543
			mem_cgroup_swap_statistics(memcg, false);
2544 2545
			mem_cgroup_put(memcg);
		}
2546
		rcu_read_unlock();
2547
	}
2548 2549 2550 2551 2552 2553
	/*
	 * At swapin, we may charge account against cgroup which has no tasks.
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&ptr->css);
2554 2555
}

D
Daisuke Nishimura 已提交
2556 2557 2558 2559 2560 2561
void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
{
	__mem_cgroup_commit_charge_swapin(page, ptr,
					MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

2562 2563
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
{
2564
	if (mem_cgroup_disabled())
2565 2566 2567
		return;
	if (!mem)
		return;
A
Andrea Arcangeli 已提交
2568
	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2569 2570
}

2571
static void
A
Andrea Arcangeli 已提交
2572 2573
__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
	      int page_size)
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
		batch->memcg = mem;
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
	 * In those cases, all pages freed continously can be expected to be in
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

A
Andrea Arcangeli 已提交
2600 2601 2602
	if (page_size != PAGE_SIZE)
		goto direct_uncharge;

2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
	if (batch->memcg != mem)
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
	batch->bytes += PAGE_SIZE;
	if (uncharge_memsw)
		batch->memsw_bytes += PAGE_SIZE;
	return;
direct_uncharge:
A
Andrea Arcangeli 已提交
2616
	res_counter_uncharge(&mem->res, page_size);
2617
	if (uncharge_memsw)
A
Andrea Arcangeli 已提交
2618
		res_counter_uncharge(&mem->memsw, page_size);
2619 2620
	if (unlikely(batch->memcg != mem))
		memcg_oom_recover(mem);
2621 2622
	return;
}
2623

2624
/*
2625
 * uncharge if !page_mapped(page)
2626
 */
2627
static struct mem_cgroup *
2628
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2629
{
2630
	int count;
H
Hugh Dickins 已提交
2631
	struct page_cgroup *pc;
2632
	struct mem_cgroup *mem = NULL;
A
Andrea Arcangeli 已提交
2633
	int page_size = PAGE_SIZE;
2634

2635
	if (mem_cgroup_disabled())
2636
		return NULL;
2637

K
KAMEZAWA Hiroyuki 已提交
2638
	if (PageSwapCache(page))
2639
		return NULL;
K
KAMEZAWA Hiroyuki 已提交
2640

A
Andrea Arcangeli 已提交
2641
	if (PageTransHuge(page)) {
A
Andrea Arcangeli 已提交
2642
		page_size <<= compound_order(page);
A
Andrea Arcangeli 已提交
2643 2644
		VM_BUG_ON(!PageTransHuge(page));
	}
A
Andrea Arcangeli 已提交
2645

2646
	count = page_size >> PAGE_SHIFT;
2647
	/*
2648
	 * Check if our page_cgroup is valid
2649
	 */
2650 2651
	pc = lookup_page_cgroup(page);
	if (unlikely(!pc || !PageCgroupUsed(pc)))
2652
		return NULL;
2653

2654
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2655

2656 2657
	mem = pc->mem_cgroup;

K
KAMEZAWA Hiroyuki 已提交
2658 2659 2660 2661 2662
	if (!PageCgroupUsed(pc))
		goto unlock_out;

	switch (ctype) {
	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
K
KAMEZAWA Hiroyuki 已提交
2663
	case MEM_CGROUP_CHARGE_TYPE_DROP:
2664 2665
		/* See mem_cgroup_prepare_migration() */
		if (page_mapped(page) || PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
2677
	}
K
KAMEZAWA Hiroyuki 已提交
2678

2679
	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
K
KAMEZAWA Hiroyuki 已提交
2680

2681
	ClearPageCgroupUsed(pc);
2682 2683 2684 2685 2686 2687
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
2688

2689
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
2690 2691 2692 2693
	/*
	 * even after unlock, we have mem->res.usage here and this memcg
	 * will never be freed.
	 */
2694
	memcg_check_events(mem, page);
K
KAMEZAWA Hiroyuki 已提交
2695 2696 2697 2698 2699
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
		mem_cgroup_swap_statistics(mem, true);
		mem_cgroup_get(mem);
	}
	if (!mem_cgroup_is_root(mem))
A
Andrea Arcangeli 已提交
2700
		__do_uncharge(mem, ctype, page_size);
2701

2702
	return mem;
K
KAMEZAWA Hiroyuki 已提交
2703 2704 2705

unlock_out:
	unlock_page_cgroup(pc);
2706
	return NULL;
2707 2708
}

2709 2710
void mem_cgroup_uncharge_page(struct page *page)
{
2711 2712 2713 2714 2715
	/* early check. */
	if (page_mapped(page))
		return;
	if (page->mapping && !PageAnon(page))
		return;
2716 2717 2718 2719 2720 2721
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
2722
	VM_BUG_ON(page->mapping);
2723 2724 2725
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
}

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
		current->memcg_batch.bytes = 0;
		current->memcg_batch.memsw_bytes = 0;
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
	if (batch->bytes)
		res_counter_uncharge(&batch->memcg->res, batch->bytes);
	if (batch->memsw_bytes)
		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2766
	memcg_oom_recover(batch->memcg);
2767 2768 2769 2770
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

2771
#ifdef CONFIG_SWAP
2772
/*
2773
 * called after __delete_from_swap_cache() and drop "page" account.
2774 2775
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
2776 2777
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2778 2779
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2780 2781 2782 2783 2784 2785
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

	memcg = __mem_cgroup_uncharge_common(page, ctype);
2786

K
KAMEZAWA Hiroyuki 已提交
2787 2788 2789 2790 2791
	/*
	 * record memcg information,  if swapout && memcg != NULL,
	 * mem_cgroup_get() was called in uncharge().
	 */
	if (do_swap_account && swapout && memcg)
2792
		swap_cgroup_record(ent, css_id(&memcg->css));
2793
}
2794
#endif
2795 2796 2797 2798 2799 2800 2801

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
2802
{
2803
	struct mem_cgroup *memcg;
2804
	unsigned short id;
2805 2806 2807 2808

	if (!do_swap_account)
		return;

2809 2810 2811
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
2812
	if (memcg) {
2813 2814 2815 2816
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
2817
		if (!mem_cgroup_is_root(memcg))
2818
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2819
		mem_cgroup_swap_statistics(memcg, false);
2820 2821
		mem_cgroup_put(memcg);
	}
2822
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
2823
}
2824 2825 2826 2827 2828 2829

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
2830
 * @need_fixup: whether we should fixup res_counters and refcounts.
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
2841
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2842 2843 2844 2845 2846 2847 2848 2849
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
2850
		mem_cgroup_swap_statistics(to, true);
2851
		/*
2852 2853 2854 2855 2856 2857
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
		 * improvement. But we cannot postpone mem_cgroup_get(to)
		 * because if the process that has been moved to @to does
		 * swap-in, the refcount of @to might be decreased to 0.
2858 2859
		 */
		mem_cgroup_get(to);
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		if (need_fixup) {
			if (!mem_cgroup_is_root(from))
				res_counter_uncharge(&from->memsw, PAGE_SIZE);
			mem_cgroup_put(from);
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			if (!mem_cgroup_is_root(to))
				res_counter_uncharge(&to->res, PAGE_SIZE);
		}
2871 2872 2873 2874 2875 2876
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2877
		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2878 2879 2880
{
	return -EINVAL;
}
2881
#endif
K
KAMEZAWA Hiroyuki 已提交
2882

2883
/*
2884 2885
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
2886
 */
2887
int mem_cgroup_prepare_migration(struct page *page,
2888
	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2889 2890
{
	struct page_cgroup *pc;
2891
	struct mem_cgroup *mem = NULL;
2892
	enum charge_type ctype;
2893
	int ret = 0;
2894

2895 2896
	*ptr = NULL;

A
Andrea Arcangeli 已提交
2897
	VM_BUG_ON(PageTransHuge(page));
2898
	if (mem_cgroup_disabled())
2899 2900
		return 0;

2901 2902 2903
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
2904 2905
		mem = pc->mem_cgroup;
		css_get(&mem->css);
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
2937
	}
2938
	unlock_page_cgroup(pc);
2939 2940 2941 2942 2943 2944
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
	if (!mem)
		return 0;
2945

A
Andrea Arcangeli 已提交
2946
	*ptr = mem;
2947
	ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
	css_put(&mem->css);/* drop extra refcnt */
	if (ret || *ptr == NULL) {
		if (PageAnon(page)) {
			lock_page_cgroup(pc);
			ClearPageCgroupMigration(pc);
			unlock_page_cgroup(pc);
			/*
			 * The old page may be fully unmapped while we kept it.
			 */
			mem_cgroup_uncharge_page(page);
		}
		return -ENOMEM;
2960
	}
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	pc = lookup_page_cgroup(newpage);
	if (PageAnon(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
	else if (page_is_file_cache(page))
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
	else
		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
A
Andrea Arcangeli 已提交
2974
	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2975
	return ret;
2976
}
2977

2978
/* remove redundant charge if migration failed*/
2979
void mem_cgroup_end_migration(struct mem_cgroup *mem,
2980
	struct page *oldpage, struct page *newpage, bool migration_ok)
2981
{
2982
	struct page *used, *unused;
2983 2984 2985 2986
	struct page_cgroup *pc;

	if (!mem)
		return;
2987
	/* blocks rmdir() */
2988
	cgroup_exclude_rmdir(&mem->css);
2989
	if (!migration_ok) {
2990 2991
		used = oldpage;
		unused = newpage;
2992
	} else {
2993
		used = newpage;
2994 2995
		unused = oldpage;
	}
2996
	/*
2997 2998 2999
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
3000
	 */
3001 3002 3003 3004
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);
3005

3006 3007
	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);

3008
	/*
3009 3010 3011 3012 3013 3014
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
3015
	 */
3016 3017
	if (PageAnon(used))
		mem_cgroup_uncharge_page(used);
3018
	/*
3019 3020
	 * At migration, we may charge account against cgroup which has no
	 * tasks.
3021 3022 3023 3024
	 * So, rmdir()->pre_destroy() can be called while we do this charge.
	 * In that case, we need to call pre_destroy() again. check it here.
	 */
	cgroup_release_and_wakeup_rmdir(&mem->css);
3025
}
3026

3027
/*
3028 3029 3030 3031 3032 3033
 * A call to try to shrink memory usage on charge failure at shmem's swapin.
 * Calling hierarchical_reclaim is not enough because we should update
 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
 * not from the memcg which this page would be charged to.
 * try_charge_swapin does all of these works properly.
3034
 */
3035
int mem_cgroup_shmem_charge_fallback(struct page *page,
3036 3037
			    struct mm_struct *mm,
			    gfp_t gfp_mask)
3038
{
3039
	struct mem_cgroup *mem;
3040
	int ret;
3041

3042
	if (mem_cgroup_disabled())
3043
		return 0;
3044

3045 3046 3047
	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
	if (!ret)
		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3048

3049
	return ret;
3050 3051
}

3052 3053
static DEFINE_MUTEX(set_limit_mutex);

3054
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3055
				unsigned long long val)
3056
{
3057
	int retry_count;
3058
	u64 memswlimit, memlimit;
3059
	int ret = 0;
3060 3061
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
3062
	int enlarge;
3063 3064 3065 3066 3067 3068 3069 3070 3071

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3072

3073
	enlarge = 0;
3074
	while (retry_count) {
3075 3076 3077 3078
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
3089 3090
			break;
		}
3091 3092 3093 3094 3095

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

3096
		ret = res_counter_set_limit(&memcg->res, val);
3097 3098 3099 3100 3101 3102
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3103 3104 3105 3106 3107
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3108
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3109
						MEM_CGROUP_RECLAIM_SHRINK);
3110 3111 3112 3113 3114 3115
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
  		if (curusage >= oldusage)
			retry_count--;
		else
			oldusage = curusage;
3116
	}
3117 3118
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3119

3120 3121 3122
	return ret;
}

L
Li Zefan 已提交
3123 3124
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
3125
{
3126
	int retry_count;
3127
	u64 memlimit, memswlimit, oldusage, curusage;
3128 3129
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
3130
	int enlarge = 0;
3131

3132 3133 3134
	/* see mem_cgroup_resize_res_limit */
 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
		 * We have to guarantee mem->res.limit < mem->memsw.limit.
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
3152 3153 3154
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
3155
		ret = res_counter_set_limit(&memcg->memsw, val);
3156 3157 3158 3159 3160 3161
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
3162 3163 3164 3165 3166
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

3167
		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3168 3169
						MEM_CGROUP_RECLAIM_NOSWAP |
						MEM_CGROUP_RECLAIM_SHRINK);
3170
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3171
		/* Usage is reduced ? */
3172
		if (curusage >= oldusage)
3173
			retry_count--;
3174 3175
		else
			oldusage = curusage;
3176
	}
3177 3178
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
3179 3180 3181
	return ret;
}

3182
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3183
					    gfp_t gfp_mask)
3184 3185 3186 3187 3188 3189
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
3190
	unsigned long long excess;
3191 3192 3193 3194

	if (order > 0)
		return 0;

3195
	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
						gfp_mask,
						MEM_CGROUP_RECLAIM_SOFT);
		nr_reclaimed += reclaimed;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz) {
					css_put(&next_mz->mem->css);
					next_mz = NULL;
				} else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3243
		excess = res_counter_soft_limit_excess(&mz->mem->res);
3244 3245 3246 3247 3248 3249 3250 3251
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
3252 3253
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
		spin_unlock(&mctz->lock);
		css_put(&mz->mem->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->mem->css);
	return nr_reclaimed;
}

3272 3273 3274 3275
/*
 * This routine traverse page_cgroup in given list and drop them all.
 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 */
3276
static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
K
KAMEZAWA Hiroyuki 已提交
3277
				int node, int zid, enum lru_list lru)
3278
{
K
KAMEZAWA Hiroyuki 已提交
3279 3280
	struct zone *zone;
	struct mem_cgroup_per_zone *mz;
3281
	struct page_cgroup *pc, *busy;
K
KAMEZAWA Hiroyuki 已提交
3282
	unsigned long flags, loop;
3283
	struct list_head *list;
3284
	int ret = 0;
3285

K
KAMEZAWA Hiroyuki 已提交
3286 3287
	zone = &NODE_DATA(node)->node_zones[zid];
	mz = mem_cgroup_zoneinfo(mem, node, zid);
3288
	list = &mz->lists[lru];
3289

3290 3291 3292 3293 3294 3295
	loop = MEM_CGROUP_ZSTAT(mz, lru);
	/* give some margin against EBUSY etc...*/
	loop += 256;
	busy = NULL;
	while (loop--) {
		ret = 0;
K
KAMEZAWA Hiroyuki 已提交
3296
		spin_lock_irqsave(&zone->lru_lock, flags);
3297
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
3298
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3299
			break;
3300 3301 3302 3303
		}
		pc = list_entry(list->prev, struct page_cgroup, lru);
		if (busy == pc) {
			list_move(&pc->lru, list);
3304
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
3305
			spin_unlock_irqrestore(&zone->lru_lock, flags);
3306 3307
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
3308
		spin_unlock_irqrestore(&zone->lru_lock, flags);
3309

K
KAMEZAWA Hiroyuki 已提交
3310
		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3311
		if (ret == -ENOMEM)
3312
			break;
3313 3314 3315 3316 3317 3318 3319

		if (ret == -EBUSY || ret == -EINVAL) {
			/* found lock contention or "pc" is obsolete. */
			busy = pc;
			cond_resched();
		} else
			busy = NULL;
3320
	}
K
KAMEZAWA Hiroyuki 已提交
3321

3322 3323 3324
	if (!ret && !list_empty(list))
		return -EBUSY;
	return ret;
3325 3326 3327 3328 3329 3330
}

/*
 * make mem_cgroup's charge to be 0 if there is no task.
 * This enables deleting this mem_cgroup.
 */
3331
static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3332
{
3333 3334 3335
	int ret;
	int node, zid, shrink;
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3336
	struct cgroup *cgrp = mem->css.cgroup;
3337

3338
	css_get(&mem->css);
3339 3340

	shrink = 0;
3341 3342 3343
	/* should free all ? */
	if (free_all)
		goto try_to_free;
3344
move_account:
3345
	do {
3346
		ret = -EBUSY;
3347 3348 3349 3350
		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
			goto out;
		ret = -EINTR;
		if (signal_pending(current))
3351
			goto out;
3352 3353
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
3354
		drain_all_stock_sync();
3355
		ret = 0;
3356
		mem_cgroup_start_move(mem);
3357
		for_each_node_state(node, N_HIGH_MEMORY) {
3358
			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3359
				enum lru_list l;
3360 3361
				for_each_lru(l) {
					ret = mem_cgroup_force_empty_list(mem,
K
KAMEZAWA Hiroyuki 已提交
3362
							node, zid, l);
3363 3364 3365
					if (ret)
						break;
				}
3366
			}
3367 3368 3369
			if (ret)
				break;
		}
3370
		mem_cgroup_end_move(mem);
3371
		memcg_oom_recover(mem);
3372 3373 3374
		/* it seems parent cgroup doesn't have enough mem */
		if (ret == -ENOMEM)
			goto try_to_free;
3375
		cond_resched();
3376 3377
	/* "ret" should also be checked to ensure all lists are empty. */
	} while (mem->res.usage > 0 || ret);
3378 3379 3380
out:
	css_put(&mem->css);
	return ret;
3381 3382

try_to_free:
3383 3384
	/* returns EBUSY if there is a task or if we come here twice. */
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3385 3386 3387
		ret = -EBUSY;
		goto out;
	}
3388 3389
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
3390 3391 3392 3393
	/* try to free all pages in this cgroup */
	shrink = 1;
	while (nr_retries && mem->res.usage > 0) {
		int progress;
3394 3395 3396 3397 3398

		if (signal_pending(current)) {
			ret = -EINTR;
			goto out;
		}
K
KOSAKI Motohiro 已提交
3399 3400
		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
						false, get_swappiness(mem));
3401
		if (!progress) {
3402
			nr_retries--;
3403
			/* maybe some writeback is necessary */
3404
			congestion_wait(BLK_RW_ASYNC, HZ/10);
3405
		}
3406 3407

	}
K
KAMEZAWA Hiroyuki 已提交
3408
	lru_add_drain();
3409
	/* try move_account...there may be some *locked* pages. */
3410
	goto move_account;
3411 3412
}

3413 3414 3415 3416 3417 3418
int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
{
	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
}


3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
{
	return mem_cgroup_from_cont(cont)->use_hierarchy;
}

static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
					u64 val)
{
	int retval = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
	struct cgroup *parent = cont->parent;
	struct mem_cgroup *parent_mem = NULL;

	if (parent)
		parent_mem = mem_cgroup_from_cont(parent);

	cgroup_lock();
	/*
3437
	 * If parent's use_hierarchy is set, we can't make any modifications
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
	if ((!parent_mem || !parent_mem->use_hierarchy) &&
				(val == 1 || val == 0)) {
		if (list_empty(&cont->children))
			mem->use_hierarchy = val;
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
	cgroup_unlock();

	return retval;
}

3457

K
KAMEZAWA Hiroyuki 已提交
3458 3459
static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
				enum mem_cgroup_stat_index idx)
3460
{
K
KAMEZAWA Hiroyuki 已提交
3461 3462
	struct mem_cgroup *iter;
	s64 val = 0;
3463

K
KAMEZAWA Hiroyuki 已提交
3464 3465 3466 3467 3468 3469 3470
	/* each per cpu's value can be minus.Then, use s64 */
	for_each_mem_cgroup_tree(iter, mem)
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
3471 3472
}

3473 3474
static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
{
K
KAMEZAWA Hiroyuki 已提交
3475
	u64 val;
3476 3477 3478 3479 3480 3481 3482 3483

	if (!mem_cgroup_is_root(mem)) {
		if (!swap)
			return res_counter_read_u64(&mem->res, RES_USAGE);
		else
			return res_counter_read_u64(&mem->memsw, RES_USAGE);
	}

K
KAMEZAWA Hiroyuki 已提交
3484 3485
	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3486

K
KAMEZAWA Hiroyuki 已提交
3487 3488 3489
	if (swap)
		val += mem_cgroup_get_recursive_idx_stat(mem,
				MEM_CGROUP_STAT_SWAPOUT);
3490 3491 3492 3493

	return val << PAGE_SHIFT;
}

3494
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
B
Balbir Singh 已提交
3495
{
3496
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3497
	u64 val;
3498 3499 3500 3501 3502 3503
	int type, name;

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (type) {
	case _MEM:
3504 3505 3506
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, false);
		else
3507
			val = res_counter_read_u64(&mem->res, name);
3508 3509
		break;
	case _MEMSWAP:
3510 3511 3512
		if (name == RES_USAGE)
			val = mem_cgroup_usage(mem, true);
		else
3513
			val = res_counter_read_u64(&mem->memsw, name);
3514 3515 3516 3517 3518 3519
		break;
	default:
		BUG();
		break;
	}
	return val;
B
Balbir Singh 已提交
3520
}
3521 3522 3523 3524
/*
 * The user of this function is...
 * RES_LIMIT.
 */
3525 3526
static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
			    const char *buffer)
B
Balbir Singh 已提交
3527
{
3528
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3529
	int type, name;
3530 3531 3532
	unsigned long long val;
	int ret;

3533 3534 3535
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
	switch (name) {
3536
	case RES_LIMIT:
3537 3538 3539 3540
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
3541 3542
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
3543 3544 3545
		if (ret)
			break;
		if (type == _MEM)
3546
			ret = mem_cgroup_resize_limit(memcg, val);
3547 3548
		else
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3549
		break;
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
3564 3565 3566 3567 3568
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
3569 3570
}

3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	struct cgroup *cgroup;
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	cgroup = memcg->css.cgroup;
	if (!memcg->use_hierarchy)
		goto out;

	while (cgroup->parent) {
		cgroup = cgroup->parent;
		memcg = mem_cgroup_from_cont(cgroup);
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
	return;
}

3599
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3600 3601
{
	struct mem_cgroup *mem;
3602
	int type, name;
3603 3604

	mem = mem_cgroup_from_cont(cont);
3605 3606 3607
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
	switch (name) {
3608
	case RES_MAX_USAGE:
3609 3610 3611 3612
		if (type == _MEM)
			res_counter_reset_max(&mem->res);
		else
			res_counter_reset_max(&mem->memsw);
3613 3614
		break;
	case RES_FAILCNT:
3615 3616 3617 3618
		if (type == _MEM)
			res_counter_reset_failcnt(&mem->res);
		else
			res_counter_reset_failcnt(&mem->memsw);
3619 3620
		break;
	}
3621

3622
	return 0;
3623 3624
}

3625 3626 3627 3628 3629 3630
static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
					struct cftype *cft)
{
	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
}

3631
#ifdef CONFIG_MMU
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
	/*
	 * We check this value several times in both in can_attach() and
	 * attach(), so we need cgroup lock to prevent this value from being
	 * inconsistent.
	 */
	cgroup_lock();
	mem->move_charge_at_immigrate = val;
	cgroup_unlock();

	return 0;
}
3650 3651 3652 3653 3654 3655 3656
#else
static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
3657

K
KAMEZAWA Hiroyuki 已提交
3658 3659 3660 3661 3662

/* For read statistics */
enum {
	MCS_CACHE,
	MCS_RSS,
3663
	MCS_FILE_MAPPED,
K
KAMEZAWA Hiroyuki 已提交
3664 3665
	MCS_PGPGIN,
	MCS_PGPGOUT,
3666
	MCS_SWAP,
K
KAMEZAWA Hiroyuki 已提交
3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	MCS_INACTIVE_ANON,
	MCS_ACTIVE_ANON,
	MCS_INACTIVE_FILE,
	MCS_ACTIVE_FILE,
	MCS_UNEVICTABLE,
	NR_MCS_STAT,
};

struct mcs_total_stat {
	s64 stat[NR_MCS_STAT];
3677 3678
};

K
KAMEZAWA Hiroyuki 已提交
3679 3680 3681 3682 3683 3684
struct {
	char *local_name;
	char *total_name;
} memcg_stat_strings[NR_MCS_STAT] = {
	{"cache", "total_cache"},
	{"rss", "total_rss"},
3685
	{"mapped_file", "total_mapped_file"},
K
KAMEZAWA Hiroyuki 已提交
3686 3687
	{"pgpgin", "total_pgpgin"},
	{"pgpgout", "total_pgpgout"},
3688
	{"swap", "total_swap"},
K
KAMEZAWA Hiroyuki 已提交
3689 3690 3691 3692 3693 3694 3695 3696
	{"inactive_anon", "total_inactive_anon"},
	{"active_anon", "total_active_anon"},
	{"inactive_file", "total_inactive_file"},
	{"active_file", "total_active_file"},
	{"unevictable", "total_unevictable"}
};


K
KAMEZAWA Hiroyuki 已提交
3697 3698
static void
mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
K
KAMEZAWA Hiroyuki 已提交
3699 3700 3701 3702
{
	s64 val;

	/* per cpu stat */
3703
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
K
KAMEZAWA Hiroyuki 已提交
3704
	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3705
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
K
KAMEZAWA Hiroyuki 已提交
3706
	s->stat[MCS_RSS] += val * PAGE_SIZE;
3707
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3708
	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3709
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3710
	s->stat[MCS_PGPGIN] += val;
3711
	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
K
KAMEZAWA Hiroyuki 已提交
3712
	s->stat[MCS_PGPGOUT] += val;
3713
	if (do_swap_account) {
3714
		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3715 3716
		s->stat[MCS_SWAP] += val * PAGE_SIZE;
	}
K
KAMEZAWA Hiroyuki 已提交
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733

	/* per zone stat */
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
}

static void
mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
{
K
KAMEZAWA Hiroyuki 已提交
3734 3735 3736 3737
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_get_local_stat(iter, s);
K
KAMEZAWA Hiroyuki 已提交
3738 3739
}

3740 3741
static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
				 struct cgroup_map_cb *cb)
3742 3743
{
	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
K
KAMEZAWA Hiroyuki 已提交
3744
	struct mcs_total_stat mystat;
3745 3746
	int i;

K
KAMEZAWA Hiroyuki 已提交
3747 3748
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_local_stat(mem_cont, &mystat);
3749

3750 3751 3752
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3753
		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3754
	}
L
Lee Schermerhorn 已提交
3755

K
KAMEZAWA Hiroyuki 已提交
3756
	/* Hierarchical information */
3757 3758 3759 3760 3761 3762 3763
	{
		unsigned long long limit, memsw_limit;
		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
		cb->fill(cb, "hierarchical_memory_limit", limit);
		if (do_swap_account)
			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
	}
K
KOSAKI Motohiro 已提交
3764

K
KAMEZAWA Hiroyuki 已提交
3765 3766
	memset(&mystat, 0, sizeof(mystat));
	mem_cgroup_get_total_stat(mem_cont, &mystat);
3767 3768 3769
	for (i = 0; i < NR_MCS_STAT; i++) {
		if (i == MCS_SWAP && !do_swap_account)
			continue;
K
KAMEZAWA Hiroyuki 已提交
3770
		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3771
	}
K
KAMEZAWA Hiroyuki 已提交
3772

K
KOSAKI Motohiro 已提交
3773
#ifdef CONFIG_DEBUG_VM
3774
	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
K
KOSAKI Motohiro 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801

	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);

				recent_rotated[0] +=
					mz->reclaim_stat.recent_rotated[0];
				recent_rotated[1] +=
					mz->reclaim_stat.recent_rotated[1];
				recent_scanned[0] +=
					mz->reclaim_stat.recent_scanned[0];
				recent_scanned[1] +=
					mz->reclaim_stat.recent_scanned[1];
			}
		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
	}
#endif

3802 3803 3804
	return 0;
}

K
KOSAKI Motohiro 已提交
3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);

	return get_swappiness(memcg);
}

static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
				       u64 val)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;
3817

K
KOSAKI Motohiro 已提交
3818 3819 3820 3821 3822 3823 3824
	if (val > 100)
		return -EINVAL;

	if (cgrp->parent == NULL)
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);
3825 3826 3827

	cgroup_lock();

K
KOSAKI Motohiro 已提交
3828 3829
	/* If under hierarchy, only empty-root can set this value */
	if ((parent->use_hierarchy) ||
3830 3831
	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
K
KOSAKI Motohiro 已提交
3832
		return -EINVAL;
3833
	}
K
KOSAKI Motohiro 已提交
3834 3835 3836 3837 3838

	spin_lock(&memcg->reclaim_param_lock);
	memcg->swappiness = val;
	spin_unlock(&memcg->reclaim_param_lock);

3839 3840
	cgroup_unlock();

K
KOSAKI Motohiro 已提交
3841 3842 3843
	return 0;
}

3844 3845 3846 3847 3848 3849 3850 3851
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
3852
		t = rcu_dereference(memcg->thresholds.primary);
3853
	else
3854
		t = rcu_dereference(memcg->memsw_thresholds.primary);
3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
	 * current_threshold points to threshold just below usage.
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
3866
	i = t->current_threshold;
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
3890
	t->current_threshold = i - 1;
3891 3892 3893 3894 3895 3896
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
3897 3898 3899 3900 3901 3902 3903
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

	return _a->threshold - _b->threshold;
}

K
KAMEZAWA Hiroyuki 已提交
3914
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
K
KAMEZAWA Hiroyuki 已提交
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
{
	struct mem_cgroup_eventfd_list *ev;

	list_for_each_entry(ev, &mem->oom_notify, list)
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
{
K
KAMEZAWA Hiroyuki 已提交
3925 3926 3927 3928
	struct mem_cgroup *iter;

	for_each_mem_cgroup_tree(iter, mem)
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
3929 3930 3931 3932
}

static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3933 3934
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3935 3936
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
3937 3938
	int type = MEMFILE_TYPE(cft->private);
	u64 threshold, usage;
3939
	int i, size, ret;
3940 3941 3942 3943 3944 3945

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
3946

3947
	if (type == _MEM)
3948
		thresholds = &memcg->thresholds;
3949
	else if (type == _MEMSWAP)
3950
		thresholds = &memcg->memsw_thresholds;
3951 3952 3953 3954 3955 3956
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
3957
	if (thresholds->primary)
3958 3959
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

3960
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3961 3962

	/* Allocate memory for new array of thresholds */
3963
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3964
			GFP_KERNEL);
3965
	if (!new) {
3966 3967 3968
		ret = -ENOMEM;
		goto unlock;
	}
3969
	new->size = size;
3970 3971

	/* Copy thresholds (if any) to new array */
3972 3973
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3974
				sizeof(struct mem_cgroup_threshold));
3975 3976
	}

3977
	/* Add new threshold */
3978 3979
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
3980 3981

	/* Sort thresholds. Registering of new threshold isn't time-critical */
3982
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3983 3984 3985
			compare_thresholds, NULL);

	/* Find current threshold */
3986
	new->current_threshold = -1;
3987
	for (i = 0; i < size; i++) {
3988
		if (new->entries[i].threshold < usage) {
3989
			/*
3990 3991
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
3992 3993
			 * it here.
			 */
3994
			++new->current_threshold;
3995 3996 3997
		}
	}

3998 3999 4000 4001 4002
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
4003

4004
	/* To be sure that nobody uses thresholds */
4005 4006 4007 4008 4009 4010 4011 4012
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

4013
static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4014
	struct cftype *cft, struct eventfd_ctx *eventfd)
4015 4016
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4017 4018
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
4019 4020
	int type = MEMFILE_TYPE(cft->private);
	u64 usage;
4021
	int i, j, size;
4022 4023 4024

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
4025
		thresholds = &memcg->thresholds;
4026
	else if (type == _MEMSWAP)
4027
		thresholds = &memcg->memsw_thresholds;
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	else
		BUG();

	/*
	 * Something went wrong if we trying to unregister a threshold
	 * if we don't have thresholds
	 */
	BUG_ON(!thresholds);

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
4043 4044 4045
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
4046 4047 4048
			size++;
	}

4049
	new = thresholds->spare;
4050

4051 4052
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
4053 4054
		kfree(new);
		new = NULL;
4055
		goto swap_buffers;
4056 4057
	}

4058
	new->size = size;
4059 4060

	/* Copy thresholds and find current threshold */
4061 4062 4063
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
4064 4065
			continue;

4066 4067
		new->entries[j] = thresholds->primary->entries[i];
		if (new->entries[j].threshold < usage) {
4068
			/*
4069
			 * new->current_threshold will not be used
4070 4071 4072
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
4073
			++new->current_threshold;
4074 4075 4076 4077
		}
		j++;
	}

4078
swap_buffers:
4079 4080 4081
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
	rcu_assign_pointer(thresholds->primary, new);
4082

4083
	/* To be sure that nobody uses thresholds */
4084 4085 4086 4087
	synchronize_rcu();

	mutex_unlock(&memcg->thresholds_lock);
}
4088

K
KAMEZAWA Hiroyuki 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113
static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *event;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

	mutex_lock(&memcg_oom_mutex);

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
	if (atomic_read(&memcg->oom_lock))
		eventfd_signal(eventfd, 1);
	mutex_unlock(&memcg_oom_mutex);

	return 0;
}

4114
static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
K
KAMEZAWA Hiroyuki 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup_eventfd_list *ev, *tmp;
	int type = MEMFILE_TYPE(cft->private);

	BUG_ON(type != _OOM_TYPE);

	mutex_lock(&memcg_oom_mutex);

	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

	mutex_unlock(&memcg_oom_mutex);
}

4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);

	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);

	if (atomic_read(&mem->oom_lock))
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
	struct cftype *cft, u64 val)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
	struct mem_cgroup *parent;

	/* cannot set to root cgroup and only 0 and 1 are allowed */
	if (!cgrp->parent || !((val == 0) || (val == 1)))
		return -EINVAL;

	parent = mem_cgroup_from_cont(cgrp->parent);

	cgroup_lock();
	/* oom-kill-disable is a flag for subhierarchy. */
	if ((parent->use_hierarchy) ||
	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
		cgroup_unlock();
		return -EINVAL;
	}
	mem->oom_kill_disable = val;
4169 4170
	if (!val)
		memcg_oom_recover(mem);
4171 4172 4173 4174
	cgroup_unlock();
	return 0;
}

B
Balbir Singh 已提交
4175 4176
static struct cftype mem_cgroup_files[] = {
	{
4177
		.name = "usage_in_bytes",
4178
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4179
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4180 4181
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
4182
	},
4183 4184
	{
		.name = "max_usage_in_bytes",
4185
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4186
		.trigger = mem_cgroup_reset,
4187 4188
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4189
	{
4190
		.name = "limit_in_bytes",
4191
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4192
		.write_string = mem_cgroup_write,
4193
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4194
	},
4195 4196 4197 4198 4199 4200
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
B
Balbir Singh 已提交
4201 4202
	{
		.name = "failcnt",
4203
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4204
		.trigger = mem_cgroup_reset,
4205
		.read_u64 = mem_cgroup_read,
B
Balbir Singh 已提交
4206
	},
4207 4208
	{
		.name = "stat",
4209
		.read_map = mem_control_stat_show,
4210
	},
4211 4212 4213 4214
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
4215 4216 4217 4218 4219
	{
		.name = "use_hierarchy",
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
4220 4221 4222 4223 4224
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
4225 4226 4227 4228 4229
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
4230 4231
	{
		.name = "oom_control",
4232 4233
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
4234 4235 4236 4237
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
B
Balbir Singh 已提交
4238 4239
};

4240 4241 4242 4243 4244 4245
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read_u64 = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
4246 4247
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read_u64 = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read_u64 = mem_cgroup_read,
	},
};

static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	if (!do_swap_account)
		return 0;
	return cgroup_add_files(cont, ss, memsw_cgroup_files,
				ARRAY_SIZE(memsw_cgroup_files));
};
#else
static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
{
	return 0;
}
#endif

4283 4284 4285
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	struct mem_cgroup_per_node *pn;
4286
	struct mem_cgroup_per_zone *mz;
4287
	enum lru_list l;
4288
	int zone, tmp = node;
4289 4290 4291 4292 4293 4294 4295 4296
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
4297 4298
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
4299
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4300 4301
	if (!pn)
		return 1;
4302

4303
	mem->info.nodeinfo[node] = pn;
4304 4305
	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
4306 4307
		for_each_lru(l)
			INIT_LIST_HEAD(&mz->lists[l]);
4308
		mz->usage_in_excess = 0;
4309 4310
		mz->on_tree = false;
		mz->mem = mem;
4311
	}
4312 4313 4314
	return 0;
}

4315 4316 4317 4318 4319
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
	kfree(mem->info.nodeinfo[node]);
}

4320 4321 4322
static struct mem_cgroup *mem_cgroup_alloc(void)
{
	struct mem_cgroup *mem;
4323
	int size = sizeof(struct mem_cgroup);
4324

4325
	/* Can be very big if MAX_NUMNODES is very big */
4326
	if (size < PAGE_SIZE)
4327
		mem = kzalloc(size, GFP_KERNEL);
4328
	else
4329
		mem = vzalloc(size);
4330

4331 4332 4333
	if (!mem)
		return NULL;

4334
	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4335 4336
	if (!mem->stat)
		goto out_free;
4337
	spin_lock_init(&mem->pcp_counter_lock);
4338
	return mem;
4339 4340 4341 4342 4343 4344 4345

out_free:
	if (size < PAGE_SIZE)
		kfree(mem);
	else
		vfree(mem);
	return NULL;
4346 4347
}

4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358
/*
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
 */

4359
static void __mem_cgroup_free(struct mem_cgroup *mem)
4360
{
K
KAMEZAWA Hiroyuki 已提交
4361 4362
	int node;

4363
	mem_cgroup_remove_from_trees(mem);
K
KAMEZAWA Hiroyuki 已提交
4364 4365
	free_css_id(&mem_cgroup_subsys, &mem->css);

K
KAMEZAWA Hiroyuki 已提交
4366 4367 4368
	for_each_node_state(node, N_POSSIBLE)
		free_mem_cgroup_per_zone_info(mem, node);

4369 4370
	free_percpu(mem->stat);
	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4371 4372 4373 4374 4375
		kfree(mem);
	else
		vfree(mem);
}

4376 4377 4378 4379 4380
static void mem_cgroup_get(struct mem_cgroup *mem)
{
	atomic_inc(&mem->refcnt);
}

4381
static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4382
{
4383
	if (atomic_sub_and_test(count, &mem->refcnt)) {
4384
		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4385
		__mem_cgroup_free(mem);
4386 4387 4388
		if (parent)
			mem_cgroup_put(parent);
	}
4389 4390
}

4391 4392 4393 4394 4395
static void mem_cgroup_put(struct mem_cgroup *mem)
{
	__mem_cgroup_put(mem, 1);
}

4396 4397 4398 4399 4400 4401 4402 4403 4404
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
{
	if (!mem->res.parent)
		return NULL;
	return mem_cgroup_from_res_counter(mem->res.parent, res);
}
4405

4406 4407 4408
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
static void __init enable_swap_cgroup(void)
{
4409
	if (!mem_cgroup_disabled() && really_do_swap_account)
4410 4411 4412 4413 4414 4415 4416 4417
		do_swap_account = 1;
}
#else
static void __init enable_swap_cgroup(void)
{
}
#endif

4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
static int mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node_state(node, N_POSSIBLE) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		if (!rtpn)
			return 1;

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
	return 0;
}

L
Li Zefan 已提交
4443
static struct cgroup_subsys_state * __ref
B
Balbir Singh 已提交
4444 4445
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
4446
	struct mem_cgroup *mem, *parent;
K
KAMEZAWA Hiroyuki 已提交
4447
	long error = -ENOMEM;
4448
	int node;
B
Balbir Singh 已提交
4449

4450 4451
	mem = mem_cgroup_alloc();
	if (!mem)
K
KAMEZAWA Hiroyuki 已提交
4452
		return ERR_PTR(error);
4453

4454 4455 4456
	for_each_node_state(node, N_POSSIBLE)
		if (alloc_mem_cgroup_per_zone_info(mem, node))
			goto free_out;
4457

4458
	/* root ? */
4459
	if (cont->parent == NULL) {
4460
		int cpu;
4461
		enable_swap_cgroup();
4462
		parent = NULL;
4463
		root_mem_cgroup = mem;
4464 4465
		if (mem_cgroup_soft_limit_tree_init())
			goto free_out;
4466 4467 4468 4469 4470
		for_each_possible_cpu(cpu) {
			struct memcg_stock_pcp *stock =
						&per_cpu(memcg_stock, cpu);
			INIT_WORK(&stock->work, drain_local_stock);
		}
4471
		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4472
	} else {
4473
		parent = mem_cgroup_from_cont(cont->parent);
4474
		mem->use_hierarchy = parent->use_hierarchy;
4475
		mem->oom_kill_disable = parent->oom_kill_disable;
4476
	}
4477

4478 4479 4480
	if (parent && parent->use_hierarchy) {
		res_counter_init(&mem->res, &parent->res);
		res_counter_init(&mem->memsw, &parent->memsw);
4481 4482 4483 4484 4485 4486 4487
		/*
		 * We increment refcnt of the parent to ensure that we can
		 * safely access it on res_counter_charge/uncharge.
		 * This refcnt will be decremented when freeing this
		 * mem_cgroup(see mem_cgroup_put).
		 */
		mem_cgroup_get(parent);
4488 4489 4490 4491
	} else {
		res_counter_init(&mem->res, NULL);
		res_counter_init(&mem->memsw, NULL);
	}
K
KAMEZAWA Hiroyuki 已提交
4492
	mem->last_scanned_child = 0;
K
KOSAKI Motohiro 已提交
4493
	spin_lock_init(&mem->reclaim_param_lock);
K
KAMEZAWA Hiroyuki 已提交
4494
	INIT_LIST_HEAD(&mem->oom_notify);
4495

K
KOSAKI Motohiro 已提交
4496 4497
	if (parent)
		mem->swappiness = get_swappiness(parent);
4498
	atomic_set(&mem->refcnt, 1);
4499
	mem->move_charge_at_immigrate = 0;
4500
	mutex_init(&mem->thresholds_lock);
B
Balbir Singh 已提交
4501
	return &mem->css;
4502
free_out:
4503
	__mem_cgroup_free(mem);
4504
	root_mem_cgroup = NULL;
K
KAMEZAWA Hiroyuki 已提交
4505
	return ERR_PTR(error);
B
Balbir Singh 已提交
4506 4507
}

4508
static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4509 4510 4511
					struct cgroup *cont)
{
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4512 4513

	return mem_cgroup_force_empty(mem, false);
4514 4515
}

B
Balbir Singh 已提交
4516 4517 4518
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4519 4520 4521
	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);

	mem_cgroup_put(mem);
B
Balbir Singh 已提交
4522 4523 4524 4525 4526
}

static int mem_cgroup_populate(struct cgroup_subsys *ss,
				struct cgroup *cont)
{
4527 4528 4529 4530 4531 4532 4533 4534
	int ret;

	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
				ARRAY_SIZE(mem_cgroup_files));

	if (!ret)
		ret = register_memsw_files(cont, ss);
	return ret;
B
Balbir Singh 已提交
4535 4536
}

4537
#ifdef CONFIG_MMU
4538
/* Handlers for move charge at task migration. */
4539 4540
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
4541
{
4542 4543
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4544 4545
	struct mem_cgroup *mem = mc.to;

4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
	if (mem_cgroup_is_root(mem)) {
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
		 * "mem" cannot be under rmdir() because we've already checked
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
			goto one_by_one;
		if (do_swap_account && res_counter_charge(&mem->memsw,
						PAGE_SIZE * count, &dummy)) {
			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
A
Andrea Arcangeli 已提交
4581 4582
		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
					      PAGE_SIZE);
4583 4584 4585 4586 4587
		if (ret || !mem)
			/* mem_cgroup_clear_mc() will do uncharge later */
			return -ENOMEM;
		mc.precharge++;
	}
4588 4589 4590 4591 4592 4593 4594 4595
	return ret;
}

/**
 * is_target_pte_for_mc - check a pte whether it is valid for move charge
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
4596
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4597 4598 4599 4600 4601 4602
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
4603 4604 4605
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
4606 4607 4608 4609 4610
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
4611
	swp_entry_t	ent;
4612 4613 4614 4615 4616
};

enum mc_target_type {
	MC_TARGET_NONE,	/* not used */
	MC_TARGET_PAGE,
4617
	MC_TARGET_SWAP,
4618 4619
};

D
Daisuke Nishimura 已提交
4620 4621
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
4622
{
D
Daisuke Nishimura 已提交
4623
	struct page *page = vm_normal_page(vma, addr, ptent);
4624

D
Daisuke Nishimura 已提交
4625 4626 4627 4628 4629 4630
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
		if (!move_anon() || page_mapcount(page) > 2)
			return NULL;
4631 4632
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	int usage_count;
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
	usage_count = mem_cgroup_count_swap_user(ent, &page);
	if (usage_count > 1) { /* we don't move shared anon */
4651 4652
		if (page)
			put_page(page);
D
Daisuke Nishimura 已提交
4653
		return NULL;
4654
	}
D
Daisuke Nishimura 已提交
4655 4656 4657 4658 4659 4660
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}

4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct inode *inode;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	inode = vma->vm_file->f_path.dentry->d_inode;
	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
		page = find_get_page(mapping, pgoff);
	} else { /* shmem/tmpfs file. we should take account of swap too. */
		swp_entry_t ent;
		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
		if (do_swap_account)
			entry->val = ent.val;
	}

	return page;
}

D
Daisuke Nishimura 已提交
4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
static int is_target_pte_for_mc(struct vm_area_struct *vma,
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	int ret = 0;
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4706 4707
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
4708 4709 4710

	if (!page && !ent.val)
		return 0;
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
4726 4727
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
4728 4729 4730 4731
			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743
	}
	return ret;
}

static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4744 4745
	split_huge_page_pmd(walk->mm, pmd);

4746 4747 4748 4749 4750 4751 4752
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

4753 4754 4755
	return 0;
}

4756 4757 4758 4759 4760
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

4761
	down_read(&mm->mmap_sem);
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
4773
	up_read(&mm->mmap_sem);
4774 4775 4776 4777 4778 4779 4780 4781 4782

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
4783 4784 4785 4786 4787
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
4788 4789
}

4790 4791
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
4792
{
4793 4794 4795
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;

4796
	/* we must uncharge all the leftover precharges from mc.to */
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
4808
	}
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
		__mem_cgroup_put(mc.from, mc.moved_swap);

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
		/* we've already done mem_cgroup_get(mc.to) */
		mc.moved_swap = 0;
	}
4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
4843
	spin_lock(&mc.lock);
4844 4845
	mc.from = NULL;
	mc.to = NULL;
4846
	spin_unlock(&mc.lock);
4847
	mem_cgroup_end_move(from);
4848 4849
}

4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	int ret = 0;
	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);

	if (mem->move_charge_at_immigrate) {
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

		VM_BUG_ON(from == mem);

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
4868 4869 4870 4871
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
4872
			VM_BUG_ON(mc.moved_charge);
4873
			VM_BUG_ON(mc.moved_swap);
4874
			mem_cgroup_start_move(from);
4875
			spin_lock(&mc.lock);
4876 4877
			mc.from = from;
			mc.to = mem;
4878
			spin_unlock(&mc.lock);
4879
			/* We set mc.moving_task later */
4880 4881 4882 4883

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
4884 4885
		}
		mmput(mm);
4886 4887 4888 4889 4890 4891 4892 4893 4894
	}
	return ret;
}

static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
4895
	mem_cgroup_clear_mc();
4896 4897
}

4898 4899 4900
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
4901
{
4902 4903 4904 4905 4906
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

4907
	split_huge_page_pmd(walk->mm, pmd);
4908 4909 4910 4911 4912 4913 4914 4915
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
		union mc_target target;
		int type;
		struct page *page;
		struct page_cgroup *pc;
4916
		swp_entry_t ent;
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927

		if (!mc.precharge)
			break;

		type = is_target_pte_for_mc(vma, addr, ptent, &target);
		switch (type) {
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
4928
			if (!mem_cgroup_move_account(pc,
4929
					mc.from, mc.to, false, PAGE_SIZE)) {
4930
				mc.precharge--;
4931 4932
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
4933 4934 4935 4936 4937
			}
			putback_lru_page(page);
put:			/* is_target_pte_for_mc() gets the page */
			put_page(page);
			break;
4938 4939
		case MC_TARGET_SWAP:
			ent = target.ent;
4940 4941
			if (!mem_cgroup_move_swap_account(ent,
						mc.from, mc.to, false)) {
4942
				mc.precharge--;
4943 4944 4945
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
4946
			break;
4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
4961
		ret = mem_cgroup_do_precharge(1);
4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
5005
	up_read(&mm->mmap_sem);
5006 5007
}

B
Balbir Singh 已提交
5008 5009 5010
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
5011 5012
				struct task_struct *p,
				bool threadgroup)
B
Balbir Singh 已提交
5013
{
5014 5015 5016
	struct mm_struct *mm;

	if (!mc.to)
5017 5018 5019
		/* no need to move charge */
		return;

5020 5021 5022 5023 5024
	mm = get_task_mm(p);
	if (mm) {
		mem_cgroup_move_charge(mm);
		mmput(mm);
	}
5025
	mem_cgroup_clear_mc();
B
Balbir Singh 已提交
5026
}
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048
#else	/* !CONFIG_MMU */
static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
	return 0;
}
static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
				struct cgroup *cgroup,
				struct task_struct *p,
				bool threadgroup)
{
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
				struct cgroup *cont,
				struct cgroup *old_cont,
				struct task_struct *p,
				bool threadgroup)
{
}
#endif
B
Balbir Singh 已提交
5049

B
Balbir Singh 已提交
5050 5051 5052 5053
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
	.create = mem_cgroup_create,
5054
	.pre_destroy = mem_cgroup_pre_destroy,
B
Balbir Singh 已提交
5055 5056
	.destroy = mem_cgroup_destroy,
	.populate = mem_cgroup_populate,
5057 5058
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
5059
	.attach = mem_cgroup_move_task,
5060
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
5061
	.use_id = 1,
B
Balbir Singh 已提交
5062
};
5063 5064

#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5065 5066 5067
static int __init enable_swap_account(char *s)
{
	/* consider enabled if no parameter or 1 is given */
5068
	if (!(*s) || !strcmp(s, "=1"))
5069
		really_do_swap_account = 1;
5070
	else if (!strcmp(s, "=0"))
5071 5072 5073 5074
		really_do_swap_account = 0;
	return 1;
}
__setup("swapaccount", enable_swap_account);
5075 5076 5077

static int __init disable_swap_account(char *s)
{
5078
	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5079
	enable_swap_account("=0");
5080 5081 5082 5083
	return 1;
}
__setup("noswapaccount", disable_swap_account);
#endif