vmscan.c 79.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

L
Linus Torvalds 已提交
51 52 53 54
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

55 56 57
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

L
Linus Torvalds 已提交
58
	/* This context's GFP mask */
A
Al Viro 已提交
59
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
60 61 62

	int may_writepage;

63 64
	/* Can mapped pages be reclaimed? */
	int may_unmap;
65

66 67 68
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

L
Linus Torvalds 已提交
69 70 71 72 73
	/* This context's SWAP_CLUSTER_MAX. If freeing memory for
	 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
	 * In this context, it doesn't matter that we scan the
	 * whole list at once. */
	int swap_cluster_max;
74 75

	int swappiness;
76 77

	int all_unreclaimable;
A
Andy Whitcroft 已提交
78 79

	int order;
80 81 82 83

	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

84 85 86 87 88 89
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;

90 91 92 93
	/* Pluggable isolate pages callback */
	unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
			unsigned long *scanned, int order, int mode,
			struct zone *z, struct mem_cgroup *mem_cont,
94
			int active, int file);
L
Linus Torvalds 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
131
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
132 133 134 135

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

136
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
137
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
138
#else
139
#define scanning_global_lru(sc)	(1)
140 141
#endif

142 143 144
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
145
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
146 147
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

148 149 150
	return &zone->reclaim_stat;
}

151 152 153
static unsigned long zone_nr_pages(struct zone *zone, struct scan_control *sc,
				   enum lru_list lru)
{
154
	if (!scanning_global_lru(sc))
155 156
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

157 158 159 160
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
161 162 163
/*
 * Add a shrinker callback to be called from the vm
 */
164
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
165
{
166 167 168 169
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
170
}
171
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
172 173 174 175

/*
 * Remove one
 */
176
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
177 178 179 180 181
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
182
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
183 184 185 186 187 188 189 190 191 192

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
193
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
194 195 196 197 198 199 200
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
201 202
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
203
 */
204 205
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
206 207
{
	struct shrinker *shrinker;
208
	unsigned long ret = 0;
L
Linus Torvalds 已提交
209 210 211 212 213

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
214
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
215 216 217 218

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
219
		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
L
Linus Torvalds 已提交
220 221

		delta = (4 * scanned) / shrinker->seeks;
222
		delta *= max_pass;
L
Linus Torvalds 已提交
223 224
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
225
		if (shrinker->nr < 0) {
226 227 228
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
229 230 231 232 233 234 235 236 237 238
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
239 240 241 242 243 244 245

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
246
			int nr_before;
L
Linus Torvalds 已提交
247

248 249
			nr_before = (*shrinker->shrink)(0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
L
Linus Torvalds 已提交
250 251
			if (shrink_ret == -1)
				break;
252 253
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
254
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
255 256 257 258 259 260 261 262
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
263
	return ret;
L
Linus Torvalds 已提交
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
}

/* Called without lock on whether page is mapped, so answer is unstable */
static inline int page_mapping_inuse(struct page *page)
{
	struct address_space *mapping;

	/* Page is in somebody's page tables. */
	if (page_mapped(page))
		return 1;

	/* Be more reluctant to reclaim swapcache than pagecache */
	if (PageSwapCache(page))
		return 1;

	mapping = page_mapping(page);
	if (!mapping)
		return 0;

	/* File is mmap'd by somebody? */
	return mapping_mapped(mapping);
}

static inline int is_page_cache_freeable(struct page *page)
{
289 290 291 292 293
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
294
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
295 296 297 298
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
299
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
324 325
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
326 327 328
	unlock_page(page);
}

329 330 331 332 333 334
/* Request for sync pageout. */
enum pageout_io {
	PAGEOUT_IO_ASYNC,
	PAGEOUT_IO_SYNC,
};

335 336 337 338 339 340 341 342 343 344 345 346
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
347
/*
A
Andrew Morton 已提交
348 349
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
350
 */
351 352
static pageout_t pageout(struct page *page, struct address_space *mapping,
						enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
	 * If this process is currently in generic_file_write() against
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 * See swapfile.c:page_queue_congested().
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
378
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
379 380
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
381
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
397 398
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
399 400 401 402 403 404 405 406
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
407
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
408 409 410
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
411 412 413 414 415 416 417 418 419

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
420 421 422 423
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
424
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
425 426 427 428 429 430
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

431
/*
N
Nick Piggin 已提交
432 433
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
434
 */
N
Nick Piggin 已提交
435
static int __remove_mapping(struct address_space *mapping, struct page *page)
436
{
437 438
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
439

N
Nick Piggin 已提交
440
	spin_lock_irq(&mapping->tree_lock);
441
	/*
N
Nick Piggin 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
465
	 */
N
Nick Piggin 已提交
466
	if (!page_freeze_refs(page, 2))
467
		goto cannot_free;
N
Nick Piggin 已提交
468 469 470
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
471
		goto cannot_free;
N
Nick Piggin 已提交
472
	}
473 474 475 476

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
477
		spin_unlock_irq(&mapping->tree_lock);
478
		swapcache_free(swap, page);
N
Nick Piggin 已提交
479 480
	} else {
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
481
		spin_unlock_irq(&mapping->tree_lock);
482
		mem_cgroup_uncharge_cache_page(page);
483 484 485 486 487
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
488
	spin_unlock_irq(&mapping->tree_lock);
489 490 491
	return 0;
}

N
Nick Piggin 已提交
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
525
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
539
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

566 567 568 569 570
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
571 572 573
	put_page(page);		/* drop ref from isolate */
}

L
Linus Torvalds 已提交
574
/*
A
Andrew Morton 已提交
575
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
576
 */
A
Andrew Morton 已提交
577
static unsigned long shrink_page_list(struct list_head *page_list,
578 579
					struct scan_control *sc,
					enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
580 581 582 583
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
584
	unsigned long nr_reclaimed = 0;
585
	unsigned long vm_flags;
L
Linus Torvalds 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;
		int referenced;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
601
		if (!trylock_page(page))
L
Linus Torvalds 已提交
602 603
			goto keep;

N
Nick Piggin 已提交
604
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
605 606

		sc->nr_scanned++;
607

N
Nick Piggin 已提交
608 609
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
610

611
		if (!sc->may_unmap && page_mapped(page))
612 613
			goto keep_locked;

L
Linus Torvalds 已提交
614 615 616 617
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

618 619 620 621 622 623 624 625 626 627 628 629 630 631
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
				wait_on_page_writeback(page);
632
			else
633 634
				goto keep_locked;
		}
L
Linus Torvalds 已提交
635

636 637
		referenced = page_referenced(page, 1,
						sc->mem_cgroup, &vm_flags);
638 639 640 641 642
		/*
		 * In active use or really unfreeable?  Activate it.
		 * If page which have PG_mlocked lost isoltation race,
		 * try_to_unmap moves it to unevictable list
		 */
A
Andy Whitcroft 已提交
643
		if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
644 645
					referenced && page_mapping_inuse(page)
					&& !(vm_flags & VM_LOCKED))
L
Linus Torvalds 已提交
646 647 648 649 650 651
			goto activate_locked;

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
652
		if (PageAnon(page) && !PageSwapCache(page)) {
653 654
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
655
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
656
				goto activate_locked;
657
			may_enter_fs = 1;
N
Nick Piggin 已提交
658
		}
L
Linus Torvalds 已提交
659 660 661 662 663 664 665 666

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
667
			switch (try_to_unmap(page, 0)) {
L
Linus Torvalds 已提交
668 669 670 671
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
672 673
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
674 675 676 677 678 679
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
A
Andy Whitcroft 已提交
680
			if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
L
Linus Torvalds 已提交
681
				goto keep_locked;
682
			if (!may_enter_fs)
L
Linus Torvalds 已提交
683
				goto keep_locked;
684
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
685 686 687
				goto keep_locked;

			/* Page is dirty, try to write it out here */
688
			switch (pageout(page, mapping, sync_writeback)) {
L
Linus Torvalds 已提交
689 690 691 692 693
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
694
				if (PageWriteback(page) || PageDirty(page))
L
Linus Torvalds 已提交
695 696 697 698 699
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
700
				if (!trylock_page(page))
L
Linus Torvalds 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
720
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
721 722 723 724 725 726 727 728 729 730
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
731
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
732 733
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
750 751
		}

N
Nick Piggin 已提交
752
		if (!mapping || !__remove_mapping(mapping, page))
753
			goto keep_locked;
L
Linus Torvalds 已提交
754

N
Nick Piggin 已提交
755 756 757 758 759 760 761 762
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
763
free_it:
764
		nr_reclaimed++;
N
Nick Piggin 已提交
765 766 767 768
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
L
Linus Torvalds 已提交
769 770
		continue;

N
Nick Piggin 已提交
771
cull_mlocked:
772 773
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
774 775 776 777
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
778
activate_locked:
779 780
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
781
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
782
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
783 784 785 786 787 788
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
789
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
790 791 792
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
N
Nick Piggin 已提交
793
		__pagevec_free(&freed_pvec);
794
	count_vm_events(PGACTIVATE, pgactivate);
795
	return nr_reclaimed;
L
Linus Torvalds 已提交
796 797
}

A
Andy Whitcroft 已提交
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
/* LRU Isolation modes. */
#define ISOLATE_INACTIVE 0	/* Isolate inactive pages. */
#define ISOLATE_ACTIVE 1	/* Isolate active pages. */
#define ISOLATE_BOTH 2		/* Isolate both active and inactive pages. */

/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
813
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

829
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
830 831
		return ret;

L
Lee Schermerhorn 已提交
832 833 834 835 836 837 838 839
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
840
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
841

A
Andy Whitcroft 已提交
842 843 844 845 846 847 848 849 850 851 852 853 854
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
855 856 857 858 859 860 861 862 863 864 865 866 867 868
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
869 870
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
871
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
872 873 874
 *
 * returns how many pages were moved onto *@dst.
 */
875 876
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
877
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
878
{
879
	unsigned long nr_taken = 0;
880
	unsigned long scan;
L
Linus Torvalds 已提交
881

882
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
883 884 885 886 887 888
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
889 890 891
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
892
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
893

894
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
895 896
		case 0:
			list_move(&page->lru, dst);
897
			mem_cgroup_del_lru(page);
898
			nr_taken++;
A
Andy Whitcroft 已提交
899 900 901 902 903
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
904
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
905
			continue;
906

A
Andy Whitcroft 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
939

A
Andy Whitcroft 已提交
940 941 942
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
943 944 945 946 947 948 949 950 951 952

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
					!PageSwapCache(cursor_page))
				continue;

953
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
954
				list_move(&cursor_page->lru, dst);
955
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
956 957 958 959
				nr_taken++;
				scan++;
			}
		}
L
Linus Torvalds 已提交
960 961 962 963 964 965
	}

	*scanned = scan;
	return nr_taken;
}

966 967 968 969 970
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
					struct mem_cgroup *mem_cont,
971
					int active, int file)
972
{
973
	int lru = LRU_BASE;
974
	if (active)
975 976 977 978
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
979
								mode, file);
980 981
}

A
Andy Whitcroft 已提交
982 983 984 985
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
986 987
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
988 989
{
	int nr_active = 0;
990
	int lru;
A
Andy Whitcroft 已提交
991 992
	struct page *page;

993
	list_for_each_entry(page, page_list, lru) {
994
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
995
		if (PageActive(page)) {
996
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
997 998 999
			ClearPageActive(page);
			nr_active++;
		}
1000 1001
		count[lru]++;
	}
A
Andy Whitcroft 已提交
1002 1003 1004 1005

	return nr_active;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1017 1018 1019
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1040
			int lru = page_lru(page);
1041 1042
			ret = 0;
			ClearPageLRU(page);
1043 1044

			del_page_from_lru_list(zone, page, lru);
1045 1046 1047 1048 1049 1050
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

L
Linus Torvalds 已提交
1076
/*
A
Andrew Morton 已提交
1077 1078
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1079
 */
A
Andrew Morton 已提交
1080
static unsigned long shrink_inactive_list(unsigned long max_scan,
R
Rik van Riel 已提交
1081 1082
			struct zone *zone, struct scan_control *sc,
			int priority, int file)
L
Linus Torvalds 已提交
1083 1084 1085
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
1086
	unsigned long nr_scanned = 0;
1087
	unsigned long nr_reclaimed = 0;
1088
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1089 1090
	int lumpy_reclaim = 0;

1091 1092 1093 1094 1095 1096 1097 1098
	while (unlikely(too_many_isolated(zone, file, sc))) {
		congestion_wait(WRITE, HZ/10);

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 *
	 * We use the same threshold as pageout congestion_wait below.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		lumpy_reclaim = 1;
	else if (sc->order && priority < DEF_PRIORITY - 2)
		lumpy_reclaim = 1;
L
Linus Torvalds 已提交
1110 1111 1112 1113 1114

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1115
	do {
L
Linus Torvalds 已提交
1116
		struct page *page;
1117 1118 1119
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
A
Andy Whitcroft 已提交
1120
		unsigned long nr_active;
1121
		unsigned int count[NR_LRU_LISTS] = { 0, };
1122
		int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
K
KOSAKI Motohiro 已提交
1123 1124
		unsigned long nr_anon;
		unsigned long nr_file;
L
Linus Torvalds 已提交
1125

1126
		nr_taken = sc->isolate_pages(sc->swap_cluster_max,
1127 1128
			     &page_list, &nr_scan, sc->order, mode,
				zone, sc->mem_cgroup, 0, file);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

		if (scanning_global_lru(sc)) {
			zone->pages_scanned += nr_scan;
			if (current_is_kswapd())
				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
						       nr_scan);
			else
				__count_zone_vm_events(PGSCAN_DIRECT, zone,
						       nr_scan);
		}

		if (nr_taken == 0)
			goto done;

1143
		nr_active = clear_active_flags(&page_list, count);
1144
		__count_vm_events(PGDEACTIVATE, nr_active);
A
Andy Whitcroft 已提交
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154
		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
						-count[LRU_ACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
						-count[LRU_INACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
						-count[LRU_ACTIVE_ANON]);
		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
						-count[LRU_INACTIVE_ANON]);

K
KOSAKI Motohiro 已提交
1155 1156 1157 1158
		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
K
KOSAKI Motohiro 已提交
1159 1160 1161 1162 1163 1164

		reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
		reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
		reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
		reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];

L
Linus Torvalds 已提交
1165 1166
		spin_unlock_irq(&zone->lru_lock);

1167
		nr_scanned += nr_scan;
1168 1169 1170 1171 1172 1173 1174 1175 1176
		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

		/*
		 * If we are direct reclaiming for contiguous pages and we do
		 * not reclaim everything in the list, try again and wait
		 * for IO to complete. This will stall high-order allocations
		 * but that should be acceptable to the caller
		 */
		if (nr_freed < nr_taken && !current_is_kswapd() &&
1177
		    lumpy_reclaim) {
1178
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1179 1180 1181 1182 1183

			/*
			 * The attempt at page out may have made some
			 * of the pages active, mark them inactive again.
			 */
1184
			nr_active = clear_active_flags(&page_list, count);
1185 1186 1187 1188 1189 1190
			count_vm_events(PGDEACTIVATE, nr_active);

			nr_freed += shrink_page_list(&page_list, sc,
							PAGEOUT_IO_SYNC);
		}

1191
		nr_reclaimed += nr_freed;
1192

N
Nick Piggin 已提交
1193
		local_irq_disable();
1194
		if (current_is_kswapd())
1195
			__count_vm_events(KSWAPD_STEAL, nr_freed);
S
Shantanu Goel 已提交
1196
		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
N
Nick Piggin 已提交
1197 1198

		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
1199 1200 1201 1202
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
L
Lee Schermerhorn 已提交
1203
			int lru;
L
Linus Torvalds 已提交
1204
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
1205
			VM_BUG_ON(PageLRU(page));
L
Linus Torvalds 已提交
1206
			list_del(&page->lru);
L
Lee Schermerhorn 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215
			if (unlikely(!page_evictable(page, NULL))) {
				spin_unlock_irq(&zone->lru_lock);
				putback_lru_page(page);
				spin_lock_irq(&zone->lru_lock);
				continue;
			}
			SetPageLRU(page);
			lru = page_lru(page);
			add_page_to_lru_list(zone, page, lru);
1216
			if (is_active_lru(lru)) {
1217
				int file = is_file_lru(lru);
1218
				reclaim_stat->recent_rotated[file]++;
1219
			}
L
Linus Torvalds 已提交
1220 1221 1222 1223 1224 1225
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
K
KOSAKI Motohiro 已提交
1226 1227 1228
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

1229
  	} while (nr_scanned < max_scan);
1230

L
Linus Torvalds 已提交
1231
done:
1232
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1233
	pagevec_release(&pvec);
1234
	return nr_reclaimed;
L
Linus Torvalds 已提交
1235 1236
}

1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
/*
 * We are about to scan this zone at a certain priority level.  If that priority
 * level is smaller (ie: more urgent) than the previous priority, then note
 * that priority level within the zone.  This is done so that when the next
 * process comes in to scan this zone, it will immediately start out at this
 * priority level rather than having to build up its own scanning priority.
 * Here, this priority affects only the reclaim-mapped threshold.
 */
static inline void note_zone_scanning_priority(struct zone *zone, int priority)
{
	if (priority < zone->prev_priority)
		zone->prev_priority = priority;
}

L
Linus Torvalds 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1268

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1301

A
Andrew Morton 已提交
1302
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1303
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1304
{
1305
	unsigned long nr_taken;
1306
	unsigned long pgscanned;
1307
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1308
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1309
	LIST_HEAD(l_active);
1310
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1311
	struct page *page;
1312
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1313
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1314 1315 1316

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1317
	nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1318
					ISOLATE_ACTIVE, zone,
1319
					sc->mem_cgroup, 1, file);
1320 1321 1322 1323
	/*
	 * zone->pages_scanned is used for detect zone's oom
	 * mem_cgroup remembers nr_scan by itself.
	 */
1324
	if (scanning_global_lru(sc)) {
1325
		zone->pages_scanned += pgscanned;
1326
	}
1327
	reclaim_stat->recent_scanned[file] += nr_taken;
1328

1329
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1330
	if (file)
1331
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1332
	else
1333
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1334
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1335 1336 1337 1338 1339 1340
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1341

L
Lee Schermerhorn 已提交
1342 1343 1344 1345 1346
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1347 1348
		/* page_referenced clears PageReferenced */
		if (page_mapping_inuse(page) &&
1349
		    page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1350
			nr_rotated++;
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
			if ((vm_flags & VM_EXEC) && !PageAnon(page)) {
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1365

1366
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1367 1368 1369
		list_add(&page->lru, &l_inactive);
	}

1370
	/*
1371
	 * Move pages back to the lru list.
1372
	 */
1373
	spin_lock_irq(&zone->lru_lock);
1374
	/*
1375 1376 1377 1378
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1379
	 */
1380
	reclaim_stat->recent_rotated[file] += nr_rotated;
1381

1382 1383 1384 1385
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1386
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1387
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1388 1389
}

1390
static int inactive_anon_is_low_global(struct zone *zone)
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1415
	if (scanning_global_lru(sc))
1416 1417
		low = inactive_anon_is_low_global(zone);
	else
1418
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1419 1420 1421
	return low;
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1458
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1459 1460
	struct zone *zone, struct scan_control *sc, int priority)
{
1461 1462
	int file = is_file_lru(lru);

1463
	if (lru == LRU_ACTIVE_FILE && inactive_file_is_low(zone, sc)) {
1464 1465 1466 1467
		shrink_active_list(nr_to_scan, zone, sc, priority, file);
		return 0;
	}

1468
	if (lru == LRU_ACTIVE_ANON && inactive_anon_is_low(zone, sc)) {
1469
		shrink_active_list(nr_to_scan, zone, sc, priority, file);
1470 1471
		return 0;
	}
R
Rik van Riel 已提交
1472
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
}

/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
 * percent[0] specifies how much pressure to put on ram/swap backed
 * memory, while percent[1] determines pressure on the file LRUs.
 */
static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
					unsigned long *percent)
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1490
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1491

1492 1493 1494 1495
	anon  = zone_nr_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_pages(zone, sc, LRU_INACTIVE_FILE);
1496

1497
	if (scanning_global_lru(sc)) {
1498 1499 1500
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1501
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1502 1503 1504 1505
			percent[0] = 100;
			percent[1] = 0;
			return;
		}
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	}

	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1519
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1520
		spin_lock_irq(&zone->lru_lock);
1521 1522
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1523 1524 1525
		spin_unlock_irq(&zone->lru_lock);
	}

1526
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1527
		spin_lock_irq(&zone->lru_lock);
1528 1529
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		spin_unlock_irq(&zone->lru_lock);
	}

	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

	/*
1541 1542 1543
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1544
	 */
1545 1546
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1547

1548 1549
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1550 1551 1552 1553

	/* Normalize to percentages */
	percent[0] = 100 * ap / (ap + fp + 1);
	percent[1] = 100 - percent[0];
1554 1555
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan,
				       unsigned long swap_cluster_max)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= swap_cluster_max)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}
1576

L
Linus Torvalds 已提交
1577 1578 1579
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1580
static void shrink_zone(int priority, struct zone *zone,
1581
				struct scan_control *sc)
L
Linus Torvalds 已提交
1582
{
1583
	unsigned long nr[NR_LRU_LISTS];
1584
	unsigned long nr_to_scan;
1585
	unsigned long percent[2];	/* anon @ 0; file @ 1 */
1586
	enum lru_list l;
1587 1588
	unsigned long nr_reclaimed = sc->nr_reclaimed;
	unsigned long swap_cluster_max = sc->swap_cluster_max;
1589
	int noswap = 0;
L
Linus Torvalds 已提交
1590

1591 1592 1593 1594 1595 1596 1597
	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		percent[0] = 0;
		percent[1] = 100;
	} else
		get_scan_ratio(zone, sc, percent);
1598

L
Lee Schermerhorn 已提交
1599
	for_each_evictable_lru(l) {
1600
		int file = is_file_lru(l);
1601
		unsigned long scan;
1602

1603
		scan = zone_nr_pages(zone, sc, l);
1604
		if (priority || noswap) {
1605 1606 1607
			scan >>= priority;
			scan = (scan * percent[file]) / 100;
		}
1608 1609 1610 1611 1612
		if (scanning_global_lru(sc))
			nr[l] = nr_scan_try_batch(scan,
						  &zone->lru[l].nr_saved_scan,
						  swap_cluster_max);
		else
1613
			nr[l] = scan;
1614
	}
L
Linus Torvalds 已提交
1615

1616 1617
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1618
		for_each_evictable_lru(l) {
1619
			if (nr[l]) {
1620
				nr_to_scan = min(nr[l], swap_cluster_max);
1621
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1622

1623 1624
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1625
			}
L
Linus Torvalds 已提交
1626
		}
1627 1628 1629 1630 1631 1632 1633 1634
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1635
		if (nr_reclaimed > swap_cluster_max &&
1636 1637
			priority < DEF_PRIORITY && !current_is_kswapd())
			break;
L
Linus Torvalds 已提交
1638 1639
	}

1640 1641
	sc->nr_reclaimed = nr_reclaimed;

1642 1643 1644 1645
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1646
	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1647 1648
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1649
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1650 1651 1652 1653 1654 1655 1656
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1657 1658
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1659 1660
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1661 1662 1663
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1664 1665 1666 1667
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1668
static void shrink_zones(int priority, struct zonelist *zonelist,
1669
					struct scan_control *sc)
L
Linus Torvalds 已提交
1670
{
1671
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1672
	struct zoneref *z;
1673
	struct zone *zone;
1674

1675
	sc->all_unreclaimable = 1;
1676 1677
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
					sc->nodemask) {
1678
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1679
			continue;
1680 1681 1682 1683
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1684
		if (scanning_global_lru(sc)) {
1685 1686 1687
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
			note_zone_scanning_priority(zone, priority);
L
Linus Torvalds 已提交
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
			if (zone_is_all_unreclaimable(zone) &&
						priority != DEF_PRIORITY)
				continue;	/* Let kswapd poll it */
			sc->all_unreclaimable = 0;
		} else {
			/*
			 * Ignore cpuset limitation here. We just want to reduce
			 * # of used pages by us regardless of memory shortage.
			 */
			sc->all_unreclaimable = 0;
			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
							priority);
		}
1702

1703
		shrink_zone(priority, zone, sc);
L
Linus Torvalds 已提交
1704 1705
	}
}
1706

L
Linus Torvalds 已提交
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
 * caller can't do much about.  We kick pdflush and take explicit naps in the
 * hope that some of these pages can be written.  But if the allocating task
 * holds filesystem locks which prevent writeout this might not work, and the
 * allocation attempt will fail.
1719 1720 1721
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1722
 */
1723
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1724
					struct scan_control *sc)
L
Linus Torvalds 已提交
1725 1726
{
	int priority;
1727
	unsigned long ret = 0;
1728
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1729 1730
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
1731
	struct zoneref *z;
1732
	struct zone *zone;
1733
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
L
Linus Torvalds 已提交
1734

1735 1736
	delayacct_freepages_start();

1737
	if (scanning_global_lru(sc))
1738 1739 1740 1741
		count_vm_event(ALLOCSTALL);
	/*
	 * mem_cgroup will not do shrink_slab.
	 */
1742
	if (scanning_global_lru(sc)) {
1743
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
L
Linus Torvalds 已提交
1744

1745 1746
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
L
Linus Torvalds 已提交
1747

1748
			lru_pages += zone_reclaimable_pages(zone);
1749
		}
L
Linus Torvalds 已提交
1750 1751 1752
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1753
		sc->nr_scanned = 0;
1754 1755
		if (!priority)
			disable_swap_token();
1756
		shrink_zones(priority, zonelist, sc);
1757 1758 1759 1760
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1761
		if (scanning_global_lru(sc)) {
1762
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1763
			if (reclaim_state) {
1764
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1765 1766
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1767
		}
1768
		total_scanned += sc->nr_scanned;
1769 1770
		if (sc->nr_reclaimed >= sc->swap_cluster_max) {
			ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
			goto out;
		}

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1781 1782
		if (total_scanned > sc->swap_cluster_max +
					sc->swap_cluster_max / 2) {
1783
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1784
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
1785 1786 1787
		}

		/* Take a nap, wait for some writeback to complete */
1788
		if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1789
			congestion_wait(BLK_RW_ASYNC, HZ/10);
L
Linus Torvalds 已提交
1790
	}
1791
	/* top priority shrink_zones still had more to do? don't OOM, then */
1792
	if (!sc->all_unreclaimable && scanning_global_lru(sc))
1793
		ret = sc->nr_reclaimed;
L
Linus Torvalds 已提交
1794
out:
1795 1796 1797 1798 1799 1800 1801 1802 1803
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1804

1805
	if (scanning_global_lru(sc)) {
1806
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1807 1808 1809 1810 1811 1812 1813 1814

			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;

			zone->prev_priority = priority;
		}
	} else
		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
L
Linus Torvalds 已提交
1815

1816 1817
	delayacct_freepages_end();

L
Linus Torvalds 已提交
1818 1819 1820
	return ret;
}

1821
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1822
				gfp_t gfp_mask, nodemask_t *nodemask)
1823 1824 1825 1826 1827
{
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
		.swap_cluster_max = SWAP_CLUSTER_MAX,
1828
		.may_unmap = 1,
1829
		.may_swap = 1,
1830 1831 1832 1833
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
1834
		.nodemask = nodemask,
1835 1836
	};

1837
	return do_try_to_free_pages(zonelist, &sc);
1838 1839
}

1840
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1841

1842
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
1843 1844 1845
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
1846 1847 1848
{
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
1849
		.may_unmap = 1,
1850
		.may_swap = !noswap,
1851
		.swap_cluster_max = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
1852
		.swappiness = swappiness,
1853 1854 1855
		.order = 0,
		.mem_cgroup = mem_cont,
		.isolate_pages = mem_cgroup_isolate_pages,
1856
		.nodemask = NULL, /* we don't care the placement */
1857
	};
1858
	struct zonelist *zonelist;
1859

1860 1861 1862 1863
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
	return do_try_to_free_pages(zonelist, &sc);
1864 1865 1866
}
#endif

L
Linus Torvalds 已提交
1867 1868
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
1869
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1882 1883 1884 1885 1886
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
1887
 */
1888
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
1889 1890 1891 1892
{
	int all_zones_ok;
	int priority;
	int i;
1893
	unsigned long total_scanned;
L
Linus Torvalds 已提交
1894
	struct reclaim_state *reclaim_state = current->reclaim_state;
1895 1896
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
1897
		.may_unmap = 1,
1898
		.may_swap = 1,
1899 1900
		.swap_cluster_max = SWAP_CLUSTER_MAX,
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
1901
		.order = order,
1902 1903
		.mem_cgroup = NULL,
		.isolate_pages = isolate_pages_global,
1904
	};
1905 1906
	/*
	 * temp_priority is used to remember the scanning priority at which
1907 1908
	 * this zone was successfully refilled to
	 * free_pages == high_wmark_pages(zone).
1909 1910
	 */
	int temp_priority[MAX_NR_ZONES];
L
Linus Torvalds 已提交
1911 1912 1913

loop_again:
	total_scanned = 0;
1914
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
1915
	sc.may_writepage = !laptop_mode;
1916
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
1917

1918 1919
	for (i = 0; i < pgdat->nr_zones; i++)
		temp_priority[i] = DEF_PRIORITY;
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;

1925 1926 1927 1928
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
1929 1930
		all_zones_ok = 1;

1931 1932 1933 1934 1935 1936
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
1937

1938 1939
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
1940

1941 1942
			if (zone_is_all_unreclaimable(zone) &&
			    priority != DEF_PRIORITY)
1943
				continue;
L
Linus Torvalds 已提交
1944

1945 1946 1947 1948
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
1949
			if (inactive_anon_is_low(zone, &sc))
1950 1951 1952
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

1953 1954
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), 0, 0)) {
1955
				end_zone = i;
A
Andrew Morton 已提交
1956
				break;
L
Linus Torvalds 已提交
1957 1958
			}
		}
A
Andrew Morton 已提交
1959 1960 1961
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
1962 1963 1964
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

1965
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
1979
			int nr_slab;
L
Linus Torvalds 已提交
1980

1981
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
1982 1983
				continue;

1984 1985
			if (zone_is_all_unreclaimable(zone) &&
					priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
1986 1987
				continue;

1988 1989
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), end_zone, 0))
1990
				all_zones_ok = 0;
1991
			temp_priority[i] = priority;
L
Linus Torvalds 已提交
1992
			sc.nr_scanned = 0;
1993
			note_zone_scanning_priority(zone, priority);
1994 1995 1996 1997
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
1998 1999
			if (!zone_watermark_ok(zone, order,
					8*high_wmark_pages(zone), end_zone, 0))
2000
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2001
			reclaim_state->reclaimed_slab = 0;
2002 2003
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2004
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2005
			total_scanned += sc.nr_scanned;
2006
			if (zone_is_all_unreclaimable(zone))
L
Linus Torvalds 已提交
2007
				continue;
2008
			if (nr_slab == 0 && zone->pages_scanned >=
2009
					(zone_reclaimable_pages(zone) * 6))
2010 2011
					zone_set_flag(zone,
						      ZONE_ALL_UNRECLAIMABLE);
L
Linus Torvalds 已提交
2012 2013 2014 2015 2016 2017
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2018
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2019 2020 2021 2022 2023 2024 2025 2026
				sc.may_writepage = 1;
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2027
		if (total_scanned && priority < DEF_PRIORITY - 2)
2028
			congestion_wait(BLK_RW_ASYNC, HZ/10);
L
Linus Torvalds 已提交
2029 2030 2031 2032 2033 2034 2035

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2036
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2037 2038 2039
			break;
	}
out:
2040 2041 2042 2043 2044
	/*
	 * Note within each zone the priority level at which this zone was
	 * brought into a happy state.  So that the next thread which scans this
	 * zone will start out at that priority level.
	 */
L
Linus Torvalds 已提交
2045 2046 2047
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

2048
		zone->prev_priority = temp_priority[i];
L
Linus Torvalds 已提交
2049 2050 2051
	}
	if (!all_zones_ok) {
		cond_resched();
2052 2053 2054

		try_to_freeze();

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2072 2073 2074
		goto loop_again;
	}

2075
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2076 2077 2078 2079
}

/*
 * The background pageout daemon, started as a kernel thread
2080
 * from the init process.
L
Linus Torvalds 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2100
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2101

2102 2103
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2104
	if (!cpumask_empty(cpumask))
2105
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2120
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2121
	set_freezable();
L
Linus Torvalds 已提交
2122 2123 2124 2125

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2126

L
Linus Torvalds 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2137 2138 2139
			if (!freezing(current))
				schedule();

L
Linus Torvalds 已提交
2140 2141 2142 2143
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

2144 2145 2146 2147 2148 2149
		if (!try_to_freeze()) {
			/* We can speed up thawing tasks if we don't call
			 * balance_pgdat after returning from the refrigerator
			 */
			balance_pgdat(pgdat, order);
		}
L
Linus Torvalds 已提交
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2161
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2162 2163 2164
		return;

	pgdat = zone->zone_pgdat;
2165
	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
L
Linus Torvalds 已提交
2166 2167 2168
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2169
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2170
		return;
2171
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2172
		return;
2173
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2174 2175
}

2176 2177 2178 2179 2180 2181 2182 2183
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2184
{
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2209 2210
}

2211
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2212
/*
2213
 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
2214
 * from LRU lists system-wide, for given pass and priority.
2215 2216 2217
 *
 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
 */
2218
static void shrink_all_zones(unsigned long nr_pages, int prio,
2219
				      int pass, struct scan_control *sc)
2220 2221
{
	struct zone *zone;
2222
	unsigned long nr_reclaimed = 0;
2223

2224
	for_each_populated_zone(zone) {
2225
		enum lru_list l;
2226

2227
		if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
2228 2229
			continue;

L
Lee Schermerhorn 已提交
2230
		for_each_evictable_lru(l) {
2231 2232 2233
			enum zone_stat_item ls = NR_LRU_BASE + l;
			unsigned long lru_pages = zone_page_state(zone, ls);

L
Lee Schermerhorn 已提交
2234
			/* For pass = 0, we don't shrink the active list */
2235 2236
			if (pass == 0 && (l == LRU_ACTIVE_ANON ||
						l == LRU_ACTIVE_FILE))
2237 2238
				continue;

2239 2240
			zone->lru[l].nr_saved_scan += (lru_pages >> prio) + 1;
			if (zone->lru[l].nr_saved_scan >= nr_pages || pass > 3) {
2241 2242
				unsigned long nr_to_scan;

2243
				zone->lru[l].nr_saved_scan = 0;
2244
				nr_to_scan = min(nr_pages, lru_pages);
2245
				nr_reclaimed += shrink_list(l, nr_to_scan, zone,
2246
								sc, prio);
2247
				if (nr_reclaimed >= nr_pages) {
2248
					sc->nr_reclaimed += nr_reclaimed;
2249 2250
					return;
				}
2251 2252 2253
			}
		}
	}
2254
	sc->nr_reclaimed += nr_reclaimed;
2255 2256 2257 2258 2259 2260 2261 2262 2263
}

/*
 * Try to free `nr_pages' of memory, system-wide, and return the number of
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2264
 */
2265
unsigned long shrink_all_memory(unsigned long nr_pages)
L
Linus Torvalds 已提交
2266
{
2267 2268 2269 2270 2271
	unsigned long lru_pages, nr_slab;
	int pass;
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2272
		.may_unmap = 0,
2273
		.may_writepage = 1,
2274
		.isolate_pages = isolate_pages_global,
2275
		.nr_reclaimed = 0,
L
Linus Torvalds 已提交
2276 2277 2278
	};

	current->reclaim_state = &reclaim_state;
2279

2280
	lru_pages = global_reclaimable_pages();
2281
	nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
2282 2283 2284 2285 2286
	/* If slab caches are huge, it's better to hit them first */
	while (nr_slab >= lru_pages) {
		reclaim_state.reclaimed_slab = 0;
		shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
		if (!reclaim_state.reclaimed_slab)
L
Linus Torvalds 已提交
2287
			break;
2288

2289 2290
		sc.nr_reclaimed += reclaim_state.reclaimed_slab;
		if (sc.nr_reclaimed >= nr_pages)
2291 2292 2293
			goto out;

		nr_slab -= reclaim_state.reclaimed_slab;
L
Linus Torvalds 已提交
2294
	}
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	/*
	 * We try to shrink LRUs in 5 passes:
	 * 0 = Reclaim from inactive_list only
	 * 1 = Reclaim from active list but don't reclaim mapped
	 * 2 = 2nd pass of type 1
	 * 3 = Reclaim mapped (normal reclaim)
	 * 4 = 2nd pass of type 3
	 */
	for (pass = 0; pass < 5; pass++) {
		int prio;

		/* Force reclaiming mapped pages in the passes #3 and #4 */
2308
		if (pass > 2)
2309
			sc.may_unmap = 1;
2310 2311

		for (prio = DEF_PRIORITY; prio >= 0; prio--) {
2312
			unsigned long nr_to_scan = nr_pages - sc.nr_reclaimed;
2313 2314

			sc.nr_scanned = 0;
2315
			sc.swap_cluster_max = nr_to_scan;
2316 2317
			shrink_all_zones(nr_to_scan, prio, pass, &sc);
			if (sc.nr_reclaimed >= nr_pages)
2318 2319 2320
				goto out;

			reclaim_state.reclaimed_slab = 0;
2321
			shrink_slab(sc.nr_scanned, sc.gfp_mask,
2322
				    global_reclaimable_pages());
2323 2324
			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
			if (sc.nr_reclaimed >= nr_pages)
2325 2326 2327
				goto out;

			if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
2328
				congestion_wait(BLK_RW_ASYNC, HZ / 10);
2329
		}
2330
	}
2331 2332

	/*
2333 2334
	 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
	 * something in slab caches
2335
	 */
2336
	if (!sc.nr_reclaimed) {
2337 2338
		do {
			reclaim_state.reclaimed_slab = 0;
2339 2340
			shrink_slab(nr_pages, sc.gfp_mask,
				    global_reclaimable_pages());
2341 2342 2343
			sc.nr_reclaimed += reclaim_state.reclaimed_slab;
		} while (sc.nr_reclaimed < nr_pages &&
				reclaim_state.reclaimed_slab > 0);
2344
	}
2345

2346

2347
out:
L
Linus Torvalds 已提交
2348
	current->reclaim_state = NULL;
2349

2350
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2351
}
2352
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2358
static int __devinit cpu_callback(struct notifier_block *nfb,
2359
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2360
{
2361
	int nid;
L
Linus Torvalds 已提交
2362

2363
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2364
		for_each_node_state(nid, N_HIGH_MEMORY) {
2365
			pg_data_t *pgdat = NODE_DATA(nid);
2366 2367 2368
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2369

2370
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2371
				/* One of our CPUs online: restore mask */
2372
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2373 2374 2375 2376 2377
		}
	}
	return NOTIFY_OK;
}

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

L
Linus Torvalds 已提交
2400 2401
static int __init kswapd_init(void)
{
2402
	int nid;
2403

L
Linus Torvalds 已提交
2404
	swap_setup();
2405
	for_each_node_state(nid, N_HIGH_MEMORY)
2406
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2407 2408 2409 2410 2411
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2422
#define RECLAIM_OFF 0
2423
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2424 2425 2426
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2427 2428 2429 2430 2431 2432 2433
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2434 2435 2436 2437 2438 2439
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2440 2441 2442 2443 2444 2445
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2488 2489 2490
/*
 * Try to free up some pages from this zone through reclaim.
 */
2491
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2492
{
2493
	/* Minimum pages needed in order to stay on node */
2494
	const unsigned long nr_pages = 1 << order;
2495 2496
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2497
	int priority;
2498 2499
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2500
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2501
		.may_swap = 1,
2502 2503
		.swap_cluster_max = max_t(unsigned long, nr_pages,
					SWAP_CLUSTER_MAX),
2504
		.gfp_mask = gfp_mask,
2505
		.swappiness = vm_swappiness,
2506
		.order = order,
2507
		.isolate_pages = isolate_pages_global,
2508
	};
2509
	unsigned long slab_reclaimable;
2510 2511 2512

	disable_swap_token();
	cond_resched();
2513 2514 2515 2516 2517 2518
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2519 2520
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2521

2522
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2523 2524 2525 2526 2527 2528
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2529
			note_zone_scanning_priority(zone, priority);
2530
			shrink_zone(priority, zone, &sc);
2531
			priority--;
2532
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2533
	}
2534

2535 2536
	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (slab_reclaimable > zone->min_slab_pages) {
2537
		/*
2538
		 * shrink_slab() does not currently allow us to determine how
2539 2540 2541 2542
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2543
		 *
2544 2545
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2546
		 */
2547
		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2548 2549
			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
				slab_reclaimable - nr_pages)
2550
			;
2551 2552 2553 2554 2555

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2556
		sc.nr_reclaimed += slab_reclaimable -
2557
			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2558 2559
	}

2560
	p->reclaim_state = NULL;
2561
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2562
	return sc.nr_reclaimed >= nr_pages;
2563
}
2564 2565 2566 2567

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2568
	int ret;
2569 2570

	/*
2571 2572
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2573
	 *
2574 2575 2576 2577 2578
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2579
	 */
2580 2581
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2582
		return ZONE_RECLAIM_FULL;
2583

2584
	if (zone_is_all_unreclaimable(zone))
2585
		return ZONE_RECLAIM_FULL;
2586

2587
	/*
2588
	 * Do not scan if the allocation should not be delayed.
2589
	 */
2590
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2591
		return ZONE_RECLAIM_NOSCAN;
2592 2593 2594 2595 2596 2597 2598

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2599
	node_id = zone_to_nid(zone);
2600
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2601
		return ZONE_RECLAIM_NOSCAN;
2602 2603

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2604 2605
		return ZONE_RECLAIM_NOSCAN;

2606 2607 2608
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2609 2610 2611
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2612
	return ret;
2613
}
2614
#endif
L
Lee Schermerhorn 已提交
2615 2616 2617 2618 2619 2620 2621

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2622 2623
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2624 2625
 *
 * Reasons page might not be evictable:
2626
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2627
 * (2) page is part of an mlocked VMA
2628
 *
L
Lee Schermerhorn 已提交
2629 2630 2631 2632
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2633 2634 2635
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2636 2637
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2638 2639 2640

	return 1;
}
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2660
		enum lru_list l = page_lru_base_type(page);
2661

2662 2663
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2664
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2665 2666 2667 2668 2669 2670 2671 2672
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2673
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2745
static void scan_zone_unevictable_pages(struct zone *zone)
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
2787
static void scan_all_zones_unevictable_pages(void)
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}