vmscan.c 80.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
16
#include <linux/gfp.h>
L
Linus Torvalds 已提交
17 18 19 20 21
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
22
#include <linux/vmstat.h>
L
Linus Torvalds 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>	/* for try_to_release_page(),
					buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
37
#include <linux/delay.h>
38
#include <linux/kthread.h>
39
#include <linux/freezer.h>
40
#include <linux/memcontrol.h>
41
#include <linux/delayacct.h>
42
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
43 44 45 46 47 48

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

49 50
#include "internal.h"

L
Linus Torvalds 已提交
51 52 53 54
struct scan_control {
	/* Incremented by the number of inactive pages that were scanned */
	unsigned long nr_scanned;

55 56 57
	/* Number of pages freed so far during a call to shrink_zones() */
	unsigned long nr_reclaimed;

58 59 60
	/* How many pages shrink_list() should reclaim */
	unsigned long nr_to_reclaim;

61 62
	unsigned long hibernation_mode;

L
Linus Torvalds 已提交
63
	/* This context's GFP mask */
A
Al Viro 已提交
64
	gfp_t gfp_mask;
L
Linus Torvalds 已提交
65 66 67

	int may_writepage;

68 69
	/* Can mapped pages be reclaimed? */
	int may_unmap;
70

71 72 73
	/* Can pages be swapped as part of reclaim? */
	int may_swap;

74
	int swappiness;
75

A
Andy Whitcroft 已提交
76
	int order;
77

78 79 80 81 82 83
	/*
	 * Intend to reclaim enough contenious memory rather than to reclaim
	 * enough amount memory. I.e, it's the mode for high order allocation.
	 */
	bool lumpy_reclaim_mode;

84 85 86
	/* Which cgroup do we reclaim from */
	struct mem_cgroup *mem_cgroup;

87 88 89 90 91
	/*
	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
	 * are scanned.
	 */
	nodemask_t	*nodemask;
L
Linus Torvalds 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetch(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)			\
	do {								\
		if ((_page)->lru.prev != _base) {			\
			struct page *prev;				\
									\
			prev = lru_to_page(&(_page->lru));		\
			prefetchw(&prev->_field);			\
		}							\
	} while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
128
long vm_total_pages;	/* The total number of pages which the VM controls */
L
Linus Torvalds 已提交
129 130 131 132

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

133
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
134
#define scanning_global_lru(sc)	(!(sc)->mem_cgroup)
135
#else
136
#define scanning_global_lru(sc)	(1)
137 138
#endif

139 140 141
static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
						  struct scan_control *sc)
{
142
	if (!scanning_global_lru(sc))
K
KOSAKI Motohiro 已提交
143 144
		return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);

145 146 147
	return &zone->reclaim_stat;
}

148 149
static unsigned long zone_nr_lru_pages(struct zone *zone,
				struct scan_control *sc, enum lru_list lru)
150
{
151
	if (!scanning_global_lru(sc))
152 153
		return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);

154 155 156 157
	return zone_page_state(zone, NR_LRU_BASE + lru);
}


L
Linus Torvalds 已提交
158 159 160
/*
 * Add a shrinker callback to be called from the vm
 */
161
void register_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
162
{
163 164 165 166
	shrinker->nr = 0;
	down_write(&shrinker_rwsem);
	list_add_tail(&shrinker->list, &shrinker_list);
	up_write(&shrinker_rwsem);
L
Linus Torvalds 已提交
167
}
168
EXPORT_SYMBOL(register_shrinker);
L
Linus Torvalds 已提交
169 170 171 172

/*
 * Remove one
 */
173
void unregister_shrinker(struct shrinker *shrinker)
L
Linus Torvalds 已提交
174 175 176 177 178
{
	down_write(&shrinker_rwsem);
	list_del(&shrinker->list);
	up_write(&shrinker_rwsem);
}
179
EXPORT_SYMBOL(unregister_shrinker);
L
Linus Torvalds 已提交
180 181 182 183 184 185 186 187 188 189

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
S
Simon Arlott 已提交
190
 * If the vm encountered mapped pages on the LRU it increase the pressure on
L
Linus Torvalds 已提交
191 192 193 194 195 196 197
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
198 199
 *
 * Returns the number of slab objects which we shrunk.
L
Linus Torvalds 已提交
200
 */
201 202
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
			unsigned long lru_pages)
L
Linus Torvalds 已提交
203 204
{
	struct shrinker *shrinker;
205
	unsigned long ret = 0;
L
Linus Torvalds 已提交
206 207 208 209 210

	if (scanned == 0)
		scanned = SWAP_CLUSTER_MAX;

	if (!down_read_trylock(&shrinker_rwsem))
211
		return 1;	/* Assume we'll be able to shrink next time */
L
Linus Torvalds 已提交
212 213 214 215

	list_for_each_entry(shrinker, &shrinker_list, list) {
		unsigned long long delta;
		unsigned long total_scan;
216
		unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
L
Linus Torvalds 已提交
217 218

		delta = (4 * scanned) / shrinker->seeks;
219
		delta *= max_pass;
L
Linus Torvalds 已提交
220 221
		do_div(delta, lru_pages + 1);
		shrinker->nr += delta;
222
		if (shrinker->nr < 0) {
223 224 225
			printk(KERN_ERR "shrink_slab: %pF negative objects to "
			       "delete nr=%ld\n",
			       shrinker->shrink, shrinker->nr);
226 227 228 229 230 231 232 233 234 235
			shrinker->nr = max_pass;
		}

		/*
		 * Avoid risking looping forever due to too large nr value:
		 * never try to free more than twice the estimate number of
		 * freeable entries.
		 */
		if (shrinker->nr > max_pass * 2)
			shrinker->nr = max_pass * 2;
L
Linus Torvalds 已提交
236 237 238 239 240 241 242

		total_scan = shrinker->nr;
		shrinker->nr = 0;

		while (total_scan >= SHRINK_BATCH) {
			long this_scan = SHRINK_BATCH;
			int shrink_ret;
243
			int nr_before;
L
Linus Torvalds 已提交
244

245 246
			nr_before = (*shrinker->shrink)(0, gfp_mask);
			shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
L
Linus Torvalds 已提交
247 248
			if (shrink_ret == -1)
				break;
249 250
			if (shrink_ret < nr_before)
				ret += nr_before - shrink_ret;
251
			count_vm_events(SLABS_SCANNED, this_scan);
L
Linus Torvalds 已提交
252 253 254 255 256 257 258 259
			total_scan -= this_scan;

			cond_resched();
		}

		shrinker->nr += total_scan;
	}
	up_read(&shrinker_rwsem);
260
	return ret;
L
Linus Torvalds 已提交
261 262 263 264
}

static inline int is_page_cache_freeable(struct page *page)
{
265 266 267 268 269
	/*
	 * A freeable page cache page is referenced only by the caller
	 * that isolated the page, the page cache radix tree and
	 * optional buffer heads at page->private.
	 */
270
	return page_count(page) - page_has_private(page) == 2;
L
Linus Torvalds 已提交
271 272 273 274
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
275
	if (current->flags & PF_SWAPWRITE)
L
Linus Torvalds 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
		return 1;
	if (!bdi_write_congested(bdi))
		return 1;
	if (bdi == current->backing_dev_info)
		return 1;
	return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
				struct page *page, int error)
{
	lock_page(page);
300 301
	if (page_mapping(page) == mapping)
		mapping_set_error(mapping, error);
L
Linus Torvalds 已提交
302 303 304
	unlock_page(page);
}

305 306 307 308 309 310
/* Request for sync pageout. */
enum pageout_io {
	PAGEOUT_IO_ASYNC,
	PAGEOUT_IO_SYNC,
};

311 312 313 314 315 316 317 318 319 320 321 322
/* possible outcome of pageout() */
typedef enum {
	/* failed to write page out, page is locked */
	PAGE_KEEP,
	/* move page to the active list, page is locked */
	PAGE_ACTIVATE,
	/* page has been sent to the disk successfully, page is unlocked */
	PAGE_SUCCESS,
	/* page is clean and locked */
	PAGE_CLEAN,
} pageout_t;

L
Linus Torvalds 已提交
323
/*
A
Andrew Morton 已提交
324 325
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
L
Linus Torvalds 已提交
326
 */
327 328
static pageout_t pageout(struct page *page, struct address_space *mapping,
						enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
329 330 331 332 333 334 335 336
{
	/*
	 * If the page is dirty, only perform writeback if that write
	 * will be non-blocking.  To prevent this allocation from being
	 * stalled by pagecache activity.  But note that there may be
	 * stalls if we need to run get_block().  We could test
	 * PagePrivate for that.
	 *
337
	 * If this process is currently in __generic_file_aio_write() against
L
Linus Torvalds 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	 * this page's queue, we can perform writeback even if that
	 * will block.
	 *
	 * If the page is swapcache, write it back even if that would
	 * block, for some throttling. This happens by accident, because
	 * swap_backing_dev_info is bust: it doesn't reflect the
	 * congestion state of the swapdevs.  Easy to fix, if needed.
	 */
	if (!is_page_cache_freeable(page))
		return PAGE_KEEP;
	if (!mapping) {
		/*
		 * Some data journaling orphaned pages can have
		 * page->mapping == NULL while being dirty with clean buffers.
		 */
353
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
354 355
			if (try_to_free_buffers(page)) {
				ClearPageDirty(page);
356
				printk("%s: orphaned page\n", __func__);
L
Linus Torvalds 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
				return PAGE_CLEAN;
			}
		}
		return PAGE_KEEP;
	}
	if (mapping->a_ops->writepage == NULL)
		return PAGE_ACTIVATE;
	if (!may_write_to_queue(mapping->backing_dev_info))
		return PAGE_KEEP;

	if (clear_page_dirty_for_io(page)) {
		int res;
		struct writeback_control wbc = {
			.sync_mode = WB_SYNC_NONE,
			.nr_to_write = SWAP_CLUSTER_MAX,
372 373
			.range_start = 0,
			.range_end = LLONG_MAX,
L
Linus Torvalds 已提交
374 375 376 377 378 379 380 381
			.nonblocking = 1,
			.for_reclaim = 1,
		};

		SetPageReclaim(page);
		res = mapping->a_ops->writepage(page, &wbc);
		if (res < 0)
			handle_write_error(mapping, page, res);
382
		if (res == AOP_WRITEPAGE_ACTIVATE) {
L
Linus Torvalds 已提交
383 384 385
			ClearPageReclaim(page);
			return PAGE_ACTIVATE;
		}
386 387 388 389 390 391 392 393 394

		/*
		 * Wait on writeback if requested to. This happens when
		 * direct reclaiming a large contiguous area and the
		 * first attempt to free a range of pages fails.
		 */
		if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
			wait_on_page_writeback(page);

L
Linus Torvalds 已提交
395 396 397 398
		if (!PageWriteback(page)) {
			/* synchronous write or broken a_ops? */
			ClearPageReclaim(page);
		}
399
		inc_zone_page_state(page, NR_VMSCAN_WRITE);
L
Linus Torvalds 已提交
400 401 402 403 404 405
		return PAGE_SUCCESS;
	}

	return PAGE_CLEAN;
}

406
/*
N
Nick Piggin 已提交
407 408
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
409
 */
N
Nick Piggin 已提交
410
static int __remove_mapping(struct address_space *mapping, struct page *page)
411
{
412 413
	BUG_ON(!PageLocked(page));
	BUG_ON(mapping != page_mapping(page));
414

N
Nick Piggin 已提交
415
	spin_lock_irq(&mapping->tree_lock);
416
	/*
N
Nick Piggin 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	 * The non racy check for a busy page.
	 *
	 * Must be careful with the order of the tests. When someone has
	 * a ref to the page, it may be possible that they dirty it then
	 * drop the reference. So if PageDirty is tested before page_count
	 * here, then the following race may occur:
	 *
	 * get_user_pages(&page);
	 * [user mapping goes away]
	 * write_to(page);
	 *				!PageDirty(page)    [good]
	 * SetPageDirty(page);
	 * put_page(page);
	 *				!page_count(page)   [good, discard it]
	 *
	 * [oops, our write_to data is lost]
	 *
	 * Reversing the order of the tests ensures such a situation cannot
	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
	 * load is not satisfied before that of page->_count.
	 *
	 * Note that if SetPageDirty is always performed via set_page_dirty,
	 * and thus under tree_lock, then this ordering is not required.
440
	 */
N
Nick Piggin 已提交
441
	if (!page_freeze_refs(page, 2))
442
		goto cannot_free;
N
Nick Piggin 已提交
443 444 445
	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
	if (unlikely(PageDirty(page))) {
		page_unfreeze_refs(page, 2);
446
		goto cannot_free;
N
Nick Piggin 已提交
447
	}
448 449 450 451

	if (PageSwapCache(page)) {
		swp_entry_t swap = { .val = page_private(page) };
		__delete_from_swap_cache(page);
N
Nick Piggin 已提交
452
		spin_unlock_irq(&mapping->tree_lock);
453
		swapcache_free(swap, page);
N
Nick Piggin 已提交
454 455
	} else {
		__remove_from_page_cache(page);
N
Nick Piggin 已提交
456
		spin_unlock_irq(&mapping->tree_lock);
457
		mem_cgroup_uncharge_cache_page(page);
458 459 460 461 462
	}

	return 1;

cannot_free:
N
Nick Piggin 已提交
463
	spin_unlock_irq(&mapping->tree_lock);
464 465 466
	return 0;
}

N
Nick Piggin 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
	if (__remove_mapping(mapping, page)) {
		/*
		 * Unfreezing the refcount with 1 rather than 2 effectively
		 * drops the pagecache ref for us without requiring another
		 * atomic operation.
		 */
		page_unfreeze_refs(page, 1);
		return 1;
	}
	return 0;
}

L
Lee Schermerhorn 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499
/**
 * putback_lru_page - put previously isolated page onto appropriate LRU list
 * @page: page to be put back to appropriate lru list
 *
 * Add previously isolated @page to appropriate LRU list.
 * Page may still be unevictable for other reasons.
 *
 * lru_lock must not be held, interrupts must be enabled.
 */
void putback_lru_page(struct page *page)
{
	int lru;
	int active = !!TestClearPageActive(page);
500
	int was_unevictable = PageUnevictable(page);
L
Lee Schermerhorn 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513

	VM_BUG_ON(PageLRU(page));

redo:
	ClearPageUnevictable(page);

	if (page_evictable(page, NULL)) {
		/*
		 * For evictable pages, we can use the cache.
		 * In event of a race, worst case is we end up with an
		 * unevictable page on [in]active list.
		 * We know how to handle that.
		 */
514
		lru = active + page_lru_base_type(page);
L
Lee Schermerhorn 已提交
515 516 517 518 519 520 521 522
		lru_cache_add_lru(page, lru);
	} else {
		/*
		 * Put unevictable pages directly on zone's unevictable
		 * list.
		 */
		lru = LRU_UNEVICTABLE;
		add_page_to_unevictable_list(page);
523 524 525 526 527 528 529 530 531 532
		/*
		 * When racing with an mlock clearing (page is
		 * unlocked), make sure that if the other thread does
		 * not observe our setting of PG_lru and fails
		 * isolation, we see PG_mlocked cleared below and move
		 * the page back to the evictable list.
		 *
		 * The other side is TestClearPageMlocked().
		 */
		smp_mb();
L
Lee Schermerhorn 已提交
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
	}

	/*
	 * page's status can change while we move it among lru. If an evictable
	 * page is on unevictable list, it never be freed. To avoid that,
	 * check after we added it to the list, again.
	 */
	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
		if (!isolate_lru_page(page)) {
			put_page(page);
			goto redo;
		}
		/* This means someone else dropped this page from LRU
		 * So, it will be freed or putback to LRU again. There is
		 * nothing to do here.
		 */
	}

551 552 553 554 555
	if (was_unevictable && lru != LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGRESCUED);
	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
		count_vm_event(UNEVICTABLE_PGCULLED);

L
Lee Schermerhorn 已提交
556 557 558
	put_page(page);		/* drop ref from isolate */
}

559 560 561
enum page_references {
	PAGEREF_RECLAIM,
	PAGEREF_RECLAIM_CLEAN,
562
	PAGEREF_KEEP,
563 564 565 566 567 568
	PAGEREF_ACTIVATE,
};

static enum page_references page_check_references(struct page *page,
						  struct scan_control *sc)
{
569
	int referenced_ptes, referenced_page;
570 571
	unsigned long vm_flags;

572 573
	referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
	referenced_page = TestClearPageReferenced(page);
574 575

	/* Lumpy reclaim - ignore references */
576
	if (sc->lumpy_reclaim_mode)
577 578 579 580 581 582 583 584 585
		return PAGEREF_RECLAIM;

	/*
	 * Mlock lost the isolation race with us.  Let try_to_unmap()
	 * move the page to the unevictable list.
	 */
	if (vm_flags & VM_LOCKED)
		return PAGEREF_RECLAIM;

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	if (referenced_ptes) {
		if (PageAnon(page))
			return PAGEREF_ACTIVATE;
		/*
		 * All mapped pages start out with page table
		 * references from the instantiating fault, so we need
		 * to look twice if a mapped file page is used more
		 * than once.
		 *
		 * Mark it and spare it for another trip around the
		 * inactive list.  Another page table reference will
		 * lead to its activation.
		 *
		 * Note: the mark is set for activated pages as well
		 * so that recently deactivated but used pages are
		 * quickly recovered.
		 */
		SetPageReferenced(page);

		if (referenced_page)
			return PAGEREF_ACTIVATE;

		return PAGEREF_KEEP;
	}
610 611

	/* Reclaim if clean, defer dirty pages to writeback */
612 613 614 615
	if (referenced_page)
		return PAGEREF_RECLAIM_CLEAN;

	return PAGEREF_RECLAIM;
616 617
}

L
Linus Torvalds 已提交
618
/*
A
Andrew Morton 已提交
619
 * shrink_page_list() returns the number of reclaimed pages
L
Linus Torvalds 已提交
620
 */
A
Andrew Morton 已提交
621
static unsigned long shrink_page_list(struct list_head *page_list,
622 623
					struct scan_control *sc,
					enum pageout_io sync_writeback)
L
Linus Torvalds 已提交
624 625 626 627
{
	LIST_HEAD(ret_pages);
	struct pagevec freed_pvec;
	int pgactivate = 0;
628
	unsigned long nr_reclaimed = 0;
L
Linus Torvalds 已提交
629 630 631 632 633

	cond_resched();

	pagevec_init(&freed_pvec, 1);
	while (!list_empty(page_list)) {
634
		enum page_references references;
L
Linus Torvalds 已提交
635 636 637 638 639 640 641 642 643
		struct address_space *mapping;
		struct page *page;
		int may_enter_fs;

		cond_resched();

		page = lru_to_page(page_list);
		list_del(&page->lru);

N
Nick Piggin 已提交
644
		if (!trylock_page(page))
L
Linus Torvalds 已提交
645 646
			goto keep;

N
Nick Piggin 已提交
647
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
648 649

		sc->nr_scanned++;
650

N
Nick Piggin 已提交
651 652
		if (unlikely(!page_evictable(page, NULL)))
			goto cull_mlocked;
L
Lee Schermerhorn 已提交
653

654
		if (!sc->may_unmap && page_mapped(page))
655 656
			goto keep_locked;

L
Linus Torvalds 已提交
657 658 659 660
		/* Double the slab pressure for mapped and swapcache pages */
		if (page_mapped(page) || PageSwapCache(page))
			sc->nr_scanned++;

661 662 663 664 665 666 667 668 669 670 671 672 673 674
		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

		if (PageWriteback(page)) {
			/*
			 * Synchronous reclaim is performed in two passes,
			 * first an asynchronous pass over the list to
			 * start parallel writeback, and a second synchronous
			 * pass to wait for the IO to complete.  Wait here
			 * for any page for which writeback has already
			 * started.
			 */
			if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
				wait_on_page_writeback(page);
675
			else
676 677
				goto keep_locked;
		}
L
Linus Torvalds 已提交
678

679 680 681
		references = page_check_references(page, sc);
		switch (references) {
		case PAGEREF_ACTIVATE:
L
Linus Torvalds 已提交
682
			goto activate_locked;
683 684
		case PAGEREF_KEEP:
			goto keep_locked;
685 686 687 688
		case PAGEREF_RECLAIM:
		case PAGEREF_RECLAIM_CLEAN:
			; /* try to reclaim the page below */
		}
L
Linus Torvalds 已提交
689 690 691 692 693

		/*
		 * Anonymous process memory has backing store?
		 * Try to allocate it some swap space here.
		 */
N
Nick Piggin 已提交
694
		if (PageAnon(page) && !PageSwapCache(page)) {
695 696
			if (!(sc->gfp_mask & __GFP_IO))
				goto keep_locked;
697
			if (!add_to_swap(page))
L
Linus Torvalds 已提交
698
				goto activate_locked;
699
			may_enter_fs = 1;
N
Nick Piggin 已提交
700
		}
L
Linus Torvalds 已提交
701 702 703 704 705 706 707 708

		mapping = page_mapping(page);

		/*
		 * The page is mapped into the page tables of one or more
		 * processes. Try to unmap it here.
		 */
		if (page_mapped(page) && mapping) {
709
			switch (try_to_unmap(page, TTU_UNMAP)) {
L
Linus Torvalds 已提交
710 711 712 713
			case SWAP_FAIL:
				goto activate_locked;
			case SWAP_AGAIN:
				goto keep_locked;
N
Nick Piggin 已提交
714 715
			case SWAP_MLOCK:
				goto cull_mlocked;
L
Linus Torvalds 已提交
716 717 718 719 720 721
			case SWAP_SUCCESS:
				; /* try to free the page below */
			}
		}

		if (PageDirty(page)) {
722
			if (references == PAGEREF_RECLAIM_CLEAN)
L
Linus Torvalds 已提交
723
				goto keep_locked;
724
			if (!may_enter_fs)
L
Linus Torvalds 已提交
725
				goto keep_locked;
726
			if (!sc->may_writepage)
L
Linus Torvalds 已提交
727 728 729
				goto keep_locked;

			/* Page is dirty, try to write it out here */
730
			switch (pageout(page, mapping, sync_writeback)) {
L
Linus Torvalds 已提交
731 732 733 734 735
			case PAGE_KEEP:
				goto keep_locked;
			case PAGE_ACTIVATE:
				goto activate_locked;
			case PAGE_SUCCESS:
736
				if (PageWriteback(page) || PageDirty(page))
L
Linus Torvalds 已提交
737 738 739 740 741
					goto keep;
				/*
				 * A synchronous write - probably a ramdisk.  Go
				 * ahead and try to reclaim the page.
				 */
N
Nick Piggin 已提交
742
				if (!trylock_page(page))
L
Linus Torvalds 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
					goto keep;
				if (PageDirty(page) || PageWriteback(page))
					goto keep_locked;
				mapping = page_mapping(page);
			case PAGE_CLEAN:
				; /* try to free the page below */
			}
		}

		/*
		 * If the page has buffers, try to free the buffer mappings
		 * associated with this page. If we succeed we try to free
		 * the page as well.
		 *
		 * We do this even if the page is PageDirty().
		 * try_to_release_page() does not perform I/O, but it is
		 * possible for a page to have PageDirty set, but it is actually
		 * clean (all its buffers are clean).  This happens if the
		 * buffers were written out directly, with submit_bh(). ext3
L
Lee Schermerhorn 已提交
762
		 * will do this, as well as the blockdev mapping.
L
Linus Torvalds 已提交
763 764 765 766 767 768 769 770 771 772
		 * try_to_release_page() will discover that cleanness and will
		 * drop the buffers and mark the page clean - it can be freed.
		 *
		 * Rarely, pages can have buffers and no ->mapping.  These are
		 * the pages which were not successfully invalidated in
		 * truncate_complete_page().  We try to drop those buffers here
		 * and if that worked, and the page is no longer mapped into
		 * process address space (page_count == 1) it can be freed.
		 * Otherwise, leave the page on the LRU so it is swappable.
		 */
773
		if (page_has_private(page)) {
L
Linus Torvalds 已提交
774 775
			if (!try_to_release_page(page, sc->gfp_mask))
				goto activate_locked;
N
Nick Piggin 已提交
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
			if (!mapping && page_count(page) == 1) {
				unlock_page(page);
				if (put_page_testzero(page))
					goto free_it;
				else {
					/*
					 * rare race with speculative reference.
					 * the speculative reference will free
					 * this page shortly, so we may
					 * increment nr_reclaimed here (and
					 * leave it off the LRU).
					 */
					nr_reclaimed++;
					continue;
				}
			}
L
Linus Torvalds 已提交
792 793
		}

N
Nick Piggin 已提交
794
		if (!mapping || !__remove_mapping(mapping, page))
795
			goto keep_locked;
L
Linus Torvalds 已提交
796

N
Nick Piggin 已提交
797 798 799 800 801 802 803 804
		/*
		 * At this point, we have no other references and there is
		 * no way to pick any more up (removed from LRU, removed
		 * from pagecache). Can use non-atomic bitops now (and
		 * we obviously don't have to worry about waking up a process
		 * waiting on the page lock, because there are no references.
		 */
		__clear_page_locked(page);
N
Nick Piggin 已提交
805
free_it:
806
		nr_reclaimed++;
N
Nick Piggin 已提交
807 808 809 810
		if (!pagevec_add(&freed_pvec, page)) {
			__pagevec_free(&freed_pvec);
			pagevec_reinit(&freed_pvec);
		}
L
Linus Torvalds 已提交
811 812
		continue;

N
Nick Piggin 已提交
813
cull_mlocked:
814 815
		if (PageSwapCache(page))
			try_to_free_swap(page);
N
Nick Piggin 已提交
816 817 818 819
		unlock_page(page);
		putback_lru_page(page);
		continue;

L
Linus Torvalds 已提交
820
activate_locked:
821 822
		/* Not a candidate for swapping, so reclaim swap space. */
		if (PageSwapCache(page) && vm_swap_full())
823
			try_to_free_swap(page);
L
Lee Schermerhorn 已提交
824
		VM_BUG_ON(PageActive(page));
L
Linus Torvalds 已提交
825 826 827 828 829 830
		SetPageActive(page);
		pgactivate++;
keep_locked:
		unlock_page(page);
keep:
		list_add(&page->lru, &ret_pages);
N
Nick Piggin 已提交
831
		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
L
Linus Torvalds 已提交
832 833 834
	}
	list_splice(&ret_pages, page_list);
	if (pagevec_count(&freed_pvec))
N
Nick Piggin 已提交
835
		__pagevec_free(&freed_pvec);
836
	count_vm_events(PGACTIVATE, pgactivate);
837
	return nr_reclaimed;
L
Linus Torvalds 已提交
838 839
}

A
Andy Whitcroft 已提交
840 841 842 843 844 845 846 847 848 849
/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:	page to consider
 * mode:	one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
850
int __isolate_lru_page(struct page *page, int mode, int file)
A
Andy Whitcroft 已提交
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
{
	int ret = -EINVAL;

	/* Only take pages on the LRU. */
	if (!PageLRU(page))
		return ret;

	/*
	 * When checking the active state, we need to be sure we are
	 * dealing with comparible boolean values.  Take the logical not
	 * of each.
	 */
	if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
		return ret;

866
	if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
867 868
		return ret;

L
Lee Schermerhorn 已提交
869 870 871 872 873 874 875 876
	/*
	 * When this function is being called for lumpy reclaim, we
	 * initially look into all LRU pages, active, inactive and
	 * unevictable; only give shrink_page_list evictable pages.
	 */
	if (PageUnevictable(page))
		return ret;

A
Andy Whitcroft 已提交
877
	ret = -EBUSY;
K
KAMEZAWA Hiroyuki 已提交
878

A
Andy Whitcroft 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891
	if (likely(get_page_unless_zero(page))) {
		/*
		 * Be careful not to clear PageLRU until after we're
		 * sure the page is not being freed elsewhere -- the
		 * page release code relies on it.
		 */
		ClearPageLRU(page);
		ret = 0;
	}

	return ret;
}

L
Linus Torvalds 已提交
892 893 894 895 896 897 898 899 900 901 902 903 904 905
/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan:	The number of pages to look through on the list.
 * @src:	The LRU list to pull pages off.
 * @dst:	The temp list to put pages on to.
 * @scanned:	The number of pages that were scanned.
A
Andy Whitcroft 已提交
906 907
 * @order:	The caller's attempted allocation order
 * @mode:	One of the LRU isolation modes
908
 * @file:	True [1] if isolating file [!anon] pages
L
Linus Torvalds 已提交
909 910 911
 *
 * returns how many pages were moved onto *@dst.
 */
912 913
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
		struct list_head *src, struct list_head *dst,
914
		unsigned long *scanned, int order, int mode, int file)
L
Linus Torvalds 已提交
915
{
916
	unsigned long nr_taken = 0;
917
	unsigned long scan;
L
Linus Torvalds 已提交
918

919
	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
A
Andy Whitcroft 已提交
920 921 922 923 924 925
		struct page *page;
		unsigned long pfn;
		unsigned long end_pfn;
		unsigned long page_pfn;
		int zone_id;

L
Linus Torvalds 已提交
926 927 928
		page = lru_to_page(src);
		prefetchw_prev_lru_page(page, src, flags);

N
Nick Piggin 已提交
929
		VM_BUG_ON(!PageLRU(page));
N
Nick Piggin 已提交
930

931
		switch (__isolate_lru_page(page, mode, file)) {
A
Andy Whitcroft 已提交
932 933
		case 0:
			list_move(&page->lru, dst);
934
			mem_cgroup_del_lru(page);
935
			nr_taken++;
A
Andy Whitcroft 已提交
936 937 938 939 940
			break;

		case -EBUSY:
			/* else it is being freed elsewhere */
			list_move(&page->lru, src);
941
			mem_cgroup_rotate_lru_list(page, page_lru(page));
A
Andy Whitcroft 已提交
942
			continue;
943

A
Andy Whitcroft 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
		default:
			BUG();
		}

		if (!order)
			continue;

		/*
		 * Attempt to take all pages in the order aligned region
		 * surrounding the tag page.  Only take those pages of
		 * the same active state as that tag page.  We may safely
		 * round the target page pfn down to the requested order
		 * as the mem_map is guarenteed valid out to MAX_ORDER,
		 * where that page is in a different zone we will detect
		 * it from its zone id and abort this block scan.
		 */
		zone_id = page_zone_id(page);
		page_pfn = page_to_pfn(page);
		pfn = page_pfn & ~((1 << order) - 1);
		end_pfn = pfn + (1 << order);
		for (; pfn < end_pfn; pfn++) {
			struct page *cursor_page;

			/* The target page is in the block, ignore it. */
			if (unlikely(pfn == page_pfn))
				continue;

			/* Avoid holes within the zone. */
			if (unlikely(!pfn_valid_within(pfn)))
				break;

			cursor_page = pfn_to_page(pfn);
976

A
Andy Whitcroft 已提交
977 978 979
			/* Check that we have not crossed a zone boundary. */
			if (unlikely(page_zone_id(cursor_page) != zone_id))
				continue;
980 981 982 983 984 985 986 987 988 989

			/*
			 * If we don't have enough swap space, reclaiming of
			 * anon page which don't already have a swap slot is
			 * pointless.
			 */
			if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
					!PageSwapCache(cursor_page))
				continue;

990
			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
A
Andy Whitcroft 已提交
991
				list_move(&cursor_page->lru, dst);
992
				mem_cgroup_del_lru(cursor_page);
A
Andy Whitcroft 已提交
993 994 995 996
				nr_taken++;
				scan++;
			}
		}
L
Linus Torvalds 已提交
997 998 999 1000 1001 1002
	}

	*scanned = scan;
	return nr_taken;
}

1003 1004 1005 1006
static unsigned long isolate_pages_global(unsigned long nr,
					struct list_head *dst,
					unsigned long *scanned, int order,
					int mode, struct zone *z,
1007
					int active, int file)
1008
{
1009
	int lru = LRU_BASE;
1010
	if (active)
1011 1012 1013 1014
		lru += LRU_ACTIVE;
	if (file)
		lru += LRU_FILE;
	return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1015
								mode, file);
1016 1017
}

A
Andy Whitcroft 已提交
1018 1019 1020 1021
/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
1022 1023
static unsigned long clear_active_flags(struct list_head *page_list,
					unsigned int *count)
A
Andy Whitcroft 已提交
1024 1025
{
	int nr_active = 0;
1026
	int lru;
A
Andy Whitcroft 已提交
1027 1028
	struct page *page;

1029
	list_for_each_entry(page, page_list, lru) {
1030
		lru = page_lru_base_type(page);
A
Andy Whitcroft 已提交
1031
		if (PageActive(page)) {
1032
			lru += LRU_ACTIVE;
A
Andy Whitcroft 已提交
1033 1034 1035
			ClearPageActive(page);
			nr_active++;
		}
1036 1037
		count[lru]++;
	}
A
Andy Whitcroft 已提交
1038 1039 1040 1041

	return nr_active;
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/**
 * isolate_lru_page - tries to isolate a page from its LRU list
 * @page: page to isolate from its LRU list
 *
 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
 * vmstat statistic corresponding to whatever LRU list the page was on.
 *
 * Returns 0 if the page was removed from an LRU list.
 * Returns -EBUSY if the page was not on an LRU list.
 *
 * The returned page will have PageLRU() cleared.  If it was found on
L
Lee Schermerhorn 已提交
1053 1054 1055
 * the active list, it will have PageActive set.  If it was found on
 * the unevictable list, it will have the PageUnevictable bit set. That flag
 * may need to be cleared by the caller before letting the page go.
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
 *
 * The vmstat statistic corresponding to the list on which the page was
 * found will be decremented.
 *
 * Restrictions:
 * (1) Must be called with an elevated refcount on the page. This is a
 *     fundamentnal difference from isolate_lru_pages (which is called
 *     without a stable reference).
 * (2) the lru_lock must not be held.
 * (3) interrupts must be enabled.
 */
int isolate_lru_page(struct page *page)
{
	int ret = -EBUSY;

	if (PageLRU(page)) {
		struct zone *zone = page_zone(page);

		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page) && get_page_unless_zero(page)) {
L
Lee Schermerhorn 已提交
1076
			int lru = page_lru(page);
1077 1078
			ret = 0;
			ClearPageLRU(page);
1079 1080

			del_page_from_lru_list(zone, page, lru);
1081 1082 1083 1084 1085 1086
		}
		spin_unlock_irq(&zone->lru_lock);
	}
	return ret;
}

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/*
 * Are there way too many processes in the direct reclaim path already?
 */
static int too_many_isolated(struct zone *zone, int file,
		struct scan_control *sc)
{
	unsigned long inactive, isolated;

	if (current_is_kswapd())
		return 0;

	if (!scanning_global_lru(sc))
		return 0;

	if (file) {
		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
	} else {
		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
	}

	return isolated > inactive;
}

L
Linus Torvalds 已提交
1112
/*
A
Andrew Morton 已提交
1113 1114
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
L
Linus Torvalds 已提交
1115
 */
A
Andrew Morton 已提交
1116
static unsigned long shrink_inactive_list(unsigned long max_scan,
R
Rik van Riel 已提交
1117 1118
			struct zone *zone, struct scan_control *sc,
			int priority, int file)
L
Linus Torvalds 已提交
1119 1120 1121
{
	LIST_HEAD(page_list);
	struct pagevec pvec;
1122
	unsigned long nr_scanned = 0;
1123
	unsigned long nr_reclaimed = 0;
1124
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1125

1126
	while (unlikely(too_many_isolated(zone, file, sc))) {
1127
		congestion_wait(BLK_RW_ASYNC, HZ/10);
1128 1129 1130 1131 1132 1133

		/* We are about to die and free our memory. Return now. */
		if (fatal_signal_pending(current))
			return SWAP_CLUSTER_MAX;
	}

L
Linus Torvalds 已提交
1134 1135 1136 1137 1138

	pagevec_init(&pvec, 1);

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1139
	do {
L
Linus Torvalds 已提交
1140
		struct page *page;
1141 1142 1143
		unsigned long nr_taken;
		unsigned long nr_scan;
		unsigned long nr_freed;
A
Andy Whitcroft 已提交
1144
		unsigned long nr_active;
1145
		unsigned int count[NR_LRU_LISTS] = { 0, };
1146
		int mode = sc->lumpy_reclaim_mode ? ISOLATE_BOTH : ISOLATE_INACTIVE;
K
KOSAKI Motohiro 已提交
1147 1148
		unsigned long nr_anon;
		unsigned long nr_file;
L
Linus Torvalds 已提交
1149

1150
		if (scanning_global_lru(sc)) {
1151 1152 1153 1154
			nr_taken = isolate_pages_global(SWAP_CLUSTER_MAX,
							&page_list, &nr_scan,
							sc->order, mode,
							zone, 0, file);
1155 1156 1157 1158 1159 1160 1161
			zone->pages_scanned += nr_scan;
			if (current_is_kswapd())
				__count_zone_vm_events(PGSCAN_KSWAPD, zone,
						       nr_scan);
			else
				__count_zone_vm_events(PGSCAN_DIRECT, zone,
						       nr_scan);
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		} else {
			nr_taken = mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX,
							&page_list, &nr_scan,
							sc->order, mode,
							zone, sc->mem_cgroup,
							0, file);
			/*
			 * mem_cgroup_isolate_pages() keeps track of
			 * scanned pages on its own.
			 */
1172 1173 1174 1175 1176
		}

		if (nr_taken == 0)
			goto done;

1177
		nr_active = clear_active_flags(&page_list, count);
1178
		__count_vm_events(PGDEACTIVATE, nr_active);
A
Andy Whitcroft 已提交
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188
		__mod_zone_page_state(zone, NR_ACTIVE_FILE,
						-count[LRU_ACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_INACTIVE_FILE,
						-count[LRU_INACTIVE_FILE]);
		__mod_zone_page_state(zone, NR_ACTIVE_ANON,
						-count[LRU_ACTIVE_ANON]);
		__mod_zone_page_state(zone, NR_INACTIVE_ANON,
						-count[LRU_INACTIVE_ANON]);

K
KOSAKI Motohiro 已提交
1189 1190 1191 1192
		nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
		nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
K
KOSAKI Motohiro 已提交
1193

H
Huang Shijie 已提交
1194 1195
		reclaim_stat->recent_scanned[0] += nr_anon;
		reclaim_stat->recent_scanned[1] += nr_file;
K
KOSAKI Motohiro 已提交
1196

L
Linus Torvalds 已提交
1197 1198
		spin_unlock_irq(&zone->lru_lock);

1199
		nr_scanned += nr_scan;
1200 1201 1202 1203 1204 1205 1206 1207 1208
		nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

		/*
		 * If we are direct reclaiming for contiguous pages and we do
		 * not reclaim everything in the list, try again and wait
		 * for IO to complete. This will stall high-order allocations
		 * but that should be acceptable to the caller
		 */
		if (nr_freed < nr_taken && !current_is_kswapd() &&
1209
		    sc->lumpy_reclaim_mode) {
1210
			congestion_wait(BLK_RW_ASYNC, HZ/10);
1211 1212 1213 1214 1215

			/*
			 * The attempt at page out may have made some
			 * of the pages active, mark them inactive again.
			 */
1216
			nr_active = clear_active_flags(&page_list, count);
1217 1218 1219 1220 1221 1222
			count_vm_events(PGDEACTIVATE, nr_active);

			nr_freed += shrink_page_list(&page_list, sc,
							PAGEOUT_IO_SYNC);
		}

1223
		nr_reclaimed += nr_freed;
1224

N
Nick Piggin 已提交
1225
		local_irq_disable();
1226
		if (current_is_kswapd())
1227
			__count_vm_events(KSWAPD_STEAL, nr_freed);
S
Shantanu Goel 已提交
1228
		__count_zone_vm_events(PGSTEAL, zone, nr_freed);
N
Nick Piggin 已提交
1229 1230

		spin_lock(&zone->lru_lock);
L
Linus Torvalds 已提交
1231 1232 1233 1234
		/*
		 * Put back any unfreeable pages.
		 */
		while (!list_empty(&page_list)) {
L
Lee Schermerhorn 已提交
1235
			int lru;
L
Linus Torvalds 已提交
1236
			page = lru_to_page(&page_list);
N
Nick Piggin 已提交
1237
			VM_BUG_ON(PageLRU(page));
L
Linus Torvalds 已提交
1238
			list_del(&page->lru);
L
Lee Schermerhorn 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247
			if (unlikely(!page_evictable(page, NULL))) {
				spin_unlock_irq(&zone->lru_lock);
				putback_lru_page(page);
				spin_lock_irq(&zone->lru_lock);
				continue;
			}
			SetPageLRU(page);
			lru = page_lru(page);
			add_page_to_lru_list(zone, page, lru);
1248
			if (is_active_lru(lru)) {
1249
				int file = is_file_lru(lru);
1250
				reclaim_stat->recent_rotated[file]++;
1251
			}
L
Linus Torvalds 已提交
1252 1253 1254 1255 1256 1257
			if (!pagevec_add(&pvec, page)) {
				spin_unlock_irq(&zone->lru_lock);
				__pagevec_release(&pvec);
				spin_lock_irq(&zone->lru_lock);
			}
		}
K
KOSAKI Motohiro 已提交
1258 1259 1260
		__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
		__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);

1261
  	} while (nr_scanned < max_scan);
1262

L
Linus Torvalds 已提交
1263
done:
1264
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1265
	pagevec_release(&pvec);
1266
	return nr_reclaimed;
L
Linus Torvalds 已提交
1267 1268
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * We are about to scan this zone at a certain priority level.  If that priority
 * level is smaller (ie: more urgent) than the previous priority, then note
 * that priority level within the zone.  This is done so that when the next
 * process comes in to scan this zone, it will immediately start out at this
 * priority level rather than having to build up its own scanning priority.
 * Here, this priority affects only the reclaim-mapped threshold.
 */
static inline void note_zone_scanning_priority(struct zone *zone, int priority)
{
	if (priority < zone->prev_priority)
		zone->prev_priority = priority;
}

L
Linus Torvalds 已提交
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */
1300

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
static void move_active_pages_to_lru(struct zone *zone,
				     struct list_head *list,
				     enum lru_list lru)
{
	unsigned long pgmoved = 0;
	struct pagevec pvec;
	struct page *page;

	pagevec_init(&pvec, 1);

	while (!list_empty(list)) {
		page = lru_to_page(list);

		VM_BUG_ON(PageLRU(page));
		SetPageLRU(page);

		list_move(&page->lru, &zone->lru[lru].list);
		mem_cgroup_add_lru_list(page, lru);
		pgmoved++;

		if (!pagevec_add(&pvec, page) || list_empty(list)) {
			spin_unlock_irq(&zone->lru_lock);
			if (buffer_heads_over_limit)
				pagevec_strip(&pvec);
			__pagevec_release(&pvec);
			spin_lock_irq(&zone->lru_lock);
		}
	}
	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
	if (!is_active_lru(lru))
		__count_vm_events(PGDEACTIVATE, pgmoved);
}
1333

A
Andrew Morton 已提交
1334
static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1335
			struct scan_control *sc, int priority, int file)
L
Linus Torvalds 已提交
1336
{
1337
	unsigned long nr_taken;
1338
	unsigned long pgscanned;
1339
	unsigned long vm_flags;
L
Linus Torvalds 已提交
1340
	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1341
	LIST_HEAD(l_active);
1342
	LIST_HEAD(l_inactive);
L
Linus Torvalds 已提交
1343
	struct page *page;
1344
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1345
	unsigned long nr_rotated = 0;
L
Linus Torvalds 已提交
1346 1347 1348

	lru_add_drain();
	spin_lock_irq(&zone->lru_lock);
1349
	if (scanning_global_lru(sc)) {
1350 1351 1352 1353
		nr_taken = isolate_pages_global(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						1, file);
1354
		zone->pages_scanned += pgscanned;
1355 1356 1357 1358 1359 1360 1361 1362 1363
	} else {
		nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
						&pgscanned, sc->order,
						ISOLATE_ACTIVE, zone,
						sc->mem_cgroup, 1, file);
		/*
		 * mem_cgroup_isolate_pages() keeps track of
		 * scanned pages on its own.
		 */
1364
	}
1365

1366
	reclaim_stat->recent_scanned[file] += nr_taken;
1367

1368
	__count_zone_vm_events(PGREFILL, zone, pgscanned);
1369
	if (file)
1370
		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1371
	else
1372
		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
K
KOSAKI Motohiro 已提交
1373
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
L
Linus Torvalds 已提交
1374 1375 1376 1377 1378 1379
	spin_unlock_irq(&zone->lru_lock);

	while (!list_empty(&l_hold)) {
		cond_resched();
		page = lru_to_page(&l_hold);
		list_del(&page->lru);
1380

L
Lee Schermerhorn 已提交
1381 1382 1383 1384 1385
		if (unlikely(!page_evictable(page, NULL))) {
			putback_lru_page(page);
			continue;
		}

1386
		if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1387
			nr_rotated++;
1388 1389 1390 1391 1392 1393 1394 1395 1396
			/*
			 * Identify referenced, file-backed active pages and
			 * give them one more trip around the active list. So
			 * that executable code get better chances to stay in
			 * memory under moderate memory pressure.  Anon pages
			 * are not likely to be evicted by use-once streaming
			 * IO, plus JVM can create lots of anon VM_EXEC pages,
			 * so we ignore them here.
			 */
1397
			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1398 1399 1400 1401
				list_add(&page->lru, &l_active);
				continue;
			}
		}
1402

1403
		ClearPageActive(page);	/* we are de-activating */
L
Linus Torvalds 已提交
1404 1405 1406
		list_add(&page->lru, &l_inactive);
	}

1407
	/*
1408
	 * Move pages back to the lru list.
1409
	 */
1410
	spin_lock_irq(&zone->lru_lock);
1411
	/*
1412 1413 1414 1415
	 * Count referenced pages from currently used mappings as rotated,
	 * even though only some of them are actually re-activated.  This
	 * helps balance scan pressure between file and anonymous pages in
	 * get_scan_ratio.
1416
	 */
1417
	reclaim_stat->recent_rotated[file] += nr_rotated;
1418

1419 1420 1421 1422
	move_active_pages_to_lru(zone, &l_active,
						LRU_ACTIVE + file * LRU_FILE);
	move_active_pages_to_lru(zone, &l_inactive,
						LRU_BASE   + file * LRU_FILE);
K
KOSAKI Motohiro 已提交
1423
	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1424
	spin_unlock_irq(&zone->lru_lock);
L
Linus Torvalds 已提交
1425 1426
}

1427
static int inactive_anon_is_low_global(struct zone *zone)
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_ANON);
	inactive = zone_page_state(zone, NR_INACTIVE_ANON);

	if (inactive * zone->inactive_ratio < active)
		return 1;

	return 0;
}

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
/**
 * inactive_anon_is_low - check if anonymous pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * Returns true if the zone does not have enough inactive anon pages,
 * meaning some active anon pages need to be deactivated.
 */
static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

1452
	if (scanning_global_lru(sc))
1453 1454
		low = inactive_anon_is_low_global(zone);
	else
1455
		low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
1456 1457 1458
	return low;
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
static int inactive_file_is_low_global(struct zone *zone)
{
	unsigned long active, inactive;

	active = zone_page_state(zone, NR_ACTIVE_FILE);
	inactive = zone_page_state(zone, NR_INACTIVE_FILE);

	return (active > inactive);
}

/**
 * inactive_file_is_low - check if file pages need to be deactivated
 * @zone: zone to check
 * @sc:   scan control of this context
 *
 * When the system is doing streaming IO, memory pressure here
 * ensures that active file pages get deactivated, until more
 * than half of the file pages are on the inactive list.
 *
 * Once we get to that situation, protect the system's working
 * set from being evicted by disabling active file page aging.
 *
 * This uses a different ratio than the anonymous pages, because
 * the page cache uses a use-once replacement algorithm.
 */
static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
{
	int low;

	if (scanning_global_lru(sc))
		low = inactive_file_is_low_global(zone);
	else
		low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
	return low;
}

1495 1496 1497 1498 1499 1500 1501 1502 1503
static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
				int file)
{
	if (file)
		return inactive_file_is_low(zone, sc);
	else
		return inactive_anon_is_low(zone, sc);
}

1504
static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1505 1506
	struct zone *zone, struct scan_control *sc, int priority)
{
1507 1508
	int file = is_file_lru(lru);

1509 1510 1511
	if (is_active_lru(lru)) {
		if (inactive_list_is_low(zone, sc, file))
		    shrink_active_list(nr_to_scan, zone, sc, priority, file);
1512 1513 1514
		return 0;
	}

R
Rik van Riel 已提交
1515
	return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1516 1517
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
/*
 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
 * until we collected @swap_cluster_max pages to scan.
 */
static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
				       unsigned long *nr_saved_scan)
{
	unsigned long nr;

	*nr_saved_scan += nr_to_scan;
	nr = *nr_saved_scan;

	if (nr >= SWAP_CLUSTER_MAX)
		*nr_saved_scan = 0;
	else
		nr = 0;

	return nr;
}

1538 1539 1540 1541 1542 1543
/*
 * Determine how aggressively the anon and file LRU lists should be
 * scanned.  The relative value of each set of LRU lists is determined
 * by looking at the fraction of the pages scanned we did rotate back
 * onto the active list instead of evict.
 *
1544
 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1545
 */
1546 1547
static void get_scan_count(struct zone *zone, struct scan_control *sc,
					unsigned long *nr, int priority)
1548 1549 1550 1551
{
	unsigned long anon, file, free;
	unsigned long anon_prio, file_prio;
	unsigned long ap, fp;
1552
	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	u64 fraction[2], denominator;
	enum lru_list l;
	int noswap = 0;

	/* If we have no swap space, do not bother scanning anon pages. */
	if (!sc->may_swap || (nr_swap_pages <= 0)) {
		noswap = 1;
		fraction[0] = 0;
		fraction[1] = 1;
		denominator = 1;
		goto out;
	}
1565

1566 1567 1568 1569
	anon  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
	file  = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
		zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1570

1571
	if (scanning_global_lru(sc)) {
1572 1573 1574
		free  = zone_page_state(zone, NR_FREE_PAGES);
		/* If we have very few page cache pages,
		   force-scan anon pages. */
1575
		if (unlikely(file + free <= high_wmark_pages(zone))) {
1576 1577 1578 1579
			fraction[0] = 1;
			fraction[1] = 0;
			denominator = 1;
			goto out;
1580
		}
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	}

	/*
	 * OK, so we have swap space and a fair amount of page cache
	 * pages.  We use the recently rotated / recently scanned
	 * ratios to determine how valuable each cache is.
	 *
	 * Because workloads change over time (and to avoid overflow)
	 * we keep these statistics as a floating average, which ends
	 * up weighing recent references more than old ones.
	 *
	 * anon in [0], file in [1]
	 */
1594
	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1595
		spin_lock_irq(&zone->lru_lock);
1596 1597
		reclaim_stat->recent_scanned[0] /= 2;
		reclaim_stat->recent_rotated[0] /= 2;
1598 1599 1600
		spin_unlock_irq(&zone->lru_lock);
	}

1601
	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1602
		spin_lock_irq(&zone->lru_lock);
1603 1604
		reclaim_stat->recent_scanned[1] /= 2;
		reclaim_stat->recent_rotated[1] /= 2;
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
		spin_unlock_irq(&zone->lru_lock);
	}

	/*
	 * With swappiness at 100, anonymous and file have the same priority.
	 * This scanning priority is essentially the inverse of IO cost.
	 */
	anon_prio = sc->swappiness;
	file_prio = 200 - sc->swappiness;

	/*
1616 1617 1618
	 * The amount of pressure on anon vs file pages is inversely
	 * proportional to the fraction of recently scanned pages on
	 * each list that were recently referenced and in active use.
1619
	 */
1620 1621
	ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
	ap /= reclaim_stat->recent_rotated[0] + 1;
1622

1623 1624
	fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
	fp /= reclaim_stat->recent_rotated[1] + 1;
1625

1626 1627 1628 1629 1630 1631 1632
	fraction[0] = ap;
	fraction[1] = fp;
	denominator = ap + fp + 1;
out:
	for_each_evictable_lru(l) {
		int file = is_file_lru(l);
		unsigned long scan;
1633

1634 1635 1636 1637 1638 1639 1640 1641
		scan = zone_nr_lru_pages(zone, sc, l);
		if (priority || noswap) {
			scan >>= priority;
			scan = div64_u64(scan * fraction[file], denominator);
		}
		nr[l] = nr_scan_try_batch(scan,
					  &reclaim_stat->nr_saved_scan[l]);
	}
1642
}
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
{
	/*
	 * If we need a large contiguous chunk of memory, or have
	 * trouble getting a small set of contiguous pages, we
	 * will reclaim both active and inactive pages.
	 */
	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
		sc->lumpy_reclaim_mode = 1;
	else if (sc->order && priority < DEF_PRIORITY - 2)
		sc->lumpy_reclaim_mode = 1;
	else
		sc->lumpy_reclaim_mode = 0;
}

L
Linus Torvalds 已提交
1659 1660 1661
/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
1662
static void shrink_zone(int priority, struct zone *zone,
1663
				struct scan_control *sc)
L
Linus Torvalds 已提交
1664
{
1665
	unsigned long nr[NR_LRU_LISTS];
1666
	unsigned long nr_to_scan;
1667
	enum lru_list l;
1668
	unsigned long nr_reclaimed = sc->nr_reclaimed;
1669
	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1670

1671
	get_scan_count(zone, sc, nr, priority);
L
Linus Torvalds 已提交
1672

1673 1674
	set_lumpy_reclaim_mode(priority, sc);

1675 1676
	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
					nr[LRU_INACTIVE_FILE]) {
L
Lee Schermerhorn 已提交
1677
		for_each_evictable_lru(l) {
1678
			if (nr[l]) {
K
KOSAKI Motohiro 已提交
1679 1680
				nr_to_scan = min_t(unsigned long,
						   nr[l], SWAP_CLUSTER_MAX);
1681
				nr[l] -= nr_to_scan;
L
Linus Torvalds 已提交
1682

1683 1684
				nr_reclaimed += shrink_list(l, nr_to_scan,
							    zone, sc, priority);
1685
			}
L
Linus Torvalds 已提交
1686
		}
1687 1688 1689 1690 1691 1692 1693 1694
		/*
		 * On large memory systems, scan >> priority can become
		 * really large. This is fine for the starting priority;
		 * we want to put equal scanning pressure on each zone.
		 * However, if the VM has a harder time of freeing pages,
		 * with multiple processes reclaiming pages, the total
		 * freeing target can get unreasonably large.
		 */
1695
		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1696
			break;
L
Linus Torvalds 已提交
1697 1698
	}

1699 1700
	sc->nr_reclaimed = nr_reclaimed;

1701 1702 1703 1704
	/*
	 * Even if we did not try to evict anon pages at all, we want to
	 * rebalance the anon lru active/inactive ratio.
	 */
1705
	if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
1706 1707
		shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);

1708
	throttle_vm_writeout(sc->gfp_mask);
L
Linus Torvalds 已提交
1709 1710 1711 1712 1713 1714 1715
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
1716 1717
 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
 * Because:
L
Linus Torvalds 已提交
1718 1719
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
1720 1721 1722
 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
 *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
 *    zone defense algorithm.
L
Linus Torvalds 已提交
1723 1724 1725 1726
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
1727
static bool shrink_zones(int priority, struct zonelist *zonelist,
1728
					struct scan_control *sc)
L
Linus Torvalds 已提交
1729
{
1730
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1731
	struct zoneref *z;
1732
	struct zone *zone;
1733
	bool all_unreclaimable = true;
1734

1735 1736
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
					sc->nodemask) {
1737
		if (!populated_zone(zone))
L
Linus Torvalds 已提交
1738
			continue;
1739 1740 1741 1742
		/*
		 * Take care memory controller reclaiming has small influence
		 * to global LRU.
		 */
1743
		if (scanning_global_lru(sc)) {
1744 1745 1746
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
			note_zone_scanning_priority(zone, priority);
L
Linus Torvalds 已提交
1747

1748
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1749 1750 1751 1752 1753 1754 1755 1756 1757
				continue;	/* Let kswapd poll it */
		} else {
			/*
			 * Ignore cpuset limitation here. We just want to reduce
			 * # of used pages by us regardless of memory shortage.
			 */
			mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
							priority);
		}
1758

1759
		shrink_zone(priority, zone, sc);
1760
		all_unreclaimable = false;
L
Linus Torvalds 已提交
1761
	}
1762
	return all_unreclaimable;
L
Linus Torvalds 已提交
1763
}
1764

L
Linus Torvalds 已提交
1765 1766 1767 1768 1769 1770 1771 1772
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
1773 1774 1775 1776
 * caller can't do much about.  We kick the writeback threads and take explicit
 * naps in the hope that some of these pages can be written.  But if the
 * allocating task holds filesystem locks which prevent writeout this might not
 * work, and the allocation attempt will fail.
1777 1778 1779
 *
 * returns:	0, if no pages reclaimed
 * 		else, the number of pages reclaimed
L
Linus Torvalds 已提交
1780
 */
1781
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
1782
					struct scan_control *sc)
L
Linus Torvalds 已提交
1783 1784
{
	int priority;
1785
	bool all_unreclaimable;
1786
	unsigned long total_scanned = 0;
L
Linus Torvalds 已提交
1787 1788
	struct reclaim_state *reclaim_state = current->reclaim_state;
	unsigned long lru_pages = 0;
1789
	struct zoneref *z;
1790
	struct zone *zone;
1791
	enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
1792
	unsigned long writeback_threshold;
L
Linus Torvalds 已提交
1793

1794
	get_mems_allowed();
1795 1796
	delayacct_freepages_start();

1797
	if (scanning_global_lru(sc))
1798 1799 1800 1801
		count_vm_event(ALLOCSTALL);
	/*
	 * mem_cgroup will not do shrink_slab.
	 */
1802
	if (scanning_global_lru(sc)) {
1803
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
L
Linus Torvalds 已提交
1804

1805 1806
			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;
L
Linus Torvalds 已提交
1807

1808
			lru_pages += zone_reclaimable_pages(zone);
1809
		}
L
Linus Torvalds 已提交
1810 1811 1812
	}

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1813
		sc->nr_scanned = 0;
1814 1815
		if (!priority)
			disable_swap_token();
1816
		all_unreclaimable = shrink_zones(priority, zonelist, sc);
1817 1818 1819 1820
		/*
		 * Don't shrink slabs when reclaiming memory from
		 * over limit cgroups
		 */
1821
		if (scanning_global_lru(sc)) {
1822
			shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
1823
			if (reclaim_state) {
1824
				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
1825 1826
				reclaim_state->reclaimed_slab = 0;
			}
L
Linus Torvalds 已提交
1827
		}
1828
		total_scanned += sc->nr_scanned;
1829
		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835 1836 1837 1838
			goto out;

		/*
		 * Try to write back as many pages as we just scanned.  This
		 * tends to cause slow streaming writers to write data to the
		 * disk smoothly, at the dirtying rate, which is nice.   But
		 * that's undesirable in laptop mode, where we *want* lumpy
		 * writeout.  So in laptop mode, write out the whole world.
		 */
1839 1840
		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
		if (total_scanned > writeback_threshold) {
1841
			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
1842
			sc->may_writepage = 1;
L
Linus Torvalds 已提交
1843 1844 1845
		}

		/* Take a nap, wait for some writeback to complete */
1846 1847
		if (!sc->hibernation_mode && sc->nr_scanned &&
		    priority < DEF_PRIORITY - 2)
1848
			congestion_wait(BLK_RW_ASYNC, HZ/10);
L
Linus Torvalds 已提交
1849
	}
1850

L
Linus Torvalds 已提交
1851
out:
1852 1853 1854 1855 1856 1857 1858 1859 1860
	/*
	 * Now that we've scanned all the zones at this priority level, note
	 * that level within the zone so that the next thread which performs
	 * scanning of this zone will immediately start out at this priority
	 * level.  This affects only the decision whether or not to bring
	 * mapped pages onto the inactive list.
	 */
	if (priority < 0)
		priority = 0;
L
Linus Torvalds 已提交
1861

1862
	if (scanning_global_lru(sc)) {
1863
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1864 1865 1866 1867 1868 1869 1870 1871

			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
				continue;

			zone->prev_priority = priority;
		}
	} else
		mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
L
Linus Torvalds 已提交
1872

1873
	delayacct_freepages_end();
1874
	put_mems_allowed();
1875

1876 1877 1878 1879 1880 1881 1882 1883
	if (sc->nr_reclaimed)
		return sc->nr_reclaimed;

	/* top priority shrink_zones still had more to do? don't OOM, then */
	if (scanning_global_lru(sc) && !all_unreclaimable)
		return 1;

	return 0;
L
Linus Torvalds 已提交
1884 1885
}

1886
unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
1887
				gfp_t gfp_mask, nodemask_t *nodemask)
1888 1889 1890 1891
{
	struct scan_control sc = {
		.gfp_mask = gfp_mask,
		.may_writepage = !laptop_mode,
1892
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
1893
		.may_unmap = 1,
1894
		.may_swap = 1,
1895 1896 1897
		.swappiness = vm_swappiness,
		.order = order,
		.mem_cgroup = NULL,
1898
		.nodemask = nodemask,
1899 1900
	};

1901
	return do_try_to_free_pages(zonelist, &sc);
1902 1903
}

1904
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
						gfp_t gfp_mask, bool noswap,
						unsigned int swappiness,
						struct zone *zone, int nid)
{
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_swap = !noswap,
		.swappiness = swappiness,
		.order = 0,
		.mem_cgroup = mem,
	};
	nodemask_t nm  = nodemask_of_node(nid);

	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	sc.nodemask = &nm;
	sc.nr_reclaimed = 0;
	sc.nr_scanned = 0;
	/*
	 * NOTE: Although we can get the priority field, using it
	 * here is not a good idea, since it limits the pages we can scan.
	 * if we don't reclaim here, the shrink_zone from balance_pgdat
	 * will pick up pages from other mem cgroup's as well. We hack
	 * the priority and make it zero.
	 */
	shrink_zone(0, zone, &sc);
	return sc.nr_reclaimed;
}

1937
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
K
KOSAKI Motohiro 已提交
1938 1939 1940
					   gfp_t gfp_mask,
					   bool noswap,
					   unsigned int swappiness)
1941
{
1942
	struct zonelist *zonelist;
1943 1944
	struct scan_control sc = {
		.may_writepage = !laptop_mode,
1945
		.may_unmap = 1,
1946
		.may_swap = !noswap,
1947
		.nr_to_reclaim = SWAP_CLUSTER_MAX,
K
KOSAKI Motohiro 已提交
1948
		.swappiness = swappiness,
1949 1950
		.order = 0,
		.mem_cgroup = mem_cont,
1951
		.nodemask = NULL, /* we don't care the placement */
1952 1953
	};

1954 1955 1956 1957
	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
	zonelist = NODE_DATA(numa_node_id())->node_zonelists;
	return do_try_to_free_pages(zonelist, &sc);
1958 1959 1960
}
#endif

1961
/* is kswapd sleeping prematurely? */
1962
static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
1963
{
1964
	int i;
1965 1966 1967 1968 1969 1970

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
		return 1;

	/* If after HZ/10, a zone is below the high mark, it's premature */
1971 1972 1973 1974 1975 1976
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

1977
		if (zone->all_unreclaimable)
1978 1979
			continue;

1980 1981 1982
		if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
								0, 0))
			return 1;
1983
	}
1984 1985 1986 1987

	return 0;
}

L
Linus Torvalds 已提交
1988 1989
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
1990
 * they are all at high_wmark_pages(zone).
L
Linus Torvalds 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2003 2004 2005 2006 2007
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * lower zones regardless of the number of free pages in the lower zones. This
 * interoperates with the page allocator fallback scheme to ensure that aging
 * of pages is balanced across the zones.
L
Linus Torvalds 已提交
2008
 */
2009
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
L
Linus Torvalds 已提交
2010 2011 2012 2013
{
	int all_zones_ok;
	int priority;
	int i;
2014
	unsigned long total_scanned;
L
Linus Torvalds 已提交
2015
	struct reclaim_state *reclaim_state = current->reclaim_state;
2016 2017
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
2018
		.may_unmap = 1,
2019
		.may_swap = 1,
2020 2021 2022 2023 2024
		/*
		 * kswapd doesn't want to be bailed out while reclaim. because
		 * we want to put equal scanning pressure on each zone.
		 */
		.nr_to_reclaim = ULONG_MAX,
2025
		.swappiness = vm_swappiness,
A
Andy Whitcroft 已提交
2026
		.order = order,
2027
		.mem_cgroup = NULL,
2028
	};
2029 2030
	/*
	 * temp_priority is used to remember the scanning priority at which
2031 2032
	 * this zone was successfully refilled to
	 * free_pages == high_wmark_pages(zone).
2033 2034
	 */
	int temp_priority[MAX_NR_ZONES];
L
Linus Torvalds 已提交
2035 2036 2037

loop_again:
	total_scanned = 0;
2038
	sc.nr_reclaimed = 0;
C
Christoph Lameter 已提交
2039
	sc.may_writepage = !laptop_mode;
2040
	count_vm_event(PAGEOUTRUN);
L
Linus Torvalds 已提交
2041

2042 2043
	for (i = 0; i < pgdat->nr_zones; i++)
		temp_priority[i] = DEF_PRIORITY;
L
Linus Torvalds 已提交
2044 2045 2046 2047

	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
		int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
		unsigned long lru_pages = 0;
2048
		int has_under_min_watermark_zone = 0;
L
Linus Torvalds 已提交
2049

2050 2051 2052 2053
		/* The swap token gets in the way of swapout... */
		if (!priority)
			disable_swap_token();

L
Linus Torvalds 已提交
2054 2055
		all_zones_ok = 1;

2056 2057 2058 2059 2060 2061
		/*
		 * Scan in the highmem->dma direction for the highest
		 * zone which needs scanning
		 */
		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
L
Linus Torvalds 已提交
2062

2063 2064
			if (!populated_zone(zone))
				continue;
L
Linus Torvalds 已提交
2065

2066
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2067
				continue;
L
Linus Torvalds 已提交
2068

2069 2070 2071 2072
			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
2073
			if (inactive_anon_is_low(zone, &sc))
2074 2075 2076
				shrink_active_list(SWAP_CLUSTER_MAX, zone,
							&sc, priority, 0);

2077 2078
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), 0, 0)) {
2079
				end_zone = i;
A
Andrew Morton 已提交
2080
				break;
L
Linus Torvalds 已提交
2081 2082
			}
		}
A
Andrew Morton 已提交
2083 2084 2085
		if (i < 0)
			goto out;

L
Linus Torvalds 已提交
2086 2087 2088
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;

2089
			lru_pages += zone_reclaimable_pages(zone);
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
		}

		/*
		 * Now scan the zone in the dma->highmem direction, stopping
		 * at the last zone which needs scanning.
		 *
		 * We do this because the page allocator works in the opposite
		 * direction.  This prevents the page allocator from allocating
		 * pages behind kswapd's direction of progress, which would
		 * cause too much scanning of the lower zones.
		 */
		for (i = 0; i <= end_zone; i++) {
			struct zone *zone = pgdat->node_zones + i;
2103
			int nr_slab;
2104
			int nid, zid;
L
Linus Torvalds 已提交
2105

2106
			if (!populated_zone(zone))
L
Linus Torvalds 已提交
2107 2108
				continue;

2109
			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
L
Linus Torvalds 已提交
2110 2111
				continue;

2112
			temp_priority[i] = priority;
L
Linus Torvalds 已提交
2113
			sc.nr_scanned = 0;
2114
			note_zone_scanning_priority(zone, priority);
2115 2116 2117 2118 2119 2120 2121 2122 2123

			nid = pgdat->node_id;
			zid = zone_idx(zone);
			/*
			 * Call soft limit reclaim before calling shrink_zone.
			 * For now we ignore the return value
			 */
			mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
							nid, zid);
2124 2125 2126 2127
			/*
			 * We put equal pressure on every zone, unless one
			 * zone has way too many pages free already.
			 */
2128 2129
			if (!zone_watermark_ok(zone, order,
					8*high_wmark_pages(zone), end_zone, 0))
2130
				shrink_zone(priority, zone, &sc);
L
Linus Torvalds 已提交
2131
			reclaim_state->reclaimed_slab = 0;
2132 2133
			nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
						lru_pages);
2134
			sc.nr_reclaimed += reclaim_state->reclaimed_slab;
L
Linus Torvalds 已提交
2135
			total_scanned += sc.nr_scanned;
2136
			if (zone->all_unreclaimable)
L
Linus Torvalds 已提交
2137
				continue;
2138 2139 2140
			if (nr_slab == 0 &&
			    zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
				zone->all_unreclaimable = 1;
L
Linus Torvalds 已提交
2141 2142 2143 2144 2145 2146
			/*
			 * If we've done a decent amount of scanning and
			 * the reclaim ratio is low, start doing writepage
			 * even in laptop mode
			 */
			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2147
			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
L
Linus Torvalds 已提交
2148
				sc.may_writepage = 1;
2149

2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
			if (!zone_watermark_ok(zone, order,
					high_wmark_pages(zone), end_zone, 0)) {
				all_zones_ok = 0;
				/*
				 * We are still under min water mark.  This
				 * means that we have a GFP_ATOMIC allocation
				 * failure risk. Hurry up!
				 */
				if (!zone_watermark_ok(zone, order,
					    min_wmark_pages(zone), end_zone, 0))
					has_under_min_watermark_zone = 1;
			}
2162

L
Linus Torvalds 已提交
2163 2164 2165 2166 2167 2168 2169
		}
		if (all_zones_ok)
			break;		/* kswapd: all done */
		/*
		 * OK, kswapd is getting into trouble.  Take a nap, then take
		 * another pass across the zones.
		 */
2170 2171 2172 2173 2174 2175
		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
			if (has_under_min_watermark_zone)
				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
			else
				congestion_wait(BLK_RW_ASYNC, HZ/10);
		}
L
Linus Torvalds 已提交
2176 2177 2178 2179 2180 2181 2182

		/*
		 * We do this so kswapd doesn't build up large priorities for
		 * example when it is freeing in parallel with allocators. It
		 * matches the direct reclaim path behaviour in terms of impact
		 * on zone->*_priority.
		 */
2183
		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
L
Linus Torvalds 已提交
2184 2185 2186
			break;
	}
out:
2187 2188 2189 2190 2191
	/*
	 * Note within each zone the priority level at which this zone was
	 * brought into a happy state.  So that the next thread which scans this
	 * zone will start out at that priority level.
	 */
L
Linus Torvalds 已提交
2192 2193 2194
	for (i = 0; i < pgdat->nr_zones; i++) {
		struct zone *zone = pgdat->node_zones + i;

2195
		zone->prev_priority = temp_priority[i];
L
Linus Torvalds 已提交
2196 2197 2198
	}
	if (!all_zones_ok) {
		cond_resched();
2199 2200 2201

		try_to_freeze();

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		/*
		 * Fragmentation may mean that the system cannot be
		 * rebalanced for high-order allocations in all zones.
		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
		 * it means the zones have been fully scanned and are still
		 * not balanced. For high-order allocations, there is
		 * little point trying all over again as kswapd may
		 * infinite loop.
		 *
		 * Instead, recheck all watermarks at order-0 as they
		 * are the most important. If watermarks are ok, kswapd will go
		 * back to sleep. High-order users can still perform direct
		 * reclaim if they wish.
		 */
		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
			order = sc.order = 0;

L
Linus Torvalds 已提交
2219 2220 2221
		goto loop_again;
	}

2222
	return sc.nr_reclaimed;
L
Linus Torvalds 已提交
2223 2224 2225 2226
}

/*
 * The background pageout daemon, started as a kernel thread
2227
 * from the init process.
L
Linus Torvalds 已提交
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
	unsigned long order;
	pg_data_t *pgdat = (pg_data_t*)p;
	struct task_struct *tsk = current;
	DEFINE_WAIT(wait);
	struct reclaim_state reclaim_state = {
		.reclaimed_slab = 0,
	};
2247
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
L
Linus Torvalds 已提交
2248

2249 2250
	lockdep_set_current_reclaim_state(GFP_KERNEL);

R
Rusty Russell 已提交
2251
	if (!cpumask_empty(cpumask))
2252
		set_cpus_allowed_ptr(tsk, cpumask);
L
Linus Torvalds 已提交
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	current->reclaim_state = &reclaim_state;

	/*
	 * Tell the memory management that we're a "memory allocator",
	 * and that if we need more memory we should get access to it
	 * regardless (see "__alloc_pages()"). "kswapd" should
	 * never get caught in the normal page freeing logic.
	 *
	 * (Kswapd normally doesn't need memory anyway, but sometimes
	 * you need a small amount of memory in order to be able to
	 * page out something else, and this flag essentially protects
	 * us from recursively trying to free more memory as we're
	 * trying to free the first piece of memory in the first place).
	 */
2267
	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2268
	set_freezable();
L
Linus Torvalds 已提交
2269 2270 2271 2272

	order = 0;
	for ( ; ; ) {
		unsigned long new_order;
2273
		int ret;
2274

L
Linus Torvalds 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
		new_order = pgdat->kswapd_max_order;
		pgdat->kswapd_max_order = 0;
		if (order < new_order) {
			/*
			 * Don't sleep if someone wants a larger 'order'
			 * allocation
			 */
			order = new_order;
		} else {
2285 2286 2287 2288
			if (!freezing(current) && !kthread_should_stop()) {
				long remaining = 0;

				/* Try to sleep for a short interval */
2289
				if (!sleeping_prematurely(pgdat, order, remaining)) {
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
					remaining = schedule_timeout(HZ/10);
					finish_wait(&pgdat->kswapd_wait, &wait);
					prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
				}

				/*
				 * After a short sleep, check if it was a
				 * premature sleep. If not, then go fully
				 * to sleep until explicitly woken up
				 */
2300
				if (!sleeping_prematurely(pgdat, order, remaining))
2301 2302 2303
					schedule();
				else {
					if (remaining)
2304
						count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2305
					else
2306
						count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2307 2308
				}
			}
2309

L
Linus Torvalds 已提交
2310 2311 2312 2313
			order = pgdat->kswapd_max_order;
		}
		finish_wait(&pgdat->kswapd_wait, &wait);

2314 2315 2316 2317 2318 2319 2320 2321 2322
		ret = try_to_freeze();
		if (kthread_should_stop())
			break;

		/*
		 * We can speed up thawing tasks if we don't call balance_pgdat
		 * after returning from the refrigerator
		 */
		if (!ret)
2323
			balance_pgdat(pgdat, order);
L
Linus Torvalds 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
	}
	return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
	pg_data_t *pgdat;

2335
	if (!populated_zone(zone))
L
Linus Torvalds 已提交
2336 2337 2338
		return;

	pgdat = zone->zone_pgdat;
2339
	if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
L
Linus Torvalds 已提交
2340 2341 2342
		return;
	if (pgdat->kswapd_max_order < order)
		pgdat->kswapd_max_order = order;
2343
	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
L
Linus Torvalds 已提交
2344
		return;
2345
	if (!waitqueue_active(&pgdat->kswapd_wait))
L
Linus Torvalds 已提交
2346
		return;
2347
	wake_up_interruptible(&pgdat->kswapd_wait);
L
Linus Torvalds 已提交
2348 2349
}

2350 2351 2352 2353 2354 2355 2356 2357
/*
 * The reclaimable count would be mostly accurate.
 * The less reclaimable pages may be
 * - mlocked pages, which will be moved to unevictable list when encountered
 * - mapped pages, which may require several travels to be reclaimed
 * - dirty pages, which is not "instantly" reclaimable
 */
unsigned long global_reclaimable_pages(void)
2358
{
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	int nr;

	nr = global_page_state(NR_ACTIVE_FILE) +
	     global_page_state(NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += global_page_state(NR_ACTIVE_ANON) +
		      global_page_state(NR_INACTIVE_ANON);

	return nr;
}

unsigned long zone_reclaimable_pages(struct zone *zone)
{
	int nr;

	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
	     zone_page_state(zone, NR_INACTIVE_FILE);

	if (nr_swap_pages > 0)
		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
		      zone_page_state(zone, NR_INACTIVE_ANON);

	return nr;
2383 2384
}

2385
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2386
/*
2387
 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2388 2389 2390 2391 2392
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
L
Linus Torvalds 已提交
2393
 */
2394
unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
L
Linus Torvalds 已提交
2395
{
2396 2397
	struct reclaim_state reclaim_state;
	struct scan_control sc = {
2398 2399 2400
		.gfp_mask = GFP_HIGHUSER_MOVABLE,
		.may_swap = 1,
		.may_unmap = 1,
2401
		.may_writepage = 1,
2402 2403 2404 2405
		.nr_to_reclaim = nr_to_reclaim,
		.hibernation_mode = 1,
		.swappiness = vm_swappiness,
		.order = 0,
L
Linus Torvalds 已提交
2406
	};
2407 2408 2409
	struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
	struct task_struct *p = current;
	unsigned long nr_reclaimed;
L
Linus Torvalds 已提交
2410

2411 2412 2413 2414
	p->flags |= PF_MEMALLOC;
	lockdep_set_current_reclaim_state(sc.gfp_mask);
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2415

2416
	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2417

2418 2419 2420
	p->reclaim_state = NULL;
	lockdep_clear_current_reclaim_state();
	p->flags &= ~PF_MEMALLOC;
2421

2422
	return nr_reclaimed;
L
Linus Torvalds 已提交
2423
}
2424
#endif /* CONFIG_HIBERNATION */
L
Linus Torvalds 已提交
2425 2426 2427 2428 2429

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
2430
static int __devinit cpu_callback(struct notifier_block *nfb,
2431
				  unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
2432
{
2433
	int nid;
L
Linus Torvalds 已提交
2434

2435
	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
2436
		for_each_node_state(nid, N_HIGH_MEMORY) {
2437
			pg_data_t *pgdat = NODE_DATA(nid);
2438 2439 2440
			const struct cpumask *mask;

			mask = cpumask_of_node(pgdat->node_id);
2441

2442
			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
L
Linus Torvalds 已提交
2443
				/* One of our CPUs online: restore mask */
2444
				set_cpus_allowed_ptr(pgdat->kswapd, mask);
L
Linus Torvalds 已提交
2445 2446 2447 2448 2449
		}
	}
	return NOTIFY_OK;
}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
	pg_data_t *pgdat = NODE_DATA(nid);
	int ret = 0;

	if (pgdat->kswapd)
		return 0;

	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
	if (IS_ERR(pgdat->kswapd)) {
		/* failure at boot is fatal */
		BUG_ON(system_state == SYSTEM_BOOTING);
		printk("Failed to start kswapd on node %d\n",nid);
		ret = -1;
	}
	return ret;
}

2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
/*
 * Called by memory hotplug when all memory in a node is offlined.
 */
void kswapd_stop(int nid)
{
	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;

	if (kswapd)
		kthread_stop(kswapd);
}

L
Linus Torvalds 已提交
2483 2484
static int __init kswapd_init(void)
{
2485
	int nid;
2486

L
Linus Torvalds 已提交
2487
	swap_setup();
2488
	for_each_node_state(nid, N_HIGH_MEMORY)
2489
 		kswapd_run(nid);
L
Linus Torvalds 已提交
2490 2491 2492 2493 2494
	hotcpu_notifier(cpu_callback, 0);
	return 0;
}

module_init(kswapd_init)
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

2505
#define RECLAIM_OFF 0
2506
#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
2507 2508 2509
#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */

2510 2511 2512 2513 2514 2515 2516
/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

2517 2518 2519 2520 2521 2522
/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

2523 2524 2525 2526 2527 2528
/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
{
	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
		zone_page_state(zone, NR_ACTIVE_FILE);

	/*
	 * It's possible for there to be more file mapped pages than
	 * accounted for by the pages on the file LRU lists because
	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
	 */
	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
}

/* Work out how many page cache pages we can reclaim in this reclaim_mode */
static long zone_pagecache_reclaimable(struct zone *zone)
{
	long nr_pagecache_reclaimable;
	long delta = 0;

	/*
	 * If RECLAIM_SWAP is set, then all file pages are considered
	 * potentially reclaimable. Otherwise, we have to worry about
	 * pages like swapcache and zone_unmapped_file_pages() provides
	 * a better estimate
	 */
	if (zone_reclaim_mode & RECLAIM_SWAP)
		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
	else
		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);

	/* If we can't clean pages, remove dirty pages from consideration */
	if (!(zone_reclaim_mode & RECLAIM_WRITE))
		delta += zone_page_state(zone, NR_FILE_DIRTY);

	/* Watch for any possible underflows due to delta */
	if (unlikely(delta > nr_pagecache_reclaimable))
		delta = nr_pagecache_reclaimable;

	return nr_pagecache_reclaimable - delta;
}

2571 2572 2573
/*
 * Try to free up some pages from this zone through reclaim.
 */
2574
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2575
{
2576
	/* Minimum pages needed in order to stay on node */
2577
	const unsigned long nr_pages = 1 << order;
2578 2579
	struct task_struct *p = current;
	struct reclaim_state reclaim_state;
2580
	int priority;
2581 2582
	struct scan_control sc = {
		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
2583
		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2584
		.may_swap = 1,
2585 2586
		.nr_to_reclaim = max_t(unsigned long, nr_pages,
				       SWAP_CLUSTER_MAX),
2587
		.gfp_mask = gfp_mask,
2588
		.swappiness = vm_swappiness,
2589
		.order = order,
2590
	};
2591
	unsigned long slab_reclaimable;
2592 2593 2594

	disable_swap_token();
	cond_resched();
2595 2596 2597 2598 2599 2600
	/*
	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
	 * and we also need to be able to write out pages for RECLAIM_WRITE
	 * and RECLAIM_SWAP.
	 */
	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
2601
	lockdep_set_current_reclaim_state(gfp_mask);
2602 2603
	reclaim_state.reclaimed_slab = 0;
	p->reclaim_state = &reclaim_state;
2604

2605
	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
2606 2607 2608 2609 2610 2611
		/*
		 * Free memory by calling shrink zone with increasing
		 * priorities until we have enough memory freed.
		 */
		priority = ZONE_RECLAIM_PRIORITY;
		do {
2612
			note_zone_scanning_priority(zone, priority);
2613
			shrink_zone(priority, zone, &sc);
2614
			priority--;
2615
		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
2616
	}
2617

2618 2619
	slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
	if (slab_reclaimable > zone->min_slab_pages) {
2620
		/*
2621
		 * shrink_slab() does not currently allow us to determine how
2622 2623 2624 2625
		 * many pages were freed in this zone. So we take the current
		 * number of slab pages and shake the slab until it is reduced
		 * by the same nr_pages that we used for reclaiming unmapped
		 * pages.
2626
		 *
2627 2628
		 * Note that shrink_slab will free memory on all zones and may
		 * take a long time.
2629
		 */
2630
		while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2631 2632
			zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
				slab_reclaimable - nr_pages)
2633
			;
2634 2635 2636 2637 2638

		/*
		 * Update nr_reclaimed by the number of slab pages we
		 * reclaimed from this zone.
		 */
2639
		sc.nr_reclaimed += slab_reclaimable -
2640
			zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2641 2642
	}

2643
	p->reclaim_state = NULL;
2644
	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2645
	lockdep_clear_current_reclaim_state();
2646
	return sc.nr_reclaimed >= nr_pages;
2647
}
2648 2649 2650 2651

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
	int node_id;
2652
	int ret;
2653 2654

	/*
2655 2656
	 * Zone reclaim reclaims unmapped file backed pages and
	 * slab pages if we are over the defined limits.
2657
	 *
2658 2659 2660 2661 2662
	 * A small portion of unmapped file backed pages is needed for
	 * file I/O otherwise pages read by file I/O will be immediately
	 * thrown out if the zone is overallocated. So we do not reclaim
	 * if less than a specified percentage of the zone is used by
	 * unmapped file backed pages.
2663
	 */
2664 2665
	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
2666
		return ZONE_RECLAIM_FULL;
2667

2668
	if (zone->all_unreclaimable)
2669
		return ZONE_RECLAIM_FULL;
2670

2671
	/*
2672
	 * Do not scan if the allocation should not be delayed.
2673
	 */
2674
	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2675
		return ZONE_RECLAIM_NOSCAN;
2676 2677 2678 2679 2680 2681 2682

	/*
	 * Only run zone reclaim on the local zone or on zones that do not
	 * have associated processors. This will favor the local processor
	 * over remote processors and spread off node memory allocations
	 * as wide as possible.
	 */
2683
	node_id = zone_to_nid(zone);
2684
	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2685
		return ZONE_RECLAIM_NOSCAN;
2686 2687

	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2688 2689
		return ZONE_RECLAIM_NOSCAN;

2690 2691 2692
	ret = __zone_reclaim(zone, gfp_mask, order);
	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

2693 2694 2695
	if (!ret)
		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);

2696
	return ret;
2697
}
2698
#endif
L
Lee Schermerhorn 已提交
2699 2700 2701 2702 2703 2704 2705

/*
 * page_evictable - test whether a page is evictable
 * @page: the page to test
 * @vma: the VMA in which the page is or will be mapped, may be NULL
 *
 * Test whether page is evictable--i.e., should be placed on active/inactive
N
Nick Piggin 已提交
2706 2707
 * lists vs unevictable list.  The vma argument is !NULL when called from the
 * fault path to determine how to instantate a new page.
L
Lee Schermerhorn 已提交
2708 2709
 *
 * Reasons page might not be evictable:
2710
 * (1) page's mapping marked unevictable
N
Nick Piggin 已提交
2711
 * (2) page is part of an mlocked VMA
2712
 *
L
Lee Schermerhorn 已提交
2713 2714 2715 2716
 */
int page_evictable(struct page *page, struct vm_area_struct *vma)
{

2717 2718 2719
	if (mapping_unevictable(page_mapping(page)))
		return 0;

N
Nick Piggin 已提交
2720 2721
	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
		return 0;
L
Lee Schermerhorn 已提交
2722 2723 2724

	return 1;
}
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743

/**
 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
 * @page: page to check evictability and move to appropriate lru list
 * @zone: zone page is in
 *
 * Checks a page for evictability and moves the page to the appropriate
 * zone lru list.
 *
 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
 * have PageUnevictable set.
 */
static void check_move_unevictable_page(struct page *page, struct zone *zone)
{
	VM_BUG_ON(PageActive(page));

retry:
	ClearPageUnevictable(page);
	if (page_evictable(page, NULL)) {
2744
		enum lru_list l = page_lru_base_type(page);
2745

2746 2747
		__dec_zone_state(zone, NR_UNEVICTABLE);
		list_move(&page->lru, &zone->lru[l].list);
K
KAMEZAWA Hiroyuki 已提交
2748
		mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
2749 2750 2751 2752 2753 2754 2755 2756
		__inc_zone_state(zone, NR_INACTIVE_ANON + l);
		__count_vm_event(UNEVICTABLE_PGRESCUED);
	} else {
		/*
		 * rotate unevictable list
		 */
		SetPageUnevictable(page);
		list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
K
KAMEZAWA Hiroyuki 已提交
2757
		mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
		if (page_evictable(page, NULL))
			goto retry;
	}
}

/**
 * scan_mapping_unevictable_pages - scan an address space for evictable pages
 * @mapping: struct address_space to scan for evictable pages
 *
 * Scan all pages in mapping.  Check unevictable pages for
 * evictability and move them to the appropriate zone lru list.
 */
void scan_mapping_unevictable_pages(struct address_space *mapping)
{
	pgoff_t next = 0;
	pgoff_t end   = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
			 PAGE_CACHE_SHIFT;
	struct zone *zone;
	struct pagevec pvec;

	if (mapping->nrpages == 0)
		return;

	pagevec_init(&pvec, 0);
	while (next < end &&
		pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
		int i;
		int pg_scanned = 0;

		zone = NULL;

		for (i = 0; i < pagevec_count(&pvec); i++) {
			struct page *page = pvec.pages[i];
			pgoff_t page_index = page->index;
			struct zone *pagezone = page_zone(page);

			pg_scanned++;
			if (page_index > next)
				next = page_index;
			next++;

			if (pagezone != zone) {
				if (zone)
					spin_unlock_irq(&zone->lru_lock);
				zone = pagezone;
				spin_lock_irq(&zone->lru_lock);
			}

			if (PageLRU(page) && PageUnevictable(page))
				check_move_unevictable_page(page, zone);
		}
		if (zone)
			spin_unlock_irq(&zone->lru_lock);
		pagevec_release(&pvec);

		count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
	}

}
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828

/**
 * scan_zone_unevictable_pages - check unevictable list for evictable pages
 * @zone - zone of which to scan the unevictable list
 *
 * Scan @zone's unevictable LRU lists to check for pages that have become
 * evictable.  Move those that have to @zone's inactive list where they
 * become candidates for reclaim, unless shrink_inactive_zone() decides
 * to reactivate them.  Pages that are still unevictable are rotated
 * back onto @zone's unevictable list.
 */
#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2829
static void scan_zone_unevictable_pages(struct zone *zone)
2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
{
	struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
	unsigned long scan;
	unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);

	while (nr_to_scan > 0) {
		unsigned long batch_size = min(nr_to_scan,
						SCAN_UNEVICTABLE_BATCH_SIZE);

		spin_lock_irq(&zone->lru_lock);
		for (scan = 0;  scan < batch_size; scan++) {
			struct page *page = lru_to_page(l_unevictable);

			if (!trylock_page(page))
				continue;

			prefetchw_prev_lru_page(page, l_unevictable, flags);

			if (likely(PageLRU(page) && PageUnevictable(page)))
				check_move_unevictable_page(page, zone);

			unlock_page(page);
		}
		spin_unlock_irq(&zone->lru_lock);

		nr_to_scan -= batch_size;
	}
}


/**
 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
 *
 * A really big hammer:  scan all zones' unevictable LRU lists to check for
 * pages that have become evictable.  Move those back to the zones'
 * inactive list where they become candidates for reclaim.
 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
 * and we add swap to the system.  As such, it runs in the context of a task
 * that has possibly/probably made some previously unevictable pages
 * evictable.
 */
2871
static void scan_all_zones_unevictable_pages(void)
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
{
	struct zone *zone;

	for_each_zone(zone) {
		scan_zone_unevictable_pages(zone);
	}
}

/*
 * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
 * all nodes' unevictable lists for evictable pages
 */
unsigned long scan_unevictable_pages;

int scan_unevictable_handler(struct ctl_table *table, int write,
2887
			   void __user *buffer,
2888 2889
			   size_t *length, loff_t *ppos)
{
2890
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945

	if (write && *(unsigned long *)table->data)
		scan_all_zones_unevictable_pages();

	scan_unevictable_pages = 0;
	return 0;
}

/*
 * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
 * a specified node's per zone unevictable lists for evictable pages.
 */

static ssize_t read_scan_unevictable_node(struct sys_device *dev,
					  struct sysdev_attribute *attr,
					  char *buf)
{
	return sprintf(buf, "0\n");	/* always zero; should fit... */
}

static ssize_t write_scan_unevictable_node(struct sys_device *dev,
					   struct sysdev_attribute *attr,
					const char *buf, size_t count)
{
	struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
	struct zone *zone;
	unsigned long res;
	unsigned long req = strict_strtoul(buf, 10, &res);

	if (!req)
		return 1;	/* zero is no-op */

	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
		if (!populated_zone(zone))
			continue;
		scan_zone_unevictable_pages(zone);
	}
	return 1;
}


static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
			read_scan_unevictable_node,
			write_scan_unevictable_node);

int scan_unevictable_register_node(struct node *node)
{
	return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
}

void scan_unevictable_unregister_node(struct node *node)
{
	sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
}