hugetlb.c 119.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25
#include <linux/jhash.h>
26

D
David Gibson 已提交
27 28
#include <asm/page.h>
#include <asm/pgtable.h>
29
#include <asm/tlb.h>
D
David Gibson 已提交
30

31
#include <linux/io.h>
D
David Gibson 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include <linux/node.h>
35
#include "internal.h"
L
Linus Torvalds 已提交
36

37
int hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
42 43 44 45 46
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
47

48 49
__initdata LIST_HEAD(huge_boot_pages);

50 51 52
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
53
static unsigned long __initdata default_hstate_size;
54
static bool __initdata parsed_valid_hugepagesz = true;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
67
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
165 166 167
	return ret;
}

168 169 170 171 172 173 174
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 176
				       long delta)
{
177 178
	long ret = delta;

179
	if (!spool)
180
		return delta;
181 182

	spin_lock(&spool->lock);
183 184 185 186

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

187 188
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
203
	unlock_or_release_subpool(spool);
204 205

	return ret;
206 207 208 209 210 211 212 213 214
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
215
	return subpool_inode(file_inode(vma->vm_file));
216 217
}

218 219 220
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
221
 *
222 223 224 225 226 227 228 229 230 231 232 233 234 235
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
236 237 238 239 240 241 242
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

243 244
/*
 * Add the huge page range represented by [f, t) to the reserve
245 246 247 248 249 250 251 252
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
253 254 255
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
256
 */
257
static long region_add(struct resv_map *resv, long f, long t)
258
{
259
	struct list_head *head = &resv->regions;
260
	struct file_region *rg, *nrg, *trg;
261
	long add = 0;
262

263
	spin_lock(&resv->lock);
264 265 266 267 268
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
309 310 311 312 313
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
314 315 316 317
			list_del(&rg->link);
			kfree(rg);
		}
	}
318 319

	add += (nrg->from - f);		/* Added to beginning of region */
320
	nrg->from = f;
321
	add += t - nrg->to;		/* Added to end of region */
322
	nrg->to = t;
323

324 325
out_locked:
	resv->adds_in_progress--;
326
	spin_unlock(&resv->lock);
327 328
	VM_BUG_ON(add < 0);
	return add;
329 330
}

331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
344 345 346 347 348 349 350 351
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
352
 */
353
static long region_chg(struct resv_map *resv, long f, long t)
354
{
355
	struct list_head *head = &resv->regions;
356
	struct file_region *rg, *nrg = NULL;
357 358
	long chg = 0;

359 360
retry:
	spin_lock(&resv->lock);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 378
		if (!trg) {
			kfree(nrg);
379
			return -ENOMEM;
380
		}
381 382 383 384 385 386 387

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

388 389 390 391 392 393 394 395 396
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
397
		if (!nrg) {
398
			resv->adds_in_progress--;
399 400 401 402 403 404 405 406 407 408
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
409

410 411 412
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
413 414 415 416 417 418 419 420 421 422 423 424
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
425
			goto out;
426

L
Lucas De Marchi 已提交
427
		/* We overlap with this area, if it extends further than
428 429 430 431 432 433 434 435
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
436 437 438 439 440 441 442 443

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
444 445 446
	return chg;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

466
/*
467 468 469 470 471 472 473 474 475 476 477 478
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
479
 */
480
static long region_del(struct resv_map *resv, long f, long t)
481
{
482
	struct list_head *head = &resv->regions;
483
	struct file_region *rg, *trg;
484 485
	struct file_region *nrg = NULL;
	long del = 0;
486

487
retry:
488
	spin_lock(&resv->lock);
489
	list_for_each_entry_safe(rg, trg, head, link) {
490 491 492 493 494 495 496 497
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498
			continue;
499

500
		if (rg->from >= t)
501 502
			break;

503 504 505 506 507 508 509 510 511 512 513 514 515
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
537
			break;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
554
	}
555 556

	spin_unlock(&resv->lock);
557 558
	kfree(nrg);
	return del;
559 560
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
	if (restore_reserve && rsv_adjust) {
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

583 584 585 586
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
587
static long region_count(struct resv_map *resv, long f, long t)
588
{
589
	struct list_head *head = &resv->regions;
590 591 592
	struct file_region *rg;
	long chg = 0;

593
	spin_lock(&resv->lock);
594 595
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
596 597
		long seg_from;
		long seg_to;
598 599 600 601 602 603 604 605 606 607 608

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
609
	spin_unlock(&resv->lock);
610 611 612 613

	return chg;
}

614 615 616 617
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
618 619
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
620
{
621 622
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
623 624
}

625 626 627 628 629
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
630
EXPORT_SYMBOL_GPL(linear_hugepage_index);
631

632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

645
	return 1UL << huge_page_shift(hstate);
646
}
647
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648

649 650 651 652 653 654 655 656 657 658 659 660 661
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

662 663 664 665 666 667 668
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
669
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670

671 672 673 674 675 676 677 678 679
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
680 681 682 683 684 685 686 687 688
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
689
 */
690 691 692 693 694 695 696 697 698 699 700
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

701
struct resv_map *resv_map_alloc(void)
702 703
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 705 706 707 708
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
709
		return NULL;
710
	}
711 712

	kref_init(&resv_map->refs);
713
	spin_lock_init(&resv_map->lock);
714 715
	INIT_LIST_HEAD(&resv_map->regions);

716 717 718 719 720 721
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

722 723 724
	return resv_map;
}

725
void resv_map_release(struct kref *ref)
726 727
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 729
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
730 731

	/* Clear out any active regions before we release the map. */
732
	region_del(resv_map, 0, LONG_MAX);
733 734 735 736 737 738 739 740 741

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

742 743 744
	kfree(resv_map);
}

745 746 747 748 749
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

750
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751
{
752
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 754 755 756 757 758 759
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
760 761
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
762
	}
763 764
}

765
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766
{
767 768
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769

770 771
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
772 773 774 775
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
776 777
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778 779

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 781 782 783
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
784
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785 786

	return (get_vma_private_data(vma) & flag) != 0;
787 788
}

789
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 791
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
792
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793
	if (!(vma->vm_flags & VM_MAYSHARE))
794 795 796 797
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
798
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799
{
800 801 802 803 804 805 806 807 808 809 810
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811
			return true;
812
		else
813
			return false;
814
	}
815 816

	/* Shared mappings always use reserves */
817 818 819 820 821 822 823 824 825 826 827 828 829
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
830 831 832 833 834

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
856

857
	return false;
858 859
}

860
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
861 862
{
	int nid = page_to_nid(page);
863
	list_move(&page->lru, &h->hugepage_freelists[nid]);
864 865
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
866 867
}

868 869 870 871
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

872 873 874 875 876 877 878 879
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
880
		return NULL;
881
	list_move(&page->lru, &h->hugepage_activelist);
882
	set_page_refcounted(page);
883 884 885 886 887
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

888 889 890
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
891
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 893 894 895 896
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

897 898
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
899 900
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
901
{
902
	struct page *page = NULL;
903
	struct mempolicy *mpol;
904
	nodemask_t *nodemask;
905
	struct zonelist *zonelist;
906 907
	struct zone *zone;
	struct zoneref *z;
908
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
909

910 911 912 913 914
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
915
	if (!vma_has_reserves(vma, chg) &&
916
			h->free_huge_pages - h->resv_huge_pages == 0)
917
		goto err;
918

919
	/* If reserves cannot be used, ensure enough pages are in the pool */
920
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921
		goto err;
922

923
retry_cpuset:
924
	cpuset_mems_cookie = read_mems_allowed_begin();
925
	zonelist = huge_zonelist(vma, address,
926
					htlb_alloc_mask(h), &mpol, &nodemask);
927

928 929
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
930
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 932
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
933 934 935 936 937
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

938
				SetPagePrivate(page);
939
				h->resv_huge_pages--;
940 941
				break;
			}
A
Andrew Morton 已提交
942
		}
L
Linus Torvalds 已提交
943
	}
944

945
	mpol_cond_put(mpol);
946
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947
		goto retry_cpuset;
L
Linus Torvalds 已提交
948
	return page;
949 950 951

err:
	return NULL;
L
Linus Torvalds 已提交
952 953
}

954 955 956 957 958 959 960 961 962
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
963
	nid = next_node_in(nid, *nodes_allowed);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1025
#if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
1026
static void destroy_compound_gigantic_page(struct page *page,
1027
					unsigned int order)
1028 1029 1030 1031 1032 1033
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1034
		clear_compound_head(p);
1035 1036 1037 1038 1039 1040 1041
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1042
static void free_gigantic_page(struct page *page, unsigned int order)
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

1054 1055
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1066 1067 1068
		if (page_zone(page) != z)
			return false;

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1089
static struct page *alloc_gigantic_page(int nid, unsigned int order)
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1101
			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1125
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
1158
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1159
static inline void destroy_compound_gigantic_page(struct page *page,
1160
						unsigned int order) { }
1161 1162 1163 1164
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1165
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1166 1167
{
	int i;
1168

1169 1170
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1171

1172 1173 1174
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1175 1176
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1177 1178
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1179
	}
1180
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1181
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1182
	set_page_refcounted(page);
1183 1184 1185 1186 1187 1188
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1189 1190
}

1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1227
void free_huge_page(struct page *page)
1228
{
1229 1230 1231 1232
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1233
	struct hstate *h = page_hstate(page);
1234
	int nid = page_to_nid(page);
1235 1236
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1237
	bool restore_reserve;
1238

1239
	set_page_private(page, 0);
1240
	page->mapping = NULL;
1241 1242
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1243
	restore_reserve = PagePrivate(page);
1244
	ClearPagePrivate(page);
1245

1246 1247 1248 1249 1250 1251 1252 1253
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1254
	spin_lock(&hugetlb_lock);
1255
	clear_page_huge_active(page);
1256 1257
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1258 1259 1260
	if (restore_reserve)
		h->resv_huge_pages++;

1261
	if (h->surplus_huge_pages_node[nid]) {
1262 1263
		/* remove the page from active list */
		list_del(&page->lru);
1264 1265 1266
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1267
	} else {
1268
		arch_clear_hugepage_flags(page);
1269
		enqueue_huge_page(h, page);
1270
	}
1271 1272 1273
	spin_unlock(&hugetlb_lock);
}

1274
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1275
{
1276
	INIT_LIST_HEAD(&page->lru);
1277
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1278
	spin_lock(&hugetlb_lock);
1279
	set_hugetlb_cgroup(page, NULL);
1280 1281
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1282 1283 1284 1285
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1286
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1287 1288 1289 1290 1291 1292 1293
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1294
	__ClearPageReserved(page);
1295
	__SetPageHead(page);
1296
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1310
		set_page_count(p, 0);
1311
		set_compound_head(p, page);
1312
	}
1313
	atomic_set(compound_mapcount_ptr(page), -1);
1314 1315
}

A
Andrew Morton 已提交
1316 1317 1318 1319 1320
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1321 1322 1323 1324 1325 1326
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1327
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1328
}
1329 1330
EXPORT_SYMBOL_GPL(PageHuge);

1331 1332 1333 1334 1335 1336 1337 1338 1339
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1340
	return get_compound_page_dtor(page_head) == free_huge_page;
1341 1342
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1360
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1361 1362
{
	struct page *page;
1363

1364
	page = __alloc_pages_node(nid,
1365
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1366
						__GFP_REPEAT|__GFP_NOWARN,
1367
		huge_page_order(h));
L
Linus Torvalds 已提交
1368
	if (page) {
1369
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1370
	}
1371 1372 1373 1374

	return page;
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1397 1398 1399 1400 1401 1402
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1403 1404
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1405
{
1406
	int nr_nodes, node;
1407 1408
	int ret = 0;

1409
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1410 1411 1412 1413
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1414 1415
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1416
			struct page *page =
1417
				list_entry(h->hugepage_freelists[node].next,
1418 1419 1420
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1421
			h->free_huge_pages_node[node]--;
1422 1423
			if (acct_surplus) {
				h->surplus_huge_pages--;
1424
				h->surplus_huge_pages_node[node]--;
1425
			}
1426 1427
			update_and_free_page(h, page);
			ret = 1;
1428
			break;
1429
		}
1430
	}
1431 1432 1433 1434

	return ret;
}

1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1462 1463 1464
	if (!hugepages_supported())
		return;

1465 1466
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1467 1468 1469
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
D
Dave Hansen 已提交
1488 1489 1490 1491 1492 1493
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
1494
	 */
D
Dave Hansen 已提交
1495
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
D
Dave Hansen 已提交
1512 1513
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1546 1547
{
	struct page *page;
1548
	unsigned int r_nid;
1549

1550
	if (hstate_is_gigantic(h))
1551 1552
		return NULL;

1553 1554 1555 1556 1557 1558
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
D
Dave Hansen 已提交
1559 1560
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1561
	}
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1586
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1587 1588 1589
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1590 1591
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1592 1593 1594
	}
	spin_unlock(&hugetlb_lock);

1595
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1596 1597

	spin_lock(&hugetlb_lock);
1598
	if (page) {
1599
		INIT_LIST_HEAD(&page->lru);
1600
		r_nid = page_to_nid(page);
1601
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1602
		set_hugetlb_cgroup(page, NULL);
1603 1604 1605
		/*
		 * We incremented the global counters already
		 */
1606 1607
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1608
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1609
	} else {
1610 1611
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1612
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1613
	}
1614
	spin_unlock(&hugetlb_lock);
1615 1616 1617 1618

	return page;
}

1619 1620 1621 1622 1623
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
D
Dave Hansen 已提交
1624
static
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1635
static
1636 1637 1638 1639 1640 1641
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1642 1643 1644 1645 1646 1647 1648
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1649
	struct page *page = NULL;
1650 1651

	spin_lock(&hugetlb_lock);
1652 1653
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1654 1655
	spin_unlock(&hugetlb_lock);

1656
	if (!page)
1657
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1658 1659 1660 1661

	return page;
}

1662
/*
L
Lucas De Marchi 已提交
1663
 * Increase the hugetlb pool such that it can accommodate a reservation
1664 1665
 * of size 'delta'.
 */
1666
static int gather_surplus_pages(struct hstate *h, int delta)
1667 1668 1669 1670 1671
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1672
	bool alloc_ok = true;
1673

1674
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1675
	if (needed <= 0) {
1676
		h->resv_huge_pages += delta;
1677
		return 0;
1678
	}
1679 1680 1681 1682 1683 1684 1685 1686

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1687
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1688 1689 1690 1691
		if (!page) {
			alloc_ok = false;
			break;
		}
1692 1693
		list_add(&page->lru, &surplus_list);
	}
1694
	allocated += i;
1695 1696 1697 1698 1699 1700

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1701 1702
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1713 1714
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1715
	 * needed to accommodate the reservation.  Add the appropriate number
1716
	 * of pages to the hugetlb pool and free the extras back to the buddy
1717 1718 1719
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1720 1721
	 */
	needed += allocated;
1722
	h->resv_huge_pages += delta;
1723
	ret = 0;
1724

1725
	/* Free the needed pages to the hugetlb pool */
1726
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1727 1728
		if ((--needed) < 0)
			break;
1729 1730 1731 1732 1733
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1734
		VM_BUG_ON_PAGE(page_count(page), page);
1735
		enqueue_huge_page(h, page);
1736
	}
1737
free:
1738
	spin_unlock(&hugetlb_lock);
1739 1740

	/* Free unnecessary surplus pages to the buddy allocator */
1741 1742
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1743
	spin_lock(&hugetlb_lock);
1744 1745 1746 1747 1748 1749 1750 1751

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1752
 * Called with hugetlb_lock held.
1753
 */
1754 1755
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1756 1757 1758
{
	unsigned long nr_pages;

1759
	/* Uncommit the reservation */
1760
	h->resv_huge_pages -= unused_resv_pages;
1761

1762
	/* Cannot return gigantic pages currently */
1763
	if (hstate_is_gigantic(h))
1764 1765
		return;

1766
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1767

1768 1769
	/*
	 * We want to release as many surplus pages as possible, spread
1770 1771 1772 1773 1774
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1775 1776
	 */
	while (nr_pages--) {
1777
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1778
			break;
1779
		cond_resched_lock(&hugetlb_lock);
1780 1781 1782
	}
}

1783

1784
/*
1785
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1786
 * are used by the huge page allocation routines to manage reservations.
1787 1788 1789 1790 1791 1792
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1793 1794 1795
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1796 1797 1798 1799 1800 1801
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1802
 */
1803 1804 1805
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1806
	VMA_END_RESV,
1807
};
1808 1809
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1810
				enum vma_resv_mode mode)
1811
{
1812 1813
	struct resv_map *resv;
	pgoff_t idx;
1814
	long ret;
1815

1816 1817
	resv = vma_resv_map(vma);
	if (!resv)
1818
		return 1;
1819

1820
	idx = vma_hugecache_offset(h, vma, addr);
1821 1822
	switch (mode) {
	case VMA_NEEDS_RESV:
1823
		ret = region_chg(resv, idx, idx + 1);
1824 1825 1826 1827
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1828
	case VMA_END_RESV:
1829 1830 1831 1832 1833 1834
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	default:
		BUG();
	}
1835

1836
	if (vma->vm_flags & VM_MAYSHARE)
1837
		return ret;
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1857
	else
1858
		return ret < 0 ? ret : 0;
1859
}
1860 1861

static long vma_needs_reservation(struct hstate *h,
1862
			struct vm_area_struct *vma, unsigned long addr)
1863
{
1864
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1865
}
1866

1867 1868 1869
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1870 1871 1872
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1873
static void vma_end_reservation(struct hstate *h,
1874 1875
			struct vm_area_struct *vma, unsigned long addr)
{
1876
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1877 1878
}

1879
struct page *alloc_huge_page(struct vm_area_struct *vma,
1880
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1881
{
1882
	struct hugepage_subpool *spool = subpool_vma(vma);
1883
	struct hstate *h = hstate_vma(vma);
1884
	struct page *page;
1885 1886
	long map_chg, map_commit;
	long gbl_chg;
1887 1888
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1889

1890
	idx = hstate_index(h);
1891
	/*
1892 1893 1894
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
1895
	 */
1896 1897
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
1898
		return ERR_PTR(-ENOMEM);
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
1910
			vma_end_reservation(h, vma, addr);
1911
			return ERR_PTR(-ENOSPC);
1912
		}
L
Linus Torvalds 已提交
1913

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

1926
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1927 1928 1929
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1930
	spin_lock(&hugetlb_lock);
1931 1932 1933 1934 1935 1936
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1937
	if (!page) {
1938
		spin_unlock(&hugetlb_lock);
1939
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1940 1941
		if (!page)
			goto out_uncharge_cgroup;
1942 1943 1944 1945
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
1946 1947
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1948
		/* Fall through */
K
Ken Chen 已提交
1949
	}
1950 1951
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1952

1953
	set_page_private(page, (unsigned long)spool);
1954

1955 1956
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
1971
	return page;
1972 1973 1974 1975

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
1976
	if (map_chg || avoid_reserve)
1977
		hugepage_subpool_put_pages(spool, 1);
1978
	vma_end_reservation(h, vma, addr);
1979
	return ERR_PTR(-ENOSPC);
1980 1981
}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1996
int __weak alloc_bootmem_huge_page(struct hstate *h)
1997 1998
{
	struct huge_bootmem_page *m;
1999
	int nr_nodes, node;
2000

2001
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2002 2003
		void *addr;

2004 2005 2006
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2007 2008 2009 2010 2011 2012 2013
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2014
			goto found;
2015 2016 2017 2018 2019
		}
	}
	return 0;

found:
2020
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2021 2022 2023 2024 2025 2026
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2027 2028
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2029 2030 2031 2032 2033 2034 2035
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2036 2037 2038 2039 2040 2041 2042
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2043 2044 2045 2046
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2047 2048
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2049 2050 2051
#else
		page = virt_to_page(m);
#endif
2052
		WARN_ON(page_count(page) != 1);
2053
		prep_compound_huge_page(page, h->order);
2054
		WARN_ON(PageReserved(page));
2055
		prep_new_huge_page(h, page, page_to_nid(page));
2056 2057 2058 2059 2060 2061
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2062
		if (hstate_is_gigantic(h))
2063
			adjust_managed_page_count(page, 1 << h->order);
2064 2065 2066
	}
}

2067
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2068 2069
{
	unsigned long i;
2070

2071
	for (i = 0; i < h->max_huge_pages; ++i) {
2072
		if (hstate_is_gigantic(h)) {
2073 2074
			if (!alloc_bootmem_huge_page(h))
				break;
2075
		} else if (!alloc_fresh_huge_page(h,
2076
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2077 2078
			break;
	}
2079
	h->max_huge_pages = i;
2080 2081 2082 2083 2084 2085 2086
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2087 2088 2089
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2090
		/* oversize hugepages were init'ed in early boot */
2091
		if (!hstate_is_gigantic(h))
2092
			hugetlb_hstate_alloc_pages(h);
2093
	}
2094
	VM_BUG_ON(minimum_order == UINT_MAX);
2095 2096
}

A
Andi Kleen 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2108 2109 2110 2111 2112
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2113
		char buf[32];
2114
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2115 2116
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2117 2118 2119
	}
}

L
Linus Torvalds 已提交
2120
#ifdef CONFIG_HIGHMEM
2121 2122
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2123
{
2124 2125
	int i;

2126
	if (hstate_is_gigantic(h))
2127 2128
		return;

2129
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2130
		struct page *page, *next;
2131 2132 2133
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2134
				return;
L
Linus Torvalds 已提交
2135 2136 2137
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2138
			update_and_free_page(h, page);
2139 2140
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2141 2142 2143 2144
		}
	}
}
#else
2145 2146
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2147 2148 2149 2150
{
}
#endif

2151 2152 2153 2154 2155
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2156 2157
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2158
{
2159
	int nr_nodes, node;
2160 2161 2162

	VM_BUG_ON(delta != -1 && delta != 1);

2163 2164 2165 2166
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2167
		}
2168 2169 2170 2171 2172
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2173
		}
2174 2175
	}
	return 0;
2176

2177 2178 2179 2180
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2181 2182
}

2183
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2184 2185
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2186
{
2187
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2188

2189
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2190 2191
		return h->max_huge_pages;

2192 2193 2194 2195
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2196
	 *
N
Naoya Horiguchi 已提交
2197
	 * We might race with __alloc_buddy_huge_page() here and be unable
2198 2199 2200 2201
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2202
	 */
L
Linus Torvalds 已提交
2203
	spin_lock(&hugetlb_lock);
2204
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2205
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2206 2207 2208
			break;
	}

2209
	while (count > persistent_huge_pages(h)) {
2210 2211 2212 2213 2214 2215
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2216 2217 2218 2219
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2220 2221 2222 2223
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2224 2225 2226
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2227 2228 2229 2230 2231 2232 2233 2234
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2235 2236 2237 2238
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
N
Naoya Horiguchi 已提交
2239
	 * __alloc_buddy_huge_page() is checking the global counter,
2240 2241 2242
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2243
	 */
2244
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2245
	min_count = max(count, min_count);
2246
	try_to_free_low(h, min_count, nodes_allowed);
2247
	while (min_count < persistent_huge_pages(h)) {
2248
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2249
			break;
2250
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2251
	}
2252
	while (count < persistent_huge_pages(h)) {
2253
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2254 2255 2256
			break;
	}
out:
2257
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2258
	spin_unlock(&hugetlb_lock);
2259
	return ret;
L
Linus Torvalds 已提交
2260 2261
}

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2272 2273 2274
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2275 2276
{
	int i;
2277

2278
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2279 2280 2281
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2282
			return &hstates[i];
2283 2284 2285
		}

	return kobj_to_node_hstate(kobj, nidp);
2286 2287
}

2288
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2289 2290
					struct kobj_attribute *attr, char *buf)
{
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2302
}
2303

2304 2305 2306
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2307 2308
{
	int err;
2309
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2310

2311
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2312 2313 2314 2315
		err = -EINVAL;
		goto out;
	}

2316 2317 2318 2319 2320 2321 2322
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2323
			nodes_allowed = &node_states[N_MEMORY];
2324 2325 2326 2327 2328 2329 2330 2331 2332
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2333
		nodes_allowed = &node_states[N_MEMORY];
2334

2335
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2336

2337
	if (nodes_allowed != &node_states[N_MEMORY])
2338 2339 2340
		NODEMASK_FREE(nodes_allowed);

	return len;
2341 2342 2343
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2344 2345
}

2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2363 2364 2365 2366 2367 2368 2369 2370 2371
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2372
	return nr_hugepages_store_common(false, kobj, buf, len);
2373 2374 2375
}
HSTATE_ATTR(nr_hugepages);

2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2391
	return nr_hugepages_store_common(true, kobj, buf, len);
2392 2393 2394 2395 2396
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2397 2398 2399
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2400
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2401 2402
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2403

2404 2405 2406 2407 2408
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2409
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2410

2411
	if (hstate_is_gigantic(h))
2412 2413
		return -EINVAL;

2414
	err = kstrtoul(buf, 10, &input);
2415
	if (err)
2416
		return err;
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2440 2441 2442 2443 2444 2445
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2446
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2447 2448 2449 2450 2451 2452 2453
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2465 2466 2467 2468 2469 2470 2471 2472 2473
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2474 2475 2476
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2477 2478 2479 2480 2481 2482 2483
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2484 2485 2486
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2487 2488
{
	int retval;
2489
	int hi = hstate_index(h);
2490

2491 2492
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2493 2494
		return -ENOMEM;

2495
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2496
	if (retval)
2497
		kobject_put(hstate_kobjs[hi]);
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2512 2513
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2514
		if (err)
2515
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2516 2517 2518
	}
}

2519 2520 2521 2522
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2523 2524 2525
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2526 2527 2528 2529 2530 2531
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2532
static struct node_hstate node_hstates[MAX_NUMNODES];
2533 2534

/*
2535
 * A subset of global hstate attributes for node devices
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2549
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2572
 * Unregister hstate attributes from a single node device.
2573 2574
 * No-op if no hstate attributes attached.
 */
2575
static void hugetlb_unregister_node(struct node *node)
2576 2577
{
	struct hstate *h;
2578
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2579 2580

	if (!nhs->hugepages_kobj)
2581
		return;		/* no hstate attributes */
2582

2583 2584 2585 2586 2587
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2588
		}
2589
	}
2590 2591 2592 2593 2594 2595 2596

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2597
 * Register hstate attributes for a single node device.
2598 2599
 * No-op if attributes already registered.
 */
2600
static void hugetlb_register_node(struct node *node)
2601 2602
{
	struct hstate *h;
2603
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2604 2605 2606 2607 2608 2609
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2610
							&node->dev.kobj);
2611 2612 2613 2614 2615 2616 2617 2618
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2619 2620
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2621 2622 2623 2624 2625 2626 2627
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2628
 * hugetlb init time:  register hstate attributes for all registered node
2629 2630
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2631
 */
2632
static void __init hugetlb_register_all_nodes(void)
2633 2634 2635
{
	int nid;

2636
	for_each_node_state(nid, N_MEMORY) {
2637
		struct node *node = node_devices[nid];
2638
		if (node->dev.id == nid)
2639 2640 2641 2642
			hugetlb_register_node(node);
	}

	/*
2643
	 * Let the node device driver know we're here so it can
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2663 2664
static int __init hugetlb_init(void)
{
2665 2666
	int i;

2667
	if (!hugepages_supported())
2668
		return 0;
2669

2670 2671 2672 2673
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2674
	}
2675
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2676 2677 2678 2679
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2680 2681

	hugetlb_init_hstates();
2682
	gather_bootmem_prealloc();
2683 2684 2685
	report_hugepages();

	hugetlb_sysfs_init();
2686
	hugetlb_register_all_nodes();
2687
	hugetlb_cgroup_file_init();
2688

2689 2690 2691 2692 2693
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2694
	hugetlb_fault_mutex_table =
2695
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2696
	BUG_ON(!hugetlb_fault_mutex_table);
2697 2698

	for (i = 0; i < num_fault_mutexes; i++)
2699
		mutex_init(&hugetlb_fault_mutex_table[i]);
2700 2701
	return 0;
}
2702
subsys_initcall(hugetlb_init);
2703 2704

/* Should be called on processing a hugepagesz=... option */
2705 2706 2707 2708 2709
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2710
void __init hugetlb_add_hstate(unsigned int order)
2711 2712
{
	struct hstate *h;
2713 2714
	unsigned long i;

2715
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2716
		pr_warn("hugepagesz= specified twice, ignoring\n");
2717 2718
		return;
	}
2719
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2720
	BUG_ON(order == 0);
2721
	h = &hstates[hugetlb_max_hstate++];
2722 2723
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2724 2725 2726 2727
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2728
	INIT_LIST_HEAD(&h->hugepage_activelist);
2729 2730
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2731 2732
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2733

2734 2735 2736
	parsed_hstate = h;
}

2737
static int __init hugetlb_nrpages_setup(char *s)
2738 2739
{
	unsigned long *mhp;
2740
	static unsigned long *last_mhp;
2741

2742 2743 2744 2745 2746 2747
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2748
	/*
2749
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2750 2751
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2752
	else if (!hugetlb_max_hstate)
2753 2754 2755 2756
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2757
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2758
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2759 2760 2761
		return 1;
	}

2762 2763 2764
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2765 2766 2767 2768 2769
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2770
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2771 2772 2773 2774
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2775 2776
	return 1;
}
2777 2778 2779 2780 2781 2782 2783 2784
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2785

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2798 2799 2800
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2801
{
2802
	struct hstate *h = &default_hstate;
2803
	unsigned long tmp = h->max_huge_pages;
2804
	int ret;
2805

2806
	if (!hugepages_supported())
2807
		return -EOPNOTSUPP;
2808

2809 2810
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2811 2812 2813
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2814

2815 2816 2817
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2818 2819
out:
	return ret;
L
Linus Torvalds 已提交
2820
}
2821

2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2839
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2840
			void __user *buffer,
2841 2842
			size_t *length, loff_t *ppos)
{
2843
	struct hstate *h = &default_hstate;
2844
	unsigned long tmp;
2845
	int ret;
2846

2847
	if (!hugepages_supported())
2848
		return -EOPNOTSUPP;
2849

2850
	tmp = h->nr_overcommit_huge_pages;
2851

2852
	if (write && hstate_is_gigantic(h))
2853 2854
		return -EINVAL;

2855 2856
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2857 2858 2859
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2860 2861 2862 2863 2864 2865

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2866 2867
out:
	return ret;
2868 2869
}

L
Linus Torvalds 已提交
2870 2871
#endif /* CONFIG_SYSCTL */

2872
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2873
{
2874
	struct hstate *h = &default_hstate;
2875 2876
	if (!hugepages_supported())
		return;
2877
	seq_printf(m,
2878 2879 2880 2881 2882
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2883 2884 2885 2886 2887
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2888 2889 2890 2891
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2892
	struct hstate *h = &default_hstate;
2893 2894
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2895 2896
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2897 2898
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2899 2900 2901
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2902 2903
}

2904 2905 2906 2907 2908
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2909 2910 2911
	if (!hugepages_supported())
		return;

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

2922 2923 2924 2925 2926 2927
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2928 2929 2930
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2931 2932 2933 2934 2935 2936
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2937 2938
}

2939
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2962
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2963 2964
			goto out;

2965 2966
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2967 2968 2969 2970 2971 2972
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2973
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2974 2975 2976 2977 2978 2979

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2980 2981
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2982
	struct resv_map *resv = vma_resv_map(vma);
2983 2984 2985 2986 2987

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2988
	 * has a reference to the reservation map it cannot disappear until
2989 2990 2991
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2992
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2993
		kref_get(&resv->refs);
2994 2995
}

2996 2997
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2998
	struct hstate *h = hstate_vma(vma);
2999
	struct resv_map *resv = vma_resv_map(vma);
3000
	struct hugepage_subpool *spool = subpool_vma(vma);
3001
	unsigned long reserve, start, end;
3002
	long gbl_reserve;
3003

3004 3005
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3006

3007 3008
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3009

3010
	reserve = (end - start) - region_count(resv, start, end);
3011

3012 3013 3014
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3015 3016 3017 3018 3019 3020
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3021
	}
3022 3023
}

L
Linus Torvalds 已提交
3024 3025 3026 3027 3028 3029
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
3030
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
3031 3032
{
	BUG();
N
Nick Piggin 已提交
3033
	return 0;
L
Linus Torvalds 已提交
3034 3035
}

3036
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3037
	.fault = hugetlb_vm_op_fault,
3038
	.open = hugetlb_vm_op_open,
3039
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3040 3041
};

3042 3043
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3044 3045 3046
{
	pte_t entry;

3047
	if (writable) {
3048 3049
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3050
	} else {
3051 3052
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3053 3054 3055
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3056
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3057 3058 3059 3060

	return entry;
}

3061 3062 3063 3064 3065
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3066
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3067
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3068
		update_mmu_cache(vma, address, ptep);
3069 3070
}

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3096

D
David Gibson 已提交
3097 3098 3099 3100 3101
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3102
	unsigned long addr;
3103
	int cow;
3104 3105
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3106 3107 3108
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3109 3110

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3111

3112 3113 3114 3115 3116
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3117
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3118
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
3119 3120 3121
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
3122
		dst_pte = huge_pte_alloc(dst, addr, sz);
3123 3124 3125 3126
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3127 3128 3129 3130 3131

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3132 3133 3134
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
3153
			if (cow) {
3154
				huge_ptep_set_wrprotect(src, addr, src_pte);
3155 3156 3157
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3158
			entry = huge_ptep_get(src_pte);
3159 3160
			ptepage = pte_page(entry);
			get_page(ptepage);
3161
			page_dup_rmap(ptepage, true);
3162
			set_huge_pte_at(dst, addr, dst_pte, entry);
3163
			hugetlb_count_add(pages_per_huge_page(h), dst);
3164
		}
3165 3166
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3167 3168
	}

3169 3170 3171 3172
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3173 3174
}

3175 3176 3177
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3178
{
3179
	int force_flush = 0;
D
David Gibson 已提交
3180 3181
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3182
	pte_t *ptep;
D
David Gibson 已提交
3183
	pte_t pte;
3184
	spinlock_t *ptl;
D
David Gibson 已提交
3185
	struct page *page;
3186 3187
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3188 3189
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3190

D
David Gibson 已提交
3191
	WARN_ON(!is_vm_hugetlb_page(vma));
3192 3193
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3194

3195
	tlb_start_vma(tlb, vma);
3196
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3197
	address = start;
3198
again:
3199
	for (; address < end; address += sz) {
3200
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3201
		if (!ptep)
3202 3203
			continue;

3204
		ptl = huge_pte_lock(h, mm, ptep);
3205
		if (huge_pmd_unshare(mm, &address, ptep))
3206
			goto unlock;
3207

3208 3209
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
3210
			goto unlock;
3211 3212

		/*
3213 3214
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3215
		 */
3216
		if (unlikely(!pte_present(pte))) {
3217
			huge_pte_clear(mm, address, ptep);
3218
			goto unlock;
3219
		}
3220 3221

		page = pte_page(pte);
3222 3223 3224 3225 3226 3227 3228
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
3229
				goto unlock;
3230 3231 3232 3233 3234 3235 3236 3237 3238

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3239
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3240
		tlb_remove_tlb_entry(tlb, ptep, address);
3241
		if (huge_pte_dirty(pte))
3242
			set_page_dirty(page);
3243

3244
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3245
		page_remove_rmap(page, true);
3246
		force_flush = !__tlb_remove_page(tlb, page);
3247
		if (force_flush) {
3248
			address += sz;
3249
			spin_unlock(ptl);
3250
			break;
3251
		}
3252
		/* Bail out after unmapping reference page if supplied */
3253 3254
		if (ref_page) {
			spin_unlock(ptl);
3255
			break;
3256 3257 3258
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
3259
	}
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
3270
	}
3271
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3272
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3273
}
D
David Gibson 已提交
3274

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3287
	 * is to clear it before releasing the i_mmap_rwsem. This works
3288
	 * because in the context this is called, the VMA is about to be
3289
	 * destroyed and the i_mmap_rwsem is held.
3290 3291 3292 3293
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3294
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3295
			  unsigned long end, struct page *ref_page)
3296
{
3297 3298 3299 3300 3301
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3302
	tlb_gather_mmu(&tlb, mm, start, end);
3303 3304
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3305 3306
}

3307 3308 3309 3310 3311 3312
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3313 3314
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3315
{
3316
	struct hstate *h = hstate_vma(vma);
3317 3318 3319 3320 3321 3322 3323 3324
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3325
	address = address & huge_page_mask(h);
3326 3327
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
3328
	mapping = file_inode(vma->vm_file)->i_mapping;
3329

3330 3331 3332 3333 3334
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3335
	i_mmap_lock_write(mapping);
3336
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3337 3338 3339 3340
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3341 3342 3343 3344 3345 3346 3347 3348
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3349 3350 3351 3352 3353 3354 3355 3356
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3357 3358
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3359
	}
3360
	i_mmap_unlock_write(mapping);
3361 3362
}

3363 3364
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3365 3366 3367
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3368
 */
3369
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3370
			unsigned long address, pte_t *ptep, pte_t pte,
3371
			struct page *pagecache_page, spinlock_t *ptl)
3372
{
3373
	struct hstate *h = hstate_vma(vma);
3374
	struct page *old_page, *new_page;
3375
	int ret = 0, outside_reserve = 0;
3376 3377
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3378 3379 3380

	old_page = pte_page(pte);

3381
retry_avoidcopy:
3382 3383
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3384 3385
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
3386
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3387
		return 0;
3388 3389
	}

3390 3391 3392 3393 3394 3395 3396 3397 3398
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3399
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3400 3401 3402
			old_page != pagecache_page)
		outside_reserve = 1;

3403
	get_page(old_page);
3404

3405 3406 3407 3408
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3409
	spin_unlock(ptl);
3410
	new_page = alloc_huge_page(vma, address, outside_reserve);
3411

3412
	if (IS_ERR(new_page)) {
3413 3414 3415 3416 3417 3418 3419 3420
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3421
			put_page(old_page);
3422
			BUG_ON(huge_pte_none(pte));
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3435 3436
		}

3437 3438 3439
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3440 3441
	}

3442 3443 3444 3445
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3446
	if (unlikely(anon_vma_prepare(vma))) {
3447 3448
		ret = VM_FAULT_OOM;
		goto out_release_all;
3449
	}
3450

A
Andrea Arcangeli 已提交
3451 3452
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3453
	__SetPageUptodate(new_page);
3454
	set_page_huge_active(new_page);
3455

3456 3457 3458
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3459

3460
	/*
3461
	 * Retake the page table lock to check for racing updates
3462 3463
	 * before the page tables are altered
	 */
3464
	spin_lock(ptl);
3465
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3466
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3467 3468
		ClearPagePrivate(new_page);

3469
		/* Break COW */
3470
		huge_ptep_clear_flush(vma, address, ptep);
3471
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3472 3473
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3474
		page_remove_rmap(old_page, true);
3475
		hugepage_add_new_anon_rmap(new_page, vma, address);
3476 3477 3478
		/* Make the old page be freed below */
		new_page = old_page;
	}
3479
	spin_unlock(ptl);
3480
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3481
out_release_all:
3482
	put_page(new_page);
3483
out_release_old:
3484
	put_page(old_page);
3485

3486 3487
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3488 3489
}

3490
/* Return the pagecache page at a given address within a VMA */
3491 3492
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3493 3494
{
	struct address_space *mapping;
3495
	pgoff_t idx;
3496 3497

	mapping = vma->vm_file->f_mapping;
3498
	idx = vma_hugecache_offset(h, vma, address);
3499 3500 3501 3502

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3503 3504 3505 3506 3507
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3540
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3541 3542
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3543
{
3544
	struct hstate *h = hstate_vma(vma);
3545
	int ret = VM_FAULT_SIGBUS;
3546
	int anon_rmap = 0;
A
Adam Litke 已提交
3547 3548
	unsigned long size;
	struct page *page;
3549
	pte_t new_pte;
3550
	spinlock_t *ptl;
A
Adam Litke 已提交
3551

3552 3553 3554
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3555
	 * COW. Warn that such a situation has occurred as it may not be obvious
3556 3557
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3558
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3559
			   current->pid);
3560 3561 3562
		return ret;
	}

A
Adam Litke 已提交
3563 3564 3565 3566
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3567 3568 3569
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3570
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3571 3572
		if (idx >= size)
			goto out;
3573
		page = alloc_huge_page(vma, address, 0);
3574
		if (IS_ERR(page)) {
3575 3576 3577 3578 3579
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3580 3581
			goto out;
		}
A
Andrea Arcangeli 已提交
3582
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3583
		__SetPageUptodate(page);
3584
		set_page_huge_active(page);
3585

3586
		if (vma->vm_flags & VM_MAYSHARE) {
3587
			int err = huge_add_to_page_cache(page, mapping, idx);
3588 3589 3590 3591 3592 3593
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3594
		} else {
3595
			lock_page(page);
3596 3597 3598 3599
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3600
			anon_rmap = 1;
3601
		}
3602
	} else {
3603 3604 3605 3606 3607 3608
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3609
			ret = VM_FAULT_HWPOISON |
3610
				VM_FAULT_SET_HINDEX(hstate_index(h));
3611 3612
			goto backout_unlocked;
		}
3613
	}
3614

3615 3616 3617 3618 3619 3620
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3621
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3622 3623 3624 3625
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3626
		/* Just decrements count, does not deallocate */
3627
		vma_end_reservation(h, vma, address);
3628
	}
3629

3630 3631
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3632
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3633 3634 3635
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3636
	ret = 0;
3637
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3638 3639
		goto backout;

3640 3641
	if (anon_rmap) {
		ClearPagePrivate(page);
3642
		hugepage_add_new_anon_rmap(page, vma, address);
3643
	} else
3644
		page_dup_rmap(page, true);
3645 3646 3647 3648
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3649
	hugetlb_count_add(pages_per_huge_page(h), mm);
3650
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3651
		/* Optimization, do the COW without a second fault */
3652
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3653 3654
	}

3655
	spin_unlock(ptl);
A
Adam Litke 已提交
3656 3657
	unlock_page(page);
out:
3658
	return ret;
A
Adam Litke 已提交
3659 3660

backout:
3661
	spin_unlock(ptl);
3662
backout_unlocked:
A
Adam Litke 已提交
3663 3664 3665
	unlock_page(page);
	put_page(page);
	goto out;
3666 3667
}

3668
#ifdef CONFIG_SMP
3669
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3694
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3695 3696 3697 3698 3699 3700 3701 3702
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3703
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3704
			unsigned long address, unsigned int flags)
3705
{
3706
	pte_t *ptep, entry;
3707
	spinlock_t *ptl;
3708
	int ret;
3709 3710
	u32 hash;
	pgoff_t idx;
3711
	struct page *page = NULL;
3712
	struct page *pagecache_page = NULL;
3713
	struct hstate *h = hstate_vma(vma);
3714
	struct address_space *mapping;
3715
	int need_wait_lock = 0;
3716

3717 3718
	address &= huge_page_mask(h);

3719 3720 3721
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3722
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3723
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3724 3725
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3726
			return VM_FAULT_HWPOISON_LARGE |
3727
				VM_FAULT_SET_HINDEX(hstate_index(h));
3728 3729 3730 3731
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3732 3733
	}

3734 3735 3736
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3737 3738 3739 3740 3741
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3742 3743
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3744

3745 3746
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3747
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3748
		goto out_mutex;
3749
	}
3750

N
Nick Piggin 已提交
3751
	ret = 0;
3752

3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3763 3764 3765 3766 3767 3768 3769 3770
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3771
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3772 3773
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3774
			goto out_mutex;
3775
		}
3776
		/* Just decrements count, does not deallocate */
3777
		vma_end_reservation(h, vma, address);
3778

3779
		if (!(vma->vm_flags & VM_MAYSHARE))
3780 3781 3782 3783
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3784 3785 3786 3787 3788 3789
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3790 3791 3792 3793 3794 3795 3796
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3797 3798 3799 3800
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3801

3802
	get_page(page);
3803

3804
	if (flags & FAULT_FLAG_WRITE) {
3805
		if (!huge_pte_write(entry)) {
3806
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3807
					pagecache_page, ptl);
3808
			goto out_put_page;
3809
		}
3810
		entry = huge_pte_mkdirty(entry);
3811 3812
	}
	entry = pte_mkyoung(entry);
3813 3814
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3815
		update_mmu_cache(vma, address, ptep);
3816 3817 3818 3819
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3820 3821
out_ptl:
	spin_unlock(ptl);
3822 3823 3824 3825 3826

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3827
out_mutex:
3828
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3829 3830 3831 3832 3833 3834 3835 3836 3837
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3838
	return ret;
3839 3840
}

3841 3842 3843 3844
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3845
{
3846 3847
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3848
	unsigned long remainder = *nr_pages;
3849
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3850 3851

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3852
		pte_t *pte;
3853
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3854
		int absent;
A
Adam Litke 已提交
3855
		struct page *page;
D
David Gibson 已提交
3856

3857 3858 3859 3860 3861 3862 3863 3864 3865
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3866 3867
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3868
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3869
		 * first, for the page indexing below to work.
3870 3871
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3872
		 */
3873
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3874 3875
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3876 3877 3878 3879
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3880 3881 3882 3883
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3884
		 */
H
Hugh Dickins 已提交
3885 3886
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3887 3888
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3889 3890 3891
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3892

3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3904 3905
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3906
			int ret;
D
David Gibson 已提交
3907

3908 3909
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3910 3911
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3912
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3913
				continue;
D
David Gibson 已提交
3914

A
Adam Litke 已提交
3915 3916 3917 3918
			remainder = 0;
			break;
		}

3919
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3920
		page = pte_page(huge_ptep_get(pte));
3921
same_page:
3922
		if (pages) {
H
Hugh Dickins 已提交
3923
			pages[i] = mem_map_offset(page, pfn_offset);
3924
			get_page(pages[i]);
3925
		}
D
David Gibson 已提交
3926 3927 3928 3929 3930

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3931
		++pfn_offset;
D
David Gibson 已提交
3932 3933
		--remainder;
		++i;
3934
		if (vaddr < vma->vm_end && remainder &&
3935
				pfn_offset < pages_per_huge_page(h)) {
3936 3937 3938 3939 3940 3941
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3942
		spin_unlock(ptl);
D
David Gibson 已提交
3943
	}
3944
	*nr_pages = remainder;
D
David Gibson 已提交
3945 3946
	*position = vaddr;

H
Hugh Dickins 已提交
3947
	return i ? i : -EFAULT;
D
David Gibson 已提交
3948
}
3949

3950
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3951 3952 3953 3954 3955 3956
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3957
	struct hstate *h = hstate_vma(vma);
3958
	unsigned long pages = 0;
3959 3960 3961 3962

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3963
	mmu_notifier_invalidate_range_start(mm, start, end);
3964
	i_mmap_lock_write(vma->vm_file->f_mapping);
3965
	for (; address < end; address += huge_page_size(h)) {
3966
		spinlock_t *ptl;
3967 3968 3969
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3970
		ptl = huge_pte_lock(h, mm, ptep);
3971 3972
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3973
			spin_unlock(ptl);
3974
			continue;
3975
		}
3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3996
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3997
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3998
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3999
			set_huge_pte_at(mm, address, ptep, pte);
4000
			pages++;
4001
		}
4002
		spin_unlock(ptl);
4003
	}
4004
	/*
4005
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4006
	 * may have cleared our pud entry and done put_page on the page table:
4007
	 * once we release i_mmap_rwsem, another task can do the final put_page
4008 4009
	 * and that page table be reused and filled with junk.
	 */
4010
	flush_tlb_range(vma, start, end);
4011
	mmu_notifier_invalidate_range(mm, start, end);
4012
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4013
	mmu_notifier_invalidate_range_end(mm, start, end);
4014 4015

	return pages << h->order;
4016 4017
}

4018 4019
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4020
					struct vm_area_struct *vma,
4021
					vm_flags_t vm_flags)
4022
{
4023
	long ret, chg;
4024
	struct hstate *h = hstate_inode(inode);
4025
	struct hugepage_subpool *spool = subpool_inode(inode);
4026
	struct resv_map *resv_map;
4027
	long gbl_reserve;
4028

4029 4030 4031
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4032
	 * without using reserves
4033
	 */
4034
	if (vm_flags & VM_NORESERVE)
4035 4036
		return 0;

4037 4038 4039 4040 4041 4042
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4043
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4044
		resv_map = inode_resv_map(inode);
4045

4046
		chg = region_chg(resv_map, from, to);
4047 4048 4049

	} else {
		resv_map = resv_map_alloc();
4050 4051 4052
		if (!resv_map)
			return -ENOMEM;

4053
		chg = to - from;
4054

4055 4056 4057 4058
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4059 4060 4061 4062
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4063

4064 4065 4066 4067 4068 4069 4070
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4071 4072 4073
		ret = -ENOSPC;
		goto out_err;
	}
4074 4075

	/*
4076
	 * Check enough hugepages are available for the reservation.
4077
	 * Hand the pages back to the subpool if there are not
4078
	 */
4079
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4080
	if (ret < 0) {
4081 4082
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4083
		goto out_err;
K
Ken Chen 已提交
4084
	}
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4115
	return 0;
4116
out_err:
4117 4118
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4119 4120
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4121
	return ret;
4122 4123
}

4124 4125
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4126
{
4127
	struct hstate *h = hstate_inode(inode);
4128
	struct resv_map *resv_map = inode_resv_map(inode);
4129
	long chg = 0;
4130
	struct hugepage_subpool *spool = subpool_inode(inode);
4131
	long gbl_reserve;
K
Ken Chen 已提交
4132

4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4144
	spin_lock(&inode->i_lock);
4145
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4146 4147
	spin_unlock(&inode->i_lock);

4148 4149 4150 4151 4152 4153
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4154 4155

	return 0;
4156
}
4157

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4169 4170
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4184
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4185 4186 4187 4188 4189 4190 4191 4192 4193
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4194 4195
		return true;
	return false;
4196 4197 4198 4199 4200 4201 4202
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4203
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4217
	spinlock_t *ptl;
4218 4219 4220 4221

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4222
	i_mmap_lock_write(mapping);
4223 4224 4225 4226 4227 4228 4229 4230
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
4231
				mm_inc_nr_pmds(mm);
4232 4233 4234 4235 4236 4237 4238 4239 4240
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4241 4242
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
4243
	if (pud_none(*pud)) {
4244 4245
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4246
	} else {
4247
		put_page(virt_to_page(spte));
4248 4249
		mm_inc_nr_pmds(mm);
	}
4250
	spin_unlock(ptl);
4251 4252
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4253
	i_mmap_unlock_write(mapping);
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4264
 * called with page table lock held.
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4280
	mm_dec_nr_pmds(mm);
4281 4282 4283
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4284 4285 4286 4287 4288 4289
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4290 4291 4292 4293 4294

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4295
#define want_pmd_share()	(0)
4296 4297
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4356
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4357
		pmd_t *pmd, int flags)
4358
{
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4371
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4387 4388 4389
	return page;
}

4390
struct page * __weak
4391
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4392
		pud_t *pud, int flags)
4393
{
4394 4395
	if (flags & FOLL_GET)
		return NULL;
4396

4397
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4398 4399
}

4400 4401
#ifdef CONFIG_MEMORY_FAILURE

4402 4403 4404 4405
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
4406
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4407 4408 4409
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4410
	int ret = -EBUSY;
4411 4412

	spin_lock(&hugetlb_lock);
4413 4414 4415 4416 4417
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4418 4419 4420 4421 4422 4423 4424
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4425
		set_page_refcounted(hpage);
4426 4427 4428 4429
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4430
	spin_unlock(&hugetlb_lock);
4431
	return ret;
4432
}
4433
#endif
4434 4435 4436

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4437 4438
	bool ret = true;

4439
	VM_BUG_ON_PAGE(!PageHead(page), page);
4440
	spin_lock(&hugetlb_lock);
4441 4442 4443 4444 4445
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4446
	list_move_tail(&page->lru, list);
4447
unlock:
4448
	spin_unlock(&hugetlb_lock);
4449
	return ret;
4450 4451 4452 4453
}

void putback_active_hugepage(struct page *page)
{
4454
	VM_BUG_ON_PAGE(!PageHead(page), page);
4455
	spin_lock(&hugetlb_lock);
4456
	set_page_huge_active(page);
4457 4458 4459 4460
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}