reg.c 64.8 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6
 *
7 8 9 10 11 12 13 14 15 16 17
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 19
 */

20

21 22
/**
 * DOC: Wireless regulatory infrastructure
23 24 25 26 27 28
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
29 30 31 32 33 34 35 36 37 38 39 40 41 42
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
43
 */
44 45 46

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

47
#include <linux/kernel.h>
48
#include <linux/export.h>
49
#include <linux/slab.h>
50 51
#include <linux/list.h>
#include <linux/random.h>
52
#include <linux/ctype.h>
53 54
#include <linux/nl80211.h>
#include <linux/platform_device.h>
55
#include <linux/moduleparam.h>
56
#include <net/cfg80211.h>
57
#include "core.h"
58
#include "reg.h"
59
#include "regdb.h"
60
#include "nl80211.h"
61

62
#ifdef CONFIG_CFG80211_REG_DEBUG
63 64
#define REG_DBG_PRINT(format, args...)			\
	printk(KERN_DEBUG pr_fmt(format), ##args)
65
#else
66
#define REG_DBG_PRINT(args...)
67 68
#endif

69 70 71 72 73 74 75 76 77
static struct regulatory_request core_request_world = {
	.initiator = NL80211_REGDOM_SET_BY_CORE,
	.alpha2[0] = '0',
	.alpha2[1] = '0',
	.intersect = false,
	.processed = true,
	.country_ie_env = ENVIRON_ANY,
};

78
/* Receipt of information from last regulatory request */
79
static struct regulatory_request *last_request = &core_request_world;
80

81 82
/* To trigger userspace events */
static struct platform_device *reg_pdev;
83

84 85 86 87
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

88 89
/*
 * Central wireless core regulatory domains, we only need two,
90
 * the current one and a world regulatory domain in case we have no
91 92
 * information to give us an alpha2
 */
93
const struct ieee80211_regdomain *cfg80211_regdomain;
94

95 96 97 98 99
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
100
 *     - reg_num_devs_support_basehint
101
 */
102
static DEFINE_MUTEX(reg_mutex);
103

104 105 106 107 108 109
/*
 * Number of devices that registered to the core
 * that support cellular base station regulatory hints
 */
static int reg_num_devs_support_basehint;

110 111 112 113
static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
114

115
/* Used to queue up regulatory hints */
116 117 118
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

119 120 121 122 123 124 125 126 127 128 129 130
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

131 132 133
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

134 135 136
static void reg_timeout_work(struct work_struct *work);
static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);

137 138
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
139
	.n_reg_rules = 6,
140 141
	.alpha2 =  "00",
	.reg_rules = {
142 143
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
144 145
		/* IEEE 802.11b/g, channels 12..13. */
		REG_RULE(2467-10, 2472+10, 40, 6, 20,
146 147
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
148 149 150 151 152 153 154
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
155
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
156 157
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
158 159 160 161

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
162
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
163 164
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
165 166 167

		/* IEEE 802.11ad (60gHz), channels 1..3 */
		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
168 169 170
	}
};

171 172
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
173

174
static char *ieee80211_regdom = "00";
175
static char user_alpha2[2];
176

177 178 179
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

180
static void reset_regdomains(bool full_reset)
181
{
182 183 184 185 186 187 188 189 190 191
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
192

193
	cfg80211_world_regdom = &world_regdom;
194
	cfg80211_regdomain = NULL;
195 196 197 198 199 200 201

	if (!full_reset)
		return;

	if (last_request != &core_request_world)
		kfree(last_request);
	last_request = &core_request_world;
202 203
}

204 205 206 207
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
208
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
209
{
210
	BUG_ON(!last_request);
211

212
	reset_regdomains(false);
213 214 215 216 217

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

218
bool is_world_regdom(const char *alpha2)
219 220 221 222 223 224 225
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
226

227
static bool is_alpha2_set(const char *alpha2)
228 229 230 231 232 233 234
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
235

236
static bool is_unknown_alpha2(const char *alpha2)
237 238 239
{
	if (!alpha2)
		return false;
240 241 242 243
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
244 245 246 247
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
248

249 250 251 252
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
253 254
	/*
	 * Special case where regulatory domain is the
255
	 * result of an intersection between two regulatory domain
256 257
	 * structures
	 */
258 259 260 261 262
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

263
static bool is_an_alpha2(const char *alpha2)
264 265 266
{
	if (!alpha2)
		return false;
267
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
268 269 270
		return true;
	return false;
}
271

272
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
273 274 275 276 277 278 279 280 281
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

282
static bool regdom_changes(const char *alpha2)
283
{
284 285
	assert_cfg80211_lock();

286 287 288 289 290 291 292
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

314 315
static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain *src_regd)
316 317
{
	struct ieee80211_regdomain *regd;
318
	int size_of_regd;
319 320
	unsigned int i;

321 322 323
	size_of_regd =
		sizeof(struct ieee80211_regdomain) +
		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
324 325 326

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
327
		return ERR_PTR(-ENOMEM);
328 329 330 331 332

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
333
		       sizeof(struct ieee80211_reg_rule));
334

335
	return regd;
336 337 338 339 340 341 342 343 344
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
345
static DEFINE_MUTEX(reg_regdb_search_mutex);
346 347 348 349

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
350 351
	const struct ieee80211_regdomain *curdom, *regdom = NULL;
	int i;
352 353

	mutex_lock(&cfg80211_mutex);
354

355
	mutex_lock(&reg_regdb_search_mutex);
356 357 358 359 360 361 362 363 364 365
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
366
				regdom = reg_copy_regd(curdom);
367 368 369 370 371 372
				break;
			}
		}

		kfree(request);
	}
373
	mutex_unlock(&reg_regdb_search_mutex);
374

375
	if (!IS_ERR_OR_NULL(regdom))
376 377 378
		set_regdom(regdom);

	mutex_unlock(&cfg80211_mutex);
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

396
	mutex_lock(&reg_regdb_search_mutex);
397
	list_add_tail(&request->list, &reg_regdb_search_list);
398
	mutex_unlock(&reg_regdb_search_mutex);
399 400 401

	schedule_work(&reg_regdb_work);
}
402 403 404 405 406 407 408

/* Feel free to add any other sanity checks here */
static void reg_regdb_size_check(void)
{
	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
}
409
#else
410
static inline void reg_regdb_size_check(void) {}
411 412 413
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

414 415
/*
 * This lets us keep regulatory code which is updated on a regulatory
416 417
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
418
 */
419 420 421
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
422
		pr_info("Calling CRDA for country: %c%c\n",
423 424
			alpha2[0], alpha2[1]);
	else
425
		pr_info("Calling CRDA to update world regulatory domain\n");
426

427 428 429
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

430
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
431 432 433
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
434
bool reg_is_valid_request(const char *alpha2)
435
{
436 437
	assert_cfg80211_lock();

438 439 440 441
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
442
}
443

444
/* Sanity check on a regulatory rule */
445
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
446
{
447
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
448 449
	u32 freq_diff;

450
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
451 452 453 454 455 456 457
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

458 459
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
460 461 462 463 464
		return false;

	return true;
}

465
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
466
{
467
	const struct ieee80211_reg_rule *reg_rule = NULL;
468
	unsigned int i;
469

470 471
	if (!rd->n_reg_rules)
		return false;
472

473 474 475
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

476 477 478 479 480 481 482
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
483 484
}

485 486 487
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
488
{
489 490 491 492 493 494 495 496 497 498
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
499
}
500

501 502 503 504 505 506 507
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
508 509 510 511 512
 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
 * however it is safe for now to assume that a frequency rule should not be
 * part of a frequency's band if the start freq or end freq are off by more
 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
 * 60 GHz band.
513 514 515 516 517 518 519
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
520 521 522 523 524 525 526 527
	/*
	 * From 802.11ad: directional multi-gigabit (DMG):
	 * Pertaining to operation in a frequency band containing a channel
	 * with the Channel starting frequency above 45 GHz.
	 */
	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
528
		return true;
529
	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
530 531 532 533 534
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

535 536 537 538
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
606
	struct ieee80211_reg_rule dummy_rule;
607 608 609 610

	if (!rd1 || !rd2)
		return NULL;

611 612
	/*
	 * First we get a count of the rules we'll need, then we actually
613 614 615
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
616 617
	 * All rules that do check out OK are valid.
	 */
618 619 620 621 622

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
623
			if (!reg_rules_intersect(rule1, rule2, &dummy_rule))
624 625 626 627 628 629 630 631
				num_rules++;
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
632
		       num_rules * sizeof(struct ieee80211_reg_rule);
633 634 635 636 637

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

638
	for (x = 0; x < rd1->n_reg_rules && rule_idx < num_rules; x++) {
639
		rule1 = &rd1->reg_rules[x];
640
		for (y = 0; y < rd2->n_reg_rules && rule_idx < num_rules; y++) {
641
			rule2 = &rd2->reg_rules[y];
642 643
			/*
			 * This time around instead of using the stack lets
644
			 * write to the target rule directly saving ourselves
645 646
			 * a memcpy()
			 */
647 648 649
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
650 651 652 653
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

672 673 674 675
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
676 677 678 679 680 681 682 683 684
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
685 686
	if (rd_flags & NL80211_RRF_NO_OFDM)
		channel_flags |= IEEE80211_CHAN_NO_OFDM;
687 688 689
	return channel_flags;
}

690 691
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
692
			      u32 desired_bw_khz,
693 694
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
695 696
{
	int i;
697
	bool band_rule_found = false;
698
	const struct ieee80211_regdomain *regd;
699 700 701 702
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
703

704
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
705

706 707 708 709
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
710 711
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
712
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
713 714 715 716
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
717 718
		return -EINVAL;

719
	for (i = 0; i < regd->n_reg_rules; i++) {
720 721 722
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;

723
		rr = &regd->reg_rules[i];
724
		fr = &rr->freq_range;
725

726 727
		/*
		 * We only need to know if one frequency rule was
728
		 * was in center_freq's band, that's enough, so lets
729 730
		 * not overwrite it once found
		 */
731 732 733
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

734 735 736
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
737

738
		if (band_rule_found && bw_fits) {
739
			*reg_rule = rr;
740
			return 0;
741 742 743
		}
	}

744 745 746
	if (!band_rule_found)
		return -ERANGE;

747
	return -EINVAL;
748 749
}

750 751 752 753
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
754
{
755
	assert_cfg80211_lock();
756 757 758 759 760
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
761
}
762
EXPORT_SYMBOL(freq_reg_info);
763

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

798
	REG_DBG_PRINT("Updating information on frequency %d MHz "
799
		      "for a %d MHz width channel with regulatory rule:\n",
800 801 802
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

803
	REG_DBG_PRINT("%d KHz - %d KHz @ %d KHz), (%s mBi, %d mBm)\n",
804 805
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
806
		      freq_range->max_bandwidth_khz,
807 808 809 810 811 812 813 814 815 816
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
817 818
#endif

819 820 821 822 823 824 825 826 827
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
828 829 830
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
831
			   unsigned int chan_idx)
832 833
{
	int r;
834 835
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
836 837
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
838
	const struct ieee80211_freq_range *freq_range = NULL;
839 840
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
841
	struct wiphy *request_wiphy = NULL;
842

843 844
	assert_cfg80211_lock();

845 846
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

847 848 849 850 851
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
852

853 854 855 856
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
857

858 859 860
	if (r) {
		/*
		 * We will disable all channels that do not match our
L
Lucas De Marchi 已提交
861
		 * received regulatory rule unless the hint is coming
862 863 864 865 866 867 868 869 870 871 872
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

873
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
874
		chan->flags = IEEE80211_CHAN_DISABLED;
875
		return;
876
	}
877

878 879
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

880
	power_rule = &reg_rule->power_rule;
881 882 883 884
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
885

886
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
887
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
888
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
889
		/*
L
Lucas De Marchi 已提交
890
		 * This guarantees the driver's requested regulatory domain
891
		 * will always be used as a base for further regulatory
892 893
		 * settings
		 */
894
		chan->flags = chan->orig_flags =
895
			map_regdom_flags(reg_rule->flags) | bw_flags;
896 897
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
898
		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
899 900 901 902
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

903
	chan->beacon_found = false;
904
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
905
	chan->max_antenna_gain = min(chan->orig_mag,
906
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
907
	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
	if (chan->orig_mpwr) {
		/*
		 * Devices that have their own custom regulatory domain
		 * but also use WIPHY_FLAG_STRICT_REGULATORY will follow the
		 * passed country IE power settings.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
			chan->max_power = chan->max_reg_power;
		else
			chan->max_power = min(chan->orig_mpwr,
					      chan->max_reg_power);
	} else
		chan->max_power = chan->max_reg_power;
923 924
}

925 926 927
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
928
{
929 930 931 932 933
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
934 935

	for (i = 0; i < sband->n_channels; i++)
936
		handle_channel(wiphy, initiator, band, i);
937 938
}

939 940 941 942 943 944 945 946 947 948 949
static bool reg_request_cell_base(struct regulatory_request *request)
{
	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
		return false;
	if (request->user_reg_hint_type != NL80211_USER_REG_HINT_CELL_BASE)
		return false;
	return true;
}

bool reg_last_request_cell_base(void)
{
950
	bool val;
951 952 953
	assert_cfg80211_lock();

	mutex_lock(&reg_mutex);
954
	val = reg_request_cell_base(last_request);
955
	mutex_unlock(&reg_mutex);
956
	return val;
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
}

#ifdef CONFIG_CFG80211_CERTIFICATION_ONUS

/* Core specific check */
static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
{
	if (!reg_num_devs_support_basehint)
		return -EOPNOTSUPP;

	if (reg_request_cell_base(last_request)) {
		if (!regdom_changes(pending_request->alpha2))
			return -EALREADY;
		return 0;
	}
	return 0;
}

/* Device specific check */
static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
{
	if (!(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS))
		return true;
	return false;
}
#else
static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
{
	return -EOPNOTSUPP;
}
static int reg_dev_ignore_cell_hint(struct wiphy *wiphy)
{
	return true;
}
#endif


994 995
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
996
{
997
	if (!last_request) {
998
		REG_DBG_PRINT("Ignoring regulatory request %s since "
999 1000
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
1001
		return true;
1002 1003
	}

1004
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1005
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
1006
		REG_DBG_PRINT("Ignoring regulatory request %s "
1007
			      "since the driver uses its own custom "
1008
			      "regulatory domain\n",
1009
			      reg_initiator_name(initiator));
1010
		return true;
1011 1012
	}

1013 1014 1015 1016
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
1017
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1018
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1019
	    !is_world_regdom(last_request->alpha2)) {
1020
		REG_DBG_PRINT("Ignoring regulatory request %s "
1021
			      "since the driver requires its own regulatory "
1022
			      "domain to be set first\n",
1023
			      reg_initiator_name(initiator));
1024
		return true;
1025 1026
	}

1027 1028 1029
	if (reg_request_cell_base(last_request))
		return reg_dev_ignore_cell_hint(wiphy);

1030 1031 1032
	return false;
}

1033 1034 1035 1036 1037 1038
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1039 1040
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1041 1042 1043 1044 1045 1046 1047 1048 1049

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1050 1051 1052 1053 1054
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
1055
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1056 1057
		return;

1058 1059 1060
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1061
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1062
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1063
		channel_changed = true;
1064 1065
	}

1066
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1067
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1068
		channel_changed = true;
1069 1070
	}

1071 1072
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1121 1122
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1123
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1124 1125 1126 1127 1128 1129 1130
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1131 1132 1133 1134 1135 1136
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1137 1138 1139 1140 1141
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1192
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1193
	else
1194
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1195 1196

	if (is_ht40_not_allowed(channel_after))
1197
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1198
	else
1199
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1229 1230
static void wiphy_update_regulatory(struct wiphy *wiphy,
				    enum nl80211_reg_initiator initiator)
1231 1232
{
	enum ieee80211_band band;
1233

1234 1235
	assert_reg_lock();

1236
	if (ignore_reg_update(wiphy, initiator))
1237 1238
		return;

1239 1240
	last_request->dfs_region = cfg80211_regdomain->dfs_region;

1241
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1242
		if (wiphy->bands[band])
1243
			handle_band(wiphy, band, initiator);
1244
	}
1245

1246
	reg_process_beacons(wiphy);
1247
	reg_process_ht_flags(wiphy);
1248
	if (wiphy->reg_notifier)
1249
		wiphy->reg_notifier(wiphy, last_request);
1250 1251
}

1252 1253 1254
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
{
	struct cfg80211_registered_device *rdev;
1255
	struct wiphy *wiphy;
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		wiphy = &rdev->wiphy;
		wiphy_update_regulatory(wiphy, initiator);
		/*
		 * Regulatory updates set by CORE are ignored for custom
		 * regulatory cards. Let us notify the changes to the driver,
		 * as some drivers used this to restore its orig_* reg domain.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
		    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY &&
		    wiphy->reg_notifier)
			wiphy->reg_notifier(wiphy, last_request);
	}
1270 1271
}

1272 1273 1274 1275 1276 1277
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1278 1279
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1280 1281
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1282
	const struct ieee80211_freq_range *freq_range = NULL;
1283 1284 1285
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1286
	assert_reg_lock();
1287

1288 1289 1290 1291
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1292 1293 1294 1295 1296
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1297 1298

	if (r) {
1299
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1300 1301 1302 1303
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1304 1305 1306 1307
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1308 1309
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1310
	power_rule = &reg_rule->power_rule;
1311 1312 1313 1314
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1315

1316
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1317
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1318 1319
	chan->max_reg_power = chan->max_power =
		(int) MBM_TO_DBM(power_rule->max_eirp);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1340
	unsigned int bands_set = 0;
1341

1342
	mutex_lock(&reg_mutex);
1343
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1344 1345 1346 1347
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1348
	}
1349
	mutex_unlock(&reg_mutex);
1350 1351 1352 1353 1354 1355

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1356
}
1357 1358
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1359 1360 1361 1362
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1363 1364
#define REG_INTERSECT	1

1365 1366
/* This has the logic which determines when a new request
 * should be ignored. */
1367 1368
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1369
{
1370
	struct wiphy *last_wiphy = NULL;
1371 1372 1373

	assert_cfg80211_lock();

1374 1375 1376 1377
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1378
	switch (pending_request->initiator) {
1379
	case NL80211_REGDOM_SET_BY_CORE:
1380
		return 0;
1381
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1382

1383 1384 1385 1386 1387 1388 1389
		if (reg_request_cell_base(last_request)) {
			/* Trust a Cell base station over the AP's country IE */
			if (regdom_changes(pending_request->alpha2))
				return -EOPNOTSUPP;
			return -EALREADY;
		}

1390 1391
		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1392
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1393
			return -EINVAL;
1394 1395
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1396
			if (last_wiphy != wiphy) {
1397 1398
				/*
				 * Two cards with two APs claiming different
1399
				 * Country IE alpha2s. We could
1400 1401 1402
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1403
				if (regdom_changes(pending_request->alpha2))
1404 1405 1406
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1407 1408 1409 1410
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1411
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1412 1413 1414
				return 0;
			return -EALREADY;
		}
1415
		return 0;
1416 1417
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1418
			if (regdom_changes(pending_request->alpha2))
1419
				return 0;
1420
			return -EALREADY;
1421
		}
1422 1423 1424 1425 1426 1427

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1428
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1429
		    !regdom_changes(pending_request->alpha2))
1430 1431
			return -EALREADY;

1432
		return REG_INTERSECT;
1433
	case NL80211_REGDOM_SET_BY_USER:
1434 1435 1436 1437 1438 1439
		if (reg_request_cell_base(pending_request))
			return reg_ignore_cell_hint(pending_request);

		if (reg_request_cell_base(last_request))
			return -EOPNOTSUPP;

1440
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1441
			return REG_INTERSECT;
1442 1443 1444 1445
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1446
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1447 1448
			  last_request->intersect)
			return -EOPNOTSUPP;
1449 1450 1451 1452
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1453 1454 1455
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1456
			if (regdom_changes(last_request->alpha2))
1457 1458 1459
				return -EAGAIN;
		}

1460
		if (!regdom_changes(pending_request->alpha2))
1461 1462
			return -EALREADY;

1463 1464 1465 1466 1467 1468
		return 0;
	}

	return -EINVAL;
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

1480
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER)
1481
		cancel_delayed_work(&reg_timeout);
1482

1483 1484 1485 1486
	if (need_more_processing)
		schedule_work(&reg_work);
}

1487 1488 1489 1490
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1491
 * @pending_request: the regulatory request currently being processed
1492 1493
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1494
 * what it believes should be the current regulatory domain.
1495 1496 1497 1498
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1499
 * Caller must hold &cfg80211_mutex and &reg_mutex
1500
 */
1501 1502
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1503
{
1504
	const struct ieee80211_regdomain *regd;
1505
	bool intersect = false;
1506 1507
	int r = 0;

1508 1509
	assert_cfg80211_lock();

1510
	r = ignore_request(wiphy, pending_request);
1511

1512
	if (r == REG_INTERSECT) {
1513 1514
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1515 1516
			regd = reg_copy_regd(cfg80211_regdomain);
			if (IS_ERR(regd)) {
1517
				kfree(pending_request);
1518
				return PTR_ERR(regd);
1519
			}
1520
			wiphy->regd = regd;
1521
		}
1522
		intersect = true;
1523
	} else if (r) {
1524 1525
		/*
		 * If the regulatory domain being requested by the
1526
		 * driver has already been set just copy it to the
1527 1528
		 * wiphy
		 */
1529
		if (r == -EALREADY &&
1530 1531
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1532 1533
			regd = reg_copy_regd(cfg80211_regdomain);
			if (IS_ERR(regd)) {
1534
				kfree(pending_request);
1535
				return PTR_ERR(regd);
1536
			}
1537
			r = -EALREADY;
1538
			wiphy->regd = regd;
1539 1540
			goto new_request;
		}
1541
		kfree(pending_request);
1542
		return r;
1543
	}
1544

1545
new_request:
1546 1547
	if (last_request != &core_request_world)
		kfree(last_request);
1548

1549 1550
	last_request = pending_request;
	last_request->intersect = intersect;
1551

1552
	pending_request = NULL;
1553

1554 1555 1556 1557 1558
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1559
	/* When r == REG_INTERSECT we do need to call CRDA */
1560 1561 1562 1563 1564 1565
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1566
		if (r == -EALREADY) {
1567
			nl80211_send_reg_change_event(last_request);
1568 1569
			reg_set_request_processed();
		}
1570
		return r;
1571
	}
1572

1573
	return call_crda(last_request->alpha2);
1574 1575
}

1576
/* This processes *all* regulatory hints */
1577 1578
static void reg_process_hint(struct regulatory_request *reg_request,
			     enum nl80211_reg_initiator reg_initiator)
1579 1580 1581 1582 1583 1584 1585 1586 1587
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1588
	if (reg_initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1589
	    !wiphy) {
1590
		kfree(reg_request);
1591
		return;
1592 1593
	}

1594
	r = __regulatory_hint(wiphy, reg_request);
1595
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1596
	if (r == -EALREADY && wiphy &&
1597
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1598
		wiphy_update_regulatory(wiphy, reg_initiator);
1599 1600 1601 1602 1603 1604 1605
		return;
	}

	/*
	 * We only time out user hints, given that they should be the only
	 * source of bogus requests.
	 */
1606
	if (r != -EALREADY &&
1607
	    reg_initiator == NL80211_REGDOM_SET_BY_USER)
1608
		schedule_delayed_work(&reg_timeout, msecs_to_jiffies(3142));
1609 1610
}

1611 1612 1613 1614 1615
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1616
static void reg_process_pending_hints(void)
1617
{
1618 1619
	struct regulatory_request *reg_request;

1620 1621 1622
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1623 1624 1625
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
1626
			      "for it to be processed...\n");
1627 1628 1629
		goto out;
	}

1630 1631
	spin_lock(&reg_requests_lock);

1632
	if (list_empty(&reg_requests_list)) {
1633
		spin_unlock(&reg_requests_lock);
1634
		goto out;
1635
	}
1636 1637 1638 1639 1640 1641

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1642
	spin_unlock(&reg_requests_lock);
1643

1644
	reg_process_hint(reg_request, reg_request->initiator);
1645 1646

out:
1647 1648
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1649 1650
}

1651 1652 1653
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1654
	struct cfg80211_registered_device *rdev;
1655 1656
	struct reg_beacon *pending_beacon, *tmp;

1657 1658 1659 1660
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1672 1673
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1674 1675 1676 1677 1678 1679 1680 1681 1682

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
	mutex_unlock(&cfg80211_mutex);
}

1683 1684 1685
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1686
	reg_process_pending_beacon_hints();
1687 1688 1689 1690
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1691 1692 1693 1694 1695
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1696 1697 1698 1699 1700 1701 1702
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1703 1704 1705 1706
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1718
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1719

1720
	queue_regulatory_request(request);
1721

1722
	return 0;
1723 1724
}

1725
/* User hints */
1726 1727
int regulatory_hint_user(const char *alpha2,
			 enum nl80211_user_reg_hint_type user_reg_hint_type)
1728
{
1729 1730
	struct regulatory_request *request;

1731
	BUG_ON(!alpha2);
1732

1733 1734 1735 1736 1737 1738 1739
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1740
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1741
	request->user_reg_hint_type = user_reg_hint_type;
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1767
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1768 1769 1770 1771

	queue_regulatory_request(request);

	return 0;
1772 1773 1774
}
EXPORT_SYMBOL(regulatory_hint);

1775 1776 1777 1778
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1779
void regulatory_hint_11d(struct wiphy *wiphy,
1780
			 enum ieee80211_band band,
1781
			 const u8 *country_ie,
1782
			 u8 country_ie_len)
1783 1784 1785
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1786
	struct regulatory_request *request;
1787

1788
	mutex_lock(&reg_mutex);
1789

1790 1791
	if (unlikely(!last_request))
		goto out;
1792

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1808
	/*
1809
	 * We will run this only upon a successful connection on cfg80211.
1810 1811
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1812
	 */
1813 1814
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1815 1816
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1817

1818 1819
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1820
		goto out;
1821 1822

	request->wiphy_idx = get_wiphy_idx(wiphy);
1823 1824
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1825
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1826 1827
	request->country_ie_env = env;

1828
	mutex_unlock(&reg_mutex);
1829

1830 1831 1832
	queue_regulatory_request(request);

	return;
1833

1834
out:
1835
	mutex_unlock(&reg_mutex);
1836
}
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1848
			REG_DBG_PRINT("Restoring regulatory settings "
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1859
				REG_DBG_PRINT("Keeping preference on "
1860 1861 1862 1863 1864 1865 1866
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1867
			REG_DBG_PRINT("Restoring regulatory settings "
1868 1869 1870 1871 1872 1873 1874
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1875
		REG_DBG_PRINT("Keeping preference on "
1876 1877 1878 1879 1880 1881
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1882
		REG_DBG_PRINT("Restoring regulatory settings\n");
1883 1884
}

1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static void restore_custom_reg_settings(struct wiphy *wiphy)
{
	struct ieee80211_supported_band *sband;
	enum ieee80211_band band;
	struct ieee80211_channel *chan;
	int i;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		sband = wiphy->bands[band];
		if (!sband)
			continue;
		for (i = 0; i < sband->n_channels; i++) {
			chan = &sband->channels[i];
			chan->flags = chan->orig_flags;
			chan->max_antenna_gain = chan->orig_mag;
			chan->max_power = chan->orig_mpwr;
1901
			chan->beacon_found = false;
1902 1903 1904 1905
		}
	}
}

1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
1924
	char world_alpha2[2];
1925
	struct reg_beacon *reg_beacon, *btmp;
1926 1927
	struct regulatory_request *reg_request, *tmp;
	LIST_HEAD(tmp_reg_req_list);
1928
	struct cfg80211_registered_device *rdev;
1929 1930 1931 1932

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1933
	reset_regdomains(true);
1934 1935
	restore_alpha2(alpha2, reset_user);

1936 1937 1938 1939 1940 1941 1942
	/*
	 * If there's any pending requests we simply
	 * stash them to a temporary pending queue and
	 * add then after we've restored regulatory
	 * settings.
	 */
	spin_lock(&reg_requests_lock);
1943 1944 1945 1946
	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
		if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
			continue;
		list_move_tail(&reg_request->list, &tmp_reg_req_list);
1947 1948 1949
	}
	spin_unlock(&reg_requests_lock);

1950 1951
	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
1952 1953 1954
	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
		list_del(&reg_beacon->list);
		kfree(reg_beacon);
1955 1956 1957
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

1958 1959 1960
	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
		list_del(&reg_beacon->list);
		kfree(reg_beacon);
1961 1962 1963 1964
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;
1965 1966
	world_alpha2[0] = cfg80211_regdomain->alpha2[0];
	world_alpha2[1] = cfg80211_regdomain->alpha2[1];
1967

1968 1969 1970 1971 1972
	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
		if (rdev->wiphy.flags & WIPHY_FLAG_CUSTOM_REGULATORY)
			restore_custom_reg_settings(&rdev->wiphy);
	}

1973 1974 1975
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

1976
	regulatory_hint_core(world_alpha2);
1977 1978 1979 1980 1981 1982 1983

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
1984
		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
1985

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	if (list_empty(&tmp_reg_req_list))
		return;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	spin_lock(&reg_requests_lock);
	list_for_each_entry_safe(reg_request, tmp, &tmp_reg_req_list, list) {
		REG_DBG_PRINT("Adding request for country %c%c back "
			      "into the queue\n",
			      reg_request->alpha2[0],
			      reg_request->alpha2[1]);
1998
		list_move_tail(&reg_request->list, &reg_requests_list);
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
	}
	spin_unlock(&reg_requests_lock);

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	REG_DBG_PRINT("Kicking the queue\n");

	schedule_work(&reg_work);
}
2009 2010 2011

void regulatory_hint_disconnect(void)
{
2012
	REG_DBG_PRINT("All devices are disconnected, going to "
2013 2014 2015 2016
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

2017 2018
static bool freq_is_chan_12_13_14(u16 freq)
{
2019 2020 2021
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

2042
	REG_DBG_PRINT("Found new beacon on "
2043 2044 2045 2046 2047
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

2065
static void print_rd_rules(const struct ieee80211_regdomain *rd)
2066 2067
{
	unsigned int i;
2068 2069 2070
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
2071

2072
	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
2073 2074 2075 2076 2077 2078

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2079 2080 2081 2082
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2083
		if (power_rule->max_antenna_gain)
2084
			pr_info("  (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
2085 2086 2087 2088 2089 2090
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2091
			pr_info("  (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
2092 2093 2094 2095 2096 2097 2098
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
bool reg_supported_dfs_region(u8 dfs_region)
{
	switch (dfs_region) {
	case NL80211_DFS_UNSET:
	case NL80211_DFS_FCC:
	case NL80211_DFS_ETSI:
	case NL80211_DFS_JP:
		return true;
	default:
		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
			      dfs_region);
		return false;
	}
}

static void print_dfs_region(u8 dfs_region)
{
	if (!dfs_region)
		return;

	switch (dfs_region) {
	case NL80211_DFS_FCC:
		pr_info(" DFS Master region FCC");
		break;
	case NL80211_DFS_ETSI:
		pr_info(" DFS Master region ETSI");
		break;
	case NL80211_DFS_JP:
		pr_info(" DFS Master region JP");
		break;
	default:
		pr_info(" DFS Master region Uknown");
		break;
	}
}

2135
static void print_regdomain(const struct ieee80211_regdomain *rd)
2136 2137
{

2138 2139
	if (is_intersected_alpha2(rd->alpha2)) {

2140 2141
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2142 2143
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2144
				last_request->wiphy_idx);
2145
			if (rdev) {
2146
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2147 2148
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2149
			} else
2150
				pr_info("Current regulatory domain intersected:\n");
2151
		} else
2152
			pr_info("Current regulatory domain intersected:\n");
2153
	} else if (is_world_regdom(rd->alpha2))
2154
		pr_info("World regulatory domain updated:\n");
2155 2156
	else {
		if (is_unknown_alpha2(rd->alpha2))
2157
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
		else {
			if (reg_request_cell_base(last_request))
				pr_info("Regulatory domain changed "
					"to country: %c%c by Cell Station\n",
					rd->alpha2[0], rd->alpha2[1]);
			else
				pr_info("Regulatory domain changed "
					"to country: %c%c\n",
					rd->alpha2[0], rd->alpha2[1]);
		}
2168
	}
2169
	print_dfs_region(rd->dfs_region);
2170 2171 2172
	print_rd_rules(rd);
}

2173
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2174
{
2175
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2176 2177 2178
	print_rd_rules(rd);
}

2179
/* Takes ownership of rd only if it doesn't fail */
2180
static int __set_regdom(const struct ieee80211_regdomain *rd)
2181
{
2182
	const struct ieee80211_regdomain *regd;
2183
	const struct ieee80211_regdomain *intersected_rd = NULL;
2184
	struct wiphy *request_wiphy;
2185 2186 2187
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2188
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2189 2190 2191 2192 2193 2194 2195 2196 2197
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2198
	if (!last_request)
2199 2200
		return -EINVAL;

2201 2202
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2203
	 * rd is non static (it means CRDA was present and was used last)
2204 2205
	 * and the pending request came in from a country IE
	 */
2206
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2207 2208 2209 2210
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2211
		if (!regdom_changes(rd->alpha2))
2212
			return -EALREADY;
2213 2214
	}

2215 2216
	/*
	 * Now lets set the regulatory domain, update all driver channels
2217 2218
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2219 2220
	 * internal EEPROM data
	 */
2221

2222
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2223 2224
		return -EINVAL;

2225
	if (!is_valid_rd(rd)) {
2226
		pr_err("Invalid regulatory domain detected:\n");
2227 2228
		print_regdomain_info(rd);
		return -EINVAL;
2229 2230
	}

2231
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2232 2233 2234 2235
	if (!request_wiphy &&
	    (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
	     last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)) {
		schedule_delayed_work(&reg_timeout, 0);
2236 2237
		return -ENODEV;
	}
2238

2239
	if (!last_request->intersect) {
2240
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2241
			reset_regdomains(false);
2242 2243 2244 2245
			cfg80211_regdomain = rd;
			return 0;
		}

2246 2247 2248 2249
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2250

2251 2252 2253 2254 2255 2256
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2257

2258 2259 2260
		regd = reg_copy_regd(rd);
		if (IS_ERR(regd))
			return PTR_ERR(regd);
2261

2262
		request_wiphy->regd = regd;
2263
		reset_regdomains(false);
2264 2265 2266 2267 2268 2269
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2270
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2271

2272 2273 2274
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2275

2276 2277
		/*
		 * We can trash what CRDA provided now.
2278
		 * However if a driver requested this specific regulatory
2279 2280
		 * domain we keep it for its private use
		 */
2281
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2282
			request_wiphy->regd = rd;
2283 2284 2285
		else
			kfree(rd);

2286 2287
		rd = NULL;

2288
		reset_regdomains(false);
2289 2290 2291
		cfg80211_regdomain = intersected_rd;

		return 0;
2292 2293
	}

A
Alan Cox 已提交
2294
	return -EINVAL;
2295 2296 2297
}


2298 2299
/*
 * Use this call to set the current regulatory domain. Conflicts with
2300
 * multiple drivers can be ironed out later. Caller must've already
2301 2302
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2303
int set_regdom(const struct ieee80211_regdomain *rd)
2304 2305 2306
{
	int r;

2307 2308
	assert_cfg80211_lock();

2309 2310
	mutex_lock(&reg_mutex);

2311 2312
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2313
	if (r) {
2314 2315 2316
		if (r == -EALREADY)
			reg_set_request_processed();

2317
		kfree(rd);
2318
		mutex_unlock(&reg_mutex);
2319
		return r;
2320
	}
2321 2322

	/* This would make this whole thing pointless */
2323 2324
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2325 2326

	/* update all wiphys now with the new established regulatory domain */
2327
	update_all_wiphy_regulatory(last_request->initiator);
2328

2329
	print_regdomain(cfg80211_regdomain);
2330

2331 2332
	nl80211_send_reg_change_event(last_request);

2333 2334
	reg_set_request_processed();

2335 2336
	mutex_unlock(&reg_mutex);

2337 2338 2339
	return r;
}

2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2359 2360 2361 2362 2363 2364 2365 2366 2367
void wiphy_regulatory_register(struct wiphy *wiphy)
{
	assert_cfg80211_lock();

	mutex_lock(&reg_mutex);

	if (!reg_dev_ignore_cell_hint(wiphy))
		reg_num_devs_support_basehint++;

2368
	wiphy_update_regulatory(wiphy, NL80211_REGDOM_SET_BY_CORE);
2369

2370
	mutex_unlock(&reg_mutex);
2371 2372
}

2373
/* Caller must hold cfg80211_mutex */
2374
void wiphy_regulatory_deregister(struct wiphy *wiphy)
2375
{
2376
	struct wiphy *request_wiphy = NULL;
2377

2378 2379
	assert_cfg80211_lock();

2380 2381
	mutex_lock(&reg_mutex);

2382 2383 2384
	if (!reg_dev_ignore_cell_hint(wiphy))
		reg_num_devs_support_basehint--;

2385 2386
	kfree(wiphy->regd);

2387 2388
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2389

2390
	if (!request_wiphy || request_wiphy != wiphy)
2391
		goto out;
2392

2393
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2394
	last_request->country_ie_env = ENVIRON_ANY;
2395 2396
out:
	mutex_unlock(&reg_mutex);
2397 2398
}

2399 2400 2401
static void reg_timeout_work(struct work_struct *work)
{
	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2402
		      "restoring regulatory settings\n");
2403 2404 2405
	restore_regulatory_settings(true);
}

2406
int __init regulatory_init(void)
2407
{
2408
	int err = 0;
2409

2410 2411 2412
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2413

2414 2415
	reg_pdev->dev.type = &reg_device_type;

2416
	spin_lock_init(&reg_requests_lock);
2417
	spin_lock_init(&reg_pending_beacons_lock);
2418

2419 2420
	reg_regdb_size_check();

2421
	cfg80211_regdomain = cfg80211_world_regdom;
2422

2423 2424 2425
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2426 2427
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2428
	if (err) {
2429 2430 2431 2432 2433 2434 2435 2436 2437
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2438
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2439 2440 2441
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2442
#endif
2443
	}
2444

2445 2446 2447 2448 2449
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
2450 2451
		regulatory_hint_user(ieee80211_regdom,
				     NL80211_USER_REG_HINT_USER);
2452

2453 2454 2455
	return 0;
}

2456
void /* __init_or_exit */ regulatory_exit(void)
2457
{
2458
	struct regulatory_request *reg_request, *tmp;
2459
	struct reg_beacon *reg_beacon, *btmp;
2460 2461

	cancel_work_sync(&reg_work);
2462
	cancel_delayed_work_sync(&reg_timeout);
2463

2464
	mutex_lock(&cfg80211_mutex);
2465
	mutex_lock(&reg_mutex);
2466

2467
	reset_regdomains(true);
2468

2469
	dev_set_uevent_suppress(&reg_pdev->dev, true);
2470

2471
	platform_device_unregister(reg_pdev);
2472

2473
	spin_lock_bh(&reg_pending_beacons_lock);
2474 2475 2476
	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
		list_del(&reg_beacon->list);
		kfree(reg_beacon);
2477 2478 2479
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

2480 2481 2482
	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
		list_del(&reg_beacon->list);
		kfree(reg_beacon);
2483 2484
	}

2485
	spin_lock(&reg_requests_lock);
2486 2487 2488
	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
		list_del(&reg_request->list);
		kfree(reg_request);
2489 2490 2491
	}
	spin_unlock(&reg_requests_lock);

2492
	mutex_unlock(&reg_mutex);
2493
	mutex_unlock(&cfg80211_mutex);
2494
}