reg.c 69.6 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "regdb.h"
44
#include "nl80211.h"
45

46
#ifdef CONFIG_CFG80211_REG_DEBUG
47
#define REG_DBG_PRINT(format, args...) \
48
	do { \
49
		printk(KERN_DEBUG format , ## args); \
50 51
	} while (0)
#else
52
#define REG_DBG_PRINT(args...)
53 54
#endif

55
/* Receipt of information from last regulatory request */
56
static struct regulatory_request *last_request;
57

58 59
/* To trigger userspace events */
static struct platform_device *reg_pdev;
60

61 62
/*
 * Central wireless core regulatory domains, we only need two,
63
 * the current one and a world regulatory domain in case we have no
64 65
 * information to give us an alpha2
 */
66
const struct ieee80211_regdomain *cfg80211_regdomain;
67

68 69
/*
 * We use this as a place for the rd structure built from the
70
 * last parsed country IE to rest until CRDA gets back to us with
71 72
 * what it thinks should apply for the same country
 */
73 74
static const struct ieee80211_regdomain *country_ie_regdomain;

75 76 77 78 79 80 81 82 83 84
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - country_ie_regdomain
 *     - last_request
 */
DEFINE_MUTEX(reg_mutex);
#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))

85
/* Used to queue up regulatory hints */
86 87 88
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

89 90 91 92 93 94 95 96 97 98 99 100
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

101 102
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
103
	.n_reg_rules = 5,
104 105
	.alpha2 =  "00",
	.reg_rules = {
106 107
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
108 109 110
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
111 112
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
113 114 115 116 117 118 119
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
120
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
121 122
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
123 124 125 126

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
127
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
128 129
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
130 131 132
	}
};

133 134
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
135

136
static char *ieee80211_regdom = "00";
137
static char user_alpha2[2];
138

139 140 141 142 143
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
144 145 146 147 148 149 150 151 152 153
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
154

155
	cfg80211_world_regdom = &world_regdom;
156 157 158
	cfg80211_regdomain = NULL;
}

159 160 161 162
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
163
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
164
{
165
	BUG_ON(!last_request);
166 167 168 169 170 171 172

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

173
bool is_world_regdom(const char *alpha2)
174 175 176 177 178 179 180
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
181

182
static bool is_alpha2_set(const char *alpha2)
183 184 185 186 187 188 189
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
190

191 192 193 194 195 196 197
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
198

199
static bool is_unknown_alpha2(const char *alpha2)
200 201 202
{
	if (!alpha2)
		return false;
203 204 205 206
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
207 208 209 210
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
211

212 213 214 215
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
216 217
	/*
	 * Special case where regulatory domain is the
218
	 * result of an intersection between two regulatory domain
219 220
	 * structures
	 */
221 222 223 224 225
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

226
static bool is_an_alpha2(const char *alpha2)
227 228 229 230 231 232 233
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
234

235
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
236 237 238 239 240 241 242 243 244
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

245
static bool regdom_changes(const char *alpha2)
246
{
247 248
	assert_cfg80211_lock();

249 250 251 252 253 254 255
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
static DEFINE_SPINLOCK(reg_regdb_search_lock);

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

	spin_lock(&reg_regdb_search_lock);
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				spin_unlock(&reg_regdb_search_lock);
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				spin_lock(&reg_regdb_search_lock);
				break;
			}
		}

		kfree(request);
	}
	spin_unlock(&reg_regdb_search_lock);
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

	spin_lock(&reg_regdb_search_lock);
	list_add_tail(&request->list, &reg_regdb_search_list);
	spin_unlock(&reg_regdb_search_lock);

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

388 389 390 391
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

407 408 409
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

410 411 412 413 414 415 416
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
417
bool reg_is_valid_request(const char *alpha2)
418
{
419 420
	assert_cfg80211_lock();

421 422 423 424
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
425
}
426

427
/* Sanity check on a regulatory rule */
428
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
429
{
430
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
431 432
	u32 freq_diff;

433
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
434 435 436 437 438 439 440
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

441 442
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
443 444 445 446 447
		return false;

	return true;
}

448
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
449
{
450
	const struct ieee80211_reg_rule *reg_rule = NULL;
451
	unsigned int i;
452

453 454
	if (!rd->n_reg_rules)
		return false;
455

456 457 458
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

459 460 461 462 463 464 465
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
466 467
}

468 469 470
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
471
{
472 473 474 475 476 477 478 479 480 481
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
482
}
483

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
 * This is a work around for sanity checking ieee80211_channel_to_frequency()'s
 * work. ieee80211_channel_to_frequency() can for example currently provide a
 * 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
 * an AP providing channel 8 on a country IE triplet when it sent this on the
 * 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
 * channel.
 *
 * This can be removed once ieee80211_channel_to_frequency() takes in a band.
 */
static bool chan_in_band(int chan, enum ieee80211_band band)
{
	int center_freq = ieee80211_channel_to_frequency(chan);

	switch (band) {
	case IEEE80211_BAND_2GHZ:
		if (center_freq <= 2484)
			return true;
		return false;
	case IEEE80211_BAND_5GHZ:
		if (center_freq >= 5005)
			return true;
		return false;
	default:
		return false;
	}
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
/*
 * Some APs may send a country IE triplet for each channel they
 * support and while this is completely overkill and silly we still
 * need to support it. We avoid making a single rule for each channel
 * though and to help us with this we use this helper to find the
 * actual subband end channel. These type of country IE triplet
 * scenerios are handled then, all yielding two regulaotry rules from
 * parsing a country IE:
 *
 * [1]
 * [2]
 * [36]
 * [40]
 *
 * [1]
 * [2-4]
 * [5-12]
 * [36]
 * [40-44]
 *
 * [1-4]
 * [5-7]
 * [36-44]
 * [48-64]
 *
 * [36-36]
 * [40-40]
 * [44-44]
 * [48-48]
 * [52-52]
 * [56-56]
 * [60-60]
 * [64-64]
 * [100-100]
 * [104-104]
 * [108-108]
 * [112-112]
 * [116-116]
 * [120-120]
 * [124-124]
 * [128-128]
 * [132-132]
 * [136-136]
 * [140-140]
 *
 * Returns 0 if the IE has been found to be invalid in the middle
 * somewhere.
 */
585 586
static int max_subband_chan(enum ieee80211_band band,
			    int orig_cur_chan,
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
			    int orig_end_channel,
			    s8 orig_max_power,
			    u8 **country_ie,
			    u8 *country_ie_len)
{
	u8 *triplets_start = *country_ie;
	u8 len_at_triplet = *country_ie_len;
	int end_subband_chan = orig_end_channel;

	/*
	 * We'll deal with padding for the caller unless
	 * its not immediate and we don't process any channels
	 */
	if (*country_ie_len == 1) {
		*country_ie += 1;
		*country_ie_len -= 1;
		return orig_end_channel;
	}

	/* Move to the next triplet and then start search */
	*country_ie += 3;
	*country_ie_len -= 3;

610 611
	if (!chan_in_band(orig_cur_chan, band))
		return 0;
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

	while (*country_ie_len >= 3) {
		int end_channel = 0;
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) *country_ie;
		int cur_channel = 0, next_expected_chan;

		/* means last triplet is completely unrelated to this one */
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		if (triplet->chans.first_channel == 0) {
			*country_ie += 1;
			*country_ie_len -= 1;
			if (*country_ie_len != 0)
				return 0;
			break;
		}

635 636 637
		if (triplet->chans.num_channels == 0)
			return 0;

638 639 640 641
		/* Monitonically increasing channel order */
		if (triplet->chans.first_channel <= end_subband_chan)
			return 0;

642 643 644
		if (!chan_in_band(triplet->chans.first_channel, band))
			return 0;

645 646 647 648 649 650 651 652 653 654
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14) {
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels - 1;
		}
		else {
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));
		}

655 656
		if (!chan_in_band(end_channel, band))
			return 0;
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

		if (orig_max_power != triplet->chans.max_power) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		cur_channel = triplet->chans.first_channel;

		/* The key is finding the right next expected channel */
		if (band == IEEE80211_BAND_2GHZ)
			next_expected_chan = end_subband_chan + 1;
		 else
			next_expected_chan = end_subband_chan + 4;

		if (cur_channel != next_expected_chan) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		end_subband_chan = end_channel;

		/* Move to the next one */
		*country_ie += 3;
		*country_ie_len -= 3;

		/*
		 * Padding needs to be dealt with if we processed
		 * some channels.
		 */
		if (*country_ie_len == 1) {
			*country_ie += 1;
			*country_ie_len -= 1;
			break;
		}

		/* If seen, the IE is invalid */
		if (*country_ie_len == 2)
			return 0;
	}

	if (end_subband_chan == orig_end_channel) {
		*country_ie = triplets_start;
		*country_ie_len = len_at_triplet;
		return orig_end_channel;
	}

	return end_subband_chan;
}

708 709
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
710 711
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
712 713
 * with our userspace regulatory agent to get lower bounds.
 */
714
static struct ieee80211_regdomain *country_ie_2_rd(
715
				enum ieee80211_band band,
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

759 760
	/*
	 * We need to build a reg rule for each triplet, but first we must
761
	 * calculate the number of reg rules we will need. We will need one
762 763
	 * for each channel subband
	 */
764
	while (country_ie_len >= 3) {
765
		int end_channel = 0;
766 767 768 769 770 771 772 773 774 775 776
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

777 778 779 780 781 782 783 784 785 786 787 788 789
		/*
		 * APs can add padding to make length divisible
		 * by two, required by the spec.
		 */
		if (triplet->chans.first_channel == 0) {
			country_ie++;
			country_ie_len--;
			/* This is expected to be at the very end only */
			if (country_ie_len != 0)
				return NULL;
			break;
		}

790 791 792
		if (triplet->chans.num_channels == 0)
			return NULL;

793 794 795
		if (!chan_in_band(triplet->chans.first_channel, band))
			return NULL;

796
		/* 2 GHz */
797
		if (band == IEEE80211_BAND_2GHZ)
798
			end_channel = triplet->chans.first_channel +
799
				triplet->chans.num_channels - 1;
800 801 802 803 804 805 806 807 808 809 810 811 812
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

813
		cur_channel = triplet->chans.first_channel;
814 815 816 817 818 819

		/*
		 * Enhancement for APs that send a triplet for every channel
		 * or for whatever reason sends triplets with multiple channels
		 * separated when in fact they should be together.
		 */
820 821
		end_channel = max_subband_chan(band,
					       cur_channel,
822 823 824 825 826 827 828
					       end_channel,
					       triplet->chans.max_power,
					       &country_ie,
					       &country_ie_len);
		if (!end_channel)
			return NULL;

829 830 831
		if (!chan_in_band(end_channel, band))
			return NULL;

832
		cur_sub_max_channel = end_channel;
833 834 835 836 837

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

838 839
		/*
		 * Do not allow overlapping channels. Also channels
840
		 * passed in each subband must be monotonically
841 842
		 * increasing
		 */
843 844 845 846 847 848 849
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

850 851
		/*
		 * When dot11RegulatoryClassesRequired is supported
852 853
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
854 855
		 * don't support them
		 */
856 857 858 859 860 861 862 863
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		num_rules++;

864 865 866 867 868
		if (country_ie_len >= 3) {
			country_ie += 3;
			country_ie_len -= 3;
		}

869 870 871 872
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
893
		int end_channel = 0;
894 895 896 897 898 899
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

900 901 902 903
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
904 905 906 907 908 909 910
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

911 912 913 914 915 916
		if (triplet->chans.first_channel == 0) {
			country_ie++;
			country_ie_len--;
			break;
		}

917 918 919 920 921 922
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

923
		/* 2 GHz */
924
		if (band == IEEE80211_BAND_2GHZ)
925
			end_channel = triplet->chans.first_channel +
926
				triplet->chans.num_channels -1;
927 928 929 930
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

931 932
		end_channel = max_subband_chan(band,
					       triplet->chans.first_channel,
933 934 935 936 937
					       end_channel,
					       triplet->chans.max_power,
					       &country_ie,
					       &country_ie_len);

938 939
		/*
		 * The +10 is since the regulatory domain expects
940 941
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
942 943
		 * the channels passed
		 */
944 945 946 947 948
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
949
				end_channel) + 10);
950

951 952 953 954 955
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
956 957
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
958
		power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
959 960 961

		i++;

962 963 964 965 966
		if (country_ie_len >= 3) {
			country_ie += 3;
			country_ie_len -= 3;
		}

967 968 969 970 971 972 973
		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


974 975 976 977
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

1055 1056
	/*
	 * First we get a count of the rules we'll need, then we actually
1057 1058 1059
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
1060 1061
	 * All rules that do check out OK are valid.
	 */
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
1089 1090
			/*
			 * This time around instead of using the stack lets
1091
			 * write to the target rule directly saving ourselves
1092 1093
			 * a memcpy()
			 */
1094 1095 1096
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
1097 1098 1099 1100
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

1119 1120 1121 1122
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

1135 1136
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
1137
			      u32 desired_bw_khz,
1138 1139
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
1140 1141
{
	int i;
1142
	bool band_rule_found = false;
1143
	const struct ieee80211_regdomain *regd;
1144 1145 1146 1147
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
1148

1149
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
1150

1151 1152 1153 1154
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
1155 1156
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
1157 1158 1159 1160
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
1161 1162
		return -EINVAL;

1163
	for (i = 0; i < regd->n_reg_rules; i++) {
1164 1165 1166 1167
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

1168
		rr = &regd->reg_rules[i];
1169 1170
		fr = &rr->freq_range;
		pr = &rr->power_rule;
1171

1172 1173
		/*
		 * We only need to know if one frequency rule was
1174
		 * was in center_freq's band, that's enough, so lets
1175 1176
		 * not overwrite it once found
		 */
1177 1178 1179
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

1180 1181 1182
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
1183

1184
		if (band_rule_found && bw_fits) {
1185
			*reg_rule = rr;
1186
			return 0;
1187 1188 1189
		}
	}

1190 1191 1192
	if (!band_rule_found)
		return -ERANGE;

1193
	return -EINVAL;
1194
}
1195
EXPORT_SYMBOL(freq_reg_info);
1196

1197 1198 1199 1200
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
1201
{
1202
	assert_cfg80211_lock();
1203 1204 1205 1206 1207
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
1208
}
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
1219 1220
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
1221 1222
{
	int r;
1223 1224
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1225 1226
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1227
	const struct ieee80211_freq_range *freq_range = NULL;
1228 1229
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1230
	struct wiphy *request_wiphy = NULL;
1231

1232 1233
	assert_cfg80211_lock();

1234 1235
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1236 1237 1238 1239 1240
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
1241

1242 1243 1244 1245
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
1246 1247

	if (r) {
1248 1249
		/*
		 * This means no regulatory rule was found in the country IE
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
1260 1261
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1262
			REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1263 1264
				"intact on %s - no rule found in band on "
				"Country IE\n",
1265
			chan->center_freq, wiphy_name(wiphy));
1266
		} else {
1267 1268 1269 1270
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
1271 1272
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
1273
				REG_DBG_PRINT("cfg80211: Disabling "
1274 1275 1276 1277 1278 1279
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
1280 1281 1282
		return;
	}

1283
	power_rule = &reg_rule->power_rule;
1284 1285 1286 1287
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1288

1289
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1290
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
1291
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1292 1293
		/*
		 * This gaurantees the driver's requested regulatory domain
1294
		 * will always be used as a base for further regulatory
1295 1296
		 * settings
		 */
1297
		chan->flags = chan->orig_flags =
1298
			map_regdom_flags(reg_rule->flags) | bw_flags;
1299 1300 1301 1302 1303 1304 1305
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1306
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1307
	chan->max_antenna_gain = min(chan->orig_mag,
1308
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1309
	if (chan->orig_mpwr)
1310 1311
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1312
	else
1313
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1314 1315
}

1316
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1317
{
1318 1319 1320 1321 1322
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1323 1324

	for (i = 0; i < sband->n_channels; i++)
1325
		handle_channel(wiphy, band, i);
1326 1327
}

1328 1329
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1330 1331 1332
{
	if (!last_request)
		return true;
1333
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
J
Johannes Berg 已提交
1334
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1335
		return true;
1336 1337 1338 1339
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
1340
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1341
	    !is_world_regdom(last_request->alpha2))
1342 1343 1344 1345
		return true;
	return false;
}

1346
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1347
{
1348
	struct cfg80211_registered_device *rdev;
1349

1350 1351
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
1352 1353
}

1354 1355 1356 1357 1358 1359
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1360 1361
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1362 1363 1364 1365 1366 1367 1368 1369 1370

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1371 1372 1373 1374 1375
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
1376
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1377 1378
		return;

1379 1380 1381
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1382
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1383
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1384
		channel_changed = true;
1385 1386
	}

1387
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1388
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1389
		channel_changed = true;
1390 1391
	}

1392 1393
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1445 1446
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1447
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1448 1449 1450 1451 1452 1453 1454
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1455 1456 1457 1458 1459 1460
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1461 1462 1463 1464 1465
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1516
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1517
	else
1518
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1519 1520

	if (is_ht40_not_allowed(channel_after))
1521
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1522
	else
1523
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1553 1554
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1555 1556
{
	enum ieee80211_band band;
1557

1558
	if (ignore_reg_update(wiphy, initiator))
1559
		goto out;
1560
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1561
		if (wiphy->bands[band])
1562
			handle_band(wiphy, band);
1563
	}
1564 1565
out:
	reg_process_beacons(wiphy);
1566
	reg_process_ht_flags(wiphy);
1567
	if (wiphy->reg_notifier)
1568
		wiphy->reg_notifier(wiphy, last_request);
1569 1570
}

1571 1572 1573 1574 1575 1576
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1577 1578
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1579 1580
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1581
	const struct ieee80211_freq_range *freq_range = NULL;
1582 1583 1584
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1585
	assert_reg_lock();
1586

1587 1588 1589 1590
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1591 1592 1593 1594 1595
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1596 1597 1598 1599 1600 1601 1602

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1603 1604 1605 1606
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1607

1608
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1631
	unsigned int bands_set = 0;
1632

1633
	mutex_lock(&reg_mutex);
1634
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1635 1636 1637 1638
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1639
	}
1640
	mutex_unlock(&reg_mutex);
1641 1642 1643 1644 1645 1646

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1647
}
1648 1649
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1650 1651 1652 1653
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1654 1655
#define REG_INTERSECT	1

1656 1657
/* This has the logic which determines when a new request
 * should be ignored. */
1658 1659
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1660
{
1661
	struct wiphy *last_wiphy = NULL;
1662 1663 1664

	assert_cfg80211_lock();

1665 1666 1667 1668
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1669
	switch (pending_request->initiator) {
1670
	case NL80211_REGDOM_SET_BY_CORE:
1671
		return 0;
1672
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1673 1674 1675

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1676
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1677
			return -EINVAL;
1678 1679
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1680
			if (last_wiphy != wiphy) {
1681 1682
				/*
				 * Two cards with two APs claiming different
1683
				 * Country IE alpha2s. We could
1684 1685 1686
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1687
				if (regdom_changes(pending_request->alpha2))
1688 1689 1690
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1691 1692 1693 1694
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1695
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1696 1697 1698
				return 0;
			return -EALREADY;
		}
1699
		return REG_INTERSECT;
1700 1701
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1702
			if (regdom_changes(pending_request->alpha2))
1703
				return 0;
1704
			return -EALREADY;
1705
		}
1706 1707 1708 1709 1710 1711

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1712
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1713
		    !regdom_changes(pending_request->alpha2))
1714 1715
			return -EALREADY;

1716
		return REG_INTERSECT;
1717 1718
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1719
			return REG_INTERSECT;
1720 1721 1722 1723
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1724
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1725 1726
			  last_request->intersect)
			return -EOPNOTSUPP;
1727 1728 1729 1730
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1731 1732 1733
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1734
			if (regdom_changes(last_request->alpha2))
1735 1736 1737
				return -EAGAIN;
		}

1738
		if (!regdom_changes(pending_request->alpha2))
1739 1740
			return -EALREADY;

1741 1742 1743 1744 1745 1746
		return 0;
	}

	return -EINVAL;
}

1747 1748 1749 1750
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1751
 * @pending_request: the regulatory request currently being processed
1752 1753
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1754
 * what it believes should be the current regulatory domain.
1755 1756 1757 1758
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1759
 * Caller must hold &cfg80211_mutex and &reg_mutex
1760
 */
1761 1762
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1763
{
1764
	bool intersect = false;
1765 1766
	int r = 0;

1767 1768
	assert_cfg80211_lock();

1769
	r = ignore_request(wiphy, pending_request);
1770

1771
	if (r == REG_INTERSECT) {
1772 1773
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1774
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1775 1776
			if (r) {
				kfree(pending_request);
1777
				return r;
1778
			}
1779
		}
1780
		intersect = true;
1781
	} else if (r) {
1782 1783
		/*
		 * If the regulatory domain being requested by the
1784
		 * driver has already been set just copy it to the
1785 1786
		 * wiphy
		 */
1787
		if (r == -EALREADY &&
1788 1789
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1790
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1791 1792
			if (r) {
				kfree(pending_request);
1793
				return r;
1794
			}
1795 1796 1797
			r = -EALREADY;
			goto new_request;
		}
1798
		kfree(pending_request);
1799
		return r;
1800
	}
1801

1802
new_request:
1803
	kfree(last_request);
1804

1805 1806
	last_request = pending_request;
	last_request->intersect = intersect;
1807

1808
	pending_request = NULL;
1809

1810 1811 1812 1813 1814
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1815
	/* When r == REG_INTERSECT we do need to call CRDA */
1816 1817 1818 1819 1820 1821 1822 1823
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1824
		return r;
1825
	}
1826

1827
	return call_crda(last_request->alpha2);
1828 1829
}

1830
/* This processes *all* regulatory hints */
1831
static void reg_process_hint(struct regulatory_request *reg_request)
1832 1833 1834 1835 1836 1837 1838
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1839
	mutex_lock(&reg_mutex);
1840 1841 1842 1843

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1844
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1845
	    !wiphy) {
1846
		kfree(reg_request);
1847 1848 1849
		goto out;
	}

1850
	r = __regulatory_hint(wiphy, reg_request);
1851
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1852 1853
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1854 1855
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
1856
	mutex_unlock(&reg_mutex);
1857 1858 1859
	mutex_unlock(&cfg80211_mutex);
}

1860
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1872 1873
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1874 1875 1876 1877 1878
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1879 1880 1881
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1882
	struct cfg80211_registered_device *rdev;
1883 1884
	struct reg_beacon *pending_beacon, *tmp;

1885 1886 1887 1888
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1905 1906
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1917 1918 1919
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1920
	reg_process_pending_beacon_hints();
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1934 1935 1936 1937
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1938 1939 1940 1941
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1942 1943
	kfree(last_request);
	last_request = NULL;
1944 1945 1946 1947 1948 1949 1950 1951

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1952
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1953

1954 1955 1956 1957 1958
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
1959
	reg_process_hint(request);
1960

1961
	return 0;
1962 1963
}

1964 1965
/* User hints */
int regulatory_hint_user(const char *alpha2)
1966
{
1967 1968
	struct regulatory_request *request;

1969
	BUG_ON(!alpha2);
1970

1971 1972 1973 1974 1975 1976 1977
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1978
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
2004
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2005 2006 2007 2008

	queue_regulatory_request(request);

	return 0;
2009 2010 2011
}
EXPORT_SYMBOL(regulatory_hint);

2012
/* Caller must hold reg_mutex */
2013 2014 2015
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
2016 2017
	struct wiphy *request_wiphy;

2018
	assert_reg_lock();
2019

2020 2021 2022 2023
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

2024 2025 2026
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
2027
		return false;
2028 2029

	if (likely(request_wiphy != wiphy))
2030
		return !country_ie_integrity_changes(country_ie_checksum);
2031 2032
	/*
	 * We should not have let these through at this point, they
2033
	 * should have been picked up earlier by the first alpha2 check
2034 2035
	 * on the device
	 */
2036 2037 2038 2039 2040
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

2041 2042 2043 2044
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
2045
void regulatory_hint_11d(struct wiphy *wiphy,
2046 2047 2048
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
2049 2050 2051 2052 2053
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
2054
	struct regulatory_request *request;
2055

2056
	mutex_lock(&reg_mutex);
2057

2058 2059
	if (unlikely(!last_request))
		goto out;
2060

2061 2062 2063 2064 2065 2066 2067
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

2068 2069
	/*
	 * Pending country IE processing, this can happen after we
2070
	 * call CRDA and wait for a response if a beacon was received before
2071 2072
	 * we were able to process the last regulatory_hint_11d() call
	 */
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

2084
	/*
2085
	 * We will run this only upon a successful connection on cfg80211.
2086 2087
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
2088
	 */
2089 2090
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2091 2092
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
2093

2094
	rd = country_ie_2_rd(band, country_ie, country_ie_len, &checksum);
2095 2096
	if (!rd) {
		REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2097
		goto out;
2098
	}
2099

2100 2101
	/*
	 * This will not happen right now but we leave it here for the
2102 2103
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
2104 2105 2106 2107 2108 2109
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
2110
		goto free_rd_out;
2111

2112 2113 2114 2115
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

2116 2117 2118 2119
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
2120 2121
	country_ie_regdomain = rd;

2122 2123 2124
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
2125
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2126 2127 2128
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

2129
	mutex_unlock(&reg_mutex);
2130

2131 2132 2133
	queue_regulatory_request(request);

	return;
2134 2135 2136

free_rd_out:
	kfree(rd);
2137
out:
2138
	mutex_unlock(&reg_mutex);
2139
}
2140

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
				REG_DBG_PRINT("cfg80211: Keeping preference on "
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
		REG_DBG_PRINT("cfg80211: Keeping preference on "
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
		REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);
}


void regulatory_hint_disconnect(void)
{
	REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

2283 2284 2285 2286 2287 2288
	REG_DBG_PRINT("cfg80211: Found new beacon on "
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

2306
static void print_rd_rules(const struct ieee80211_regdomain *rd)
2307 2308
{
	unsigned int i;
2309 2310 2311
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
2312

2313
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
2314 2315 2316 2317 2318 2319 2320
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2321 2322 2323 2324
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2325
		if (power_rule->max_antenna_gain)
2326
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2327 2328 2329 2330 2331 2332 2333
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2334
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2335 2336 2337 2338 2339 2340 2341 2342
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2343
static void print_regdomain(const struct ieee80211_regdomain *rd)
2344 2345
{

2346 2347
	if (is_intersected_alpha2(rd->alpha2)) {

2348 2349
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2350 2351
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2352
				last_request->wiphy_idx);
2353
			if (rdev) {
2354 2355
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
2356 2357
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2358 2359 2360 2361 2362
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
2363
					"domain intersected: \n");
2364
	} else if (is_world_regdom(rd->alpha2))
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

2380
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2381 2382 2383 2384 2385 2386
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
2400
		print_regdomain_info(intersected_rd);
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2414
/* Takes ownership of rd only if it doesn't fail */
2415
static int __set_regdom(const struct ieee80211_regdomain *rd)
2416
{
2417
	const struct ieee80211_regdomain *intersected_rd = NULL;
2418
	struct cfg80211_registered_device *rdev = NULL;
2419
	struct wiphy *request_wiphy;
2420 2421 2422
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2423
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2424 2425 2426 2427 2428 2429 2430 2431 2432
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2433
	if (!last_request)
2434 2435
		return -EINVAL;

2436 2437
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2438
	 * rd is non static (it means CRDA was present and was used last)
2439 2440
	 * and the pending request came in from a country IE
	 */
2441
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2442 2443 2444 2445
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2446
		if (!regdom_changes(rd->alpha2))
2447 2448 2449
			return -EINVAL;
	}

2450 2451
	/*
	 * Now lets set the regulatory domain, update all driver channels
2452 2453
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2454 2455
	 * internal EEPROM data
	 */
2456

2457
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2458 2459
		return -EINVAL;

2460 2461 2462 2463 2464
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2465 2466
	}

2467 2468
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2469
	if (!last_request->intersect) {
2470 2471
		int r;

2472
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2473 2474 2475 2476 2477
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2478 2479 2480 2481
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2482

2483 2484 2485 2486 2487 2488
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2489

2490
		r = reg_copy_regd(&request_wiphy->regd, rd);
2491 2492 2493
		if (r)
			return r;

2494 2495 2496 2497 2498 2499 2500
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2501
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2502

2503 2504 2505
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2506

2507 2508
		/*
		 * We can trash what CRDA provided now.
2509
		 * However if a driver requested this specific regulatory
2510 2511
		 * domain we keep it for its private use
		 */
2512
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2513
			request_wiphy->regd = rd;
2514 2515 2516
		else
			kfree(rd);

2517 2518 2519 2520 2521 2522
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2523 2524
	}

2525 2526 2527 2528 2529
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

2530 2531 2532 2533 2534 2535 2536
	/*
	 * Userspace could have sent two replies with only
	 * one kernel request. By the second reply we would have
	 * already processed and consumed the country_ie_regdomain.
	 */
	if (!country_ie_regdomain)
		return -EALREADY;
2537
	BUG_ON(rd == country_ie_regdomain);
2538

2539 2540 2541 2542
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2543

2544
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2545

2546 2547 2548
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2549

2550 2551
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2552 2553 2554 2555

	if (!intersected_rd)
		return -EINVAL;

2556
	rdev = wiphy_to_dev(request_wiphy);
2557

2558 2559 2560
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2561 2562 2563 2564 2565 2566

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2567
	reset_regdomains();
2568
	cfg80211_regdomain = intersected_rd;
2569 2570 2571 2572 2573

	return 0;
}


2574 2575
/*
 * Use this call to set the current regulatory domain. Conflicts with
2576
 * multiple drivers can be ironed out later. Caller must've already
2577 2578
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2579
int set_regdom(const struct ieee80211_regdomain *rd)
2580 2581 2582
{
	int r;

2583 2584
	assert_cfg80211_lock();

2585 2586
	mutex_lock(&reg_mutex);

2587 2588
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2589 2590
	if (r) {
		kfree(rd);
2591
		mutex_unlock(&reg_mutex);
2592
		return r;
2593
	}
2594 2595

	/* This would make this whole thing pointless */
2596 2597
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2598 2599

	/* update all wiphys now with the new established regulatory domain */
2600
	update_all_wiphy_regulatory(last_request->initiator);
2601

2602
	print_regdomain(cfg80211_regdomain);
2603

2604 2605
	nl80211_send_reg_change_event(last_request);

2606 2607
	mutex_unlock(&reg_mutex);

2608 2609 2610
	return r;
}

2611
/* Caller must hold cfg80211_mutex */
2612 2613
void reg_device_remove(struct wiphy *wiphy)
{
2614
	struct wiphy *request_wiphy = NULL;
2615

2616 2617
	assert_cfg80211_lock();

2618 2619
	mutex_lock(&reg_mutex);

2620 2621
	kfree(wiphy->regd);

2622 2623
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2624

2625
	if (!request_wiphy || request_wiphy != wiphy)
2626
		goto out;
2627

2628
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2629
	last_request->country_ie_env = ENVIRON_ANY;
2630 2631
out:
	mutex_unlock(&reg_mutex);
2632 2633
}

2634 2635
int regulatory_init(void)
{
2636
	int err = 0;
2637

2638 2639 2640
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2641

2642
	spin_lock_init(&reg_requests_lock);
2643
	spin_lock_init(&reg_pending_beacons_lock);
2644

2645
	cfg80211_regdomain = cfg80211_world_regdom;
2646

2647 2648 2649
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2650 2651
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2652
	if (err) {
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2667
#endif
2668
	}
2669

2670 2671 2672 2673 2674 2675 2676
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2677 2678 2679 2680 2681
	return 0;
}

void regulatory_exit(void)
{
2682
	struct regulatory_request *reg_request, *tmp;
2683
	struct reg_beacon *reg_beacon, *btmp;
2684 2685 2686

	cancel_work_sync(&reg_work);

2687
	mutex_lock(&cfg80211_mutex);
2688
	mutex_lock(&reg_mutex);
2689

2690
	reset_regdomains();
2691

2692 2693 2694
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2695 2696
	kfree(last_request);

2697
	platform_device_unregister(reg_pdev);
2698

2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2727
	mutex_unlock(&reg_mutex);
2728
	mutex_unlock(&cfg80211_mutex);
2729
}