reg.c 61.1 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "nl80211.h"
44

45
/* Receipt of information from last regulatory request */
46
static struct regulatory_request *last_request;
47

48 49
/* To trigger userspace events */
static struct platform_device *reg_pdev;
50

51 52
/*
 * Central wireless core regulatory domains, we only need two,
53
 * the current one and a world regulatory domain in case we have no
54 55
 * information to give us an alpha2
 */
56
const struct ieee80211_regdomain *cfg80211_regdomain;
57

58 59
/*
 * We use this as a place for the rd structure built from the
60
 * last parsed country IE to rest until CRDA gets back to us with
61 62
 * what it thinks should apply for the same country
 */
63 64
static const struct ieee80211_regdomain *country_ie_regdomain;

65
/* Used to queue up regulatory hints */
66 67 68
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

69 70 71 72 73 74 75 76 77 78 79 80
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

81 82
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
83
	.n_reg_rules = 5,
84 85
	.alpha2 =  "00",
	.reg_rules = {
86 87
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
88 89 90
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
91 92
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
93 94 95 96 97 98 99
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
100
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
101 102
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
103 104 105 106

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
107
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
108 109
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
110 111 112
	}
};

113 114
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
115 116 117

#ifdef CONFIG_WIRELESS_OLD_REGULATORY
static char *ieee80211_regdom = "US";
118 119 120 121
#else
static char *ieee80211_regdom = "00";
#endif

122 123 124
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

125
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
126 127
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
128
 * We make emphasis we are using the exact same frequencies
129 130
 * as before
 */
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
169 170 171 172
	/*
	 * This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility
	 */
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

209
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
210 211 212 213 214
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
215 216
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
217
{
218
	return false;
219
}
220 221
#endif

222 223
static void reset_regdomains(void)
{
224 225 226 227 228 229 230 231 232 233 234 235
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
236

237
	cfg80211_world_regdom = &world_regdom;
238 239 240
	cfg80211_regdomain = NULL;
}

241 242 243 244
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
245
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
246
{
247
	BUG_ON(!last_request);
248 249 250 251 252 253 254

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

255
bool is_world_regdom(const char *alpha2)
256 257 258 259 260 261 262
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
263

264
static bool is_alpha2_set(const char *alpha2)
265 266 267 268 269 270 271
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
272

273 274 275 276 277 278 279
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
280

281
static bool is_unknown_alpha2(const char *alpha2)
282 283 284
{
	if (!alpha2)
		return false;
285 286 287 288
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
289 290 291 292
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
293

294 295 296 297
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
298 299
	/*
	 * Special case where regulatory domain is the
300
	 * result of an intersection between two regulatory domain
301 302
	 * structures
	 */
303 304 305 306 307
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

308
static bool is_an_alpha2(const char *alpha2)
309 310 311 312 313 314 315
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
316

317
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
318 319 320 321 322 323 324 325 326
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

327
static bool regdom_changes(const char *alpha2)
328
{
329 330
	assert_cfg80211_lock();

331 332 333 334 335 336 337
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

357 358 359 360
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
383
bool reg_is_valid_request(const char *alpha2)
384
{
385 386
	assert_cfg80211_lock();

387 388 389 390
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
391
}
392

393
/* Sanity check on a regulatory rule */
394
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
395
{
396
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
397 398
	u32 freq_diff;

399
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
400 401 402 403 404 405 406
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

407 408
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
409 410 411 412 413
		return false;

	return true;
}

414
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
415
{
416
	const struct ieee80211_reg_rule *reg_rule = NULL;
417
	unsigned int i;
418

419 420
	if (!rd->n_reg_rules)
		return false;
421

422 423 424
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

425 426 427 428 429 430 431
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
432 433
}

434 435 436
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
437
{
438 439 440 441 442 443 444 445 446 447
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
448
}
449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

475 476
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
477 478
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
479 480
 * with our userspace regulatory agent to get lower bounds.
 */
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

525 526
	/*
	 * We need to build a reg rule for each triplet, but first we must
527
	 * calculate the number of reg rules we will need. We will need one
528 529
	 * for each channel subband
	 */
530
	while (country_ie_len >= 3) {
531
		int end_channel = 0;
532 533 534 535 536 537 538 539 540 541 542
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

560
		cur_channel = triplet->chans.first_channel;
561
		cur_sub_max_channel = end_channel;
562 563 564 565 566

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

567 568
		/*
		 * Do not allow overlapping channels. Also channels
569
		 * passed in each subband must be monotonically
570 571
		 * increasing
		 */
572 573 574 575 576 577 578
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

579 580
		/*
		 * When dot11RegulatoryClassesRequired is supported
581 582
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
583 584
		 * don't support them
		 */
585 586 587 588 589 590 591 592 593 594
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

595 596 597 598
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
619
		int end_channel = 0;
620 621 622 623 624 625
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

626 627 628 629
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
630 631 632 633 634 635 636 637 638 639 640 641 642
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

643 644 645 646 647 648 649 650
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

651 652
		/*
		 * The +10 is since the regulatory domain expects
653 654
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
655 656
		 * the channels passed
		 */
657 658 659 660 661
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
662
				end_channel) + 10);
663

664 665 666 667 668
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


684 685 686 687
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

765 766
	/*
	 * First we get a count of the rules we'll need, then we actually
767 768 769
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
770 771
	 * All rules that do check out OK are valid.
	 */
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
799 800
			/*
			 * This time around instead of using the stack lets
801
			 * write to the target rule directly saving ourselves
802 803
			 * a memcpy()
			 */
804 805 806
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
807 808 809 810
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

829 830 831 832
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
833 834 835 836 837 838 839 840 841 842 843 844
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

845 846
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
847
			      u32 desired_bw_khz,
848 849
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
850 851
{
	int i;
852
	bool band_rule_found = false;
853
	const struct ieee80211_regdomain *regd;
854 855 856 857
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
858

859
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
860

861 862 863 864
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
865 866
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
867 868 869 870
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
871 872
		return -EINVAL;

873
	for (i = 0; i < regd->n_reg_rules; i++) {
874 875 876 877
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

878
		rr = &regd->reg_rules[i];
879 880
		fr = &rr->freq_range;
		pr = &rr->power_rule;
881

882 883
		/*
		 * We only need to know if one frequency rule was
884
		 * was in center_freq's band, that's enough, so lets
885 886
		 * not overwrite it once found
		 */
887 888 889
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

890 891 892
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
893

894
		if (band_rule_found && bw_fits) {
895
			*reg_rule = rr;
896
			return 0;
897 898 899
		}
	}

900 901 902
	if (!band_rule_found)
		return -ERANGE;

903
	return -EINVAL;
904
}
905
EXPORT_SYMBOL(freq_reg_info);
906

907 908 909 910
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
911
{
912
	assert_cfg80211_lock();
913 914 915 916 917
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
918
}
919

920 921 922 923 924 925 926 927 928
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
929 930
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
931 932
{
	int r;
933 934
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
935 936
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
937
	const struct ieee80211_freq_range *freq_range = NULL;
938 939
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
940
	struct wiphy *request_wiphy = NULL;
941

942 943
	assert_cfg80211_lock();

944 945
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

946 947 948 949 950
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
951

952 953 954 955
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
956 957

	if (r) {
958 959
		/*
		 * This means no regulatory rule was found in the country IE
960 961 962 963 964 965 966 967 968 969
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
970 971
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
972 973 974 975 976 977 978
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
979 980 981 982
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
983
#ifdef CONFIG_CFG80211_REG_DEBUG
984 985
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
986 987 988 989 990 991 992 993
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
994 995 996
		return;
	}

997
	power_rule = &reg_rule->power_rule;
998 999 1000 1001
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1002

1003
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1004 1005
	    request_wiphy && request_wiphy == wiphy &&
	    request_wiphy->strict_regulatory) {
1006 1007
		/*
		 * This gaurantees the driver's requested regulatory domain
1008
		 * will always be used as a base for further regulatory
1009 1010
		 * settings
		 */
1011
		chan->flags = chan->orig_flags =
1012
			map_regdom_flags(reg_rule->flags) | bw_flags;
1013 1014
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1015
		chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1016 1017 1018 1019 1020
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1021
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1022
	chan->max_antenna_gain = min(chan->orig_mag,
1023
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1024
	chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1025
	if (chan->orig_mpwr)
1026 1027
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1028
	else
1029
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1030 1031
}

1032
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1033
{
1034 1035 1036 1037 1038
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1039 1040

	for (i = 0; i < sband->n_channels; i++)
1041
		handle_channel(wiphy, band, i);
1042 1043
}

1044 1045
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1046 1047 1048
{
	if (!last_request)
		return true;
1049
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1050
		  wiphy->custom_regulatory)
1051
		return true;
1052 1053 1054 1055
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
1056 1057
	if (wiphy->strict_regulatory && !wiphy->regd &&
	    !is_world_regdom(last_request->alpha2))
1058 1059 1060 1061
		return true;
	return false;
}

1062
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1063
{
1064
	struct cfg80211_registered_device *drv;
1065

1066
	list_for_each_entry(drv, &cfg80211_drv_list, list)
1067
		wiphy_update_regulatory(&drv->wiphy, initiator);
1068 1069
}

1070 1071 1072 1073 1074 1075
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1076 1077
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1078 1079 1080 1081 1082 1083 1084 1085 1086

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1087 1088 1089 1090 1091 1092 1093 1094
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1095 1096
	if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
	    !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1097
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1098
		channel_changed = true;
1099 1100
	}

1101 1102
	if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
	    !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1103
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1104
		channel_changed = true;
1105 1106
	}

1107 1108
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1160 1161
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1162 1163 1164 1165 1166 1167 1168 1169
	    wiphy->custom_regulatory)
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1170 1171 1172 1173 1174 1175
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1176 1177 1178 1179 1180
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1231
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1232
	else
1233
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1234 1235

	if (is_ht40_not_allowed(channel_after))
1236
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1237
	else
1238
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1268 1269
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1270 1271
{
	enum ieee80211_band band;
1272

1273
	if (ignore_reg_update(wiphy, initiator))
1274
		goto out;
1275
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1276
		if (wiphy->bands[band])
1277
			handle_band(wiphy, band);
1278
	}
1279 1280
out:
	reg_process_beacons(wiphy);
1281
	reg_process_ht_flags(wiphy);
1282
	if (wiphy->reg_notifier)
1283
		wiphy->reg_notifier(wiphy, last_request);
1284 1285
}

1286 1287 1288 1289 1290 1291
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1292 1293
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1294 1295
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1296
	const struct ieee80211_freq_range *freq_range = NULL;
1297 1298 1299
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1300 1301
	assert_cfg80211_lock();

1302 1303 1304 1305
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1306 1307 1308 1309 1310
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1311 1312 1313 1314 1315 1316 1317

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1318 1319 1320 1321
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1322

1323
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1324
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1325
	chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1347 1348

	mutex_lock(&cfg80211_mutex);
1349 1350 1351
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			handle_band_custom(wiphy, band, regd);
1352
	}
1353
	mutex_unlock(&cfg80211_mutex);
1354
}
1355 1356
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1380

1381 1382 1383 1384
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1385 1386
#define REG_INTERSECT	1

1387 1388
/* This has the logic which determines when a new request
 * should be ignored. */
1389 1390
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1391
{
1392
	struct wiphy *last_wiphy = NULL;
1393 1394 1395

	assert_cfg80211_lock();

1396 1397 1398 1399
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1400
	switch (pending_request->initiator) {
1401
	case NL80211_REGDOM_SET_BY_CORE:
1402
		return -EINVAL;
1403
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1404 1405 1406

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1407
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1408
			return -EINVAL;
1409 1410
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1411
			if (last_wiphy != wiphy) {
1412 1413 1414 1415 1416 1417
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1418
				if (regdom_changes(pending_request->alpha2))
1419 1420 1421
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1422 1423 1424 1425
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1426
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1427 1428 1429
				return 0;
			return -EALREADY;
		}
1430
		return REG_INTERSECT;
1431 1432
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1433 1434
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
1435
			if (regdom_changes(pending_request->alpha2))
1436
				return 0;
1437
			return -EALREADY;
1438
		}
1439 1440 1441 1442 1443 1444

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1445
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1446
		    !regdom_changes(pending_request->alpha2))
1447 1448
			return -EALREADY;

1449
		return REG_INTERSECT;
1450 1451
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1452
			return REG_INTERSECT;
1453 1454 1455 1456
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1457
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1458 1459
			  last_request->intersect)
			return -EOPNOTSUPP;
1460 1461 1462 1463
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1464 1465 1466
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1467
			if (regdom_changes(last_request->alpha2))
1468 1469 1470
				return -EAGAIN;
		}

1471
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1472
		    !regdom_changes(pending_request->alpha2))
1473 1474
			return -EALREADY;

1475 1476 1477 1478 1479 1480
		return 0;
	}

	return -EINVAL;
}

1481 1482 1483 1484
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1485
 * @pending_request: the regulatory request currently being processed
1486 1487
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1488
 * what it believes should be the current regulatory domain.
1489 1490 1491 1492 1493 1494
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
 * Caller must hold &cfg80211_mutex
 */
1495 1496
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1497
{
1498
	bool intersect = false;
1499 1500
	int r = 0;

1501 1502
	assert_cfg80211_lock();

1503
	r = ignore_request(wiphy, pending_request);
1504

1505
	if (r == REG_INTERSECT) {
1506 1507
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1508
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1509 1510
			if (r) {
				kfree(pending_request);
1511
				return r;
1512
			}
1513
		}
1514
		intersect = true;
1515
	} else if (r) {
1516 1517
		/*
		 * If the regulatory domain being requested by the
1518
		 * driver has already been set just copy it to the
1519 1520
		 * wiphy
		 */
1521
		if (r == -EALREADY &&
1522 1523
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1524
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1525 1526
			if (r) {
				kfree(pending_request);
1527
				return r;
1528
			}
1529 1530 1531
			r = -EALREADY;
			goto new_request;
		}
1532
		kfree(pending_request);
1533
		return r;
1534
	}
1535

1536
new_request:
1537
	kfree(last_request);
1538

1539 1540
	last_request = pending_request;
	last_request->intersect = intersect;
1541

1542
	pending_request = NULL;
1543 1544

	/* When r == REG_INTERSECT we do need to call CRDA */
1545 1546 1547 1548 1549 1550 1551 1552
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1553
		return r;
1554
	}
1555

1556
	return call_crda(last_request->alpha2);
1557 1558
}

1559
/* This processes *all* regulatory hints */
1560
static void reg_process_hint(struct regulatory_request *reg_request)
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1572
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1573
	    !wiphy) {
1574
		kfree(reg_request);
1575 1576 1577
		goto out;
	}

1578
	r = __regulatory_hint(wiphy, reg_request);
1579 1580 1581 1582 1583 1584 1585
	/* This is required so that the orig_* parameters are saved */
	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
	mutex_unlock(&cfg80211_mutex);
}

1586
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1598 1599
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1600 1601 1602 1603 1604
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
	struct cfg80211_registered_device *drv;
	struct reg_beacon *pending_beacon, *tmp;

	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
		list_for_each_entry(drv, &cfg80211_drv_list, list)
			wiphy_update_new_beacon(&drv->wiphy, pending_beacon);

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1639 1640 1641
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1642
	reg_process_pending_beacon_hints();
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1670
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1671

1672
	queue_regulatory_request(request);
1673

1674
	return 0;
1675 1676
}

1677 1678
/* User hints */
int regulatory_hint_user(const char *alpha2)
1679
{
1680 1681
	struct regulatory_request *request;

1682
	BUG_ON(!alpha2);
1683

1684 1685 1686 1687 1688 1689 1690
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1691
	request->initiator = NL80211_REGDOM_SET_BY_USER,
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1717
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1718 1719 1720 1721

	queue_regulatory_request(request);

	return 0;
1722 1723 1724
}
EXPORT_SYMBOL(regulatory_hint);

1725 1726 1727
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1728 1729
	struct wiphy *request_wiphy;

1730 1731
	assert_cfg80211_lock();

1732 1733 1734 1735
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1736 1737 1738
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1739
		return false;
1740 1741

	if (likely(request_wiphy != wiphy))
1742
		return !country_ie_integrity_changes(country_ie_checksum);
1743 1744
	/*
	 * We should not have let these through at this point, they
1745
	 * should have been picked up earlier by the first alpha2 check
1746 1747
	 * on the device
	 */
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1761
	struct regulatory_request *request;
1762

1763
	mutex_lock(&cfg80211_mutex);
1764

1765 1766 1767 1768 1769
	if (unlikely(!last_request)) {
		mutex_unlock(&cfg80211_mutex);
		return;
	}

1770 1771 1772 1773 1774 1775 1776
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1777 1778
	/*
	 * Pending country IE processing, this can happen after we
1779
	 * call CRDA and wait for a response if a beacon was received before
1780 1781
	 * we were able to process the last regulatory_hint_11d() call
	 */
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1793 1794
	/*
	 * We will run this for *every* beacon processed for the BSSID, so
1795
	 * we optimize an early check to exit out early if we don't have to
1796 1797
	 * do anything
	 */
1798 1799 1800
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    wiphy_idx_valid(last_request->wiphy_idx))) {
1801 1802
		struct cfg80211_registered_device *drv_last_ie;

1803 1804
		drv_last_ie =
			cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1805

1806 1807 1808 1809
		/*
		 * Lets keep this simple -- we trust the first AP
		 * after we intersect with CRDA
		 */
1810
		if (likely(&drv_last_ie->wiphy == wiphy)) {
1811 1812 1813 1814
			/*
			 * Ignore IEs coming in on this wiphy with
			 * the same alpha2 and environment cap
			 */
1815 1816 1817 1818 1819
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
1820 1821
			/*
			 * the wiphy moved on to another BSSID or the AP
1822 1823 1824
			 * was reconfigured. XXX: We need to deal with the
			 * case where the user suspends and goes to goes
			 * to another country, and then gets IEs from an
1825 1826
			 * AP with different settings
			 */
1827 1828
			goto out;
		} else {
1829 1830 1831 1832
			/*
			 * Ignore IEs coming in on two separate wiphys with
			 * the same alpha2 and environment cap
			 */
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
			/* We could potentially intersect though */
			goto out;
		}
	}

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1847 1848
	/*
	 * This will not happen right now but we leave it here for the
1849 1850
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1851 1852 1853 1854 1855 1856
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1857
		goto free_rd_out;
1858

1859 1860 1861 1862
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1863 1864 1865 1866
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1867 1868
	country_ie_regdomain = rd;

1869 1870 1871
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
1872
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1873 1874 1875 1876
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

	mutex_unlock(&cfg80211_mutex);
1877

1878 1879 1880
	queue_regulatory_request(request);

	return;
1881 1882 1883

free_rd_out:
	kfree(rd);
1884
out:
1885
	mutex_unlock(&cfg80211_mutex);
1886 1887
}
EXPORT_SYMBOL(regulatory_hint_11d);
1888

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1938
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1939 1940
{
	unsigned int i;
1941 1942 1943
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1944 1945 1946 1947 1948 1949 1950 1951 1952

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1953 1954 1955 1956
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1975
static void print_regdomain(const struct ieee80211_regdomain *rd)
1976 1977
{

1978 1979
	if (is_intersected_alpha2(rd->alpha2)) {

1980 1981
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1982 1983 1984 1985
			struct cfg80211_registered_device *drv;
			drv = cfg80211_drv_by_wiphy_idx(
				last_request->wiphy_idx);
			if (drv) {
1986 1987 1988 1989 1990 1991 1992 1993 1994
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
					drv->country_ie_alpha2[0],
					drv->country_ie_alpha2[1]);
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1995
					"domain intersected: \n");
1996
	} else if (is_world_regdom(rd->alpha2))
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

2012
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2013 2014 2015 2016 2017 2018
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
2032
		print_regdomain_info(intersected_rd);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2046
/* Takes ownership of rd only if it doesn't fail */
2047
static int __set_regdom(const struct ieee80211_regdomain *rd)
2048
{
2049
	const struct ieee80211_regdomain *intersected_rd = NULL;
2050
	struct cfg80211_registered_device *drv = NULL;
2051
	struct wiphy *request_wiphy;
2052 2053 2054
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2055
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2056 2057 2058 2059 2060 2061 2062 2063 2064
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2065
	if (!last_request)
2066 2067
		return -EINVAL;

2068 2069
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2070
	 * rd is non static (it means CRDA was present and was used last)
2071 2072
	 * and the pending request came in from a country IE
	 */
2073
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2074 2075 2076 2077
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2078
		if (!is_old_static_regdom(cfg80211_regdomain) &&
2079
		    !regdom_changes(rd->alpha2))
2080 2081 2082
			return -EINVAL;
	}

2083 2084
	/*
	 * Now lets set the regulatory domain, update all driver channels
2085 2086
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2087 2088
	 * internal EEPROM data
	 */
2089

2090
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2091 2092
		return -EINVAL;

2093 2094 2095 2096 2097
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2098 2099
	}

2100 2101
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2102
	if (!last_request->intersect) {
2103 2104
		int r;

2105
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2106 2107 2108 2109 2110
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2111 2112 2113 2114
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2115

2116
		BUG_ON(request_wiphy->regd);
2117

2118
		r = reg_copy_regd(&request_wiphy->regd, rd);
2119 2120 2121
		if (r)
			return r;

2122 2123 2124 2125 2126 2127 2128
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2129
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2130

2131 2132 2133
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2134

2135 2136
		/*
		 * We can trash what CRDA provided now.
2137
		 * However if a driver requested this specific regulatory
2138 2139
		 * domain we keep it for its private use
		 */
2140
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2141
			request_wiphy->regd = rd;
2142 2143 2144
		else
			kfree(rd);

2145 2146 2147 2148 2149 2150
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2151 2152
	}

2153 2154 2155 2156 2157 2158
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

	BUG_ON(!country_ie_regdomain);
2159
	BUG_ON(rd == country_ie_regdomain);
2160

2161 2162 2163 2164
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2165

2166
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2167

2168 2169 2170
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2171

2172 2173
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2174 2175 2176 2177

	if (!intersected_rd)
		return -EINVAL;

2178
	drv = wiphy_to_dev(request_wiphy);
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

	drv->country_ie_alpha2[0] = rd->alpha2[0];
	drv->country_ie_alpha2[1] = rd->alpha2[1];
	drv->env = last_request->country_ie_env;

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2189
	reset_regdomains();
2190
	cfg80211_regdomain = intersected_rd;
2191 2192 2193 2194 2195

	return 0;
}


2196 2197
/*
 * Use this call to set the current regulatory domain. Conflicts with
2198
 * multiple drivers can be ironed out later. Caller must've already
2199 2200
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2201
int set_regdom(const struct ieee80211_regdomain *rd)
2202 2203 2204
{
	int r;

2205 2206
	assert_cfg80211_lock();

2207 2208
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2209 2210
	if (r) {
		kfree(rd);
2211
		return r;
2212
	}
2213 2214

	/* This would make this whole thing pointless */
2215 2216
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2217 2218

	/* update all wiphys now with the new established regulatory domain */
2219
	update_all_wiphy_regulatory(last_request->initiator);
2220

2221
	print_regdomain(cfg80211_regdomain);
2222

2223 2224
	nl80211_send_reg_change_event(last_request);

2225 2226 2227
	return r;
}

2228
/* Caller must hold cfg80211_mutex */
2229 2230
void reg_device_remove(struct wiphy *wiphy)
{
2231
	struct wiphy *request_wiphy = NULL;
2232

2233 2234
	assert_cfg80211_lock();

2235 2236
	kfree(wiphy->regd);

2237 2238
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2239

2240
	if (!request_wiphy || request_wiphy != wiphy)
2241
		return;
2242

2243
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2244 2245 2246
	last_request->country_ie_env = ENVIRON_ANY;
}

2247 2248
int regulatory_init(void)
{
2249
	int err = 0;
2250

2251 2252 2253
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2254

2255
	spin_lock_init(&reg_requests_lock);
2256
	spin_lock_init(&reg_pending_beacons_lock);
2257

2258
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2259
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2260

2261
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2262
	print_regdomain_info(cfg80211_regdomain);
2263 2264
	/*
	 * The old code still requests for a new regdomain and if
2265
	 * you have CRDA you get it updated, otherwise you get
2266 2267 2268 2269 2270 2271
	 * stuck with the static values. Since "EU" is not a valid
	 * ISO / IEC 3166 alpha2 code we can't expect userpace to
	 * give us a regulatory domain for it. We need last_request
	 * iniitalized though so lets just send a request which we
	 * know will be ignored... this crap will be removed once
	 * OLD_REG dies.
2272
	 */
2273
	err = regulatory_hint_core(ieee80211_regdom);
2274
#else
2275
	cfg80211_regdomain = cfg80211_world_regdom;
2276

2277
	err = regulatory_hint_core(ieee80211_regdom);
2278
#endif
2279
	if (err) {
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2294
#endif
2295
	}
2296

2297 2298 2299 2300 2301
	return 0;
}

void regulatory_exit(void)
{
2302
	struct regulatory_request *reg_request, *tmp;
2303
	struct reg_beacon *reg_beacon, *btmp;
2304 2305 2306

	cancel_work_sync(&reg_work);

2307
	mutex_lock(&cfg80211_mutex);
2308

2309
	reset_regdomains();
2310

2311 2312 2313
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2314 2315
	kfree(last_request);

2316
	platform_device_unregister(reg_pdev);
2317

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2346
	mutex_unlock(&cfg80211_mutex);
2347
}