reg.c 53.3 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36
#include <linux/slab.h>
37 38
#include <linux/list.h>
#include <linux/random.h>
39
#include <linux/ctype.h>
40 41 42
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
43
#include "core.h"
44
#include "reg.h"
45
#include "regdb.h"
46
#include "nl80211.h"
47

48
#ifdef CONFIG_CFG80211_REG_DEBUG
49
#define REG_DBG_PRINT(format, args...) \
50
	do { \
51
		printk(KERN_DEBUG format , ## args); \
52 53
	} while (0)
#else
54
#define REG_DBG_PRINT(args...)
55 56
#endif

57
/* Receipt of information from last regulatory request */
58
static struct regulatory_request *last_request;
59

60 61
/* To trigger userspace events */
static struct platform_device *reg_pdev;
62

63 64
/*
 * Central wireless core regulatory domains, we only need two,
65
 * the current one and a world regulatory domain in case we have no
66 67
 * information to give us an alpha2
 */
68
const struct ieee80211_regdomain *cfg80211_regdomain;
69

70 71 72 73 74 75
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
76
static DEFINE_MUTEX(reg_mutex);
77 78 79 80 81

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
82

83
/* Used to queue up regulatory hints */
84 85 86
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

87 88 89 90 91 92 93 94 95 96 97 98
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

99 100
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
101
	.n_reg_rules = 5,
102 103
	.alpha2 =  "00",
	.reg_rules = {
104 105
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
106 107 108
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
109 110
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
111 112 113 114 115 116 117
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
118
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
119 120
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
121 122 123 124

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
125
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
126 127
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
128 129 130
	}
};

131 132
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
133

134
static char *ieee80211_regdom = "00";
135
static char user_alpha2[2];
136

137 138 139 140 141
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
142 143 144 145 146 147 148 149 150 151
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
152

153
	cfg80211_world_regdom = &world_regdom;
154 155 156
	cfg80211_regdomain = NULL;
}

157 158 159 160
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
161
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
162
{
163
	BUG_ON(!last_request);
164 165 166 167 168 169 170

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

171
bool is_world_regdom(const char *alpha2)
172 173 174 175 176 177 178
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
179

180
static bool is_alpha2_set(const char *alpha2)
181 182 183 184 185 186 187
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
188

189
static bool is_unknown_alpha2(const char *alpha2)
190 191 192
{
	if (!alpha2)
		return false;
193 194 195 196
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
197 198 199 200
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
201

202 203 204 205
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
206 207
	/*
	 * Special case where regulatory domain is the
208
	 * result of an intersection between two regulatory domain
209 210
	 * structures
	 */
211 212 213 214 215
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

216
static bool is_an_alpha2(const char *alpha2)
217 218 219
{
	if (!alpha2)
		return false;
220
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
221 222 223
		return true;
	return false;
}
224

225
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
226 227 228 229 230 231 232 233 234
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

235
static bool regdom_changes(const char *alpha2)
236
{
237 238
	assert_cfg80211_lock();

239 240 241 242 243 244 245
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
298
static DEFINE_MUTEX(reg_regdb_search_mutex);
299 300 301 302 303 304 305

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

306
	mutex_lock(&reg_regdb_search_mutex);
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
329
	mutex_unlock(&reg_regdb_search_mutex);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

347
	mutex_lock(&reg_regdb_search_mutex);
348
	list_add_tail(&request->list, &reg_regdb_search_list);
349
	mutex_unlock(&reg_regdb_search_mutex);
350 351 352 353 354 355 356

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

357 358 359 360
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

376 377 378
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

379 380 381 382 383 384 385
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
386
bool reg_is_valid_request(const char *alpha2)
387
{
388 389
	assert_cfg80211_lock();

390 391 392 393
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
394
}
395

396
/* Sanity check on a regulatory rule */
397
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
398
{
399
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
400 401
	u32 freq_diff;

402
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
403 404 405 406 407 408 409
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

410 411
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
412 413 414 415 416
		return false;

	return true;
}

417
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
418
{
419
	const struct ieee80211_reg_rule *reg_rule = NULL;
420
	unsigned int i;
421

422 423
	if (!rd->n_reg_rules)
		return false;
424

425 426 427
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

428 429 430 431 432 433 434
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
435 436
}

437 438 439
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
440
{
441 442 443 444 445 446 447 448 449 450
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
451
}
452

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

478 479 480 481
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

559 560
	/*
	 * First we get a count of the rules we'll need, then we actually
561 562 563
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
564 565
	 * All rules that do check out OK are valid.
	 */
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
593 594
			/*
			 * This time around instead of using the stack lets
595
			 * write to the target rule directly saving ourselves
596 597
			 * a memcpy()
			 */
598 599 600
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
601 602 603 604
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

623 624 625 626
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
627 628 629 630 631 632 633 634 635 636 637 638
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

639 640
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
641
			      u32 desired_bw_khz,
642 643
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
644 645
{
	int i;
646
	bool band_rule_found = false;
647
	const struct ieee80211_regdomain *regd;
648 649 650 651
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
652

653
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
654

655 656 657 658
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
659 660
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
661 662 663 664
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
665 666
		return -EINVAL;

667
	for (i = 0; i < regd->n_reg_rules; i++) {
668 669 670 671
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

672
		rr = &regd->reg_rules[i];
673 674
		fr = &rr->freq_range;
		pr = &rr->power_rule;
675

676 677
		/*
		 * We only need to know if one frequency rule was
678
		 * was in center_freq's band, that's enough, so lets
679 680
		 * not overwrite it once found
		 */
681 682 683
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

684 685 686
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
687

688
		if (band_rule_found && bw_fits) {
689
			*reg_rule = rr;
690
			return 0;
691 692 693
		}
	}

694 695 696
	if (!band_rule_found)
		return -ERANGE;

697
	return -EINVAL;
698 699
}

700 701 702 703
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
704
{
705
	assert_cfg80211_lock();
706 707 708 709 710
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
711
}
712
EXPORT_SYMBOL(freq_reg_info);
713

714 715 716 717 718 719 720 721 722
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
723 724 725
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
726
			   unsigned int chan_idx)
727 728
{
	int r;
729 730
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
731 732
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
733
	const struct ieee80211_freq_range *freq_range = NULL;
734 735
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
736
	struct wiphy *request_wiphy = NULL;
737

738 739
	assert_cfg80211_lock();

740 741
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

742 743 744 745 746
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
747

748 749 750 751
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
752

753
	if (r)
754 755
		return;

756
	power_rule = &reg_rule->power_rule;
757 758 759 760
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
761

762
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
763
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
764
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
765 766
		/*
		 * This gaurantees the driver's requested regulatory domain
767
		 * will always be used as a base for further regulatory
768 769
		 * settings
		 */
770
		chan->flags = chan->orig_flags =
771
			map_regdom_flags(reg_rule->flags) | bw_flags;
772 773 774 775 776 777 778
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

779
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
780
	chan->max_antenna_gain = min(chan->orig_mag,
781
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
782
	if (chan->orig_mpwr)
783 784
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
785
	else
786
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
787 788
}

789 790 791
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
792
{
793 794 795 796 797
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
798 799

	for (i = 0; i < sband->n_channels; i++)
800
		handle_channel(wiphy, initiator, band, i);
801 802
}

803 804
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
805 806 807
{
	if (!last_request)
		return true;
808
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
J
Johannes Berg 已提交
809
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
810
		return true;
811 812 813 814
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
815
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
816
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
817
	    !is_world_regdom(last_request->alpha2))
818 819 820 821
		return true;
	return false;
}

822
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
823
{
824
	struct cfg80211_registered_device *rdev;
825

826 827
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
828 829
}

830 831 832 833 834 835
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
836 837
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
838 839 840 841 842 843 844 845 846

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

847 848 849 850 851
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
852
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
853 854
		return;

855 856 857
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

858
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
859
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
860
		channel_changed = true;
861 862
	}

863
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
864
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
865
		channel_changed = true;
866 867
	}

868 869
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
921 922
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
923
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
924 925 926 927 928 929 930
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
931 932 933 934 935 936
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
937 938 939 940 941
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
992
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
993
	else
994
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
995 996

	if (is_ht40_not_allowed(channel_after))
997
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
998
	else
999
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1029 1030
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1031 1032
{
	enum ieee80211_band band;
1033

1034
	if (ignore_reg_update(wiphy, initiator))
1035
		goto out;
1036
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1037
		if (wiphy->bands[band])
1038
			handle_band(wiphy, band, initiator);
1039
	}
1040 1041
out:
	reg_process_beacons(wiphy);
1042
	reg_process_ht_flags(wiphy);
1043
	if (wiphy->reg_notifier)
1044
		wiphy->reg_notifier(wiphy, last_request);
1045 1046
}

1047 1048 1049 1050 1051 1052
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1053 1054
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1055 1056
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1057
	const struct ieee80211_freq_range *freq_range = NULL;
1058 1059 1060
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1061
	assert_reg_lock();
1062

1063 1064 1065 1066
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1067 1068 1069 1070 1071
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1072 1073 1074 1075 1076 1077 1078

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1079 1080 1081 1082
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1083

1084
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1107
	unsigned int bands_set = 0;
1108

1109
	mutex_lock(&reg_mutex);
1110
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1111 1112 1113 1114
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1115
	}
1116
	mutex_unlock(&reg_mutex);
1117 1118 1119 1120 1121 1122

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1123
}
1124 1125
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1126 1127 1128 1129
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1130 1131
#define REG_INTERSECT	1

1132 1133
/* This has the logic which determines when a new request
 * should be ignored. */
1134 1135
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1136
{
1137
	struct wiphy *last_wiphy = NULL;
1138 1139 1140

	assert_cfg80211_lock();

1141 1142 1143 1144
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1145
	switch (pending_request->initiator) {
1146
	case NL80211_REGDOM_SET_BY_CORE:
1147
		return 0;
1148
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1149 1150 1151

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1152
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1153
			return -EINVAL;
1154 1155
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1156
			if (last_wiphy != wiphy) {
1157 1158
				/*
				 * Two cards with two APs claiming different
1159
				 * Country IE alpha2s. We could
1160 1161 1162
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1163
				if (regdom_changes(pending_request->alpha2))
1164 1165 1166
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1167 1168 1169 1170
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1171
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1172 1173 1174
				return 0;
			return -EALREADY;
		}
1175
		return 0;
1176 1177
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1178
			if (regdom_changes(pending_request->alpha2))
1179
				return 0;
1180
			return -EALREADY;
1181
		}
1182 1183 1184 1185 1186 1187

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1188
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1189
		    !regdom_changes(pending_request->alpha2))
1190 1191
			return -EALREADY;

1192
		return REG_INTERSECT;
1193 1194
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1195
			return REG_INTERSECT;
1196 1197 1198 1199
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1200
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1201 1202
			  last_request->intersect)
			return -EOPNOTSUPP;
1203 1204 1205 1206
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1207 1208 1209
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1210
			if (regdom_changes(last_request->alpha2))
1211 1212 1213
				return -EAGAIN;
		}

1214
		if (!regdom_changes(pending_request->alpha2))
1215 1216
			return -EALREADY;

1217 1218 1219 1220 1221 1222
		return 0;
	}

	return -EINVAL;
}

1223 1224 1225 1226
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1227
 * @pending_request: the regulatory request currently being processed
1228 1229
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1230
 * what it believes should be the current regulatory domain.
1231 1232 1233 1234
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1235
 * Caller must hold &cfg80211_mutex and &reg_mutex
1236
 */
1237 1238
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1239
{
1240
	bool intersect = false;
1241 1242
	int r = 0;

1243 1244
	assert_cfg80211_lock();

1245
	r = ignore_request(wiphy, pending_request);
1246

1247
	if (r == REG_INTERSECT) {
1248 1249
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1250
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1251 1252
			if (r) {
				kfree(pending_request);
1253
				return r;
1254
			}
1255
		}
1256
		intersect = true;
1257
	} else if (r) {
1258 1259
		/*
		 * If the regulatory domain being requested by the
1260
		 * driver has already been set just copy it to the
1261 1262
		 * wiphy
		 */
1263
		if (r == -EALREADY &&
1264 1265
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1266
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1267 1268
			if (r) {
				kfree(pending_request);
1269
				return r;
1270
			}
1271 1272 1273
			r = -EALREADY;
			goto new_request;
		}
1274
		kfree(pending_request);
1275
		return r;
1276
	}
1277

1278
new_request:
1279
	kfree(last_request);
1280

1281 1282
	last_request = pending_request;
	last_request->intersect = intersect;
1283

1284
	pending_request = NULL;
1285

1286 1287 1288 1289 1290
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1291
	/* When r == REG_INTERSECT we do need to call CRDA */
1292 1293 1294 1295 1296 1297 1298 1299
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1300
		return r;
1301
	}
1302

1303
	return call_crda(last_request->alpha2);
1304 1305
}

1306
/* This processes *all* regulatory hints */
1307
static void reg_process_hint(struct regulatory_request *reg_request)
1308 1309 1310
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1311
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1312 1313 1314 1315

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1316
	mutex_lock(&reg_mutex);
1317 1318 1319 1320

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1321
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1322
	    !wiphy) {
1323
		kfree(reg_request);
1324 1325 1326
		goto out;
	}

1327
	r = __regulatory_hint(wiphy, reg_request);
1328
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1329 1330
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1331
		wiphy_update_regulatory(wiphy, initiator);
1332
out:
1333
	mutex_unlock(&reg_mutex);
1334 1335 1336
	mutex_unlock(&cfg80211_mutex);
}

1337
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1349 1350
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1351 1352 1353 1354 1355
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1356 1357 1358
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1359
	struct cfg80211_registered_device *rdev;
1360 1361
	struct reg_beacon *pending_beacon, *tmp;

1362 1363 1364 1365
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1382 1383
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1394 1395 1396
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1397
	reg_process_pending_beacon_hints();
1398 1399 1400 1401 1402 1403
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
1404 1405 1406 1407 1408
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1409 1410 1411 1412 1413 1414 1415
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1416 1417 1418 1419
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1420 1421 1422 1423
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1424 1425
	kfree(last_request);
	last_request = NULL;
1426 1427 1428 1429 1430 1431 1432 1433

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1434
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1435

1436 1437 1438 1439 1440
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
1441
	reg_process_hint(request);
1442

1443
	return 0;
1444 1445
}

1446 1447
/* User hints */
int regulatory_hint_user(const char *alpha2)
1448
{
1449 1450
	struct regulatory_request *request;

1451
	BUG_ON(!alpha2);
1452

1453 1454 1455 1456 1457 1458 1459
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1460
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1486
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1487 1488 1489 1490

	queue_regulatory_request(request);

	return 0;
1491 1492 1493
}
EXPORT_SYMBOL(regulatory_hint);

1494 1495 1496 1497
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1498
void regulatory_hint_11d(struct wiphy *wiphy,
1499 1500 1501
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1502 1503 1504
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1505
	struct regulatory_request *request;
1506

1507
	mutex_lock(&reg_mutex);
1508

1509 1510
	if (unlikely(!last_request))
		goto out;
1511

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1527
	/*
1528
	 * We will run this only upon a successful connection on cfg80211.
1529 1530
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1531
	 */
1532 1533
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1534 1535
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1536

1537 1538
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1539
		goto out;
1540 1541

	request->wiphy_idx = get_wiphy_idx(wiphy);
1542 1543
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1544
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1545 1546
	request->country_ie_env = env;

1547
	mutex_unlock(&reg_mutex);
1548

1549 1550 1551
	queue_regulatory_request(request);

	return;
1552

1553
out:
1554
	mutex_unlock(&reg_mutex);
1555
}
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
				REG_DBG_PRINT("cfg80211: Keeping preference on "
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
		REG_DBG_PRINT("cfg80211: Keeping preference on "
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
		REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);
}


void regulatory_hint_disconnect(void)
{
	REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1699 1700 1701 1702 1703 1704
	REG_DBG_PRINT("cfg80211: Found new beacon on "
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1722
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1723 1724
{
	unsigned int i;
1725 1726 1727
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1728

1729
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1730 1731 1732 1733 1734 1735 1736
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1737 1738 1739 1740
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1741
		if (power_rule->max_antenna_gain)
1742
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1743 1744 1745 1746 1747 1748 1749
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1750
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1751 1752 1753 1754 1755 1756 1757 1758
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1759
static void print_regdomain(const struct ieee80211_regdomain *rd)
1760 1761
{

1762 1763
	if (is_intersected_alpha2(rd->alpha2)) {

1764 1765
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1766 1767
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1768
				last_request->wiphy_idx);
1769
			if (rdev) {
1770 1771
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
1772 1773
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1774 1775
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1776
					"domain intersected:\n");
1777
		} else
1778 1779
			printk(KERN_INFO "cfg80211: Current regulatory "
				"domain intersected:\n");
1780
	} else if (is_world_regdom(rd->alpha2))
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1796
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1797 1798 1799 1800 1801 1802
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1803
/* Takes ownership of rd only if it doesn't fail */
1804
static int __set_regdom(const struct ieee80211_regdomain *rd)
1805
{
1806
	const struct ieee80211_regdomain *intersected_rd = NULL;
1807
	struct cfg80211_registered_device *rdev = NULL;
1808
	struct wiphy *request_wiphy;
1809 1810 1811
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1812
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1813 1814 1815 1816 1817 1818 1819 1820 1821
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1822
	if (!last_request)
1823 1824
		return -EINVAL;

1825 1826
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1827
	 * rd is non static (it means CRDA was present and was used last)
1828 1829
	 * and the pending request came in from a country IE
	 */
1830
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1831 1832 1833 1834
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1835
		if (!regdom_changes(rd->alpha2))
1836 1837 1838
			return -EINVAL;
	}

1839 1840
	/*
	 * Now lets set the regulatory domain, update all driver channels
1841 1842
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1843 1844
	 * internal EEPROM data
	 */
1845

1846
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1847 1848
		return -EINVAL;

1849 1850 1851 1852 1853
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1854 1855
	}

1856 1857
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1858
	if (!last_request->intersect) {
1859 1860
		int r;

1861
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1862 1863 1864 1865 1866
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1867 1868 1869 1870
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1871

1872 1873 1874 1875 1876 1877
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
1878

1879
		r = reg_copy_regd(&request_wiphy->regd, rd);
1880 1881 1882
		if (r)
			return r;

1883 1884 1885 1886 1887 1888 1889
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

1890
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1891

1892 1893 1894
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
1895

1896 1897
		/*
		 * We can trash what CRDA provided now.
1898
		 * However if a driver requested this specific regulatory
1899 1900
		 * domain we keep it for its private use
		 */
1901
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
1902
			request_wiphy->regd = rd;
1903 1904 1905
		else
			kfree(rd);

1906 1907 1908 1909 1910 1911
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
1912 1913
	}

1914 1915 1916
	if (!intersected_rd)
		return -EINVAL;

1917
	rdev = wiphy_to_dev(request_wiphy);
1918

1919 1920 1921
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
1922 1923 1924 1925 1926 1927

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

1928
	reset_regdomains();
1929
	cfg80211_regdomain = intersected_rd;
1930 1931 1932 1933 1934

	return 0;
}


1935 1936
/*
 * Use this call to set the current regulatory domain. Conflicts with
1937
 * multiple drivers can be ironed out later. Caller must've already
1938 1939
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
1940
int set_regdom(const struct ieee80211_regdomain *rd)
1941 1942 1943
{
	int r;

1944 1945
	assert_cfg80211_lock();

1946 1947
	mutex_lock(&reg_mutex);

1948 1949
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
1950 1951
	if (r) {
		kfree(rd);
1952
		mutex_unlock(&reg_mutex);
1953
		return r;
1954
	}
1955 1956

	/* This would make this whole thing pointless */
1957 1958
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
1959 1960

	/* update all wiphys now with the new established regulatory domain */
1961
	update_all_wiphy_regulatory(last_request->initiator);
1962

1963
	print_regdomain(cfg80211_regdomain);
1964

1965 1966
	nl80211_send_reg_change_event(last_request);

1967 1968
	mutex_unlock(&reg_mutex);

1969 1970 1971
	return r;
}

1972
/* Caller must hold cfg80211_mutex */
1973 1974
void reg_device_remove(struct wiphy *wiphy)
{
1975
	struct wiphy *request_wiphy = NULL;
1976

1977 1978
	assert_cfg80211_lock();

1979 1980
	mutex_lock(&reg_mutex);

1981 1982
	kfree(wiphy->regd);

1983 1984
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1985

1986
	if (!request_wiphy || request_wiphy != wiphy)
1987
		goto out;
1988

1989
	last_request->wiphy_idx = WIPHY_IDX_STALE;
1990
	last_request->country_ie_env = ENVIRON_ANY;
1991 1992
out:
	mutex_unlock(&reg_mutex);
1993 1994
}

1995
int __init regulatory_init(void)
1996
{
1997
	int err = 0;
1998

1999 2000 2001
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2002

2003
	spin_lock_init(&reg_requests_lock);
2004
	spin_lock_init(&reg_pending_beacons_lock);
2005

2006
	cfg80211_regdomain = cfg80211_world_regdom;
2007

2008 2009 2010
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2011 2012
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2013
	if (err) {
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2028
#endif
2029
	}
2030

2031 2032 2033 2034 2035 2036 2037
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2038 2039 2040
	return 0;
}

2041
void /* __init_or_exit */ regulatory_exit(void)
2042
{
2043
	struct regulatory_request *reg_request, *tmp;
2044
	struct reg_beacon *reg_beacon, *btmp;
2045 2046 2047

	cancel_work_sync(&reg_work);

2048
	mutex_lock(&cfg80211_mutex);
2049
	mutex_lock(&reg_mutex);
2050

2051
	reset_regdomains();
2052

2053 2054
	kfree(last_request);

2055
	platform_device_unregister(reg_pdev);
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2085
	mutex_unlock(&reg_mutex);
2086
	mutex_unlock(&cfg80211_mutex);
2087
}