reg.c 59.7 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "regdb.h"
44
#include "nl80211.h"
45

46 47 48 49 50 51 52 53 54
#ifdef CONFIG_CFG80211_REG_DEBUG
#define REG_DBG_PRINT(args...) \
	do { \
		printk(KERN_DEBUG args); \
	} while (0)
#else
#define REG_DBG_PRINT(args)
#endif

55
/* Receipt of information from last regulatory request */
56
static struct regulatory_request *last_request;
57

58 59
/* To trigger userspace events */
static struct platform_device *reg_pdev;
60

61 62
/*
 * Central wireless core regulatory domains, we only need two,
63
 * the current one and a world regulatory domain in case we have no
64 65
 * information to give us an alpha2
 */
66
const struct ieee80211_regdomain *cfg80211_regdomain;
67

68 69
/*
 * We use this as a place for the rd structure built from the
70
 * last parsed country IE to rest until CRDA gets back to us with
71 72
 * what it thinks should apply for the same country
 */
73 74
static const struct ieee80211_regdomain *country_ie_regdomain;

75 76 77 78 79 80 81 82 83 84
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - country_ie_regdomain
 *     - last_request
 */
DEFINE_MUTEX(reg_mutex);
#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))

85
/* Used to queue up regulatory hints */
86 87 88
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

89 90 91 92 93 94 95 96 97 98 99 100
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

101 102
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
103
	.n_reg_rules = 5,
104 105
	.alpha2 =  "00",
	.reg_rules = {
106 107
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
108 109 110
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
111 112
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
113 114 115 116 117 118 119
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
120
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
121 122
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
123 124 125 126

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
127
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
128 129
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
130 131 132
	}
};

133 134
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
135

136 137
static char *ieee80211_regdom = "00";

138 139 140 141 142
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
143 144 145 146 147 148 149 150 151 152
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
153

154
	cfg80211_world_regdom = &world_regdom;
155 156 157
	cfg80211_regdomain = NULL;
}

158 159 160 161
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
162
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
163
{
164
	BUG_ON(!last_request);
165 166 167 168 169 170 171

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

172
bool is_world_regdom(const char *alpha2)
173 174 175 176 177 178 179
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
180

181
static bool is_alpha2_set(const char *alpha2)
182 183 184 185 186 187 188
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
189

190 191 192 193 194 195 196
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
197

198
static bool is_unknown_alpha2(const char *alpha2)
199 200 201
{
	if (!alpha2)
		return false;
202 203 204 205
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
206 207 208 209
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
210

211 212 213 214
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
215 216
	/*
	 * Special case where regulatory domain is the
217
	 * result of an intersection between two regulatory domain
218 219
	 * structures
	 */
220 221 222 223 224
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

225
static bool is_an_alpha2(const char *alpha2)
226 227 228 229 230 231 232
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
233

234
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
235 236 237 238 239 240 241 242 243
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

244
static bool regdom_changes(const char *alpha2)
245
{
246 247
	assert_cfg80211_lock();

248 249 250 251 252 253 254
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
static DEFINE_SPINLOCK(reg_regdb_search_lock);

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

	spin_lock(&reg_regdb_search_lock);
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				spin_unlock(&reg_regdb_search_lock);
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				spin_lock(&reg_regdb_search_lock);
				break;
			}
		}

		kfree(request);
	}
	spin_unlock(&reg_regdb_search_lock);
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

	spin_lock(&reg_regdb_search_lock);
	list_add_tail(&request->list, &reg_regdb_search_list);
	spin_unlock(&reg_regdb_search_lock);

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

366 367 368 369
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

385 386 387
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

388 389 390 391 392 393 394
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
395
bool reg_is_valid_request(const char *alpha2)
396
{
397 398
	assert_cfg80211_lock();

399 400 401 402
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
403
}
404

405
/* Sanity check on a regulatory rule */
406
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
407
{
408
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
409 410
	u32 freq_diff;

411
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
412 413 414 415 416 417 418
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

419 420
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
421 422 423 424 425
		return false;

	return true;
}

426
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
427
{
428
	const struct ieee80211_reg_rule *reg_rule = NULL;
429
	unsigned int i;
430

431 432
	if (!rd->n_reg_rules)
		return false;
433

434 435 436
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

437 438 439 440 441 442 443
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
444 445
}

446 447 448
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
449
{
450 451 452 453 454 455 456 457 458 459
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
460
}
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

487 488
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
489 490
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
491 492
 * with our userspace regulatory agent to get lower bounds.
 */
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

537 538
	/*
	 * We need to build a reg rule for each triplet, but first we must
539
	 * calculate the number of reg rules we will need. We will need one
540 541
	 * for each channel subband
	 */
542
	while (country_ie_len >= 3) {
543
		int end_channel = 0;
544 545 546 547 548 549 550 551 552 553 554
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

572
		cur_channel = triplet->chans.first_channel;
573
		cur_sub_max_channel = end_channel;
574 575 576 577 578

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

579 580
		/*
		 * Do not allow overlapping channels. Also channels
581
		 * passed in each subband must be monotonically
582 583
		 * increasing
		 */
584 585 586 587 588 589 590
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

591 592
		/*
		 * When dot11RegulatoryClassesRequired is supported
593 594
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
595 596
		 * don't support them
		 */
597 598 599 600 601 602 603 604 605 606
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

607 608 609 610
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
631
		int end_channel = 0;
632 633 634 635 636 637
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

638 639 640 641
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
642 643 644 645 646 647 648 649 650 651 652 653 654
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

655 656 657 658 659 660 661 662
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

663 664
		/*
		 * The +10 is since the regulatory domain expects
665 666
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
667 668
		 * the channels passed
		 */
669 670 671 672 673
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
674
				end_channel) + 10);
675

676 677 678 679 680
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


696 697 698 699
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

777 778
	/*
	 * First we get a count of the rules we'll need, then we actually
779 780 781
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
782 783
	 * All rules that do check out OK are valid.
	 */
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
811 812
			/*
			 * This time around instead of using the stack lets
813
			 * write to the target rule directly saving ourselves
814 815
			 * a memcpy()
			 */
816 817 818
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
819 820 821 822
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

841 842 843 844
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
845 846 847 848 849 850 851 852 853 854 855 856
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

857 858
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
859
			      u32 desired_bw_khz,
860 861
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
862 863
{
	int i;
864
	bool band_rule_found = false;
865
	const struct ieee80211_regdomain *regd;
866 867 868 869
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
870

871
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
872

873 874 875 876
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
877 878
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
879 880 881 882
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
883 884
		return -EINVAL;

885
	for (i = 0; i < regd->n_reg_rules; i++) {
886 887 888 889
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

890
		rr = &regd->reg_rules[i];
891 892
		fr = &rr->freq_range;
		pr = &rr->power_rule;
893

894 895
		/*
		 * We only need to know if one frequency rule was
896
		 * was in center_freq's band, that's enough, so lets
897 898
		 * not overwrite it once found
		 */
899 900 901
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

902 903 904
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
905

906
		if (band_rule_found && bw_fits) {
907
			*reg_rule = rr;
908
			return 0;
909 910 911
		}
	}

912 913 914
	if (!band_rule_found)
		return -ERANGE;

915
	return -EINVAL;
916
}
917
EXPORT_SYMBOL(freq_reg_info);
918

919 920 921 922
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
923
{
924
	assert_cfg80211_lock();
925 926 927 928 929
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
930
}
931

932 933 934 935 936 937 938 939 940
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
941 942
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
943 944
{
	int r;
945 946
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
947 948
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
949
	const struct ieee80211_freq_range *freq_range = NULL;
950 951
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
952
	struct wiphy *request_wiphy = NULL;
953

954 955
	assert_cfg80211_lock();

956 957
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

958 959 960 961 962
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
963

964 965 966 967
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
968 969

	if (r) {
970 971
		/*
		 * This means no regulatory rule was found in the country IE
972 973 974 975 976 977 978 979 980 981
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
982 983
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
984
			REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
985 986
				"intact on %s - no rule found in band on "
				"Country IE\n",
987
			chan->center_freq, wiphy_name(wiphy));
988
		} else {
989 990 991 992
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
993 994
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
995
				REG_DBG_PRINT("cfg80211: Disabling "
996 997 998 999 1000 1001
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
1002 1003 1004
		return;
	}

1005
	power_rule = &reg_rule->power_rule;
1006 1007 1008 1009
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1010

1011
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1012
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
1013
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1014 1015
		/*
		 * This gaurantees the driver's requested regulatory domain
1016
		 * will always be used as a base for further regulatory
1017 1018
		 * settings
		 */
1019
		chan->flags = chan->orig_flags =
1020
			map_regdom_flags(reg_rule->flags) | bw_flags;
1021 1022 1023 1024 1025 1026 1027
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1028
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1029
	chan->max_antenna_gain = min(chan->orig_mag,
1030
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1031
	if (chan->orig_mpwr)
1032 1033
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1034
	else
1035
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1036 1037
}

1038
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1039
{
1040 1041 1042 1043 1044
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1045 1046

	for (i = 0; i < sband->n_channels; i++)
1047
		handle_channel(wiphy, band, i);
1048 1049
}

1050 1051
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1052 1053 1054
{
	if (!last_request)
		return true;
1055
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
J
Johannes Berg 已提交
1056
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1057
		return true;
1058 1059 1060 1061
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
1062
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1063
	    !is_world_regdom(last_request->alpha2))
1064 1065 1066 1067
		return true;
	return false;
}

1068
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1069
{
1070
	struct cfg80211_registered_device *rdev;
1071

1072 1073
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
1074 1075
}

1076 1077 1078 1079 1080 1081
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1082 1083
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1084 1085 1086 1087 1088 1089 1090 1091 1092

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1093 1094 1095 1096 1097
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
1098
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1099 1100
		return;

1101 1102 1103
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1104
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1105
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1106
		channel_changed = true;
1107 1108
	}

1109
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1110
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1111
		channel_changed = true;
1112 1113
	}

1114 1115
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1167 1168
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1169
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1170 1171 1172 1173 1174 1175 1176
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1177 1178 1179 1180 1181 1182
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1183 1184 1185 1186 1187
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1238
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1239
	else
1240
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1241 1242

	if (is_ht40_not_allowed(channel_after))
1243
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1244
	else
1245
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1275 1276
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1277 1278
{
	enum ieee80211_band band;
1279

1280
	if (ignore_reg_update(wiphy, initiator))
1281
		goto out;
1282
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1283
		if (wiphy->bands[band])
1284
			handle_band(wiphy, band);
1285
	}
1286 1287
out:
	reg_process_beacons(wiphy);
1288
	reg_process_ht_flags(wiphy);
1289
	if (wiphy->reg_notifier)
1290
		wiphy->reg_notifier(wiphy, last_request);
1291 1292
}

1293 1294 1295 1296 1297 1298
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1299 1300
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1301 1302
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1303
	const struct ieee80211_freq_range *freq_range = NULL;
1304 1305 1306
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1307
	assert_reg_lock();
1308

1309 1310 1311 1312
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1313 1314 1315 1316 1317
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1318 1319 1320 1321 1322 1323 1324

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1325 1326 1327 1328
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1329

1330
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1353
	unsigned int bands_set = 0;
1354

1355
	mutex_lock(&reg_mutex);
1356
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1357 1358 1359 1360
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1361
	}
1362
	mutex_unlock(&reg_mutex);
1363 1364 1365 1366 1367 1368

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1369
}
1370 1371
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1372 1373 1374 1375
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1376 1377
#define REG_INTERSECT	1

1378 1379
/* This has the logic which determines when a new request
 * should be ignored. */
1380 1381
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1382
{
1383
	struct wiphy *last_wiphy = NULL;
1384 1385 1386

	assert_cfg80211_lock();

1387 1388 1389 1390
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1391
	switch (pending_request->initiator) {
1392
	case NL80211_REGDOM_SET_BY_CORE:
1393
		return -EINVAL;
1394
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1395 1396 1397

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1398
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1399
			return -EINVAL;
1400 1401
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1402
			if (last_wiphy != wiphy) {
1403 1404
				/*
				 * Two cards with two APs claiming different
1405
				 * Country IE alpha2s. We could
1406 1407 1408
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1409
				if (regdom_changes(pending_request->alpha2))
1410 1411 1412
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1413 1414 1415 1416
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1417
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1418 1419 1420
				return 0;
			return -EALREADY;
		}
1421
		return REG_INTERSECT;
1422 1423
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1424
			if (regdom_changes(pending_request->alpha2))
1425
				return 0;
1426
			return -EALREADY;
1427
		}
1428 1429 1430 1431 1432 1433

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1434
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1435
		    !regdom_changes(pending_request->alpha2))
1436 1437
			return -EALREADY;

1438
		return REG_INTERSECT;
1439 1440
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1441
			return REG_INTERSECT;
1442 1443 1444 1445
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1446
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1447 1448
			  last_request->intersect)
			return -EOPNOTSUPP;
1449 1450 1451 1452
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1453 1454 1455
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1456
			if (regdom_changes(last_request->alpha2))
1457 1458 1459
				return -EAGAIN;
		}

1460
		if (!regdom_changes(pending_request->alpha2))
1461 1462
			return -EALREADY;

1463 1464 1465 1466 1467 1468
		return 0;
	}

	return -EINVAL;
}

1469 1470 1471 1472
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1473
 * @pending_request: the regulatory request currently being processed
1474 1475
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1476
 * what it believes should be the current regulatory domain.
1477 1478 1479 1480
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1481
 * Caller must hold &cfg80211_mutex and &reg_mutex
1482
 */
1483 1484
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1485
{
1486
	bool intersect = false;
1487 1488
	int r = 0;

1489 1490
	assert_cfg80211_lock();

1491
	r = ignore_request(wiphy, pending_request);
1492

1493
	if (r == REG_INTERSECT) {
1494 1495
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1496
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1497 1498
			if (r) {
				kfree(pending_request);
1499
				return r;
1500
			}
1501
		}
1502
		intersect = true;
1503
	} else if (r) {
1504 1505
		/*
		 * If the regulatory domain being requested by the
1506
		 * driver has already been set just copy it to the
1507 1508
		 * wiphy
		 */
1509
		if (r == -EALREADY &&
1510 1511
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1512
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1513 1514
			if (r) {
				kfree(pending_request);
1515
				return r;
1516
			}
1517 1518 1519
			r = -EALREADY;
			goto new_request;
		}
1520
		kfree(pending_request);
1521
		return r;
1522
	}
1523

1524
new_request:
1525
	kfree(last_request);
1526

1527 1528
	last_request = pending_request;
	last_request->intersect = intersect;
1529

1530
	pending_request = NULL;
1531 1532

	/* When r == REG_INTERSECT we do need to call CRDA */
1533 1534 1535 1536 1537 1538 1539 1540
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1541
		return r;
1542
	}
1543

1544
	return call_crda(last_request->alpha2);
1545 1546
}

1547
/* This processes *all* regulatory hints */
1548
static void reg_process_hint(struct regulatory_request *reg_request)
1549 1550 1551 1552 1553 1554 1555
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1556
	mutex_lock(&reg_mutex);
1557 1558 1559 1560

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1561
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1562
	    !wiphy) {
1563
		kfree(reg_request);
1564 1565 1566
		goto out;
	}

1567
	r = __regulatory_hint(wiphy, reg_request);
1568
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1569 1570
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1571 1572
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
1573
	mutex_unlock(&reg_mutex);
1574 1575 1576
	mutex_unlock(&cfg80211_mutex);
}

1577
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1589 1590
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1591 1592 1593 1594 1595
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1596 1597 1598
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1599
	struct cfg80211_registered_device *rdev;
1600 1601
	struct reg_beacon *pending_beacon, *tmp;

1602 1603 1604 1605
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1622 1623
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1634 1635 1636
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1637
	reg_process_pending_beacon_hints();
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1665
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1666

1667
	queue_regulatory_request(request);
1668

1669 1670 1671 1672 1673 1674 1675
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
	flush_scheduled_work();

1676
	return 0;
1677 1678
}

1679 1680
/* User hints */
int regulatory_hint_user(const char *alpha2)
1681
{
1682 1683
	struct regulatory_request *request;

1684
	BUG_ON(!alpha2);
1685

1686 1687 1688 1689 1690 1691 1692
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1693
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1719
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1720 1721 1722 1723

	queue_regulatory_request(request);

	return 0;
1724 1725 1726
}
EXPORT_SYMBOL(regulatory_hint);

1727
/* Caller must hold reg_mutex */
1728 1729 1730
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1731 1732
	struct wiphy *request_wiphy;

1733
	assert_reg_lock();
1734

1735 1736 1737 1738
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1739 1740 1741
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1742
		return false;
1743 1744

	if (likely(request_wiphy != wiphy))
1745
		return !country_ie_integrity_changes(country_ie_checksum);
1746 1747
	/*
	 * We should not have let these through at this point, they
1748
	 * should have been picked up earlier by the first alpha2 check
1749 1750
	 * on the device
	 */
1751 1752 1753 1754 1755
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

1756 1757 1758 1759
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1760 1761 1762 1763 1764 1765 1766 1767
void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1768
	struct regulatory_request *request;
1769

1770
	mutex_lock(&reg_mutex);
1771

1772 1773
	if (unlikely(!last_request))
		goto out;
1774

1775 1776 1777 1778 1779 1780 1781
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1782 1783
	/*
	 * Pending country IE processing, this can happen after we
1784
	 * call CRDA and wait for a response if a beacon was received before
1785 1786
	 * we were able to process the last regulatory_hint_11d() call
	 */
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1798
	/*
1799
	 * We will run this only upon a successful connection on cfg80211.
1800 1801
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1802
	 */
1803 1804
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1805 1806
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1807 1808 1809 1810 1811

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1812 1813
	/*
	 * This will not happen right now but we leave it here for the
1814 1815
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1816 1817 1818 1819 1820 1821
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1822
		goto free_rd_out;
1823

1824 1825 1826 1827
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1828 1829 1830 1831
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1832 1833
	country_ie_regdomain = rd;

1834 1835 1836
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
1837
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1838 1839 1840
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

1841
	mutex_unlock(&reg_mutex);
1842

1843 1844 1845
	queue_regulatory_request(request);

	return;
1846 1847 1848

free_rd_out:
	kfree(rd);
1849
out:
1850
	mutex_unlock(&reg_mutex);
1851
}
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1878 1879 1880 1881 1882 1883
	REG_DBG_PRINT("cfg80211: Found new beacon on "
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1901
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1902 1903
{
	unsigned int i;
1904 1905 1906
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1907

1908
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
1909 1910 1911 1912 1913 1914 1915
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1916 1917 1918 1919
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1920
		if (power_rule->max_antenna_gain)
1921
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1922 1923 1924 1925 1926 1927 1928
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1929
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
1930 1931 1932 1933 1934 1935 1936 1937
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1938
static void print_regdomain(const struct ieee80211_regdomain *rd)
1939 1940
{

1941 1942
	if (is_intersected_alpha2(rd->alpha2)) {

1943 1944
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1945 1946
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1947
				last_request->wiphy_idx);
1948
			if (rdev) {
1949 1950
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
1951 1952
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1953 1954 1955 1956 1957
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1958
					"domain intersected: \n");
1959
	} else if (is_world_regdom(rd->alpha2))
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1975
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1976 1977 1978 1979 1980 1981
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
1995
		print_regdomain_info(intersected_rd);
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2009
/* Takes ownership of rd only if it doesn't fail */
2010
static int __set_regdom(const struct ieee80211_regdomain *rd)
2011
{
2012
	const struct ieee80211_regdomain *intersected_rd = NULL;
2013
	struct cfg80211_registered_device *rdev = NULL;
2014
	struct wiphy *request_wiphy;
2015 2016 2017
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2018
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2019 2020 2021 2022 2023 2024 2025 2026 2027
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2028
	if (!last_request)
2029 2030
		return -EINVAL;

2031 2032
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2033
	 * rd is non static (it means CRDA was present and was used last)
2034 2035
	 * and the pending request came in from a country IE
	 */
2036
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2037 2038 2039 2040
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2041
		if (!regdom_changes(rd->alpha2))
2042 2043 2044
			return -EINVAL;
	}

2045 2046
	/*
	 * Now lets set the regulatory domain, update all driver channels
2047 2048
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2049 2050
	 * internal EEPROM data
	 */
2051

2052
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2053 2054
		return -EINVAL;

2055 2056 2057 2058 2059
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2060 2061
	}

2062 2063
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2064
	if (!last_request->intersect) {
2065 2066
		int r;

2067
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2068 2069 2070 2071 2072
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2073 2074 2075 2076
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2077

2078 2079 2080 2081 2082 2083
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2084

2085
		r = reg_copy_regd(&request_wiphy->regd, rd);
2086 2087 2088
		if (r)
			return r;

2089 2090 2091 2092 2093 2094 2095
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2096
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2097

2098 2099 2100
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2101

2102 2103
		/*
		 * We can trash what CRDA provided now.
2104
		 * However if a driver requested this specific regulatory
2105 2106
		 * domain we keep it for its private use
		 */
2107
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2108
			request_wiphy->regd = rd;
2109 2110 2111
		else
			kfree(rd);

2112 2113 2114 2115 2116 2117
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2118 2119
	}

2120 2121 2122 2123 2124
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

2125 2126 2127 2128 2129 2130 2131
	/*
	 * Userspace could have sent two replies with only
	 * one kernel request. By the second reply we would have
	 * already processed and consumed the country_ie_regdomain.
	 */
	if (!country_ie_regdomain)
		return -EALREADY;
2132
	BUG_ON(rd == country_ie_regdomain);
2133

2134 2135 2136 2137
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2138

2139
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2140

2141 2142 2143
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2144

2145 2146
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2147 2148 2149 2150

	if (!intersected_rd)
		return -EINVAL;

2151
	rdev = wiphy_to_dev(request_wiphy);
2152

2153 2154 2155
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2156 2157 2158 2159 2160 2161

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2162
	reset_regdomains();
2163
	cfg80211_regdomain = intersected_rd;
2164 2165 2166 2167 2168

	return 0;
}


2169 2170
/*
 * Use this call to set the current regulatory domain. Conflicts with
2171
 * multiple drivers can be ironed out later. Caller must've already
2172 2173
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2174
int set_regdom(const struct ieee80211_regdomain *rd)
2175 2176 2177
{
	int r;

2178 2179
	assert_cfg80211_lock();

2180 2181
	mutex_lock(&reg_mutex);

2182 2183
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2184 2185
	if (r) {
		kfree(rd);
2186
		mutex_unlock(&reg_mutex);
2187
		return r;
2188
	}
2189 2190

	/* This would make this whole thing pointless */
2191 2192
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2193 2194

	/* update all wiphys now with the new established regulatory domain */
2195
	update_all_wiphy_regulatory(last_request->initiator);
2196

2197
	print_regdomain(cfg80211_regdomain);
2198

2199 2200
	nl80211_send_reg_change_event(last_request);

2201 2202
	mutex_unlock(&reg_mutex);

2203 2204 2205
	return r;
}

2206
/* Caller must hold cfg80211_mutex */
2207 2208
void reg_device_remove(struct wiphy *wiphy)
{
2209
	struct wiphy *request_wiphy = NULL;
2210

2211 2212
	assert_cfg80211_lock();

2213 2214
	mutex_lock(&reg_mutex);

2215 2216
	kfree(wiphy->regd);

2217 2218
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2219

2220
	if (!request_wiphy || request_wiphy != wiphy)
2221
		goto out;
2222

2223
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2224
	last_request->country_ie_env = ENVIRON_ANY;
2225 2226
out:
	mutex_unlock(&reg_mutex);
2227 2228
}

2229 2230
int regulatory_init(void)
{
2231
	int err = 0;
2232

2233 2234 2235
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2236

2237
	spin_lock_init(&reg_requests_lock);
2238
	spin_lock_init(&reg_pending_beacons_lock);
2239

2240
	cfg80211_regdomain = cfg80211_world_regdom;
2241

2242 2243
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2244
	if (err) {
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2259
#endif
2260
	}
2261

2262 2263 2264 2265 2266 2267 2268
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2269 2270 2271 2272 2273
	return 0;
}

void regulatory_exit(void)
{
2274
	struct regulatory_request *reg_request, *tmp;
2275
	struct reg_beacon *reg_beacon, *btmp;
2276 2277 2278

	cancel_work_sync(&reg_work);

2279
	mutex_lock(&cfg80211_mutex);
2280
	mutex_lock(&reg_mutex);
2281

2282
	reset_regdomains();
2283

2284 2285 2286
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2287 2288
	kfree(last_request);

2289
	platform_device_unregister(reg_pdev);
2290

2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2319
	mutex_unlock(&reg_mutex);
2320
	mutex_unlock(&cfg80211_mutex);
2321
}