reg.c 56.9 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34
 */
35 36 37

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

38
#include <linux/kernel.h>
39
#include <linux/slab.h>
40 41
#include <linux/list.h>
#include <linux/random.h>
42
#include <linux/ctype.h>
43 44 45
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
46
#include "core.h"
47
#include "reg.h"
48
#include "regdb.h"
49
#include "nl80211.h"
50

51
#ifdef CONFIG_CFG80211_REG_DEBUG
52
#define REG_DBG_PRINT(format, args...) \
53
	do { \
54
		printk(KERN_DEBUG pr_fmt(format), ##args);	\
55 56
	} while (0)
#else
57
#define REG_DBG_PRINT(args...)
58 59
#endif

60
/* Receipt of information from last regulatory request */
61
static struct regulatory_request *last_request;
62

63 64
/* To trigger userspace events */
static struct platform_device *reg_pdev;
65

66 67 68 69
static struct device_type reg_device_type = {
	.uevent = reg_device_uevent,
};

70 71
/*
 * Central wireless core regulatory domains, we only need two,
72
 * the current one and a world regulatory domain in case we have no
73 74
 * information to give us an alpha2
 */
75
const struct ieee80211_regdomain *cfg80211_regdomain;
76

77 78 79 80 81 82
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - last_request
 */
83
static DEFINE_MUTEX(reg_mutex);
84 85 86 87 88

static inline void assert_reg_lock(void)
{
	lockdep_assert_held(&reg_mutex);
}
89

90
/* Used to queue up regulatory hints */
91 92 93
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

94 95 96 97 98 99 100 101 102 103 104 105
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

106 107 108
static void reg_todo(struct work_struct *work);
static DECLARE_WORK(reg_work, reg_todo);

109 110
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
111
	.n_reg_rules = 5,
112 113
	.alpha2 =  "00",
	.reg_rules = {
114 115
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
116 117 118
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
119 120
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
121 122 123 124 125 126 127
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
128
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
129 130
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
131 132 133 134

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
135
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
136 137
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
138 139 140
	}
};

141 142
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
143

144
static char *ieee80211_regdom = "00";
145
static char user_alpha2[2];
146

147 148 149 150 151
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
152 153 154 155 156 157 158 159 160 161
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
162

163
	cfg80211_world_regdom = &world_regdom;
164 165 166
	cfg80211_regdomain = NULL;
}

167 168 169 170
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
171
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
172
{
173
	BUG_ON(!last_request);
174 175 176 177 178 179 180

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

181
bool is_world_regdom(const char *alpha2)
182 183 184 185 186 187 188
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
189

190
static bool is_alpha2_set(const char *alpha2)
191 192 193 194 195 196 197
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
198

199
static bool is_unknown_alpha2(const char *alpha2)
200 201 202
{
	if (!alpha2)
		return false;
203 204 205 206
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
207 208 209 210
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
211

212 213 214 215
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
216 217
	/*
	 * Special case where regulatory domain is the
218
	 * result of an intersection between two regulatory domain
219 220
	 * structures
	 */
221 222 223 224 225
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

226
static bool is_an_alpha2(const char *alpha2)
227 228 229
{
	if (!alpha2)
		return false;
230
	if (isalpha(alpha2[0]) && isalpha(alpha2[1]))
231 232 233
		return true;
	return false;
}
234

235
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
236 237 238 239 240 241 242 243 244
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

245
static bool regdom_changes(const char *alpha2)
246
{
247 248
	assert_cfg80211_lock();

249 250 251 252 253 254 255
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
308
static DEFINE_MUTEX(reg_regdb_search_mutex);
309 310 311 312 313 314 315

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

316
	mutex_lock(&reg_regdb_search_mutex);
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
339
	mutex_unlock(&reg_regdb_search_mutex);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

357
	mutex_lock(&reg_regdb_search_mutex);
358
	list_add_tail(&request->list, &reg_regdb_search_list);
359
	mutex_unlock(&reg_regdb_search_mutex);
360 361 362 363 364 365 366

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

367 368
/*
 * This lets us keep regulatory code which is updated on a regulatory
369 370
 * basis in userspace. Country information is filled in by
 * reg_device_uevent
371
 */
372 373 374
static int call_crda(const char *alpha2)
{
	if (!is_world_regdom((char *) alpha2))
375
		pr_info("Calling CRDA for country: %c%c\n",
376 377
			alpha2[0], alpha2[1]);
	else
378
		pr_info("Calling CRDA to update world regulatory domain\n");
379

380 381 382
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

383
	return kobject_uevent(&reg_pdev->dev.kobj, KOBJ_CHANGE);
384 385 386
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
387
bool reg_is_valid_request(const char *alpha2)
388
{
389 390
	assert_cfg80211_lock();

391 392 393 394
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
395
}
396

397
/* Sanity check on a regulatory rule */
398
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
399
{
400
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
401 402
	u32 freq_diff;

403
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
404 405 406 407 408 409 410
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

411 412
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
413 414 415 416 417
		return false;

	return true;
}

418
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
419
{
420
	const struct ieee80211_reg_rule *reg_rule = NULL;
421
	unsigned int i;
422

423 424
	if (!rd->n_reg_rules)
		return false;
425

426 427 428
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

429 430 431 432 433 434 435
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
436 437
}

438 439 440
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
441
{
442 443 444 445 446 447 448 449 450 451
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
452
}
453

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

479 480 481 482
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

560 561
	/*
	 * First we get a count of the rules we'll need, then we actually
562 563 564
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
565 566
	 * All rules that do check out OK are valid.
	 */
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
594 595
			/*
			 * This time around instead of using the stack lets
596
			 * write to the target rule directly saving ourselves
597 598
			 * a memcpy()
			 */
599 600 601
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
602 603 604 605
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

624 625 626 627
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
628 629 630 631 632 633 634 635 636 637 638 639
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

640 641
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
642
			      u32 desired_bw_khz,
643 644
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
645 646
{
	int i;
647
	bool band_rule_found = false;
648
	const struct ieee80211_regdomain *regd;
649 650 651 652
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
653

654
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
655

656 657 658 659
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
660 661
	if (!custom_regd &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
662
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
663 664 665 666
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
667 668
		return -EINVAL;

669
	for (i = 0; i < regd->n_reg_rules; i++) {
670 671 672 673
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

674
		rr = &regd->reg_rules[i];
675 676
		fr = &rr->freq_range;
		pr = &rr->power_rule;
677

678 679
		/*
		 * We only need to know if one frequency rule was
680
		 * was in center_freq's band, that's enough, so lets
681 682
		 * not overwrite it once found
		 */
683 684 685
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

686 687 688
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
689

690
		if (band_rule_found && bw_fits) {
691
			*reg_rule = rr;
692
			return 0;
693 694 695
		}
	}

696 697 698
	if (!band_rule_found)
		return -ERANGE;

699
	return -EINVAL;
700 701
}

702 703 704 705
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
706
{
707
	assert_cfg80211_lock();
708 709 710 711 712
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
713
}
714
EXPORT_SYMBOL(freq_reg_info);
715

716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
#ifdef CONFIG_CFG80211_REG_DEBUG
static const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
{
	switch (initiator) {
	case NL80211_REGDOM_SET_BY_CORE:
		return "Set by core";
	case NL80211_REGDOM_SET_BY_USER:
		return "Set by user";
	case NL80211_REGDOM_SET_BY_DRIVER:
		return "Set by driver";
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
		return "Set by country IE";
	default:
		WARN_ON(1);
		return "Set by bug";
	}
}
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	const struct ieee80211_power_rule *power_rule;
	const struct ieee80211_freq_range *freq_range;
	char max_antenna_gain[32];

	power_rule = &reg_rule->power_rule;
	freq_range = &reg_rule->freq_range;

	if (!power_rule->max_antenna_gain)
		snprintf(max_antenna_gain, 32, "N/A");
	else
		snprintf(max_antenna_gain, 32, "%d", power_rule->max_antenna_gain);

750
	REG_DBG_PRINT("Updating information on frequency %d MHz "
751
		      "for a %d MHz width channel with regulatory rule:\n",
752 753 754
		      chan->center_freq,
		      KHZ_TO_MHZ(desired_bw_khz));

755
	REG_DBG_PRINT("%d KHz - %d KHz @  KHz), (%s mBi, %d mBm)\n",
756 757 758 759 760 761 762 763 764 765 766 767
		      freq_range->start_freq_khz,
		      freq_range->end_freq_khz,
		      max_antenna_gain,
		      power_rule->max_eirp);
}
#else
static void chan_reg_rule_print_dbg(struct ieee80211_channel *chan,
				    u32 desired_bw_khz,
				    const struct ieee80211_reg_rule *reg_rule)
{
	return;
}
768 769
#endif

770 771 772 773 774 775 776 777 778
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
779 780 781
static void handle_channel(struct wiphy *wiphy,
			   enum nl80211_reg_initiator initiator,
			   enum ieee80211_band band,
782
			   unsigned int chan_idx)
783 784
{
	int r;
785 786
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
787 788
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
789
	const struct ieee80211_freq_range *freq_range = NULL;
790 791
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
792
	struct wiphy *request_wiphy = NULL;
793

794 795
	assert_cfg80211_lock();

796 797
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

798 799 800 801 802
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
803

804 805 806 807
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
808

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
	if (r) {
		/*
		 * We will disable all channels that do not match our
		 * recieved regulatory rule unless the hint is coming
		 * from a Country IE and the Country IE had no information
		 * about a band. The IEEE 802.11 spec allows for an AP
		 * to send only a subset of the regulatory rules allowed,
		 * so an AP in the US that only supports 2.4 GHz may only send
		 * a country IE with information for the 2.4 GHz band
		 * while 5 GHz is still supported.
		 */
		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
		    r == -ERANGE)
			return;

824
		REG_DBG_PRINT("Disabling freq %d MHz\n", chan->center_freq);
825
		chan->flags = IEEE80211_CHAN_DISABLED;
826
		return;
827
	}
828

829 830
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

831
	power_rule = &reg_rule->power_rule;
832 833 834 835
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
836

837
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
838
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
839
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
840 841
		/*
		 * This gaurantees the driver's requested regulatory domain
842
		 * will always be used as a base for further regulatory
843 844
		 * settings
		 */
845
		chan->flags = chan->orig_flags =
846
			map_regdom_flags(reg_rule->flags) | bw_flags;
847 848 849 850 851 852 853
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

854
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
855
	chan->max_antenna_gain = min(chan->orig_mag,
856
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
857
	if (chan->orig_mpwr)
858 859
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
860
	else
861
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
862 863
}

864 865 866
static void handle_band(struct wiphy *wiphy,
			enum ieee80211_band band,
			enum nl80211_reg_initiator initiator)
867
{
868 869 870 871 872
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
873 874

	for (i = 0; i < sband->n_channels; i++)
875
		handle_channel(wiphy, initiator, band, i);
876 877
}

878 879
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
880
{
881
	if (!last_request) {
882
		REG_DBG_PRINT("Ignoring regulatory request %s since "
883 884
			      "last_request is not set\n",
			      reg_initiator_name(initiator));
885
		return true;
886 887
	}

888
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
889
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY) {
890
		REG_DBG_PRINT("Ignoring regulatory request %s "
891 892 893
			      "since the driver uses its own custom "
			      "regulatory domain ",
			      reg_initiator_name(initiator));
894
		return true;
895 896
	}

897 898 899 900
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
901
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
902
	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
903
	    !is_world_regdom(last_request->alpha2)) {
904
		REG_DBG_PRINT("Ignoring regulatory request %s "
905 906 907
			      "since the driver requires its own regulaotry "
			      "domain to be set first",
			      reg_initiator_name(initiator));
908
		return true;
909 910
	}

911 912 913
	return false;
}

914
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
915
{
916
	struct cfg80211_registered_device *rdev;
917

918 919
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
920 921
}

922 923 924 925 926 927
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
928 929
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
930 931 932 933 934 935 936 937 938

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

939 940 941 942 943
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
944
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
945 946
		return;

947 948 949
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

950
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
951
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
952
		channel_changed = true;
953 954
	}

955
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
956
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
957
		channel_changed = true;
958 959
	}

960 961
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1013 1014
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1015
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1016 1017 1018 1019 1020 1021 1022
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1023 1024 1025 1026 1027 1028
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1029 1030 1031 1032 1033
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1084
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1085
	else
1086
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1087 1088

	if (is_ht40_not_allowed(channel_after))
1089
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1090
	else
1091
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1121 1122
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1123 1124
{
	enum ieee80211_band band;
1125

1126
	if (ignore_reg_update(wiphy, initiator))
1127
		goto out;
1128
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1129
		if (wiphy->bands[band])
1130
			handle_band(wiphy, band, initiator);
1131
	}
1132 1133
out:
	reg_process_beacons(wiphy);
1134
	reg_process_ht_flags(wiphy);
1135
	if (wiphy->reg_notifier)
1136
		wiphy->reg_notifier(wiphy, last_request);
1137 1138
}

1139 1140 1141 1142 1143 1144
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1145 1146
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1147 1148
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1149
	const struct ieee80211_freq_range *freq_range = NULL;
1150 1151 1152
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1153
	assert_reg_lock();
1154

1155 1156 1157 1158
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1159 1160 1161 1162 1163
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1164 1165

	if (r) {
1166
		REG_DBG_PRINT("Disabling freq %d MHz as custom "
1167 1168 1169 1170
			      "regd has no rule that fits a %d MHz "
			      "wide channel\n",
			      chan->center_freq,
			      KHZ_TO_MHZ(desired_bw_khz));
1171 1172 1173 1174
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

1175 1176
	chan_reg_rule_print_dbg(chan, desired_bw_khz, reg_rule);

1177
	power_rule = &reg_rule->power_rule;
1178 1179 1180 1181
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1182

1183
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1206
	unsigned int bands_set = 0;
1207

1208
	mutex_lock(&reg_mutex);
1209
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1210 1211 1212 1213
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1214
	}
1215
	mutex_unlock(&reg_mutex);
1216 1217 1218 1219 1220 1221

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1222
}
1223 1224
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1225 1226 1227 1228
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1229 1230
#define REG_INTERSECT	1

1231 1232
/* This has the logic which determines when a new request
 * should be ignored. */
1233 1234
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1235
{
1236
	struct wiphy *last_wiphy = NULL;
1237 1238 1239

	assert_cfg80211_lock();

1240 1241 1242 1243
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1244
	switch (pending_request->initiator) {
1245
	case NL80211_REGDOM_SET_BY_CORE:
1246
		return 0;
1247
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1248 1249 1250

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1251
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1252
			return -EINVAL;
1253 1254
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1255
			if (last_wiphy != wiphy) {
1256 1257
				/*
				 * Two cards with two APs claiming different
1258
				 * Country IE alpha2s. We could
1259 1260 1261
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1262
				if (regdom_changes(pending_request->alpha2))
1263 1264 1265
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1266 1267 1268 1269
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1270
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1271 1272 1273
				return 0;
			return -EALREADY;
		}
1274
		return 0;
1275 1276
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1277
			if (regdom_changes(pending_request->alpha2))
1278
				return 0;
1279
			return -EALREADY;
1280
		}
1281 1282 1283 1284 1285 1286

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1287
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1288
		    !regdom_changes(pending_request->alpha2))
1289 1290
			return -EALREADY;

1291
		return REG_INTERSECT;
1292 1293
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1294
			return REG_INTERSECT;
1295 1296 1297 1298
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1299
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1300 1301
			  last_request->intersect)
			return -EOPNOTSUPP;
1302 1303 1304 1305
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1306 1307 1308
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1309
			if (regdom_changes(last_request->alpha2))
1310 1311 1312
				return -EAGAIN;
		}

1313
		if (!regdom_changes(pending_request->alpha2))
1314 1315
			return -EALREADY;

1316 1317 1318 1319 1320 1321
		return 0;
	}

	return -EINVAL;
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static void reg_set_request_processed(void)
{
	bool need_more_processing = false;

	last_request->processed = true;

	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list))
		need_more_processing = true;
	spin_unlock(&reg_requests_lock);

	if (need_more_processing)
		schedule_work(&reg_work);
}

1337 1338 1339 1340
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1341
 * @pending_request: the regulatory request currently being processed
1342 1343
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1344
 * what it believes should be the current regulatory domain.
1345 1346 1347 1348
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1349
 * Caller must hold &cfg80211_mutex and &reg_mutex
1350
 */
1351 1352
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1353
{
1354
	bool intersect = false;
1355 1356
	int r = 0;

1357 1358
	assert_cfg80211_lock();

1359
	r = ignore_request(wiphy, pending_request);
1360

1361
	if (r == REG_INTERSECT) {
1362 1363
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1364
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1365 1366
			if (r) {
				kfree(pending_request);
1367
				return r;
1368
			}
1369
		}
1370
		intersect = true;
1371
	} else if (r) {
1372 1373
		/*
		 * If the regulatory domain being requested by the
1374
		 * driver has already been set just copy it to the
1375 1376
		 * wiphy
		 */
1377
		if (r == -EALREADY &&
1378 1379
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1380
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1381 1382
			if (r) {
				kfree(pending_request);
1383
				return r;
1384
			}
1385 1386 1387
			r = -EALREADY;
			goto new_request;
		}
1388
		kfree(pending_request);
1389
		return r;
1390
	}
1391

1392
new_request:
1393
	kfree(last_request);
1394

1395 1396
	last_request = pending_request;
	last_request->intersect = intersect;
1397

1398
	pending_request = NULL;
1399

1400 1401 1402 1403 1404
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1405
	/* When r == REG_INTERSECT we do need to call CRDA */
1406 1407 1408 1409 1410 1411
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
1412
		if (r == -EALREADY) {
1413
			nl80211_send_reg_change_event(last_request);
1414 1415
			reg_set_request_processed();
		}
1416
		return r;
1417
	}
1418

1419
	return call_crda(last_request->alpha2);
1420 1421
}

1422
/* This processes *all* regulatory hints */
1423
static void reg_process_hint(struct regulatory_request *reg_request)
1424 1425 1426
{
	int r = 0;
	struct wiphy *wiphy = NULL;
1427
	enum nl80211_reg_initiator initiator = reg_request->initiator;
1428 1429 1430 1431 1432 1433

	BUG_ON(!reg_request->alpha2);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1434
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1435
	    !wiphy) {
1436
		kfree(reg_request);
1437
		return;
1438 1439
	}

1440
	r = __regulatory_hint(wiphy, reg_request);
1441
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1442 1443
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1444
		wiphy_update_regulatory(wiphy, initiator);
1445 1446
}

1447 1448 1449 1450 1451
/*
 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
 * Regulatory hints come on a first come first serve basis and we
 * must process each one atomically.
 */
1452
static void reg_process_pending_hints(void)
1453
{
1454 1455
	struct regulatory_request *reg_request;

1456 1457 1458
	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

1459 1460 1461 1462 1463 1464 1465
	/* When last_request->processed becomes true this will be rescheduled */
	if (last_request && !last_request->processed) {
		REG_DBG_PRINT("Pending regulatory request, waiting "
			      "for it to be processed...");
		goto out;
	}

1466 1467
	spin_lock(&reg_requests_lock);

1468
	if (list_empty(&reg_requests_list)) {
1469
		spin_unlock(&reg_requests_lock);
1470
		goto out;
1471
	}
1472 1473 1474 1475 1476 1477

	reg_request = list_first_entry(&reg_requests_list,
				       struct regulatory_request,
				       list);
	list_del_init(&reg_request->list);

1478
	spin_unlock(&reg_requests_lock);
1479

1480 1481 1482
	reg_process_hint(reg_request);

out:
1483 1484
	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);
1485 1486
}

1487 1488 1489
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1490
	struct cfg80211_registered_device *rdev;
1491 1492
	struct reg_beacon *pending_beacon, *tmp;

1493 1494 1495 1496
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1513 1514
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1525 1526 1527
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1528
	reg_process_pending_beacon_hints();
1529 1530 1531 1532
}

static void queue_regulatory_request(struct regulatory_request *request)
{
1533 1534 1535 1536 1537
	if (isalpha(request->alpha2[0]))
		request->alpha2[0] = toupper(request->alpha2[0]);
	if (isalpha(request->alpha2[1]))
		request->alpha2[1] = toupper(request->alpha2[1]);

1538 1539 1540 1541 1542 1543 1544
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1545 1546 1547 1548
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1549 1550 1551 1552
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1553 1554
	kfree(last_request);
	last_request = NULL;
1555 1556 1557 1558 1559 1560 1561 1562

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1563
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1564

1565
	queue_regulatory_request(request);
1566

1567
	return 0;
1568 1569
}

1570 1571
/* User hints */
int regulatory_hint_user(const char *alpha2)
1572
{
1573 1574
	struct regulatory_request *request;

1575
	BUG_ON(!alpha2);
1576

1577 1578 1579 1580 1581 1582 1583
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1584
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1610
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1611 1612 1613 1614

	queue_regulatory_request(request);

	return 0;
1615 1616 1617
}
EXPORT_SYMBOL(regulatory_hint);

1618 1619 1620 1621
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
1622
void regulatory_hint_11d(struct wiphy *wiphy,
1623 1624 1625
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
1626 1627 1628
{
	char alpha2[2];
	enum environment_cap env = ENVIRON_ANY;
1629
	struct regulatory_request *request;
1630

1631
	mutex_lock(&reg_mutex);
1632

1633 1634
	if (unlikely(!last_request))
		goto out;
1635

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1651
	/*
1652
	 * We will run this only upon a successful connection on cfg80211.
1653 1654
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
1655
	 */
1656 1657
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1658 1659
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
1660

1661 1662
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
1663
		goto out;
1664 1665

	request->wiphy_idx = get_wiphy_idx(wiphy);
1666 1667
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1668
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1669 1670
	request->country_ie_env = env;

1671
	mutex_unlock(&reg_mutex);
1672

1673 1674 1675
	queue_regulatory_request(request);

	return;
1676

1677
out:
1678
	mutex_unlock(&reg_mutex);
1679
}
1680

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
1691
			REG_DBG_PRINT("Restoring regulatory settings "
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
1702
				REG_DBG_PRINT("Keeping preference on "
1703 1704 1705 1706 1707 1708 1709
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
1710
			REG_DBG_PRINT("Restoring regulatory settings "
1711 1712 1713 1714 1715 1716 1717
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
1718
		REG_DBG_PRINT("Keeping preference on "
1719 1720 1721 1722 1723 1724
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
1725
		REG_DBG_PRINT("Restoring regulatory settings\n");
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);
}


void regulatory_hint_disconnect(void)
{
1793
	REG_DBG_PRINT("All devices are disconnected, going to "
1794 1795 1796 1797
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

1798 1799
static bool freq_is_chan_12_13_14(u16 freq)
{
1800 1801 1802
	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

1823
	REG_DBG_PRINT("Found new beacon on "
1824 1825 1826 1827 1828
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1846
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1847 1848
{
	unsigned int i;
1849 1850 1851
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1852

1853
	pr_info("    (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1854 1855 1856 1857 1858 1859

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1860 1861 1862 1863
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1864
		if (power_rule->max_antenna_gain)
1865
			pr_info("    (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1866 1867 1868 1869 1870 1871
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
1872
			pr_info("    (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1873 1874 1875 1876 1877 1878 1879
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1880
static void print_regdomain(const struct ieee80211_regdomain *rd)
1881 1882
{

1883 1884
	if (is_intersected_alpha2(rd->alpha2)) {

1885 1886
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1887 1888
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1889
				last_request->wiphy_idx);
1890
			if (rdev) {
1891
				pr_info("Current regulatory domain updated by AP to: %c%c\n",
1892 1893
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
1894
			} else
1895
				pr_info("Current regulatory domain intersected:\n");
1896
		} else
1897
			pr_info("Current regulatory domain intersected:\n");
1898
	} else if (is_world_regdom(rd->alpha2))
1899
		pr_info("World regulatory domain updated:\n");
1900 1901
	else {
		if (is_unknown_alpha2(rd->alpha2))
1902
			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1903
		else
1904
			pr_info("Regulatory domain changed to country: %c%c\n",
1905 1906 1907 1908 1909
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1910
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1911
{
1912
	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
1913 1914 1915
	print_rd_rules(rd);
}

1916
/* Takes ownership of rd only if it doesn't fail */
1917
static int __set_regdom(const struct ieee80211_regdomain *rd)
1918
{
1919
	const struct ieee80211_regdomain *intersected_rd = NULL;
1920
	struct cfg80211_registered_device *rdev = NULL;
1921
	struct wiphy *request_wiphy;
1922 1923 1924
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1925
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1926 1927 1928 1929 1930 1931 1932 1933 1934
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1935
	if (!last_request)
1936 1937
		return -EINVAL;

1938 1939
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1940
	 * rd is non static (it means CRDA was present and was used last)
1941 1942
	 * and the pending request came in from a country IE
	 */
1943
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1944 1945 1946 1947
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1948
		if (!regdom_changes(rd->alpha2))
1949 1950 1951
			return -EINVAL;
	}

1952 1953
	/*
	 * Now lets set the regulatory domain, update all driver channels
1954 1955
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1956 1957
	 * internal EEPROM data
	 */
1958

1959
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1960 1961
		return -EINVAL;

1962
	if (!is_valid_rd(rd)) {
1963
		pr_err("Invalid regulatory domain detected:\n");
1964 1965
		print_regdomain_info(rd);
		return -EINVAL;
1966 1967
	}

1968 1969
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1970
	if (!last_request->intersect) {
1971 1972
		int r;

1973
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
1974 1975 1976 1977 1978
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1979 1980 1981 1982
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1983

1984 1985 1986 1987 1988 1989
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
1990

1991
		r = reg_copy_regd(&request_wiphy->regd, rd);
1992 1993 1994
		if (r)
			return r;

1995 1996 1997 1998 1999 2000 2001
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2002
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2003

2004 2005 2006
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2007

2008 2009
		/*
		 * We can trash what CRDA provided now.
2010
		 * However if a driver requested this specific regulatory
2011 2012
		 * domain we keep it for its private use
		 */
2013
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2014
			request_wiphy->regd = rd;
2015 2016 2017
		else
			kfree(rd);

2018 2019 2020 2021 2022 2023
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2024 2025
	}

2026 2027 2028
	if (!intersected_rd)
		return -EINVAL;

2029
	rdev = wiphy_to_dev(request_wiphy);
2030

2031 2032 2033
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2034 2035 2036 2037 2038 2039

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2040
	reset_regdomains();
2041
	cfg80211_regdomain = intersected_rd;
2042 2043 2044 2045 2046

	return 0;
}


2047 2048
/*
 * Use this call to set the current regulatory domain. Conflicts with
2049
 * multiple drivers can be ironed out later. Caller must've already
2050 2051
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2052
int set_regdom(const struct ieee80211_regdomain *rd)
2053 2054 2055
{
	int r;

2056 2057
	assert_cfg80211_lock();

2058 2059
	mutex_lock(&reg_mutex);

2060 2061
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2062 2063
	if (r) {
		kfree(rd);
2064
		mutex_unlock(&reg_mutex);
2065
		return r;
2066
	}
2067 2068

	/* This would make this whole thing pointless */
2069 2070
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2071 2072

	/* update all wiphys now with the new established regulatory domain */
2073
	update_all_wiphy_regulatory(last_request->initiator);
2074

2075
	print_regdomain(cfg80211_regdomain);
2076

2077 2078
	nl80211_send_reg_change_event(last_request);

2079 2080
	reg_set_request_processed();

2081 2082
	mutex_unlock(&reg_mutex);

2083 2084 2085
	return r;
}

2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
#ifdef CONFIG_HOTPLUG
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	if (last_request && !last_request->processed) {
		if (add_uevent_var(env, "COUNTRY=%c%c",
				   last_request->alpha2[0],
				   last_request->alpha2[1]))
			return -ENOMEM;
	}

	return 0;
}
#else
int reg_device_uevent(struct device *dev, struct kobj_uevent_env *env)
{
	return -ENODEV;
}
#endif /* CONFIG_HOTPLUG */

2105
/* Caller must hold cfg80211_mutex */
2106 2107
void reg_device_remove(struct wiphy *wiphy)
{
2108
	struct wiphy *request_wiphy = NULL;
2109

2110 2111
	assert_cfg80211_lock();

2112 2113
	mutex_lock(&reg_mutex);

2114 2115
	kfree(wiphy->regd);

2116 2117
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2118

2119
	if (!request_wiphy || request_wiphy != wiphy)
2120
		goto out;
2121

2122
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2123
	last_request->country_ie_env = ENVIRON_ANY;
2124 2125
out:
	mutex_unlock(&reg_mutex);
2126 2127
}

2128
int __init regulatory_init(void)
2129
{
2130
	int err = 0;
2131

2132 2133 2134
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2135

2136 2137
	reg_pdev->dev.type = &reg_device_type;

2138
	spin_lock_init(&reg_requests_lock);
2139
	spin_lock_init(&reg_pending_beacons_lock);
2140

2141
	cfg80211_regdomain = cfg80211_world_regdom;
2142

2143 2144 2145
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2146 2147
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2148
	if (err) {
2149 2150 2151 2152 2153 2154 2155 2156 2157
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
2158
		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2159 2160 2161
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2162
#endif
2163
	}
2164

2165 2166 2167 2168 2169 2170 2171
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2172 2173 2174
	return 0;
}

2175
void /* __init_or_exit */ regulatory_exit(void)
2176
{
2177
	struct regulatory_request *reg_request, *tmp;
2178
	struct reg_beacon *reg_beacon, *btmp;
2179 2180 2181

	cancel_work_sync(&reg_work);

2182
	mutex_lock(&cfg80211_mutex);
2183
	mutex_lock(&reg_mutex);
2184

2185
	reset_regdomains();
2186

2187 2188
	kfree(last_request);

2189
	platform_device_unregister(reg_pdev);
2190

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2219
	mutex_unlock(&reg_mutex);
2220
	mutex_unlock(&cfg80211_mutex);
2221
}