reg.c 69.6 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36
#include <linux/slab.h>
37 38 39 40 41
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
42
#include "core.h"
43
#include "reg.h"
44
#include "regdb.h"
45
#include "nl80211.h"
46

47
#ifdef CONFIG_CFG80211_REG_DEBUG
48
#define REG_DBG_PRINT(format, args...) \
49
	do { \
50
		printk(KERN_DEBUG format , ## args); \
51 52
	} while (0)
#else
53
#define REG_DBG_PRINT(args...)
54 55
#endif

56
/* Receipt of information from last regulatory request */
57
static struct regulatory_request *last_request;
58

59 60
/* To trigger userspace events */
static struct platform_device *reg_pdev;
61

62 63
/*
 * Central wireless core regulatory domains, we only need two,
64
 * the current one and a world regulatory domain in case we have no
65 66
 * information to give us an alpha2
 */
67
const struct ieee80211_regdomain *cfg80211_regdomain;
68

69 70
/*
 * We use this as a place for the rd structure built from the
71
 * last parsed country IE to rest until CRDA gets back to us with
72 73
 * what it thinks should apply for the same country
 */
74 75
static const struct ieee80211_regdomain *country_ie_regdomain;

76 77 78 79 80 81 82 83 84 85
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - country_ie_regdomain
 *     - last_request
 */
DEFINE_MUTEX(reg_mutex);
#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))

86
/* Used to queue up regulatory hints */
87 88 89
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

90 91 92 93 94 95 96 97 98 99 100 101
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

102 103
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
104
	.n_reg_rules = 5,
105 106
	.alpha2 =  "00",
	.reg_rules = {
107 108
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
109 110 111
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
112 113
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
114 115 116 117 118 119 120
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
121
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
122 123
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
124 125 126 127

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
128
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
129 130
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
131 132 133
	}
};

134 135
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
136

137
static char *ieee80211_regdom = "00";
138
static char user_alpha2[2];
139

140 141 142 143 144
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
145 146 147 148 149 150 151 152 153 154
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
155

156
	cfg80211_world_regdom = &world_regdom;
157 158 159
	cfg80211_regdomain = NULL;
}

160 161 162 163
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
164
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
165
{
166
	BUG_ON(!last_request);
167 168 169 170 171 172 173

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

174
bool is_world_regdom(const char *alpha2)
175 176 177 178 179 180 181
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
182

183
static bool is_alpha2_set(const char *alpha2)
184 185 186 187 188 189 190
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
191

192 193 194 195 196 197 198
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
199

200
static bool is_unknown_alpha2(const char *alpha2)
201 202 203
{
	if (!alpha2)
		return false;
204 205 206 207
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
208 209 210 211
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
212

213 214 215 216
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
217 218
	/*
	 * Special case where regulatory domain is the
219
	 * result of an intersection between two regulatory domain
220 221
	 * structures
	 */
222 223 224 225 226
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

227
static bool is_an_alpha2(const char *alpha2)
228 229 230 231 232 233 234
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
235

236
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
237 238 239 240 241 242 243 244 245
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

246
static bool regdom_changes(const char *alpha2)
247
{
248 249
	assert_cfg80211_lock();

250 251 252 253 254 255 256
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
/*
 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
 * has ever been issued.
 */
static bool is_user_regdom_saved(void)
{
	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
		return false;

	/* This would indicate a mistake on the design */
	if (WARN((!is_world_regdom(user_alpha2) &&
		  !is_an_alpha2(user_alpha2)),
		 "Unexpected user alpha2: %c%c\n",
		 user_alpha2[0],
	         user_alpha2[1]))
		return false;

	return true;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
328
static DEFINE_MUTEX(reg_regdb_search_mutex);
329 330 331 332 333 334 335

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

336
	mutex_lock(&reg_regdb_search_mutex);
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				break;
			}
		}

		kfree(request);
	}
359
	mutex_unlock(&reg_regdb_search_mutex);
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

377
	mutex_lock(&reg_regdb_search_mutex);
378
	list_add_tail(&request->list, &reg_regdb_search_list);
379
	mutex_unlock(&reg_regdb_search_mutex);
380 381 382 383 384 385 386

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

387 388 389 390
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

406 407 408
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

409 410 411 412 413 414 415
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
416
bool reg_is_valid_request(const char *alpha2)
417
{
418 419
	assert_cfg80211_lock();

420 421 422 423
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
424
}
425

426
/* Sanity check on a regulatory rule */
427
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
428
{
429
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
430 431
	u32 freq_diff;

432
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
433 434 435 436 437 438 439
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

440 441
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
442 443 444 445 446
		return false;

	return true;
}

447
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
448
{
449
	const struct ieee80211_reg_rule *reg_rule = NULL;
450
	unsigned int i;
451

452 453
	if (!rd->n_reg_rules)
		return false;
454

455 456 457
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

458 459 460 461 462 463 464
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
465 466
}

467 468 469
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
470
{
471 472 473 474 475 476 477 478 479 480
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
481
}
482

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * This is a work around for sanity checking ieee80211_channel_to_frequency()'s
 * work. ieee80211_channel_to_frequency() can for example currently provide a
 * 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
 * an AP providing channel 8 on a country IE triplet when it sent this on the
 * 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
 * channel.
 *
 * This can be removed once ieee80211_channel_to_frequency() takes in a band.
 */
static bool chan_in_band(int chan, enum ieee80211_band band)
{
	int center_freq = ieee80211_channel_to_frequency(chan);

	switch (band) {
	case IEEE80211_BAND_2GHZ:
		if (center_freq <= 2484)
			return true;
		return false;
	case IEEE80211_BAND_5GHZ:
		if (center_freq >= 5005)
			return true;
		return false;
	default:
		return false;
	}
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
/*
 * Some APs may send a country IE triplet for each channel they
 * support and while this is completely overkill and silly we still
 * need to support it. We avoid making a single rule for each channel
 * though and to help us with this we use this helper to find the
 * actual subband end channel. These type of country IE triplet
 * scenerios are handled then, all yielding two regulaotry rules from
 * parsing a country IE:
 *
 * [1]
 * [2]
 * [36]
 * [40]
 *
 * [1]
 * [2-4]
 * [5-12]
 * [36]
 * [40-44]
 *
 * [1-4]
 * [5-7]
 * [36-44]
 * [48-64]
 *
 * [36-36]
 * [40-40]
 * [44-44]
 * [48-48]
 * [52-52]
 * [56-56]
 * [60-60]
 * [64-64]
 * [100-100]
 * [104-104]
 * [108-108]
 * [112-112]
 * [116-116]
 * [120-120]
 * [124-124]
 * [128-128]
 * [132-132]
 * [136-136]
 * [140-140]
 *
 * Returns 0 if the IE has been found to be invalid in the middle
 * somewhere.
 */
584 585
static int max_subband_chan(enum ieee80211_band band,
			    int orig_cur_chan,
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
			    int orig_end_channel,
			    s8 orig_max_power,
			    u8 **country_ie,
			    u8 *country_ie_len)
{
	u8 *triplets_start = *country_ie;
	u8 len_at_triplet = *country_ie_len;
	int end_subband_chan = orig_end_channel;

	/*
	 * We'll deal with padding for the caller unless
	 * its not immediate and we don't process any channels
	 */
	if (*country_ie_len == 1) {
		*country_ie += 1;
		*country_ie_len -= 1;
		return orig_end_channel;
	}

	/* Move to the next triplet and then start search */
	*country_ie += 3;
	*country_ie_len -= 3;

609 610
	if (!chan_in_band(orig_cur_chan, band))
		return 0;
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633

	while (*country_ie_len >= 3) {
		int end_channel = 0;
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) *country_ie;
		int cur_channel = 0, next_expected_chan;

		/* means last triplet is completely unrelated to this one */
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		if (triplet->chans.first_channel == 0) {
			*country_ie += 1;
			*country_ie_len -= 1;
			if (*country_ie_len != 0)
				return 0;
			break;
		}

634 635 636
		if (triplet->chans.num_channels == 0)
			return 0;

637 638 639 640
		/* Monitonically increasing channel order */
		if (triplet->chans.first_channel <= end_subband_chan)
			return 0;

641 642 643
		if (!chan_in_band(triplet->chans.first_channel, band))
			return 0;

644 645 646 647 648 649 650 651 652 653
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14) {
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels - 1;
		}
		else {
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));
		}

654 655
		if (!chan_in_band(end_channel, band))
			return 0;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

		if (orig_max_power != triplet->chans.max_power) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		cur_channel = triplet->chans.first_channel;

		/* The key is finding the right next expected channel */
		if (band == IEEE80211_BAND_2GHZ)
			next_expected_chan = end_subband_chan + 1;
		 else
			next_expected_chan = end_subband_chan + 4;

		if (cur_channel != next_expected_chan) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		end_subband_chan = end_channel;

		/* Move to the next one */
		*country_ie += 3;
		*country_ie_len -= 3;

		/*
		 * Padding needs to be dealt with if we processed
		 * some channels.
		 */
		if (*country_ie_len == 1) {
			*country_ie += 1;
			*country_ie_len -= 1;
			break;
		}

		/* If seen, the IE is invalid */
		if (*country_ie_len == 2)
			return 0;
	}

	if (end_subband_chan == orig_end_channel) {
		*country_ie = triplets_start;
		*country_ie_len = len_at_triplet;
		return orig_end_channel;
	}

	return end_subband_chan;
}

707 708
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
709 710
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
711 712
 * with our userspace regulatory agent to get lower bounds.
 */
713
static struct ieee80211_regdomain *country_ie_2_rd(
714
				enum ieee80211_band band,
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

758 759
	/*
	 * We need to build a reg rule for each triplet, but first we must
760
	 * calculate the number of reg rules we will need. We will need one
761 762
	 * for each channel subband
	 */
763
	while (country_ie_len >= 3) {
764
		int end_channel = 0;
765 766 767 768 769 770 771 772 773 774 775
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

776 777 778 779 780 781 782 783 784 785 786 787 788
		/*
		 * APs can add padding to make length divisible
		 * by two, required by the spec.
		 */
		if (triplet->chans.first_channel == 0) {
			country_ie++;
			country_ie_len--;
			/* This is expected to be at the very end only */
			if (country_ie_len != 0)
				return NULL;
			break;
		}

789 790 791
		if (triplet->chans.num_channels == 0)
			return NULL;

792 793 794
		if (!chan_in_band(triplet->chans.first_channel, band))
			return NULL;

795
		/* 2 GHz */
796
		if (band == IEEE80211_BAND_2GHZ)
797
			end_channel = triplet->chans.first_channel +
798
				triplet->chans.num_channels - 1;
799 800 801 802 803 804 805 806 807 808 809 810 811
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

812
		cur_channel = triplet->chans.first_channel;
813 814 815 816 817 818

		/*
		 * Enhancement for APs that send a triplet for every channel
		 * or for whatever reason sends triplets with multiple channels
		 * separated when in fact they should be together.
		 */
819 820
		end_channel = max_subband_chan(band,
					       cur_channel,
821 822 823 824 825 826 827
					       end_channel,
					       triplet->chans.max_power,
					       &country_ie,
					       &country_ie_len);
		if (!end_channel)
			return NULL;

828 829 830
		if (!chan_in_band(end_channel, band))
			return NULL;

831
		cur_sub_max_channel = end_channel;
832 833 834 835 836

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

837 838
		/*
		 * Do not allow overlapping channels. Also channels
839
		 * passed in each subband must be monotonically
840 841
		 * increasing
		 */
842 843 844 845 846 847 848
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

849 850
		/*
		 * When dot11RegulatoryClassesRequired is supported
851 852
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
853 854
		 * don't support them
		 */
855 856 857 858 859 860 861 862
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		num_rules++;

863 864 865 866 867
		if (country_ie_len >= 3) {
			country_ie += 3;
			country_ie_len -= 3;
		}

868 869 870 871
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
892
		int end_channel = 0;
893 894 895 896 897 898
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

899 900 901 902
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
903 904 905 906 907 908 909
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

910 911 912 913 914 915
		if (triplet->chans.first_channel == 0) {
			country_ie++;
			country_ie_len--;
			break;
		}

916 917 918 919 920 921
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

922
		/* 2 GHz */
923
		if (band == IEEE80211_BAND_2GHZ)
924
			end_channel = triplet->chans.first_channel +
925
				triplet->chans.num_channels -1;
926 927 928 929
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

930 931
		end_channel = max_subband_chan(band,
					       triplet->chans.first_channel,
932 933 934 935 936
					       end_channel,
					       triplet->chans.max_power,
					       &country_ie,
					       &country_ie_len);

937 938
		/*
		 * The +10 is since the regulatory domain expects
939 940
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
941 942
		 * the channels passed
		 */
943 944 945 946 947
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
948
				end_channel) + 10);
949

950 951 952 953 954
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
955 956
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
957
		power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
958 959 960

		i++;

961 962 963 964 965
		if (country_ie_len >= 3) {
			country_ie += 3;
			country_ie_len -= 3;
		}

966 967 968 969 970 971 972
		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


973 974 975 976
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

1054 1055
	/*
	 * First we get a count of the rules we'll need, then we actually
1056 1057 1058
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
1059 1060
	 * All rules that do check out OK are valid.
	 */
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
1088 1089
			/*
			 * This time around instead of using the stack lets
1090
			 * write to the target rule directly saving ourselves
1091 1092
			 * a memcpy()
			 */
1093 1094 1095
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
1096 1097 1098 1099
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

1118 1119 1120 1121
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

1134 1135
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
1136
			      u32 desired_bw_khz,
1137 1138
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
1139 1140
{
	int i;
1141
	bool band_rule_found = false;
1142
	const struct ieee80211_regdomain *regd;
1143 1144 1145 1146
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
1147

1148
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
1149

1150 1151 1152 1153
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
1154 1155
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
1156 1157 1158 1159
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
1160 1161
		return -EINVAL;

1162
	for (i = 0; i < regd->n_reg_rules; i++) {
1163 1164 1165 1166
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

1167
		rr = &regd->reg_rules[i];
1168 1169
		fr = &rr->freq_range;
		pr = &rr->power_rule;
1170

1171 1172
		/*
		 * We only need to know if one frequency rule was
1173
		 * was in center_freq's band, that's enough, so lets
1174 1175
		 * not overwrite it once found
		 */
1176 1177 1178
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

1179 1180 1181
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
1182

1183
		if (band_rule_found && bw_fits) {
1184
			*reg_rule = rr;
1185
			return 0;
1186 1187 1188
		}
	}

1189 1190 1191
	if (!band_rule_found)
		return -ERANGE;

1192
	return -EINVAL;
1193
}
1194
EXPORT_SYMBOL(freq_reg_info);
1195

1196 1197 1198 1199
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
1200
{
1201
	assert_cfg80211_lock();
1202 1203 1204 1205 1206
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
1207
}
1208

1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
1218 1219
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
1220 1221
{
	int r;
1222 1223
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1224 1225
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1226
	const struct ieee80211_freq_range *freq_range = NULL;
1227 1228
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1229
	struct wiphy *request_wiphy = NULL;
1230

1231 1232
	assert_cfg80211_lock();

1233 1234
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1235 1236 1237 1238 1239
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
1240

1241 1242 1243 1244
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
1245 1246

	if (r) {
1247 1248
		/*
		 * This means no regulatory rule was found in the country IE
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
1259 1260
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1261
			REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1262 1263
				"intact on %s - no rule found in band on "
				"Country IE\n",
1264
			chan->center_freq, wiphy_name(wiphy));
1265
		} else {
1266 1267 1268 1269
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
1270 1271
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
1272
				REG_DBG_PRINT("cfg80211: Disabling "
1273 1274 1275 1276 1277 1278
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
1279 1280 1281
		return;
	}

1282
	power_rule = &reg_rule->power_rule;
1283 1284 1285 1286
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1287

1288
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1289
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
1290
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1291 1292
		/*
		 * This gaurantees the driver's requested regulatory domain
1293
		 * will always be used as a base for further regulatory
1294 1295
		 * settings
		 */
1296
		chan->flags = chan->orig_flags =
1297
			map_regdom_flags(reg_rule->flags) | bw_flags;
1298 1299 1300 1301 1302 1303 1304
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1305
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1306
	chan->max_antenna_gain = min(chan->orig_mag,
1307
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1308
	if (chan->orig_mpwr)
1309 1310
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1311
	else
1312
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1313 1314
}

1315
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1316
{
1317 1318 1319 1320 1321
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1322 1323

	for (i = 0; i < sband->n_channels; i++)
1324
		handle_channel(wiphy, band, i);
1325 1326
}

1327 1328
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1329 1330 1331
{
	if (!last_request)
		return true;
1332
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
J
Johannes Berg 已提交
1333
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1334
		return true;
1335 1336 1337 1338
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
1339
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1340
	    !is_world_regdom(last_request->alpha2))
1341 1342 1343 1344
		return true;
	return false;
}

1345
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1346
{
1347
	struct cfg80211_registered_device *rdev;
1348

1349 1350
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
1351 1352
}

1353 1354 1355 1356 1357 1358
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1359 1360
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1361 1362 1363 1364 1365 1366 1367 1368 1369

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1370 1371 1372 1373 1374
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
1375
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1376 1377
		return;

1378 1379 1380
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1381
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1382
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1383
		channel_changed = true;
1384 1385
	}

1386
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1387
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1388
		channel_changed = true;
1389 1390
	}

1391 1392
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1444 1445
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1446
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1447 1448 1449 1450 1451 1452 1453
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1454 1455 1456 1457 1458 1459
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1460 1461 1462 1463 1464
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1515
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1516
	else
1517
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1518 1519

	if (is_ht40_not_allowed(channel_after))
1520
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1521
	else
1522
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1552 1553
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1554 1555
{
	enum ieee80211_band band;
1556

1557
	if (ignore_reg_update(wiphy, initiator))
1558
		goto out;
1559
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1560
		if (wiphy->bands[band])
1561
			handle_band(wiphy, band);
1562
	}
1563 1564
out:
	reg_process_beacons(wiphy);
1565
	reg_process_ht_flags(wiphy);
1566
	if (wiphy->reg_notifier)
1567
		wiphy->reg_notifier(wiphy, last_request);
1568 1569
}

1570 1571 1572 1573 1574 1575
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1576 1577
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1578 1579
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1580
	const struct ieee80211_freq_range *freq_range = NULL;
1581 1582 1583
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1584
	assert_reg_lock();
1585

1586 1587 1588 1589
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1590 1591 1592 1593 1594
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1595 1596 1597 1598 1599 1600 1601

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1602 1603 1604 1605
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1606

1607
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1630
	unsigned int bands_set = 0;
1631

1632
	mutex_lock(&reg_mutex);
1633
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1634 1635 1636 1637
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1638
	}
1639
	mutex_unlock(&reg_mutex);
1640 1641 1642 1643 1644 1645

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1646
}
1647 1648
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1649 1650 1651 1652
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1653 1654
#define REG_INTERSECT	1

1655 1656
/* This has the logic which determines when a new request
 * should be ignored. */
1657 1658
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1659
{
1660
	struct wiphy *last_wiphy = NULL;
1661 1662 1663

	assert_cfg80211_lock();

1664 1665 1666 1667
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1668
	switch (pending_request->initiator) {
1669
	case NL80211_REGDOM_SET_BY_CORE:
1670
		return 0;
1671
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1672 1673 1674

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1675
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1676
			return -EINVAL;
1677 1678
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1679
			if (last_wiphy != wiphy) {
1680 1681
				/*
				 * Two cards with two APs claiming different
1682
				 * Country IE alpha2s. We could
1683 1684 1685
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1686
				if (regdom_changes(pending_request->alpha2))
1687 1688 1689
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1690 1691 1692 1693
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1694
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1695 1696 1697
				return 0;
			return -EALREADY;
		}
1698
		return REG_INTERSECT;
1699 1700
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1701
			if (regdom_changes(pending_request->alpha2))
1702
				return 0;
1703
			return -EALREADY;
1704
		}
1705 1706 1707 1708 1709 1710

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1711
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1712
		    !regdom_changes(pending_request->alpha2))
1713 1714
			return -EALREADY;

1715
		return REG_INTERSECT;
1716 1717
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1718
			return REG_INTERSECT;
1719 1720 1721 1722
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1723
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1724 1725
			  last_request->intersect)
			return -EOPNOTSUPP;
1726 1727 1728 1729
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1730 1731 1732
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1733
			if (regdom_changes(last_request->alpha2))
1734 1735 1736
				return -EAGAIN;
		}

1737
		if (!regdom_changes(pending_request->alpha2))
1738 1739
			return -EALREADY;

1740 1741 1742 1743 1744 1745
		return 0;
	}

	return -EINVAL;
}

1746 1747 1748 1749
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1750
 * @pending_request: the regulatory request currently being processed
1751 1752
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1753
 * what it believes should be the current regulatory domain.
1754 1755 1756 1757
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1758
 * Caller must hold &cfg80211_mutex and &reg_mutex
1759
 */
1760 1761
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1762
{
1763
	bool intersect = false;
1764 1765
	int r = 0;

1766 1767
	assert_cfg80211_lock();

1768
	r = ignore_request(wiphy, pending_request);
1769

1770
	if (r == REG_INTERSECT) {
1771 1772
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1773
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1774 1775
			if (r) {
				kfree(pending_request);
1776
				return r;
1777
			}
1778
		}
1779
		intersect = true;
1780
	} else if (r) {
1781 1782
		/*
		 * If the regulatory domain being requested by the
1783
		 * driver has already been set just copy it to the
1784 1785
		 * wiphy
		 */
1786
		if (r == -EALREADY &&
1787 1788
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1789
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1790 1791
			if (r) {
				kfree(pending_request);
1792
				return r;
1793
			}
1794 1795 1796
			r = -EALREADY;
			goto new_request;
		}
1797
		kfree(pending_request);
1798
		return r;
1799
	}
1800

1801
new_request:
1802
	kfree(last_request);
1803

1804 1805
	last_request = pending_request;
	last_request->intersect = intersect;
1806

1807
	pending_request = NULL;
1808

1809 1810 1811 1812 1813
	if (last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
		user_alpha2[0] = last_request->alpha2[0];
		user_alpha2[1] = last_request->alpha2[1];
	}

1814
	/* When r == REG_INTERSECT we do need to call CRDA */
1815 1816 1817 1818 1819 1820 1821 1822
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1823
		return r;
1824
	}
1825

1826
	return call_crda(last_request->alpha2);
1827 1828
}

1829
/* This processes *all* regulatory hints */
1830
static void reg_process_hint(struct regulatory_request *reg_request)
1831 1832 1833 1834 1835 1836 1837
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1838
	mutex_lock(&reg_mutex);
1839 1840 1841 1842

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1843
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1844
	    !wiphy) {
1845
		kfree(reg_request);
1846 1847 1848
		goto out;
	}

1849
	r = __regulatory_hint(wiphy, reg_request);
1850
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1851 1852
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1853 1854
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
1855
	mutex_unlock(&reg_mutex);
1856 1857 1858
	mutex_unlock(&cfg80211_mutex);
}

1859
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1871 1872
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1873 1874 1875 1876 1877
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1878 1879 1880
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1881
	struct cfg80211_registered_device *rdev;
1882 1883
	struct reg_beacon *pending_beacon, *tmp;

1884 1885 1886 1887
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1904 1905
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1916 1917 1918
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1919
	reg_process_pending_beacon_hints();
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

1933 1934 1935 1936
/*
 * Core regulatory hint -- happens during cfg80211_init()
 * and when we restore regulatory settings.
 */
1937 1938 1939 1940
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

1941 1942
	kfree(last_request);
	last_request = NULL;
1943 1944 1945 1946 1947 1948 1949 1950

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1951
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1952

1953 1954 1955 1956 1957
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
1958
	reg_process_hint(request);
1959

1960
	return 0;
1961 1962
}

1963 1964
/* User hints */
int regulatory_hint_user(const char *alpha2)
1965
{
1966 1967
	struct regulatory_request *request;

1968
	BUG_ON(!alpha2);
1969

1970 1971 1972 1973 1974 1975 1976
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1977
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
2003
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2004 2005 2006 2007

	queue_regulatory_request(request);

	return 0;
2008 2009 2010
}
EXPORT_SYMBOL(regulatory_hint);

2011
/* Caller must hold reg_mutex */
2012 2013 2014
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
2015 2016
	struct wiphy *request_wiphy;

2017
	assert_reg_lock();
2018

2019 2020 2021 2022
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

2023 2024 2025
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
2026
		return false;
2027 2028

	if (likely(request_wiphy != wiphy))
2029
		return !country_ie_integrity_changes(country_ie_checksum);
2030 2031
	/*
	 * We should not have let these through at this point, they
2032
	 * should have been picked up earlier by the first alpha2 check
2033 2034
	 * on the device
	 */
2035 2036 2037 2038 2039
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

2040 2041 2042 2043
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
2044
void regulatory_hint_11d(struct wiphy *wiphy,
2045 2046 2047
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
2048 2049 2050 2051 2052
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
2053
	struct regulatory_request *request;
2054

2055
	mutex_lock(&reg_mutex);
2056

2057 2058
	if (unlikely(!last_request))
		goto out;
2059

2060 2061 2062 2063 2064 2065 2066
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

2067 2068
	/*
	 * Pending country IE processing, this can happen after we
2069
	 * call CRDA and wait for a response if a beacon was received before
2070 2071
	 * we were able to process the last regulatory_hint_11d() call
	 */
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

2083
	/*
2084
	 * We will run this only upon a successful connection on cfg80211.
2085 2086
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
2087
	 */
2088 2089
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2090 2091
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
2092

2093
	rd = country_ie_2_rd(band, country_ie, country_ie_len, &checksum);
2094 2095
	if (!rd) {
		REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2096
		goto out;
2097
	}
2098

2099 2100
	/*
	 * This will not happen right now but we leave it here for the
2101 2102
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
2103 2104 2105 2106 2107 2108
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
2109
		goto free_rd_out;
2110

2111 2112 2113 2114
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

2115 2116 2117 2118
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
2119 2120
	country_ie_regdomain = rd;

2121 2122 2123
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
2124
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2125 2126 2127
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

2128
	mutex_unlock(&reg_mutex);
2129

2130 2131 2132
	queue_regulatory_request(request);

	return;
2133 2134 2135

free_rd_out:
	kfree(rd);
2136
out:
2137
	mutex_unlock(&reg_mutex);
2138
}
2139

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256
static void restore_alpha2(char *alpha2, bool reset_user)
{
	/* indicates there is no alpha2 to consider for restoration */
	alpha2[0] = '9';
	alpha2[1] = '7';

	/* The user setting has precedence over the module parameter */
	if (is_user_regdom_saved()) {
		/* Unless we're asked to ignore it and reset it */
		if (reset_user) {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "including user preference\n");
			user_alpha2[0] = '9';
			user_alpha2[1] = '7';

			/*
			 * If we're ignoring user settings, we still need to
			 * check the module parameter to ensure we put things
			 * back as they were for a full restore.
			 */
			if (!is_world_regdom(ieee80211_regdom)) {
				REG_DBG_PRINT("cfg80211: Keeping preference on "
				       "module parameter ieee80211_regdom: %c%c\n",
				       ieee80211_regdom[0],
				       ieee80211_regdom[1]);
				alpha2[0] = ieee80211_regdom[0];
				alpha2[1] = ieee80211_regdom[1];
			}
		} else {
			REG_DBG_PRINT("cfg80211: Restoring regulatory settings "
			       "while preserving user preference for: %c%c\n",
			       user_alpha2[0],
			       user_alpha2[1]);
			alpha2[0] = user_alpha2[0];
			alpha2[1] = user_alpha2[1];
		}
	} else if (!is_world_regdom(ieee80211_regdom)) {
		REG_DBG_PRINT("cfg80211: Keeping preference on "
		       "module parameter ieee80211_regdom: %c%c\n",
		       ieee80211_regdom[0],
		       ieee80211_regdom[1]);
		alpha2[0] = ieee80211_regdom[0];
		alpha2[1] = ieee80211_regdom[1];
	} else
		REG_DBG_PRINT("cfg80211: Restoring regulatory settings\n");
}

/*
 * Restoring regulatory settings involves ingoring any
 * possibly stale country IE information and user regulatory
 * settings if so desired, this includes any beacon hints
 * learned as we could have traveled outside to another country
 * after disconnection. To restore regulatory settings we do
 * exactly what we did at bootup:
 *
 *   - send a core regulatory hint
 *   - send a user regulatory hint if applicable
 *
 * Device drivers that send a regulatory hint for a specific country
 * keep their own regulatory domain on wiphy->regd so that does does
 * not need to be remembered.
 */
static void restore_regulatory_settings(bool reset_user)
{
	char alpha2[2];
	struct reg_beacon *reg_beacon, *btmp;

	mutex_lock(&cfg80211_mutex);
	mutex_lock(&reg_mutex);

	reset_regdomains();
	restore_alpha2(alpha2, reset_user);

	/* Clear beacon hints */
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

	/* First restore to the basic regulatory settings */
	cfg80211_regdomain = cfg80211_world_regdom;

	mutex_unlock(&reg_mutex);
	mutex_unlock(&cfg80211_mutex);

	regulatory_hint_core(cfg80211_regdomain->alpha2);

	/*
	 * This restores the ieee80211_regdom module parameter
	 * preference or the last user requested regulatory
	 * settings, user regulatory settings takes precedence.
	 */
	if (is_an_alpha2(alpha2))
		regulatory_hint_user(user_alpha2);
}


void regulatory_hint_disconnect(void)
{
	REG_DBG_PRINT("cfg80211: All devices are disconnected, going to "
		      "restore regulatory settings\n");
	restore_regulatory_settings(false);
}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

2282 2283 2284 2285 2286 2287
	REG_DBG_PRINT("cfg80211: Found new beacon on "
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

2305
static void print_rd_rules(const struct ieee80211_regdomain *rd)
2306 2307
{
	unsigned int i;
2308 2309 2310
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
2311

2312
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
2313 2314 2315 2316 2317 2318 2319
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2320 2321 2322 2323
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2324
		if (power_rule->max_antenna_gain)
2325
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2326 2327 2328 2329 2330 2331 2332
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2333
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2334 2335 2336 2337 2338 2339 2340 2341
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2342
static void print_regdomain(const struct ieee80211_regdomain *rd)
2343 2344
{

2345 2346
	if (is_intersected_alpha2(rd->alpha2)) {

2347 2348
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2349 2350
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2351
				last_request->wiphy_idx);
2352
			if (rdev) {
2353 2354
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
2355 2356
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2357 2358
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
2359
					"domain intersected:\n");
2360
		} else
2361 2362
			printk(KERN_INFO "cfg80211: Current regulatory "
				"domain intersected:\n");
2363
	} else if (is_world_regdom(rd->alpha2))
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

2379
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2380 2381 2382 2383 2384 2385
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
2399
		print_regdomain_info(intersected_rd);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2413
/* Takes ownership of rd only if it doesn't fail */
2414
static int __set_regdom(const struct ieee80211_regdomain *rd)
2415
{
2416
	const struct ieee80211_regdomain *intersected_rd = NULL;
2417
	struct cfg80211_registered_device *rdev = NULL;
2418
	struct wiphy *request_wiphy;
2419 2420 2421
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2422
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2423 2424 2425 2426 2427 2428 2429 2430 2431
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2432
	if (!last_request)
2433 2434
		return -EINVAL;

2435 2436
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2437
	 * rd is non static (it means CRDA was present and was used last)
2438 2439
	 * and the pending request came in from a country IE
	 */
2440
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2441 2442 2443 2444
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2445
		if (!regdom_changes(rd->alpha2))
2446 2447 2448
			return -EINVAL;
	}

2449 2450
	/*
	 * Now lets set the regulatory domain, update all driver channels
2451 2452
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2453 2454
	 * internal EEPROM data
	 */
2455

2456
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2457 2458
		return -EINVAL;

2459 2460 2461 2462 2463
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2464 2465
	}

2466 2467
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2468
	if (!last_request->intersect) {
2469 2470
		int r;

2471
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2472 2473 2474 2475 2476
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2477 2478 2479 2480
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2481

2482 2483 2484 2485 2486 2487
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2488

2489
		r = reg_copy_regd(&request_wiphy->regd, rd);
2490 2491 2492
		if (r)
			return r;

2493 2494 2495 2496 2497 2498 2499
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2500
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2501

2502 2503 2504
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2505

2506 2507
		/*
		 * We can trash what CRDA provided now.
2508
		 * However if a driver requested this specific regulatory
2509 2510
		 * domain we keep it for its private use
		 */
2511
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2512
			request_wiphy->regd = rd;
2513 2514 2515
		else
			kfree(rd);

2516 2517 2518 2519 2520 2521
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2522 2523
	}

2524 2525 2526 2527 2528
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

2529 2530 2531 2532 2533 2534 2535
	/*
	 * Userspace could have sent two replies with only
	 * one kernel request. By the second reply we would have
	 * already processed and consumed the country_ie_regdomain.
	 */
	if (!country_ie_regdomain)
		return -EALREADY;
2536
	BUG_ON(rd == country_ie_regdomain);
2537

2538 2539 2540 2541
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2542

2543
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2544

2545 2546 2547
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2548

2549 2550
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2551 2552 2553 2554

	if (!intersected_rd)
		return -EINVAL;

2555
	rdev = wiphy_to_dev(request_wiphy);
2556

2557 2558 2559
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2560 2561 2562 2563 2564 2565

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2566
	reset_regdomains();
2567
	cfg80211_regdomain = intersected_rd;
2568 2569 2570 2571 2572

	return 0;
}


2573 2574
/*
 * Use this call to set the current regulatory domain. Conflicts with
2575
 * multiple drivers can be ironed out later. Caller must've already
2576 2577
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2578
int set_regdom(const struct ieee80211_regdomain *rd)
2579 2580 2581
{
	int r;

2582 2583
	assert_cfg80211_lock();

2584 2585
	mutex_lock(&reg_mutex);

2586 2587
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2588 2589
	if (r) {
		kfree(rd);
2590
		mutex_unlock(&reg_mutex);
2591
		return r;
2592
	}
2593 2594

	/* This would make this whole thing pointless */
2595 2596
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2597 2598

	/* update all wiphys now with the new established regulatory domain */
2599
	update_all_wiphy_regulatory(last_request->initiator);
2600

2601
	print_regdomain(cfg80211_regdomain);
2602

2603 2604
	nl80211_send_reg_change_event(last_request);

2605 2606
	mutex_unlock(&reg_mutex);

2607 2608 2609
	return r;
}

2610
/* Caller must hold cfg80211_mutex */
2611 2612
void reg_device_remove(struct wiphy *wiphy)
{
2613
	struct wiphy *request_wiphy = NULL;
2614

2615 2616
	assert_cfg80211_lock();

2617 2618
	mutex_lock(&reg_mutex);

2619 2620
	kfree(wiphy->regd);

2621 2622
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2623

2624
	if (!request_wiphy || request_wiphy != wiphy)
2625
		goto out;
2626

2627
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2628
	last_request->country_ie_env = ENVIRON_ANY;
2629 2630
out:
	mutex_unlock(&reg_mutex);
2631 2632
}

2633 2634
int regulatory_init(void)
{
2635
	int err = 0;
2636

2637 2638 2639
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2640

2641
	spin_lock_init(&reg_requests_lock);
2642
	spin_lock_init(&reg_pending_beacons_lock);
2643

2644
	cfg80211_regdomain = cfg80211_world_regdom;
2645

2646 2647 2648
	user_alpha2[0] = '9';
	user_alpha2[1] = '7';

2649 2650
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2651
	if (err) {
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2666
#endif
2667
	}
2668

2669 2670 2671 2672 2673 2674 2675
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2676 2677 2678 2679 2680
	return 0;
}

void regulatory_exit(void)
{
2681
	struct regulatory_request *reg_request, *tmp;
2682
	struct reg_beacon *reg_beacon, *btmp;
2683 2684 2685

	cancel_work_sync(&reg_work);

2686
	mutex_lock(&cfg80211_mutex);
2687
	mutex_lock(&reg_mutex);
2688

2689
	reset_regdomains();
2690

2691 2692 2693
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2694 2695
	kfree(last_request);

2696
	platform_device_unregister(reg_pdev);
2697

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2726
	mutex_unlock(&reg_mutex);
2727
	mutex_unlock(&cfg80211_mutex);
2728
}