reg.c 61.5 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "nl80211.h"
44

45
/* Receipt of information from last regulatory request */
46
static struct regulatory_request *last_request;
47

48 49
/* To trigger userspace events */
static struct platform_device *reg_pdev;
50

51 52
/*
 * Central wireless core regulatory domains, we only need two,
53
 * the current one and a world regulatory domain in case we have no
54 55
 * information to give us an alpha2
 */
56
const struct ieee80211_regdomain *cfg80211_regdomain;
57

58 59
/*
 * We use this as a place for the rd structure built from the
60
 * last parsed country IE to rest until CRDA gets back to us with
61 62
 * what it thinks should apply for the same country
 */
63 64
static const struct ieee80211_regdomain *country_ie_regdomain;

65
/* Used to queue up regulatory hints */
66 67 68
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

69 70 71 72 73 74 75 76 77 78 79 80
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

81 82
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
83
	.n_reg_rules = 5,
84 85
	.alpha2 =  "00",
	.reg_rules = {
86 87
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
88 89 90
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
91 92
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
93 94 95 96 97 98 99
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
100
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
101 102
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
103 104 105 106

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
107
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
108 109
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
110 111 112
	}
};

113 114
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
115

116 117
static char *ieee80211_regdom = "00";

118 119 120
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

121
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
122 123
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
124
 * We make emphasis we are using the exact same frequencies
125 126
 * as before
 */
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
165 166 167 168
	/*
	 * This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility
	 */
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

205
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
206 207 208 209 210
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
211 212
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
213
{
214
	return false;
215
}
216 217
#endif

218 219
static void reset_regdomains(void)
{
220 221 222 223 224 225 226 227 228 229 230 231
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
232

233
	cfg80211_world_regdom = &world_regdom;
234 235 236
	cfg80211_regdomain = NULL;
}

237 238 239 240
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
241
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
242
{
243
	BUG_ON(!last_request);
244 245 246 247 248 249 250

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

251
bool is_world_regdom(const char *alpha2)
252 253 254 255 256 257 258
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
259

260
static bool is_alpha2_set(const char *alpha2)
261 262 263 264 265 266 267
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
268

269 270 271 272 273 274 275
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
276

277
static bool is_unknown_alpha2(const char *alpha2)
278 279 280
{
	if (!alpha2)
		return false;
281 282 283 284
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
285 286 287 288
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
289

290 291 292 293
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
294 295
	/*
	 * Special case where regulatory domain is the
296
	 * result of an intersection between two regulatory domain
297 298
	 * structures
	 */
299 300 301 302 303
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

304
static bool is_an_alpha2(const char *alpha2)
305 306 307 308 309 310 311
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
312

313
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
314 315 316 317 318 319 320 321 322
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

323
static bool regdom_changes(const char *alpha2)
324
{
325 326
	assert_cfg80211_lock();

327 328 329 330 331 332 333
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

353 354 355 356
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
379
bool reg_is_valid_request(const char *alpha2)
380
{
381 382
	assert_cfg80211_lock();

383 384 385 386
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
387
}
388

389
/* Sanity check on a regulatory rule */
390
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
391
{
392
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
393 394
	u32 freq_diff;

395
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
396 397 398 399 400 401 402
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

403 404
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
405 406 407 408 409
		return false;

	return true;
}

410
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
411
{
412
	const struct ieee80211_reg_rule *reg_rule = NULL;
413
	unsigned int i;
414

415 416
	if (!rd->n_reg_rules)
		return false;
417

418 419 420
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

421 422 423 424 425 426 427
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
428 429
}

430 431 432
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
433
{
434 435 436 437 438 439 440 441 442 443
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
444
}
445

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

471 472
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
473 474
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
475 476
 * with our userspace regulatory agent to get lower bounds.
 */
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

521 522
	/*
	 * We need to build a reg rule for each triplet, but first we must
523
	 * calculate the number of reg rules we will need. We will need one
524 525
	 * for each channel subband
	 */
526
	while (country_ie_len >= 3) {
527
		int end_channel = 0;
528 529 530 531 532 533 534 535 536 537 538
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

556
		cur_channel = triplet->chans.first_channel;
557
		cur_sub_max_channel = end_channel;
558 559 560 561 562

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

563 564
		/*
		 * Do not allow overlapping channels. Also channels
565
		 * passed in each subband must be monotonically
566 567
		 * increasing
		 */
568 569 570 571 572 573 574
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

575 576
		/*
		 * When dot11RegulatoryClassesRequired is supported
577 578
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
579 580
		 * don't support them
		 */
581 582 583 584 585 586 587 588 589 590
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

591 592 593 594
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
615
		int end_channel = 0;
616 617 618 619 620 621
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

622 623 624 625
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
626 627 628 629 630 631 632 633 634 635 636 637 638
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

639 640 641 642 643 644 645 646
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

647 648
		/*
		 * The +10 is since the regulatory domain expects
649 650
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
651 652
		 * the channels passed
		 */
653 654 655 656 657
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
658
				end_channel) + 10);
659

660 661 662 663 664
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


680 681 682 683
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

761 762
	/*
	 * First we get a count of the rules we'll need, then we actually
763 764 765
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
766 767
	 * All rules that do check out OK are valid.
	 */
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
795 796
			/*
			 * This time around instead of using the stack lets
797
			 * write to the target rule directly saving ourselves
798 799
			 * a memcpy()
			 */
800 801 802
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
803 804 805 806
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

825 826 827 828
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
829 830 831 832 833 834 835 836 837 838 839 840
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

841 842
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
843
			      u32 desired_bw_khz,
844 845
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
846 847
{
	int i;
848
	bool band_rule_found = false;
849
	const struct ieee80211_regdomain *regd;
850 851 852 853
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
854

855
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
856

857 858 859 860
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
861 862
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
863 864 865 866
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
867 868
		return -EINVAL;

869
	for (i = 0; i < regd->n_reg_rules; i++) {
870 871 872 873
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

874
		rr = &regd->reg_rules[i];
875 876
		fr = &rr->freq_range;
		pr = &rr->power_rule;
877

878 879
		/*
		 * We only need to know if one frequency rule was
880
		 * was in center_freq's band, that's enough, so lets
881 882
		 * not overwrite it once found
		 */
883 884 885
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

886 887 888
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
889

890
		if (band_rule_found && bw_fits) {
891
			*reg_rule = rr;
892
			return 0;
893 894 895
		}
	}

896 897 898
	if (!band_rule_found)
		return -ERANGE;

899
	return -EINVAL;
900
}
901
EXPORT_SYMBOL(freq_reg_info);
902

903 904 905 906
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
907
{
908
	assert_cfg80211_lock();
909 910 911 912 913
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
914
}
915

916 917 918 919 920 921 922 923 924
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
925 926
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
927 928
{
	int r;
929 930
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
931 932
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
933
	const struct ieee80211_freq_range *freq_range = NULL;
934 935
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
936
	struct wiphy *request_wiphy = NULL;
937

938 939
	assert_cfg80211_lock();

940 941
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

942 943 944 945 946
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
947

948 949 950 951
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
952 953

	if (r) {
954 955
		/*
		 * This means no regulatory rule was found in the country IE
956 957 958 959 960 961 962 963 964 965
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
966 967
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
968 969 970 971 972 973 974
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
975 976 977 978
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
979
#ifdef CONFIG_CFG80211_REG_DEBUG
980 981
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
982 983 984 985 986 987 988 989
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
990 991 992
		return;
	}

993
	power_rule = &reg_rule->power_rule;
994 995 996 997
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
998

999
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1000 1001
	    request_wiphy && request_wiphy == wiphy &&
	    request_wiphy->strict_regulatory) {
1002 1003
		/*
		 * This gaurantees the driver's requested regulatory domain
1004
		 * will always be used as a base for further regulatory
1005 1006
		 * settings
		 */
1007
		chan->flags = chan->orig_flags =
1008
			map_regdom_flags(reg_rule->flags) | bw_flags;
1009 1010
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1011
		chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1012 1013 1014 1015 1016
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1017
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1018
	chan->max_antenna_gain = min(chan->orig_mag,
1019
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1020
	chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1021
	if (chan->orig_mpwr)
1022 1023
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1024
	else
1025
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1026 1027
}

1028
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1029
{
1030 1031 1032 1033 1034
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1035 1036

	for (i = 0; i < sband->n_channels; i++)
1037
		handle_channel(wiphy, band, i);
1038 1039
}

1040 1041
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1042 1043 1044
{
	if (!last_request)
		return true;
1045
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1046
		  wiphy->custom_regulatory)
1047
		return true;
1048 1049 1050 1051
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
1052 1053
	if (wiphy->strict_regulatory && !wiphy->regd &&
	    !is_world_regdom(last_request->alpha2))
1054 1055 1056 1057
		return true;
	return false;
}

1058
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1059
{
1060
	struct cfg80211_registered_device *rdev;
1061

1062 1063
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
1064 1065
}

1066 1067 1068 1069 1070 1071
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1072 1073
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1074 1075 1076 1077 1078 1079 1080 1081 1082

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1083 1084 1085 1086 1087 1088 1089 1090
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1091 1092
	if ((chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) &&
	    !(chan->orig_flags & IEEE80211_CHAN_PASSIVE_SCAN)) {
1093
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1094
		channel_changed = true;
1095 1096
	}

1097 1098
	if ((chan->flags & IEEE80211_CHAN_NO_IBSS) &&
	    !(chan->orig_flags & IEEE80211_CHAN_NO_IBSS)) {
1099
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1100
		channel_changed = true;
1101 1102
	}

1103 1104
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1156 1157
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1158 1159 1160 1161 1162 1163 1164 1165
	    wiphy->custom_regulatory)
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1166 1167 1168 1169 1170 1171
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1172 1173 1174 1175 1176
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1227
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1228
	else
1229
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1230 1231

	if (is_ht40_not_allowed(channel_after))
1232
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1233
	else
1234
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1264 1265
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1266 1267
{
	enum ieee80211_band band;
1268

1269
	if (ignore_reg_update(wiphy, initiator))
1270
		goto out;
1271
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1272
		if (wiphy->bands[band])
1273
			handle_band(wiphy, band);
1274
	}
1275 1276
out:
	reg_process_beacons(wiphy);
1277
	reg_process_ht_flags(wiphy);
1278
	if (wiphy->reg_notifier)
1279
		wiphy->reg_notifier(wiphy, last_request);
1280 1281
}

1282 1283 1284 1285 1286 1287
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1288 1289
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1290 1291
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1292
	const struct ieee80211_freq_range *freq_range = NULL;
1293 1294 1295
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1296 1297
	assert_cfg80211_lock();

1298 1299 1300 1301
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1302 1303 1304 1305 1306
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1307 1308 1309 1310 1311 1312 1313

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1314 1315 1316 1317
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1318

1319
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1320
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1321
	chan->max_bandwidth = KHZ_TO_MHZ(desired_bw_khz);
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1343
	unsigned int bands_set = 0;
1344 1345

	mutex_lock(&cfg80211_mutex);
1346
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1347 1348 1349 1350
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1351
	}
1352
	mutex_unlock(&cfg80211_mutex);
1353 1354 1355 1356 1357 1358

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1359
}
1360 1361
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1385

1386 1387 1388 1389
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1390 1391
#define REG_INTERSECT	1

1392 1393
/* This has the logic which determines when a new request
 * should be ignored. */
1394 1395
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1396
{
1397
	struct wiphy *last_wiphy = NULL;
1398 1399 1400

	assert_cfg80211_lock();

1401 1402 1403 1404
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1405
	switch (pending_request->initiator) {
1406
	case NL80211_REGDOM_SET_BY_CORE:
1407
		return -EINVAL;
1408
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1409 1410 1411

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1412
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1413
			return -EINVAL;
1414 1415
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1416
			if (last_wiphy != wiphy) {
1417 1418 1419 1420 1421 1422
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1423
				if (regdom_changes(pending_request->alpha2))
1424 1425 1426
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1427 1428 1429 1430
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1431
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1432 1433 1434
				return 0;
			return -EALREADY;
		}
1435
		return REG_INTERSECT;
1436 1437
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1438 1439
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
1440
			if (regdom_changes(pending_request->alpha2))
1441
				return 0;
1442
			return -EALREADY;
1443
		}
1444 1445 1446 1447 1448 1449

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1450
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1451
		    !regdom_changes(pending_request->alpha2))
1452 1453
			return -EALREADY;

1454
		return REG_INTERSECT;
1455 1456
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1457
			return REG_INTERSECT;
1458 1459 1460 1461
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1462
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1463 1464
			  last_request->intersect)
			return -EOPNOTSUPP;
1465 1466 1467 1468
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1469 1470 1471
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1472
			if (regdom_changes(last_request->alpha2))
1473 1474 1475
				return -EAGAIN;
		}

1476
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1477
		    !regdom_changes(pending_request->alpha2))
1478 1479
			return -EALREADY;

1480 1481 1482 1483 1484 1485
		return 0;
	}

	return -EINVAL;
}

1486 1487 1488 1489
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1490
 * @pending_request: the regulatory request currently being processed
1491 1492
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1493
 * what it believes should be the current regulatory domain.
1494 1495 1496 1497 1498 1499
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
 * Caller must hold &cfg80211_mutex
 */
1500 1501
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1502
{
1503
	bool intersect = false;
1504 1505
	int r = 0;

1506 1507
	assert_cfg80211_lock();

1508
	r = ignore_request(wiphy, pending_request);
1509

1510
	if (r == REG_INTERSECT) {
1511 1512
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1513
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1514 1515
			if (r) {
				kfree(pending_request);
1516
				return r;
1517
			}
1518
		}
1519
		intersect = true;
1520
	} else if (r) {
1521 1522
		/*
		 * If the regulatory domain being requested by the
1523
		 * driver has already been set just copy it to the
1524 1525
		 * wiphy
		 */
1526
		if (r == -EALREADY &&
1527 1528
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1529
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1530 1531
			if (r) {
				kfree(pending_request);
1532
				return r;
1533
			}
1534 1535 1536
			r = -EALREADY;
			goto new_request;
		}
1537
		kfree(pending_request);
1538
		return r;
1539
	}
1540

1541
new_request:
1542
	kfree(last_request);
1543

1544 1545
	last_request = pending_request;
	last_request->intersect = intersect;
1546

1547
	pending_request = NULL;
1548 1549

	/* When r == REG_INTERSECT we do need to call CRDA */
1550 1551 1552 1553 1554 1555 1556 1557
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1558
		return r;
1559
	}
1560

1561
	return call_crda(last_request->alpha2);
1562 1563
}

1564
/* This processes *all* regulatory hints */
1565
static void reg_process_hint(struct regulatory_request *reg_request)
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1577
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1578
	    !wiphy) {
1579
		kfree(reg_request);
1580 1581 1582
		goto out;
	}

1583
	r = __regulatory_hint(wiphy, reg_request);
1584 1585 1586 1587 1588 1589 1590
	/* This is required so that the orig_* parameters are saved */
	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
	mutex_unlock(&cfg80211_mutex);
}

1591
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1603 1604
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1605 1606 1607 1608 1609
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1610 1611 1612
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1613
	struct cfg80211_registered_device *rdev;
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	struct reg_beacon *pending_beacon, *tmp;

	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1632 1633
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1644 1645 1646
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1647
	reg_process_pending_beacon_hints();
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1675
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1676

1677
	queue_regulatory_request(request);
1678

1679 1680 1681 1682 1683 1684 1685
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
	flush_scheduled_work();

1686
	return 0;
1687 1688
}

1689 1690
/* User hints */
int regulatory_hint_user(const char *alpha2)
1691
{
1692 1693
	struct regulatory_request *request;

1694
	BUG_ON(!alpha2);
1695

1696 1697 1698 1699 1700 1701 1702
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1703
	request->initiator = NL80211_REGDOM_SET_BY_USER,
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1729
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1730 1731 1732 1733

	queue_regulatory_request(request);

	return 0;
1734 1735 1736
}
EXPORT_SYMBOL(regulatory_hint);

1737 1738 1739
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1740 1741
	struct wiphy *request_wiphy;

1742 1743
	assert_cfg80211_lock();

1744 1745 1746 1747
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1748 1749 1750
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1751
		return false;
1752 1753

	if (likely(request_wiphy != wiphy))
1754
		return !country_ie_integrity_changes(country_ie_checksum);
1755 1756
	/*
	 * We should not have let these through at this point, they
1757
	 * should have been picked up earlier by the first alpha2 check
1758 1759
	 * on the device
	 */
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1773
	struct regulatory_request *request;
1774

1775
	mutex_lock(&cfg80211_mutex);
1776

1777 1778
	if (unlikely(!last_request))
		goto out;
1779

1780 1781 1782 1783 1784 1785 1786
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1787 1788
	/*
	 * Pending country IE processing, this can happen after we
1789
	 * call CRDA and wait for a response if a beacon was received before
1790 1791
	 * we were able to process the last regulatory_hint_11d() call
	 */
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1803 1804
	/*
	 * We will run this for *every* beacon processed for the BSSID, so
1805
	 * we optimize an early check to exit out early if we don't have to
1806 1807
	 * do anything
	 */
1808 1809 1810
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    wiphy_idx_valid(last_request->wiphy_idx))) {
1811
		struct cfg80211_registered_device *rdev_last_ie;
1812

1813 1814
		rdev_last_ie =
			cfg80211_rdev_by_wiphy_idx(last_request->wiphy_idx);
1815

1816 1817 1818 1819
		/*
		 * Lets keep this simple -- we trust the first AP
		 * after we intersect with CRDA
		 */
1820
		if (likely(&rdev_last_ie->wiphy == wiphy)) {
1821 1822 1823 1824
			/*
			 * Ignore IEs coming in on this wiphy with
			 * the same alpha2 and environment cap
			 */
1825
			if (likely(alpha2_equal(rdev_last_ie->country_ie_alpha2,
1826
				  alpha2) &&
1827
				  env == rdev_last_ie->env)) {
1828 1829
				goto out;
			}
1830 1831
			/*
			 * the wiphy moved on to another BSSID or the AP
1832 1833 1834
			 * was reconfigured. XXX: We need to deal with the
			 * case where the user suspends and goes to goes
			 * to another country, and then gets IEs from an
1835 1836
			 * AP with different settings
			 */
1837 1838
			goto out;
		} else {
1839 1840 1841 1842
			/*
			 * Ignore IEs coming in on two separate wiphys with
			 * the same alpha2 and environment cap
			 */
1843
			if (likely(alpha2_equal(rdev_last_ie->country_ie_alpha2,
1844
				  alpha2) &&
1845
				  env == rdev_last_ie->env)) {
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
				goto out;
			}
			/* We could potentially intersect though */
			goto out;
		}
	}

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1857 1858
	/*
	 * This will not happen right now but we leave it here for the
1859 1860
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1861 1862 1863 1864 1865 1866
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1867
		goto free_rd_out;
1868

1869 1870 1871 1872
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1873 1874 1875 1876
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1877 1878
	country_ie_regdomain = rd;

1879 1880 1881
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
1882
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
1883 1884 1885 1886
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

	mutex_unlock(&cfg80211_mutex);
1887

1888 1889 1890
	queue_regulatory_request(request);

	return;
1891 1892 1893

free_rd_out:
	kfree(rd);
1894
out:
1895
	mutex_unlock(&cfg80211_mutex);
1896 1897
}
EXPORT_SYMBOL(regulatory_hint_11d);
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1948
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1949 1950
{
	unsigned int i;
1951 1952 1953
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1954 1955 1956 1957 1958 1959 1960 1961 1962

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1963 1964 1965 1966
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1985
static void print_regdomain(const struct ieee80211_regdomain *rd)
1986 1987
{

1988 1989
	if (is_intersected_alpha2(rd->alpha2)) {

1990 1991
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1992 1993
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
1994
				last_request->wiphy_idx);
1995
			if (rdev) {
1996 1997
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
1998 1999
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2000 2001 2002 2003 2004
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
2005
					"domain intersected: \n");
2006
	} else if (is_world_regdom(rd->alpha2))
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

2022
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2023 2024 2025 2026 2027 2028
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
2042
		print_regdomain_info(intersected_rd);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2056
/* Takes ownership of rd only if it doesn't fail */
2057
static int __set_regdom(const struct ieee80211_regdomain *rd)
2058
{
2059
	const struct ieee80211_regdomain *intersected_rd = NULL;
2060
	struct cfg80211_registered_device *rdev = NULL;
2061
	struct wiphy *request_wiphy;
2062 2063 2064
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2065
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2066 2067 2068 2069 2070 2071 2072 2073 2074
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2075
	if (!last_request)
2076 2077
		return -EINVAL;

2078 2079
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2080
	 * rd is non static (it means CRDA was present and was used last)
2081 2082
	 * and the pending request came in from a country IE
	 */
2083
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2084 2085 2086 2087
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2088
		if (!is_old_static_regdom(cfg80211_regdomain) &&
2089
		    !regdom_changes(rd->alpha2))
2090 2091 2092
			return -EINVAL;
	}

2093 2094
	/*
	 * Now lets set the regulatory domain, update all driver channels
2095 2096
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2097 2098
	 * internal EEPROM data
	 */
2099

2100
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2101 2102
		return -EINVAL;

2103 2104 2105 2106 2107
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2108 2109
	}

2110 2111
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2112
	if (!last_request->intersect) {
2113 2114
		int r;

2115
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2116 2117 2118 2119 2120
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2121 2122 2123 2124
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2125

2126 2127 2128 2129 2130 2131
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2132

2133
		r = reg_copy_regd(&request_wiphy->regd, rd);
2134 2135 2136
		if (r)
			return r;

2137 2138 2139 2140 2141 2142 2143
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2144
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2145

2146 2147 2148
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2149

2150 2151
		/*
		 * We can trash what CRDA provided now.
2152
		 * However if a driver requested this specific regulatory
2153 2154
		 * domain we keep it for its private use
		 */
2155
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2156
			request_wiphy->regd = rd;
2157 2158 2159
		else
			kfree(rd);

2160 2161 2162 2163 2164 2165
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2166 2167
	}

2168 2169 2170 2171 2172
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

2173 2174 2175 2176 2177 2178 2179
	/*
	 * Userspace could have sent two replies with only
	 * one kernel request. By the second reply we would have
	 * already processed and consumed the country_ie_regdomain.
	 */
	if (!country_ie_regdomain)
		return -EALREADY;
2180
	BUG_ON(rd == country_ie_regdomain);
2181

2182 2183 2184 2185
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2186

2187
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2188

2189 2190 2191
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2192

2193 2194
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2195 2196 2197 2198

	if (!intersected_rd)
		return -EINVAL;

2199
	rdev = wiphy_to_dev(request_wiphy);
2200

2201 2202 2203
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2204 2205 2206 2207 2208 2209

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2210
	reset_regdomains();
2211
	cfg80211_regdomain = intersected_rd;
2212 2213 2214 2215 2216

	return 0;
}


2217 2218
/*
 * Use this call to set the current regulatory domain. Conflicts with
2219
 * multiple drivers can be ironed out later. Caller must've already
2220 2221
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2222
int set_regdom(const struct ieee80211_regdomain *rd)
2223 2224 2225
{
	int r;

2226 2227
	assert_cfg80211_lock();

2228 2229
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2230 2231
	if (r) {
		kfree(rd);
2232
		return r;
2233
	}
2234 2235

	/* This would make this whole thing pointless */
2236 2237
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2238 2239

	/* update all wiphys now with the new established regulatory domain */
2240
	update_all_wiphy_regulatory(last_request->initiator);
2241

2242
	print_regdomain(cfg80211_regdomain);
2243

2244 2245
	nl80211_send_reg_change_event(last_request);

2246 2247 2248
	return r;
}

2249
/* Caller must hold cfg80211_mutex */
2250 2251
void reg_device_remove(struct wiphy *wiphy)
{
2252
	struct wiphy *request_wiphy = NULL;
2253

2254 2255
	assert_cfg80211_lock();

2256 2257
	kfree(wiphy->regd);

2258 2259
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2260

2261
	if (!request_wiphy || request_wiphy != wiphy)
2262
		return;
2263

2264
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2265 2266 2267
	last_request->country_ie_env = ENVIRON_ANY;
}

2268 2269
int regulatory_init(void)
{
2270
	int err = 0;
2271

2272 2273 2274
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2275

2276
	spin_lock_init(&reg_requests_lock);
2277
	spin_lock_init(&reg_pending_beacons_lock);
2278

2279
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2280
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2281

2282
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2283 2284
	print_regdomain_info(cfg80211_regdomain);
#else
2285
	cfg80211_regdomain = cfg80211_world_regdom;
2286

2287
#endif
2288 2289
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2290
	if (err) {
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2305
#endif
2306
	}
2307

2308 2309 2310 2311 2312 2313 2314
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2315 2316 2317 2318 2319
	return 0;
}

void regulatory_exit(void)
{
2320
	struct regulatory_request *reg_request, *tmp;
2321
	struct reg_beacon *reg_beacon, *btmp;
2322 2323 2324

	cancel_work_sync(&reg_work);

2325
	mutex_lock(&cfg80211_mutex);
2326

2327
	reset_regdomains();
2328

2329 2330 2331
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2332 2333
	kfree(last_request);

2334
	platform_device_unregister(reg_pdev);
2335

2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2364
	mutex_unlock(&cfg80211_mutex);
2365
}