reg.c 65.4 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39 40
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
#include <net/cfg80211.h>
41
#include "core.h"
42
#include "reg.h"
43
#include "regdb.h"
44
#include "nl80211.h"
45

46
#ifdef CONFIG_CFG80211_REG_DEBUG
47
#define REG_DBG_PRINT(format, args...) \
48
	do { \
49
		printk(KERN_DEBUG format , ## args); \
50 51
	} while (0)
#else
52
#define REG_DBG_PRINT(args...)
53 54
#endif

55
/* Receipt of information from last regulatory request */
56
static struct regulatory_request *last_request;
57

58 59
/* To trigger userspace events */
static struct platform_device *reg_pdev;
60

61 62
/*
 * Central wireless core regulatory domains, we only need two,
63
 * the current one and a world regulatory domain in case we have no
64 65
 * information to give us an alpha2
 */
66
const struct ieee80211_regdomain *cfg80211_regdomain;
67

68 69
/*
 * We use this as a place for the rd structure built from the
70
 * last parsed country IE to rest until CRDA gets back to us with
71 72
 * what it thinks should apply for the same country
 */
73 74
static const struct ieee80211_regdomain *country_ie_regdomain;

75 76 77 78 79 80 81 82 83 84
/*
 * Protects static reg.c components:
 *     - cfg80211_world_regdom
 *     - cfg80211_regdom
 *     - country_ie_regdomain
 *     - last_request
 */
DEFINE_MUTEX(reg_mutex);
#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))

85
/* Used to queue up regulatory hints */
86 87 88
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

89 90 91 92 93 94 95 96 97 98 99 100
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

101 102
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
103
	.n_reg_rules = 5,
104 105
	.alpha2 =  "00",
	.reg_rules = {
106 107
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
108 109 110
		/* IEEE 802.11b/g, channels 12..13. No HT40
		 * channel fits here. */
		REG_RULE(2467-10, 2472+10, 20, 6, 20,
111 112
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
113 114 115 116 117 118 119
		/* IEEE 802.11 channel 14 - Only JP enables
		 * this and for 802.11b only */
		REG_RULE(2484-10, 2484+10, 20, 6, 20,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_NO_OFDM),
		/* IEEE 802.11a, channel 36..48 */
120
		REG_RULE(5180-10, 5240+10, 40, 6, 20,
121 122
                        NL80211_RRF_PASSIVE_SCAN |
                        NL80211_RRF_NO_IBSS),
123 124 125 126

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
127
		REG_RULE(5745-10, 5825+10, 40, 6, 20,
128 129
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
130 131 132
	}
};

133 134
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
135

136 137
static char *ieee80211_regdom = "00";

138 139 140 141 142
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

static void reset_regdomains(void)
{
143 144 145 146 147 148 149 150 151 152
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
153

154
	cfg80211_world_regdom = &world_regdom;
155 156 157
	cfg80211_regdomain = NULL;
}

158 159 160 161
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
162
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
163
{
164
	BUG_ON(!last_request);
165 166 167 168 169 170 171

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

172
bool is_world_regdom(const char *alpha2)
173 174 175 176 177 178 179
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
180

181
static bool is_alpha2_set(const char *alpha2)
182 183 184 185 186 187 188
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
189

190 191 192 193 194 195 196
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
197

198
static bool is_unknown_alpha2(const char *alpha2)
199 200 201
{
	if (!alpha2)
		return false;
202 203 204 205
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
206 207 208 209
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
210

211 212 213 214
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
215 216
	/*
	 * Special case where regulatory domain is the
217
	 * result of an intersection between two regulatory domain
218 219
	 * structures
	 */
220 221 222 223 224
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

225
static bool is_an_alpha2(const char *alpha2)
226 227 228 229 230 231 232
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
233

234
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
235 236 237 238 239 240 241 242 243
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

244
static bool regdom_changes(const char *alpha2)
245
{
246 247
	assert_cfg80211_lock();

248 249 250 251 252 253 254
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}

#ifdef CONFIG_CFG80211_INTERNAL_REGDB
struct reg_regdb_search_request {
	char alpha2[2];
	struct list_head list;
};

static LIST_HEAD(reg_regdb_search_list);
static DEFINE_SPINLOCK(reg_regdb_search_lock);

static void reg_regdb_search(struct work_struct *work)
{
	struct reg_regdb_search_request *request;
	const struct ieee80211_regdomain *curdom, *regdom;
	int i, r;

	spin_lock(&reg_regdb_search_lock);
	while (!list_empty(&reg_regdb_search_list)) {
		request = list_first_entry(&reg_regdb_search_list,
					   struct reg_regdb_search_request,
					   list);
		list_del(&request->list);

		for (i=0; i<reg_regdb_size; i++) {
			curdom = reg_regdb[i];

			if (!memcmp(request->alpha2, curdom->alpha2, 2)) {
				r = reg_copy_regd(&regdom, curdom);
				if (r)
					break;
				spin_unlock(&reg_regdb_search_lock);
				mutex_lock(&cfg80211_mutex);
				set_regdom(regdom);
				mutex_unlock(&cfg80211_mutex);
				spin_lock(&reg_regdb_search_lock);
				break;
			}
		}

		kfree(request);
	}
	spin_unlock(&reg_regdb_search_lock);
}

static DECLARE_WORK(reg_regdb_work, reg_regdb_search);

static void reg_regdb_query(const char *alpha2)
{
	struct reg_regdb_search_request *request;

	if (!alpha2)
		return;

	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
	if (!request)
		return;

	memcpy(request->alpha2, alpha2, 2);

	spin_lock(&reg_regdb_search_lock);
	list_add_tail(&request->list, &reg_regdb_search_list);
	spin_unlock(&reg_regdb_search_lock);

	schedule_work(&reg_regdb_work);
}
#else
static inline void reg_regdb_query(const char *alpha2) {}
#endif /* CONFIG_CFG80211_INTERNAL_REGDB */

366 367 368 369
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

385 386 387
	/* query internal regulatory database (if it exists) */
	reg_regdb_query(alpha2);

388 389 390 391 392 393 394
	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
395
bool reg_is_valid_request(const char *alpha2)
396
{
397 398
	assert_cfg80211_lock();

399 400 401 402
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
403
}
404

405
/* Sanity check on a regulatory rule */
406
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
407
{
408
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
409 410
	u32 freq_diff;

411
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
412 413 414 415 416 417 418
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

419 420
	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
			freq_range->max_bandwidth_khz > freq_diff)
421 422 423 424 425
		return false;

	return true;
}

426
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
427
{
428
	const struct ieee80211_reg_rule *reg_rule = NULL;
429
	unsigned int i;
430

431 432
	if (!rd->n_reg_rules)
		return false;
433

434 435 436
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

437 438 439 440 441 442 443
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
444 445
}

446 447 448
static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
			    u32 center_freq_khz,
			    u32 bw_khz)
449
{
450 451 452 453 454 455 456 457 458 459
	u32 start_freq_khz, end_freq_khz;

	start_freq_khz = center_freq_khz - (bw_khz/2);
	end_freq_khz = center_freq_khz + (bw_khz/2);

	if (start_freq_khz >= freq_range->start_freq_khz &&
	    end_freq_khz <= freq_range->end_freq_khz)
		return true;

	return false;
460
}
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
/*
 * This is a work around for sanity checking ieee80211_channel_to_frequency()'s
 * work. ieee80211_channel_to_frequency() can for example currently provide a
 * 2 GHz channel when in fact a 5 GHz channel was desired. An example would be
 * an AP providing channel 8 on a country IE triplet when it sent this on the
 * 5 GHz band, that channel is designed to be channel 8 on 5 GHz, not a 2 GHz
 * channel.
 *
 * This can be removed once ieee80211_channel_to_frequency() takes in a band.
 */
static bool chan_in_band(int chan, enum ieee80211_band band)
{
	int center_freq = ieee80211_channel_to_frequency(chan);

	switch (band) {
	case IEEE80211_BAND_2GHZ:
		if (center_freq <= 2484)
			return true;
		return false;
	case IEEE80211_BAND_5GHZ:
		if (center_freq >= 5005)
			return true;
		return false;
	default:
		return false;
	}
}

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
/*
 * Some APs may send a country IE triplet for each channel they
 * support and while this is completely overkill and silly we still
 * need to support it. We avoid making a single rule for each channel
 * though and to help us with this we use this helper to find the
 * actual subband end channel. These type of country IE triplet
 * scenerios are handled then, all yielding two regulaotry rules from
 * parsing a country IE:
 *
 * [1]
 * [2]
 * [36]
 * [40]
 *
 * [1]
 * [2-4]
 * [5-12]
 * [36]
 * [40-44]
 *
 * [1-4]
 * [5-7]
 * [36-44]
 * [48-64]
 *
 * [36-36]
 * [40-40]
 * [44-44]
 * [48-48]
 * [52-52]
 * [56-56]
 * [60-60]
 * [64-64]
 * [100-100]
 * [104-104]
 * [108-108]
 * [112-112]
 * [116-116]
 * [120-120]
 * [124-124]
 * [128-128]
 * [132-132]
 * [136-136]
 * [140-140]
 *
 * Returns 0 if the IE has been found to be invalid in the middle
 * somewhere.
 */
563 564
static int max_subband_chan(enum ieee80211_band band,
			    int orig_cur_chan,
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
			    int orig_end_channel,
			    s8 orig_max_power,
			    u8 **country_ie,
			    u8 *country_ie_len)
{
	u8 *triplets_start = *country_ie;
	u8 len_at_triplet = *country_ie_len;
	int end_subband_chan = orig_end_channel;

	/*
	 * We'll deal with padding for the caller unless
	 * its not immediate and we don't process any channels
	 */
	if (*country_ie_len == 1) {
		*country_ie += 1;
		*country_ie_len -= 1;
		return orig_end_channel;
	}

	/* Move to the next triplet and then start search */
	*country_ie += 3;
	*country_ie_len -= 3;

588 589
	if (!chan_in_band(orig_cur_chan, band))
		return 0;
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

	while (*country_ie_len >= 3) {
		int end_channel = 0;
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) *country_ie;
		int cur_channel = 0, next_expected_chan;

		/* means last triplet is completely unrelated to this one */
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		if (triplet->chans.first_channel == 0) {
			*country_ie += 1;
			*country_ie_len -= 1;
			if (*country_ie_len != 0)
				return 0;
			break;
		}

613 614 615
		if (triplet->chans.num_channels == 0)
			return 0;

616 617 618 619
		/* Monitonically increasing channel order */
		if (triplet->chans.first_channel <= end_subband_chan)
			return 0;

620 621 622
		if (!chan_in_band(triplet->chans.first_channel, band))
			return 0;

623 624 625 626 627 628 629 630 631 632
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14) {
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels - 1;
		}
		else {
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));
		}

633 634
		if (!chan_in_band(end_channel, band))
			return 0;
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

		if (orig_max_power != triplet->chans.max_power) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		cur_channel = triplet->chans.first_channel;

		/* The key is finding the right next expected channel */
		if (band == IEEE80211_BAND_2GHZ)
			next_expected_chan = end_subband_chan + 1;
		 else
			next_expected_chan = end_subband_chan + 4;

		if (cur_channel != next_expected_chan) {
			*country_ie -= 3;
			*country_ie_len += 3;
			break;
		}

		end_subband_chan = end_channel;

		/* Move to the next one */
		*country_ie += 3;
		*country_ie_len -= 3;

		/*
		 * Padding needs to be dealt with if we processed
		 * some channels.
		 */
		if (*country_ie_len == 1) {
			*country_ie += 1;
			*country_ie_len -= 1;
			break;
		}

		/* If seen, the IE is invalid */
		if (*country_ie_len == 2)
			return 0;
	}

	if (end_subband_chan == orig_end_channel) {
		*country_ie = triplets_start;
		*country_ie_len = len_at_triplet;
		return orig_end_channel;
	}

	return end_subband_chan;
}

686 687
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
688 689
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
690 691
 * with our userspace regulatory agent to get lower bounds.
 */
692
static struct ieee80211_regdomain *country_ie_2_rd(
693
				enum ieee80211_band band,
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

737 738
	/*
	 * We need to build a reg rule for each triplet, but first we must
739
	 * calculate the number of reg rules we will need. We will need one
740 741
	 * for each channel subband
	 */
742
	while (country_ie_len >= 3) {
743
		int end_channel = 0;
744 745 746 747 748 749 750 751 752 753 754
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

755 756 757 758 759 760 761 762 763 764 765 766 767
		/*
		 * APs can add padding to make length divisible
		 * by two, required by the spec.
		 */
		if (triplet->chans.first_channel == 0) {
			country_ie++;
			country_ie_len--;
			/* This is expected to be at the very end only */
			if (country_ie_len != 0)
				return NULL;
			break;
		}

768 769 770
		if (triplet->chans.num_channels == 0)
			return NULL;

771 772 773
		if (!chan_in_band(triplet->chans.first_channel, band))
			return NULL;

774
		/* 2 GHz */
775
		if (band == IEEE80211_BAND_2GHZ)
776
			end_channel = triplet->chans.first_channel +
777
				triplet->chans.num_channels - 1;
778 779 780 781 782 783 784 785 786 787 788 789 790
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

791
		cur_channel = triplet->chans.first_channel;
792 793 794 795 796 797

		/*
		 * Enhancement for APs that send a triplet for every channel
		 * or for whatever reason sends triplets with multiple channels
		 * separated when in fact they should be together.
		 */
798 799
		end_channel = max_subband_chan(band,
					       cur_channel,
800 801 802 803 804 805 806
					       end_channel,
					       triplet->chans.max_power,
					       &country_ie,
					       &country_ie_len);
		if (!end_channel)
			return NULL;

807 808 809
		if (!chan_in_band(end_channel, band))
			return NULL;

810
		cur_sub_max_channel = end_channel;
811 812 813 814 815

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

816 817
		/*
		 * Do not allow overlapping channels. Also channels
818
		 * passed in each subband must be monotonically
819 820
		 * increasing
		 */
821 822 823 824 825 826 827
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

828 829
		/*
		 * When dot11RegulatoryClassesRequired is supported
830 831
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
832 833
		 * don't support them
		 */
834 835 836 837 838 839 840 841
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		num_rules++;

842 843 844 845 846
		if (country_ie_len >= 3) {
			country_ie += 3;
			country_ie_len -= 3;
		}

847 848 849 850
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
871
		int end_channel = 0;
872 873 874 875 876 877
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

878 879 880 881
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
882 883 884 885 886 887 888
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

889 890 891 892 893 894
		if (triplet->chans.first_channel == 0) {
			country_ie++;
			country_ie_len--;
			break;
		}

895 896 897 898 899 900
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

901
		/* 2 GHz */
902
		if (band == IEEE80211_BAND_2GHZ)
903
			end_channel = triplet->chans.first_channel +
904
				triplet->chans.num_channels -1;
905 906 907 908
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

909 910
		end_channel = max_subband_chan(band,
					       triplet->chans.first_channel,
911 912 913 914 915
					       end_channel,
					       triplet->chans.max_power,
					       &country_ie,
					       &country_ie_len);

916 917
		/*
		 * The +10 is since the regulatory domain expects
918 919
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
920 921
		 * the channels passed
		 */
922 923 924 925 926
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
927
				end_channel) + 10);
928

929 930 931 932 933
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
934 935
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
936
		power_rule->max_eirp = DBM_TO_MBM(triplet->chans.max_power);
937 938 939

		i++;

940 941 942 943 944
		if (country_ie_len >= 3) {
			country_ie += 3;
			country_ie_len -= 3;
		}

945 946 947 948 949 950 951
		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


952 953 954 955
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

1033 1034
	/*
	 * First we get a count of the rules we'll need, then we actually
1035 1036 1037
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
1038 1039
	 * All rules that do check out OK are valid.
	 */
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
1067 1068
			/*
			 * This time around instead of using the stack lets
1069
			 * write to the target rule directly saving ourselves
1070 1071
			 * a memcpy()
			 */
1072 1073 1074
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
1075 1076 1077 1078
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

1097 1098 1099 1100
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

1113 1114
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
1115
			      u32 desired_bw_khz,
1116 1117
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
1118 1119
{
	int i;
1120
	bool band_rule_found = false;
1121
	const struct ieee80211_regdomain *regd;
1122 1123 1124 1125
	bool bw_fits = false;

	if (!desired_bw_khz)
		desired_bw_khz = MHZ_TO_KHZ(20);
1126

1127
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
1128

1129 1130 1131 1132
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
1133 1134
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
1135 1136 1137 1138
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
1139 1140
		return -EINVAL;

1141
	for (i = 0; i < regd->n_reg_rules; i++) {
1142 1143 1144 1145
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

1146
		rr = &regd->reg_rules[i];
1147 1148
		fr = &rr->freq_range;
		pr = &rr->power_rule;
1149

1150 1151
		/*
		 * We only need to know if one frequency rule was
1152
		 * was in center_freq's band, that's enough, so lets
1153 1154
		 * not overwrite it once found
		 */
1155 1156 1157
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

1158 1159 1160
		bw_fits = reg_does_bw_fit(fr,
					  center_freq,
					  desired_bw_khz);
1161

1162
		if (band_rule_found && bw_fits) {
1163
			*reg_rule = rr;
1164
			return 0;
1165 1166 1167
		}
	}

1168 1169 1170
	if (!band_rule_found)
		return -ERANGE;

1171
	return -EINVAL;
1172
}
1173
EXPORT_SYMBOL(freq_reg_info);
1174

1175 1176 1177 1178
int freq_reg_info(struct wiphy *wiphy,
		  u32 center_freq,
		  u32 desired_bw_khz,
		  const struct ieee80211_reg_rule **reg_rule)
1179
{
1180
	assert_cfg80211_lock();
1181 1182 1183 1184 1185
	return freq_reg_info_regd(wiphy,
				  center_freq,
				  desired_bw_khz,
				  reg_rule,
				  NULL);
1186
}
1187

1188 1189 1190 1191 1192 1193 1194 1195 1196
/*
 * Note that right now we assume the desired channel bandwidth
 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
 * per channel, the primary and the extension channel). To support
 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
 * new ieee80211_channel.target_bw and re run the regulatory check
 * on the wiphy with the target_bw specified. Then we can simply use
 * that below for the desired_bw_khz below.
 */
1197 1198
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
1199 1200
{
	int r;
1201 1202
	u32 flags, bw_flags = 0;
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
1203 1204
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1205
	const struct ieee80211_freq_range *freq_range = NULL;
1206 1207
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1208
	struct wiphy *request_wiphy = NULL;
1209

1210 1211
	assert_cfg80211_lock();

1212 1213
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1214 1215 1216 1217 1218
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
1219

1220 1221 1222 1223
	r = freq_reg_info(wiphy,
			  MHZ_TO_KHZ(chan->center_freq),
			  desired_bw_khz,
			  &reg_rule);
1224 1225

	if (r) {
1226 1227
		/*
		 * This means no regulatory rule was found in the country IE
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
1238 1239
		    last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1240
			REG_DBG_PRINT("cfg80211: Leaving channel %d MHz "
1241 1242
				"intact on %s - no rule found in band on "
				"Country IE\n",
1243
			chan->center_freq, wiphy_name(wiphy));
1244
		} else {
1245 1246 1247 1248
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
1249 1250
			if (last_request->initiator ==
			    NL80211_REGDOM_SET_BY_COUNTRY_IE)
1251
				REG_DBG_PRINT("cfg80211: Disabling "
1252 1253 1254 1255 1256 1257
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
1258 1259 1260
		return;
	}

1261
	power_rule = &reg_rule->power_rule;
1262 1263 1264 1265
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1266

1267
	if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1268
	    request_wiphy && request_wiphy == wiphy &&
J
Johannes Berg 已提交
1269
	    request_wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY) {
1270 1271
		/*
		 * This gaurantees the driver's requested regulatory domain
1272
		 * will always be used as a base for further regulatory
1273 1274
		 * settings
		 */
1275
		chan->flags = chan->orig_flags =
1276
			map_regdom_flags(reg_rule->flags) | bw_flags;
1277 1278 1279 1280 1281 1282 1283
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

1284
	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1285
	chan->max_antenna_gain = min(chan->orig_mag,
1286
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
1287
	if (chan->orig_mpwr)
1288 1289
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
1290
	else
1291
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1292 1293
}

1294
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
1295
{
1296 1297 1298 1299 1300
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
1301 1302

	for (i = 0; i < sband->n_channels; i++)
1303
		handle_channel(wiphy, band, i);
1304 1305
}

1306 1307
static bool ignore_reg_update(struct wiphy *wiphy,
			      enum nl80211_reg_initiator initiator)
1308 1309 1310
{
	if (!last_request)
		return true;
1311
	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
J
Johannes Berg 已提交
1312
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1313
		return true;
1314 1315 1316 1317
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
J
Johannes Berg 已提交
1318
	if (wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY && !wiphy->regd &&
1319
	    !is_world_regdom(last_request->alpha2))
1320 1321 1322 1323
		return true;
	return false;
}

1324
static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1325
{
1326
	struct cfg80211_registered_device *rdev;
1327

1328 1329
	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
		wiphy_update_regulatory(&rdev->wiphy, initiator);
1330 1331
}

1332 1333 1334 1335 1336 1337
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
1338 1339
	bool channel_changed = false;
	struct ieee80211_channel chan_before;
1340 1341 1342 1343 1344 1345 1346 1347 1348

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

1349 1350 1351 1352 1353
	if (chan->beacon_found)
		return;

	chan->beacon_found = true;

J
Johannes Berg 已提交
1354
	if (wiphy->flags & WIPHY_FLAG_DISABLE_BEACON_HINTS)
1355 1356
		return;

1357 1358 1359
	chan_before.center_freq = chan->center_freq;
	chan_before.flags = chan->flags;

1360
	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
1361
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
1362
		channel_changed = true;
1363 1364
	}

1365
	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
1366
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
1367
		channel_changed = true;
1368 1369
	}

1370 1371
	if (channel_changed)
		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
1423 1424
	if (last_request &&
	    last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
J
Johannes Berg 已提交
1425
	    wiphy->flags & WIPHY_FLAG_CUSTOM_REGULATORY)
1426 1427 1428 1429 1430 1431 1432
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
1433 1434 1435 1436 1437 1438
	/*
	 * Means we are just firing up cfg80211, so no beacons would
	 * have been processed yet.
	 */
	if (!last_request)
		return;
1439 1440 1441 1442 1443
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
{
	if (!chan)
		return true;
	if (chan->flags & IEEE80211_CHAN_DISABLED)
		return true;
	/* This would happen when regulatory rules disallow HT40 completely */
	if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
		return true;
	return false;
}

static void reg_process_ht_flags_channel(struct wiphy *wiphy,
					 enum ieee80211_band band,
					 unsigned int chan_idx)
{
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *channel;
	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
	unsigned int i;

	assert_cfg80211_lock();

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	channel = &sband->channels[chan_idx];

	if (is_ht40_not_allowed(channel)) {
		channel->flags |= IEEE80211_CHAN_NO_HT40;
		return;
	}

	/*
	 * We need to ensure the extension channels exist to
	 * be able to use HT40- or HT40+, this finds them (or not)
	 */
	for (i = 0; i < sband->n_channels; i++) {
		struct ieee80211_channel *c = &sband->channels[i];
		if (c->center_freq == (channel->center_freq - 20))
			channel_before = c;
		if (c->center_freq == (channel->center_freq + 20))
			channel_after = c;
	}

	/*
	 * Please note that this assumes target bandwidth is 20 MHz,
	 * if that ever changes we also need to change the below logic
	 * to include that as well.
	 */
	if (is_ht40_not_allowed(channel_before))
1494
		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1495
	else
1496
		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1497 1498

	if (is_ht40_not_allowed(channel_after))
1499
		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1500
	else
1501
		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
}

static void reg_process_ht_flags_band(struct wiphy *wiphy,
				      enum ieee80211_band band)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		reg_process_ht_flags_channel(wiphy, band, i);
}

static void reg_process_ht_flags(struct wiphy *wiphy)
{
	enum ieee80211_band band;

	if (!wiphy)
		return;

	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			reg_process_ht_flags_band(wiphy, band);
	}

}

1531 1532
void wiphy_update_regulatory(struct wiphy *wiphy,
			     enum nl80211_reg_initiator initiator)
1533 1534
{
	enum ieee80211_band band;
1535

1536
	if (ignore_reg_update(wiphy, initiator))
1537
		goto out;
1538
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1539
		if (wiphy->bands[band])
1540
			handle_band(wiphy, band);
1541
	}
1542 1543
out:
	reg_process_beacons(wiphy);
1544
	reg_process_ht_flags(wiphy);
1545
	if (wiphy->reg_notifier)
1546
		wiphy->reg_notifier(wiphy, last_request);
1547 1548
}

1549 1550 1551 1552 1553 1554
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
1555 1556
	u32 desired_bw_khz = MHZ_TO_KHZ(20);
	u32 bw_flags = 0;
1557 1558
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1559
	const struct ieee80211_freq_range *freq_range = NULL;
1560 1561 1562
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

1563
	assert_reg_lock();
1564

1565 1566 1567 1568
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

1569 1570 1571 1572 1573
	r = freq_reg_info_regd(wiphy,
			       MHZ_TO_KHZ(chan->center_freq),
			       desired_bw_khz,
			       &reg_rule,
			       regd);
1574 1575 1576 1577 1578 1579 1580

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;
1581 1582 1583 1584
	freq_range = &reg_rule->freq_range;

	if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
		bw_flags = IEEE80211_CHAN_NO_HT40;
1585

1586
	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
1609
	unsigned int bands_set = 0;
1610

1611
	mutex_lock(&reg_mutex);
1612
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1613 1614 1615 1616
		if (!wiphy->bands[band])
			continue;
		handle_band_custom(wiphy, band, regd);
		bands_set++;
1617
	}
1618
	mutex_unlock(&reg_mutex);
1619 1620 1621 1622 1623 1624

	/*
	 * no point in calling this if it won't have any effect
	 * on your device's supportd bands.
	 */
	WARN_ON(!bands_set);
1625
}
1626 1627
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1628 1629 1630 1631
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1632 1633
#define REG_INTERSECT	1

1634 1635
/* This has the logic which determines when a new request
 * should be ignored. */
1636 1637
static int ignore_request(struct wiphy *wiphy,
			  struct regulatory_request *pending_request)
1638
{
1639
	struct wiphy *last_wiphy = NULL;
1640 1641 1642

	assert_cfg80211_lock();

1643 1644 1645 1646
	/* All initial requests are respected */
	if (!last_request)
		return 0;

1647
	switch (pending_request->initiator) {
1648
	case NL80211_REGDOM_SET_BY_CORE:
1649
		return -EINVAL;
1650
	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1651 1652 1653

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1654
		if (unlikely(!is_an_alpha2(pending_request->alpha2)))
1655
			return -EINVAL;
1656 1657
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
1658
			if (last_wiphy != wiphy) {
1659 1660
				/*
				 * Two cards with two APs claiming different
1661
				 * Country IE alpha2s. We could
1662 1663 1664
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1665
				if (regdom_changes(pending_request->alpha2))
1666 1667 1668
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1669 1670 1671 1672
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1673
			if (WARN_ON(regdom_changes(pending_request->alpha2)))
1674 1675 1676
				return 0;
			return -EALREADY;
		}
1677
		return REG_INTERSECT;
1678 1679
	case NL80211_REGDOM_SET_BY_DRIVER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
1680
			if (regdom_changes(pending_request->alpha2))
1681
				return 0;
1682
			return -EALREADY;
1683
		}
1684 1685 1686 1687 1688 1689

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
1690
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1691
		    !regdom_changes(pending_request->alpha2))
1692 1693
			return -EALREADY;

1694
		return REG_INTERSECT;
1695 1696
	case NL80211_REGDOM_SET_BY_USER:
		if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1697
			return REG_INTERSECT;
1698 1699 1700 1701
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1702
		if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
1703 1704
			  last_request->intersect)
			return -EOPNOTSUPP;
1705 1706 1707 1708
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1709 1710 1711
		if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
1712
			if (regdom_changes(last_request->alpha2))
1713 1714 1715
				return -EAGAIN;
		}

1716
		if (!regdom_changes(pending_request->alpha2))
1717 1718
			return -EALREADY;

1719 1720 1721 1722 1723 1724
		return 0;
	}

	return -EINVAL;
}

1725 1726 1727 1728
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
1729
 * @pending_request: the regulatory request currently being processed
1730 1731
 *
 * The Wireless subsystem can use this function to hint to the wireless core
1732
 * what it believes should be the current regulatory domain.
1733 1734 1735 1736
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
1737
 * Caller must hold &cfg80211_mutex and &reg_mutex
1738
 */
1739 1740
static int __regulatory_hint(struct wiphy *wiphy,
			     struct regulatory_request *pending_request)
1741
{
1742
	bool intersect = false;
1743 1744
	int r = 0;

1745 1746
	assert_cfg80211_lock();

1747
	r = ignore_request(wiphy, pending_request);
1748

1749
	if (r == REG_INTERSECT) {
1750 1751
		if (pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1752
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1753 1754
			if (r) {
				kfree(pending_request);
1755
				return r;
1756
			}
1757
		}
1758
		intersect = true;
1759
	} else if (r) {
1760 1761
		/*
		 * If the regulatory domain being requested by the
1762
		 * driver has already been set just copy it to the
1763 1764
		 * wiphy
		 */
1765
		if (r == -EALREADY &&
1766 1767
		    pending_request->initiator ==
		    NL80211_REGDOM_SET_BY_DRIVER) {
1768
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1769 1770
			if (r) {
				kfree(pending_request);
1771
				return r;
1772
			}
1773 1774 1775
			r = -EALREADY;
			goto new_request;
		}
1776
		kfree(pending_request);
1777
		return r;
1778
	}
1779

1780
new_request:
1781
	kfree(last_request);
1782

1783 1784
	last_request = pending_request;
	last_request->intersect = intersect;
1785

1786
	pending_request = NULL;
1787 1788

	/* When r == REG_INTERSECT we do need to call CRDA */
1789 1790 1791 1792 1793 1794 1795 1796
	if (r < 0) {
		/*
		 * Since CRDA will not be called in this case as we already
		 * have applied the requested regulatory domain before we just
		 * inform userspace we have processed the request
		 */
		if (r == -EALREADY)
			nl80211_send_reg_change_event(last_request);
1797
		return r;
1798
	}
1799

1800
	return call_crda(last_request->alpha2);
1801 1802
}

1803
/* This processes *all* regulatory hints */
1804
static void reg_process_hint(struct regulatory_request *reg_request)
1805 1806 1807 1808 1809 1810 1811
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);
1812
	mutex_lock(&reg_mutex);
1813 1814 1815 1816

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

1817
	if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1818
	    !wiphy) {
1819
		kfree(reg_request);
1820 1821 1822
		goto out;
	}

1823
	r = __regulatory_hint(wiphy, reg_request);
1824
	/* This is required so that the orig_* parameters are saved */
J
Johannes Berg 已提交
1825 1826
	if (r == -EALREADY && wiphy &&
	    wiphy->flags & WIPHY_FLAG_STRICT_REGULATORY)
1827 1828
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
1829
	mutex_unlock(&reg_mutex);
1830 1831 1832
	mutex_unlock(&cfg80211_mutex);
}

1833
/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);

1845 1846
		spin_unlock(&reg_requests_lock);
		reg_process_hint(reg_request);
1847 1848 1849 1850 1851
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1852 1853 1854
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
1855
	struct cfg80211_registered_device *rdev;
1856 1857
	struct reg_beacon *pending_beacon, *tmp;

1858 1859 1860 1861
	/*
	 * No need to hold the reg_mutex here as we just touch wiphys
	 * and do not read or access regulatory variables.
	 */
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
1878 1879
		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1890 1891 1892
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1893
	reg_process_pending_beacon_hints();
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1921
	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1922

1923 1924 1925 1926 1927
	/*
	 * This ensures last_request is populated once modules
	 * come swinging in and calling regulatory hints and
	 * wiphy_apply_custom_regulatory().
	 */
1928
	reg_process_hint(request);
1929

1930
	return 0;
1931 1932
}

1933 1934
/* User hints */
int regulatory_hint_user(const char *alpha2)
1935
{
1936 1937
	struct regulatory_request *request;

1938
	BUG_ON(!alpha2);
1939

1940 1941 1942 1943 1944 1945 1946
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1947
	request->initiator = NL80211_REGDOM_SET_BY_USER;
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
1973
	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
1974 1975 1976 1977

	queue_regulatory_request(request);

	return 0;
1978 1979 1980
}
EXPORT_SYMBOL(regulatory_hint);

1981
/* Caller must hold reg_mutex */
1982 1983 1984
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1985 1986
	struct wiphy *request_wiphy;

1987
	assert_reg_lock();
1988

1989 1990 1991 1992
	if (unlikely(last_request->initiator !=
	    NL80211_REGDOM_SET_BY_COUNTRY_IE))
		return false;

1993 1994 1995
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1996
		return false;
1997 1998

	if (likely(request_wiphy != wiphy))
1999
		return !country_ie_integrity_changes(country_ie_checksum);
2000 2001
	/*
	 * We should not have let these through at this point, they
2002
	 * should have been picked up earlier by the first alpha2 check
2003 2004
	 * on the device
	 */
2005 2006 2007 2008 2009
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

2010 2011 2012 2013
/*
 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
 * therefore cannot iterate over the rdev list here.
 */
2014
void regulatory_hint_11d(struct wiphy *wiphy,
2015 2016 2017
			 enum ieee80211_band band,
			 u8 *country_ie,
			 u8 country_ie_len)
2018 2019 2020 2021 2022
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
2023
	struct regulatory_request *request;
2024

2025
	mutex_lock(&reg_mutex);
2026

2027 2028
	if (unlikely(!last_request))
		goto out;
2029

2030 2031 2032 2033 2034 2035 2036
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

2037 2038
	/*
	 * Pending country IE processing, this can happen after we
2039
	 * call CRDA and wait for a response if a beacon was received before
2040 2041
	 * we were able to process the last regulatory_hint_11d() call
	 */
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

2053
	/*
2054
	 * We will run this only upon a successful connection on cfg80211.
2055 2056
	 * We leave conflict resolution to the workqueue, where can hold
	 * cfg80211_mutex.
2057
	 */
2058 2059
	if (likely(last_request->initiator ==
	    NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2060 2061
	    wiphy_idx_valid(last_request->wiphy_idx)))
		goto out;
2062

2063
	rd = country_ie_2_rd(band, country_ie, country_ie_len, &checksum);
2064 2065
	if (!rd) {
		REG_DBG_PRINT("cfg80211: Ignoring bogus country IE\n");
2066
		goto out;
2067
	}
2068

2069 2070
	/*
	 * This will not happen right now but we leave it here for the
2071 2072
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
2073 2074 2075 2076 2077 2078
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
2079
		goto free_rd_out;
2080

2081 2082 2083 2084
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

2085 2086 2087 2088
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
2089 2090
	country_ie_regdomain = rd;

2091 2092 2093
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
2094
	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2095 2096 2097
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

2098
	mutex_unlock(&reg_mutex);
2099

2100 2101 2102
	queue_regulatory_request(request);

	return;
2103 2104 2105

free_rd_out:
	kfree(rd);
2106
out:
2107
	mutex_unlock(&reg_mutex);
2108
}
2109

2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

2135 2136 2137 2138 2139 2140
	REG_DBG_PRINT("cfg80211: Found new beacon on "
		      "frequency: %d MHz (Ch %d) on %s\n",
		      beacon_chan->center_freq,
		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
		      wiphy_name(wiphy));

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

2158
static void print_rd_rules(const struct ieee80211_regdomain *rd)
2159 2160
{
	unsigned int i;
2161 2162 2163
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
2164

2165
	printk(KERN_INFO "    (start_freq - end_freq @ bandwidth), "
2166 2167 2168 2169 2170 2171 2172
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

2173 2174 2175 2176
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
2177
		if (power_rule->max_antenna_gain)
2178
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2179 2180 2181 2182 2183 2184 2185
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
2186
			printk(KERN_INFO "    (%d KHz - %d KHz @ %d KHz), "
2187 2188 2189 2190 2191 2192 2193 2194
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

2195
static void print_regdomain(const struct ieee80211_regdomain *rd)
2196 2197
{

2198 2199
	if (is_intersected_alpha2(rd->alpha2)) {

2200 2201
		if (last_request->initiator ==
		    NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2202 2203
			struct cfg80211_registered_device *rdev;
			rdev = cfg80211_rdev_by_wiphy_idx(
2204
				last_request->wiphy_idx);
2205
			if (rdev) {
2206 2207
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
2208 2209
					rdev->country_ie_alpha2[0],
					rdev->country_ie_alpha2[1]);
2210 2211 2212 2213 2214
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
2215
					"domain intersected: \n");
2216
	} else if (is_world_regdom(rd->alpha2))
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

2232
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2233 2234 2235 2236 2237 2238
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
2252
		print_regdomain_info(intersected_rd);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

2266
/* Takes ownership of rd only if it doesn't fail */
2267
static int __set_regdom(const struct ieee80211_regdomain *rd)
2268
{
2269
	const struct ieee80211_regdomain *intersected_rd = NULL;
2270
	struct cfg80211_registered_device *rdev = NULL;
2271
	struct wiphy *request_wiphy;
2272 2273 2274
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
2275
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2276 2277 2278 2279 2280 2281 2282 2283 2284
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

2285
	if (!last_request)
2286 2287
		return -EINVAL;

2288 2289
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
2290
	 * rd is non static (it means CRDA was present and was used last)
2291 2292
	 * and the pending request came in from a country IE
	 */
2293
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2294 2295 2296 2297
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
2298
		if (!regdom_changes(rd->alpha2))
2299 2300 2301
			return -EINVAL;
	}

2302 2303
	/*
	 * Now lets set the regulatory domain, update all driver channels
2304 2305
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
2306 2307
	 * internal EEPROM data
	 */
2308

2309
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
2310 2311
		return -EINVAL;

2312 2313 2314 2315 2316
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
2317 2318
	}

2319 2320
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2321
	if (!last_request->intersect) {
2322 2323
		int r;

2324
		if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
2325 2326 2327 2328 2329
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

2330 2331 2332 2333
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
2334

2335 2336 2337 2338 2339 2340
		/*
		 * Userspace could have sent two replies with only
		 * one kernel request.
		 */
		if (request_wiphy->regd)
			return -EALREADY;
2341

2342
		r = reg_copy_regd(&request_wiphy->regd, rd);
2343 2344 2345
		if (r)
			return r;

2346 2347 2348 2349 2350 2351 2352
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

2353
	if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2354

2355 2356 2357
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2358

2359 2360
		/*
		 * We can trash what CRDA provided now.
2361
		 * However if a driver requested this specific regulatory
2362 2363
		 * domain we keep it for its private use
		 */
2364
		if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
2365
			request_wiphy->regd = rd;
2366 2367 2368
		else
			kfree(rd);

2369 2370 2371 2372 2373 2374
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2375 2376
	}

2377 2378 2379 2380 2381
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

2382 2383 2384 2385 2386 2387 2388
	/*
	 * Userspace could have sent two replies with only
	 * one kernel request. By the second reply we would have
	 * already processed and consumed the country_ie_regdomain.
	 */
	if (!country_ie_regdomain)
		return -EALREADY;
2389
	BUG_ON(rd == country_ie_regdomain);
2390

2391 2392 2393 2394
	/*
	 * Intersect what CRDA returned and our what we
	 * had built from the Country IE received
	 */
2395

2396
	intersected_rd = regdom_intersect(rd, country_ie_regdomain);
2397

2398 2399 2400
	reg_country_ie_process_debug(rd,
				     country_ie_regdomain,
				     intersected_rd);
2401

2402 2403
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;
2404 2405 2406 2407

	if (!intersected_rd)
		return -EINVAL;

2408
	rdev = wiphy_to_dev(request_wiphy);
2409

2410 2411 2412
	rdev->country_ie_alpha2[0] = rd->alpha2[0];
	rdev->country_ie_alpha2[1] = rd->alpha2[1];
	rdev->env = last_request->country_ie_env;
2413 2414 2415 2416 2417 2418

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2419
	reset_regdomains();
2420
	cfg80211_regdomain = intersected_rd;
2421 2422 2423 2424 2425

	return 0;
}


2426 2427
/*
 * Use this call to set the current regulatory domain. Conflicts with
2428
 * multiple drivers can be ironed out later. Caller must've already
2429 2430
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2431
int set_regdom(const struct ieee80211_regdomain *rd)
2432 2433 2434
{
	int r;

2435 2436
	assert_cfg80211_lock();

2437 2438
	mutex_lock(&reg_mutex);

2439 2440
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2441 2442
	if (r) {
		kfree(rd);
2443
		mutex_unlock(&reg_mutex);
2444
		return r;
2445
	}
2446 2447

	/* This would make this whole thing pointless */
2448 2449
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2450 2451

	/* update all wiphys now with the new established regulatory domain */
2452
	update_all_wiphy_regulatory(last_request->initiator);
2453

2454
	print_regdomain(cfg80211_regdomain);
2455

2456 2457
	nl80211_send_reg_change_event(last_request);

2458 2459
	mutex_unlock(&reg_mutex);

2460 2461 2462
	return r;
}

2463
/* Caller must hold cfg80211_mutex */
2464 2465
void reg_device_remove(struct wiphy *wiphy)
{
2466
	struct wiphy *request_wiphy = NULL;
2467

2468 2469
	assert_cfg80211_lock();

2470 2471
	mutex_lock(&reg_mutex);

2472 2473
	kfree(wiphy->regd);

2474 2475
	if (last_request)
		request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2476

2477
	if (!request_wiphy || request_wiphy != wiphy)
2478
		goto out;
2479

2480
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2481
	last_request->country_ie_env = ENVIRON_ANY;
2482 2483
out:
	mutex_unlock(&reg_mutex);
2484 2485
}

2486 2487
int regulatory_init(void)
{
2488
	int err = 0;
2489

2490 2491 2492
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2493

2494
	spin_lock_init(&reg_requests_lock);
2495
	spin_lock_init(&reg_pending_beacons_lock);
2496

2497
	cfg80211_regdomain = cfg80211_world_regdom;
2498

2499 2500
	/* We always try to get an update for the static regdomain */
	err = regulatory_hint_core(cfg80211_regdomain->alpha2);
2501
	if (err) {
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2516
#endif
2517
	}
2518

2519 2520 2521 2522 2523 2524 2525
	/*
	 * Finally, if the user set the module parameter treat it
	 * as a user hint.
	 */
	if (!is_world_regdom(ieee80211_regdom))
		regulatory_hint_user(ieee80211_regdom);

2526 2527 2528 2529 2530
	return 0;
}

void regulatory_exit(void)
{
2531
	struct regulatory_request *reg_request, *tmp;
2532
	struct reg_beacon *reg_beacon, *btmp;
2533 2534 2535

	cancel_work_sync(&reg_work);

2536
	mutex_lock(&cfg80211_mutex);
2537
	mutex_lock(&reg_mutex);
2538

2539
	reset_regdomains();
2540

2541 2542 2543
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2544 2545
	kfree(last_request);

2546
	platform_device_unregister(reg_pdev);
2547

2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2576
	mutex_unlock(&reg_mutex);
2577
	mutex_unlock(&cfg80211_mutex);
2578
}