reg.c 57.9 KB
Newer Older
1 2 3 4
/*
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005-2006, Devicescape Software, Inc.
 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5
 * Copyright 2008	Luis R. Rodriguez <lrodriguz@atheros.com>
6 7 8 9 10 11
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

12 13
/**
 * DOC: Wireless regulatory infrastructure
14 15 16 17 18 19
 *
 * The usual implementation is for a driver to read a device EEPROM to
 * determine which regulatory domain it should be operating under, then
 * looking up the allowable channels in a driver-local table and finally
 * registering those channels in the wiphy structure.
 *
20 21 22 23 24 25 26 27 28 29 30 31 32 33
 * Another set of compliance enforcement is for drivers to use their
 * own compliance limits which can be stored on the EEPROM. The host
 * driver or firmware may ensure these are used.
 *
 * In addition to all this we provide an extra layer of regulatory
 * conformance. For drivers which do not have any regulatory
 * information CRDA provides the complete regulatory solution.
 * For others it provides a community effort on further restrictions
 * to enhance compliance.
 *
 * Note: When number of rules --> infinity we will not be able to
 * index on alpha2 any more, instead we'll probably have to
 * rely on some SHA1 checksum of the regdomain for example.
 *
34 35
 */
#include <linux/kernel.h>
36 37 38 39
#include <linux/list.h>
#include <linux/random.h>
#include <linux/nl80211.h>
#include <linux/platform_device.h>
40
#include <net/wireless.h>
41
#include <net/cfg80211.h>
42
#include "core.h"
43
#include "reg.h"
44

45
/* Receipt of information from last regulatory request */
46
static struct regulatory_request *last_request;
47

48 49
/* To trigger userspace events */
static struct platform_device *reg_pdev;
50

51 52 53 54
/* Keep the ordering from large to small */
static u32 supported_bandwidths[] = {
	MHZ_TO_KHZ(40),
	MHZ_TO_KHZ(20),
55 56
};

57 58
/*
 * Central wireless core regulatory domains, we only need two,
59
 * the current one and a world regulatory domain in case we have no
60 61
 * information to give us an alpha2
 */
62
const struct ieee80211_regdomain *cfg80211_regdomain;
63

64 65
/*
 * We use this as a place for the rd structure built from the
66
 * last parsed country IE to rest until CRDA gets back to us with
67 68
 * what it thinks should apply for the same country
 */
69 70
static const struct ieee80211_regdomain *country_ie_regdomain;

71
/* Used to queue up regulatory hints */
72 73 74
static LIST_HEAD(reg_requests_list);
static spinlock_t reg_requests_lock;

75 76 77 78 79 80 81 82 83 84 85 86
/* Used to queue up beacon hints for review */
static LIST_HEAD(reg_pending_beacons);
static spinlock_t reg_pending_beacons_lock;

/* Used to keep track of processed beacon hints */
static LIST_HEAD(reg_beacon_list);

struct reg_beacon {
	struct list_head list;
	struct ieee80211_channel chan;
};

87 88
/* We keep a static world regulatory domain in case of the absence of CRDA */
static const struct ieee80211_regdomain world_regdom = {
89
	.n_reg_rules = 3,
90 91
	.alpha2 =  "00",
	.reg_rules = {
92 93
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
94 95 96 97 98 99 100 101 102 103 104
		/* IEEE 802.11a, channel 36..48 */
		REG_RULE(5180-10, 5240+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),

		/* NB: 5260 MHz - 5700 MHz requies DFS */

		/* IEEE 802.11a, channel 149..165 */
		REG_RULE(5745-10, 5825+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN |
			NL80211_RRF_NO_IBSS),
105 106 107
	}
};

108 109
static const struct ieee80211_regdomain *cfg80211_world_regdom =
	&world_regdom;
110 111 112 113 114 115

#ifdef CONFIG_WIRELESS_OLD_REGULATORY
static char *ieee80211_regdom = "US";
module_param(ieee80211_regdom, charp, 0444);
MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");

116 117
/*
 * We assume 40 MHz bandwidth for the old regulatory work.
118
 * We make emphasis we are using the exact same frequencies
119 120
 * as before
 */
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

static const struct ieee80211_regdomain us_regdom = {
	.n_reg_rules = 6,
	.alpha2 =  "US",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..11 */
		REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
		/* IEEE 802.11a, channels 149..165, outdoor */
		REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
	}
};

static const struct ieee80211_regdomain jp_regdom = {
	.n_reg_rules = 3,
	.alpha2 =  "JP",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..14 */
		REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channels 34..48 */
		REG_RULE(5170-10, 5240+10, 40, 6, 20,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 52..64 */
		REG_RULE(5260-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain eu_regdom = {
	.n_reg_rules = 6,
159 160 161 162
	/*
	 * This alpha2 is bogus, we leave it here just for stupid
	 * backward compatibility
	 */
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
	.alpha2 =  "EU",
	.reg_rules = {
		/* IEEE 802.11b/g, channels 1..13 */
		REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
		/* IEEE 802.11a, channel 36 */
		REG_RULE(5180-10, 5180+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 40 */
		REG_RULE(5200-10, 5200+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channel 44 */
		REG_RULE(5220-10, 5220+10, 40, 6, 23,
			NL80211_RRF_PASSIVE_SCAN),
		/* IEEE 802.11a, channels 48..64 */
		REG_RULE(5240-10, 5320+10, 40, 6, 20,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
		/* IEEE 802.11a, channels 100..140 */
		REG_RULE(5500-10, 5700+10, 40, 6, 30,
			NL80211_RRF_NO_IBSS |
			NL80211_RRF_DFS),
	}
};

static const struct ieee80211_regdomain *static_regdom(char *alpha2)
{
	if (alpha2[0] == 'U' && alpha2[1] == 'S')
		return &us_regdom;
	if (alpha2[0] == 'J' && alpha2[1] == 'P')
		return &jp_regdom;
	if (alpha2[0] == 'E' && alpha2[1] == 'U')
		return &eu_regdom;
	/* Default, as per the old rules */
	return &us_regdom;
}

199
static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
200 201 202 203 204
{
	if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
		return true;
	return false;
}
205 206
#else
static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
207
{
208
	return false;
209
}
210 211
#endif

212 213
static void reset_regdomains(void)
{
214 215 216 217 218 219 220 221 222 223 224 225
	/* avoid freeing static information or freeing something twice */
	if (cfg80211_regdomain == cfg80211_world_regdom)
		cfg80211_regdomain = NULL;
	if (cfg80211_world_regdom == &world_regdom)
		cfg80211_world_regdom = NULL;
	if (cfg80211_regdomain == &world_regdom)
		cfg80211_regdomain = NULL;
	if (is_old_static_regdom(cfg80211_regdomain))
		cfg80211_regdomain = NULL;

	kfree(cfg80211_regdomain);
	kfree(cfg80211_world_regdom);
226

227
	cfg80211_world_regdom = &world_regdom;
228 229 230
	cfg80211_regdomain = NULL;
}

231 232 233 234
/*
 * Dynamic world regulatory domain requested by the wireless
 * core upon initialization
 */
235
static void update_world_regdomain(const struct ieee80211_regdomain *rd)
236
{
237
	BUG_ON(!last_request);
238 239 240 241 242 243 244

	reset_regdomains();

	cfg80211_world_regdom = rd;
	cfg80211_regdomain = rd;
}

245
bool is_world_regdom(const char *alpha2)
246 247 248 249 250 251 252
{
	if (!alpha2)
		return false;
	if (alpha2[0] == '0' && alpha2[1] == '0')
		return true;
	return false;
}
253

254
static bool is_alpha2_set(const char *alpha2)
255 256 257 258 259 260 261
{
	if (!alpha2)
		return false;
	if (alpha2[0] != 0 && alpha2[1] != 0)
		return true;
	return false;
}
262

263 264 265 266 267 268 269
static bool is_alpha_upper(char letter)
{
	/* ASCII A - Z */
	if (letter >= 65 && letter <= 90)
		return true;
	return false;
}
270

271
static bool is_unknown_alpha2(const char *alpha2)
272 273 274
{
	if (!alpha2)
		return false;
275 276 277 278
	/*
	 * Special case where regulatory domain was built by driver
	 * but a specific alpha2 cannot be determined
	 */
279 280 281 282
	if (alpha2[0] == '9' && alpha2[1] == '9')
		return true;
	return false;
}
283

284 285 286 287
static bool is_intersected_alpha2(const char *alpha2)
{
	if (!alpha2)
		return false;
288 289
	/*
	 * Special case where regulatory domain is the
290
	 * result of an intersection between two regulatory domain
291 292
	 * structures
	 */
293 294 295 296 297
	if (alpha2[0] == '9' && alpha2[1] == '8')
		return true;
	return false;
}

298
static bool is_an_alpha2(const char *alpha2)
299 300 301 302 303 304 305
{
	if (!alpha2)
		return false;
	if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
		return true;
	return false;
}
306

307
static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
308 309 310 311 312 313 314 315 316
{
	if (!alpha2_x || !alpha2_y)
		return false;
	if (alpha2_x[0] == alpha2_y[0] &&
		alpha2_x[1] == alpha2_y[1])
		return true;
	return false;
}

317
static bool regdom_changes(const char *alpha2)
318
{
319 320
	assert_cfg80211_lock();

321 322 323 324 325 326 327
	if (!cfg80211_regdomain)
		return true;
	if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
		return false;
	return true;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
/**
 * country_ie_integrity_changes - tells us if the country IE has changed
 * @checksum: checksum of country IE of fields we are interested in
 *
 * If the country IE has not changed you can ignore it safely. This is
 * useful to determine if two devices are seeing two different country IEs
 * even on the same alpha2. Note that this will return false if no IE has
 * been set on the wireless core yet.
 */
static bool country_ie_integrity_changes(u32 checksum)
{
	/* If no IE has been set then the checksum doesn't change */
	if (unlikely(!last_request->country_ie_checksum))
		return false;
	if (unlikely(last_request->country_ie_checksum != checksum))
		return true;
	return false;
}

347 348 349 350
/*
 * This lets us keep regulatory code which is updated on a regulatory
 * basis in userspace.
 */
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static int call_crda(const char *alpha2)
{
	char country_env[9 + 2] = "COUNTRY=";
	char *envp[] = {
		country_env,
		NULL
	};

	if (!is_world_regdom((char *) alpha2))
		printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
			alpha2[0], alpha2[1]);
	else
		printk(KERN_INFO "cfg80211: Calling CRDA to update world "
			"regulatory domain\n");

	country_env[8] = alpha2[0];
	country_env[9] = alpha2[1];

	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
}

/* Used by nl80211 before kmalloc'ing our regulatory domain */
373
bool reg_is_valid_request(const char *alpha2)
374
{
375 376 377 378
	if (!last_request)
		return false;

	return alpha2_equal(last_request->alpha2, alpha2);
379
}
380

381
/* Sanity check on a regulatory rule */
382
static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
383
{
384
	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
385 386
	u32 freq_diff;

387
	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
388 389 390 391 392 393 394
		return false;

	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
		return false;

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;

395
	if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff)
396 397 398 399 400
		return false;

	return true;
}

401
static bool is_valid_rd(const struct ieee80211_regdomain *rd)
402
{
403
	const struct ieee80211_reg_rule *reg_rule = NULL;
404
	unsigned int i;
405

406 407
	if (!rd->n_reg_rules)
		return false;
408

409 410 411
	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
		return false;

412 413 414 415 416 417 418
	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		if (!is_valid_reg_rule(reg_rule))
			return false;
	}

	return true;
419 420
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434
/* Returns value in KHz */
static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
	u32 freq)
{
	unsigned int i;
	for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
		u32 start_freq_khz = freq - supported_bandwidths[i]/2;
		u32 end_freq_khz = freq + supported_bandwidths[i]/2;
		if (start_freq_khz >= freq_range->start_freq_khz &&
			end_freq_khz <= freq_range->end_freq_khz)
			return supported_bandwidths[i];
	}
	return 0;
}
435

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
/**
 * freq_in_rule_band - tells us if a frequency is in a frequency band
 * @freq_range: frequency rule we want to query
 * @freq_khz: frequency we are inquiring about
 *
 * This lets us know if a specific frequency rule is or is not relevant to
 * a specific frequency's band. Bands are device specific and artificial
 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
 * safe for now to assume that a frequency rule should not be part of a
 * frequency's band if the start freq or end freq are off by more than 2 GHz.
 * This resolution can be lowered and should be considered as we add
 * regulatory rule support for other "bands".
 **/
static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
	u32 freq_khz)
{
#define ONE_GHZ_IN_KHZ	1000000
	if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
		return true;
	return false;
#undef ONE_GHZ_IN_KHZ
}

461 462
/*
 * Converts a country IE to a regulatory domain. A regulatory domain
463 464
 * structure has a lot of information which the IE doesn't yet have,
 * so for the other values we use upper max values as we will intersect
465 466
 * with our userspace regulatory agent to get lower bounds.
 */
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
static struct ieee80211_regdomain *country_ie_2_rd(
				u8 *country_ie,
				u8 country_ie_len,
				u32 *checksum)
{
	struct ieee80211_regdomain *rd = NULL;
	unsigned int i = 0;
	char alpha2[2];
	u32 flags = 0;
	u32 num_rules = 0, size_of_regd = 0;
	u8 *triplets_start = NULL;
	u8 len_at_triplet = 0;
	/* the last channel we have registered in a subband (triplet) */
	int last_sub_max_channel = 0;

	*checksum = 0xDEADBEEF;

	/* Country IE requirements */
	BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
		country_ie_len & 0x01);

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	/*
	 * Third octet can be:
	 *    'I' - Indoor
	 *    'O' - Outdoor
	 *
	 *  anything else we assume is no restrictions
	 */
	if (country_ie[2] == 'I')
		flags = NL80211_RRF_NO_OUTDOOR;
	else if (country_ie[2] == 'O')
		flags = NL80211_RRF_NO_INDOOR;

	country_ie += 3;
	country_ie_len -= 3;

	triplets_start = country_ie;
	len_at_triplet = country_ie_len;

	*checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);

511 512
	/*
	 * We need to build a reg rule for each triplet, but first we must
513
	 * calculate the number of reg rules we will need. We will need one
514 515
	 * for each channel subband
	 */
516
	while (country_ie_len >= 3) {
517
		int end_channel = 0;
518 519 520 521 522 523 524 525 526 527 528
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		int cur_sub_max_channel = 0, cur_channel = 0;

		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			/*
			 * 5 GHz -- For example in country IEs if the first
			 * channel given is 36 and the number of channels is 4
			 * then the individual channel numbers defined for the
			 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
			 * and not 36, 37, 38, 39.
			 *
			 * See: http://tinyurl.com/11d-clarification
			 */
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

546
		cur_channel = triplet->chans.first_channel;
547
		cur_sub_max_channel = end_channel;
548 549 550 551 552

		/* Basic sanity check */
		if (cur_sub_max_channel < cur_channel)
			return NULL;

553 554
		/*
		 * Do not allow overlapping channels. Also channels
555
		 * passed in each subband must be monotonically
556 557
		 * increasing
		 */
558 559 560 561 562 563 564
		if (last_sub_max_channel) {
			if (cur_channel <= last_sub_max_channel)
				return NULL;
			if (cur_sub_max_channel <= last_sub_max_channel)
				return NULL;
		}

565 566
		/*
		 * When dot11RegulatoryClassesRequired is supported
567 568
		 * we can throw ext triplets as part of this soup,
		 * for now we don't care when those change as we
569 570
		 * don't support them
		 */
571 572 573 574 575 576 577 578 579 580
		*checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
		  ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
		  ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);

		last_sub_max_channel = cur_sub_max_channel;

		country_ie += 3;
		country_ie_len -= 3;
		num_rules++;

581 582 583 584
		/*
		 * Note: this is not a IEEE requirement but
		 * simply a memory requirement
		 */
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
		if (num_rules > NL80211_MAX_SUPP_REG_RULES)
			return NULL;
	}

	country_ie = triplets_start;
	country_ie_len = len_at_triplet;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		(num_rules * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = alpha2[0];
	rd->alpha2[1] = alpha2[1];

	/* This time around we fill in the rd */
	while (country_ie_len >= 3) {
605
		int end_channel = 0;
606 607 608 609 610 611
		struct ieee80211_country_ie_triplet *triplet =
			(struct ieee80211_country_ie_triplet *) country_ie;
		struct ieee80211_reg_rule *reg_rule = NULL;
		struct ieee80211_freq_range *freq_range = NULL;
		struct ieee80211_power_rule *power_rule = NULL;

612 613 614 615
		/*
		 * Must parse if dot11RegulatoryClassesRequired is true,
		 * we don't support this yet
		 */
616 617 618 619 620 621 622 623 624 625 626 627 628
		if (triplet->ext.reg_extension_id >=
				IEEE80211_COUNTRY_EXTENSION_ID) {
			country_ie += 3;
			country_ie_len -= 3;
			continue;
		}

		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

		reg_rule->flags = flags;

629 630 631 632 633 634 635 636
		/* 2 GHz */
		if (triplet->chans.first_channel <= 14)
			end_channel = triplet->chans.first_channel +
				triplet->chans.num_channels;
		else
			end_channel =  triplet->chans.first_channel +
				(4 * (triplet->chans.num_channels - 1));

637 638
		/*
		 * The +10 is since the regulatory domain expects
639 640
		 * the actual band edge, not the center of freq for
		 * its start and end freqs, assuming 20 MHz bandwidth on
641 642
		 * the channels passed
		 */
643 644 645 646 647
		freq_range->start_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
				triplet->chans.first_channel) - 10);
		freq_range->end_freq_khz =
			MHZ_TO_KHZ(ieee80211_channel_to_frequency(
648
				end_channel) + 10);
649

650 651 652 653 654
		/*
		 * These are large arbitrary values we use to intersect later.
		 * Increment this if we ever support >= 40 MHz channels
		 * in IEEE 802.11
		 */
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
		freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
		power_rule->max_antenna_gain = DBI_TO_MBI(100);
		power_rule->max_eirp = DBM_TO_MBM(100);

		country_ie += 3;
		country_ie_len -= 3;
		i++;

		BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
	}

	return rd;
}


670 671 672 673
/*
 * Helper for regdom_intersect(), this does the real
 * mathematical intersection fun
 */
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
static int reg_rules_intersect(
	const struct ieee80211_reg_rule *rule1,
	const struct ieee80211_reg_rule *rule2,
	struct ieee80211_reg_rule *intersected_rule)
{
	const struct ieee80211_freq_range *freq_range1, *freq_range2;
	struct ieee80211_freq_range *freq_range;
	const struct ieee80211_power_rule *power_rule1, *power_rule2;
	struct ieee80211_power_rule *power_rule;
	u32 freq_diff;

	freq_range1 = &rule1->freq_range;
	freq_range2 = &rule2->freq_range;
	freq_range = &intersected_rule->freq_range;

	power_rule1 = &rule1->power_rule;
	power_rule2 = &rule2->power_rule;
	power_rule = &intersected_rule->power_rule;

	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
		freq_range2->start_freq_khz);
	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
		freq_range2->end_freq_khz);
	freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
		freq_range2->max_bandwidth_khz);

	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
	if (freq_range->max_bandwidth_khz > freq_diff)
		freq_range->max_bandwidth_khz = freq_diff;

	power_rule->max_eirp = min(power_rule1->max_eirp,
		power_rule2->max_eirp);
	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
		power_rule2->max_antenna_gain);

	intersected_rule->flags = (rule1->flags | rule2->flags);

	if (!is_valid_reg_rule(intersected_rule))
		return -EINVAL;

	return 0;
}

/**
 * regdom_intersect - do the intersection between two regulatory domains
 * @rd1: first regulatory domain
 * @rd2: second regulatory domain
 *
 * Use this function to get the intersection between two regulatory domains.
 * Once completed we will mark the alpha2 for the rd as intersected, "98",
 * as no one single alpha2 can represent this regulatory domain.
 *
 * Returns a pointer to the regulatory domain structure which will hold the
 * resulting intersection of rules between rd1 and rd2. We will
 * kzalloc() this structure for you.
 */
static struct ieee80211_regdomain *regdom_intersect(
	const struct ieee80211_regdomain *rd1,
	const struct ieee80211_regdomain *rd2)
{
	int r, size_of_regd;
	unsigned int x, y;
	unsigned int num_rules = 0, rule_idx = 0;
	const struct ieee80211_reg_rule *rule1, *rule2;
	struct ieee80211_reg_rule *intersected_rule;
	struct ieee80211_regdomain *rd;
	/* This is just a dummy holder to help us count */
	struct ieee80211_reg_rule irule;

	/* Uses the stack temporarily for counter arithmetic */
	intersected_rule = &irule;

	memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));

	if (!rd1 || !rd2)
		return NULL;

751 752
	/*
	 * First we get a count of the rules we'll need, then we actually
753 754 755
	 * build them. This is to so we can malloc() and free() a
	 * regdomain once. The reason we use reg_rules_intersect() here
	 * is it will return -EINVAL if the rule computed makes no sense.
756 757
	 * All rules that do check out OK are valid.
	 */
758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
			if (!reg_rules_intersect(rule1, rule2,
					intersected_rule))
				num_rules++;
			memset(intersected_rule, 0,
					sizeof(struct ieee80211_reg_rule));
		}
	}

	if (!num_rules)
		return NULL;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
		((num_rules + 1) * sizeof(struct ieee80211_reg_rule));

	rd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!rd)
		return NULL;

	for (x = 0; x < rd1->n_reg_rules; x++) {
		rule1 = &rd1->reg_rules[x];
		for (y = 0; y < rd2->n_reg_rules; y++) {
			rule2 = &rd2->reg_rules[y];
785 786
			/*
			 * This time around instead of using the stack lets
787
			 * write to the target rule directly saving ourselves
788 789
			 * a memcpy()
			 */
790 791 792
			intersected_rule = &rd->reg_rules[rule_idx];
			r = reg_rules_intersect(rule1, rule2,
				intersected_rule);
793 794 795 796
			/*
			 * No need to memset here the intersected rule here as
			 * we're not using the stack anymore
			 */
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
			if (r)
				continue;
			rule_idx++;
		}
	}

	if (rule_idx != num_rules) {
		kfree(rd);
		return NULL;
	}

	rd->n_reg_rules = num_rules;
	rd->alpha2[0] = '9';
	rd->alpha2[1] = '8';

	return rd;
}

815 816 817 818
/*
 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
 * want to just have the channel structure use these
 */
819 820 821 822 823 824 825 826 827 828 829 830
static u32 map_regdom_flags(u32 rd_flags)
{
	u32 channel_flags = 0;
	if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
		channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
	if (rd_flags & NL80211_RRF_NO_IBSS)
		channel_flags |= IEEE80211_CHAN_NO_IBSS;
	if (rd_flags & NL80211_RRF_DFS)
		channel_flags |= IEEE80211_CHAN_RADAR;
	return channel_flags;
}

831 832 833 834 835
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
			      u32 *bandwidth,
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
836 837
{
	int i;
838
	bool band_rule_found = false;
839
	const struct ieee80211_regdomain *regd;
840
	u32 max_bandwidth = 0;
841

842
	regd = custom_regd ? custom_regd : cfg80211_regdomain;
843

844 845 846 847
	/*
	 * Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed or a user wants to help complaince further
	 */
848
	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE &&
849
	    last_request->initiator != REGDOM_SET_BY_USER &&
850 851 852 853
	    wiphy->regd)
		regd = wiphy->regd;

	if (!regd)
854 855
		return -EINVAL;

856
	for (i = 0; i < regd->n_reg_rules; i++) {
857 858 859 860
		const struct ieee80211_reg_rule *rr;
		const struct ieee80211_freq_range *fr = NULL;
		const struct ieee80211_power_rule *pr = NULL;

861
		rr = &regd->reg_rules[i];
862 863
		fr = &rr->freq_range;
		pr = &rr->power_rule;
864

865 866
		/*
		 * We only need to know if one frequency rule was
867
		 * was in center_freq's band, that's enough, so lets
868 869
		 * not overwrite it once found
		 */
870 871 872
		if (!band_rule_found)
			band_rule_found = freq_in_rule_band(fr, center_freq);

873
		max_bandwidth = freq_max_bandwidth(fr, center_freq);
874

875 876 877
		if (max_bandwidth && *bandwidth <= max_bandwidth) {
			*reg_rule = rr;
			*bandwidth = max_bandwidth;
878 879 880 881
			break;
		}
	}

882 883 884
	if (!band_rule_found)
		return -ERANGE;

885 886
	return !max_bandwidth;
}
887
EXPORT_SYMBOL(freq_reg_info);
888

889
int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
890 891 892 893 894
			 const struct ieee80211_reg_rule **reg_rule)
{
	return freq_reg_info_regd(wiphy, center_freq,
		bandwidth, reg_rule, NULL);
}
895

896 897
static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
898 899
{
	int r;
900
	u32 flags;
901 902 903
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
904 905
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;
906
	struct wiphy *request_wiphy = NULL;
907

908 909
	assert_cfg80211_lock();

910 911
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

912 913 914 915 916
	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	flags = chan->orig_flags;
917

918
	r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
919 920 921
		&max_bandwidth, &reg_rule);

	if (r) {
922 923
		/*
		 * This means no regulatory rule was found in the country IE
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
		 * with a frequency range on the center_freq's band, since
		 * IEEE-802.11 allows for a country IE to have a subset of the
		 * regulatory information provided in a country we ignore
		 * disabling the channel unless at least one reg rule was
		 * found on the center_freq's band. For details see this
		 * clarification:
		 *
		 * http://tinyurl.com/11d-clarification
		 */
		if (r == -ERANGE &&
		    last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
#ifdef CONFIG_CFG80211_REG_DEBUG
			printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
				"intact on %s - no rule found in band on "
				"Country IE\n",
				chan->center_freq, wiphy_name(wiphy));
#endif
		} else {
942 943 944 945
		/*
		 * In this case we know the country IE has at least one reg rule
		 * for the band so we respect its band definitions
		 */
946 947 948 949 950 951 952 953 954 955
#ifdef CONFIG_CFG80211_REG_DEBUG
			if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
				printk(KERN_DEBUG "cfg80211: Disabling "
					"channel %d MHz on %s due to "
					"Country IE\n",
					chan->center_freq, wiphy_name(wiphy));
#endif
			flags |= IEEE80211_CHAN_DISABLED;
			chan->flags = flags;
		}
956 957 958
		return;
	}

959 960
	power_rule = &reg_rule->power_rule;

961
	if (last_request->initiator == REGDOM_SET_BY_DRIVER &&
962 963
	    request_wiphy && request_wiphy == wiphy &&
	    request_wiphy->strict_regulatory) {
964 965
		/*
		 * This gaurantees the driver's requested regulatory domain
966
		 * will always be used as a base for further regulatory
967 968
		 * settings
		 */
969 970 971 972 973 974 975 976 977 978
		chan->flags = chan->orig_flags =
			map_regdom_flags(reg_rule->flags);
		chan->max_antenna_gain = chan->orig_mag =
			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
		chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
		chan->max_power = chan->orig_mpwr =
			(int) MBM_TO_DBM(power_rule->max_eirp);
		return;
	}

979
	chan->flags = flags | map_regdom_flags(reg_rule->flags);
980
	chan->max_antenna_gain = min(chan->orig_mag,
981 982
		(int) MBI_TO_DBI(power_rule->max_antenna_gain));
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
983
	if (chan->orig_mpwr)
984 985
		chan->max_power = min(chan->orig_mpwr,
			(int) MBM_TO_DBM(power_rule->max_eirp));
986
	else
987
		chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
988 989
}

990
static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
991
{
992 993 994 995 996
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];
997 998

	for (i = 0; i < sband->n_channels; i++)
999
		handle_channel(wiphy, band, i);
1000 1001
}

1002 1003 1004 1005 1006
static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby)
{
	if (!last_request)
		return true;
	if (setby == REGDOM_SET_BY_CORE &&
1007
		  wiphy->custom_regulatory)
1008
		return true;
1009 1010 1011 1012
	/*
	 * wiphy->regd will be set once the device has its own
	 * desired regulatory domain set
	 */
1013 1014
	if (wiphy->strict_regulatory && !wiphy->regd &&
	    !is_world_regdom(last_request->alpha2))
1015 1016 1017 1018
		return true;
	return false;
}

1019
static void update_all_wiphy_regulatory(enum reg_set_by setby)
1020
{
1021
	struct cfg80211_registered_device *drv;
1022

1023
	list_for_each_entry(drv, &cfg80211_drv_list, list)
1024
		wiphy_update_regulatory(&drv->wiphy, setby);
1025 1026
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static void handle_reg_beacon(struct wiphy *wiphy,
			      unsigned int chan_idx,
			      struct reg_beacon *reg_beacon)
{
#ifdef CONFIG_CFG80211_REG_DEBUG
#define REG_DEBUG_BEACON_FLAG(desc) \
	printk(KERN_DEBUG "cfg80211: Enabling " desc " on " \
		"frequency: %d MHz (Ch %d) on %s\n", \
		reg_beacon->chan.center_freq, \
		ieee80211_frequency_to_channel(reg_beacon->chan.center_freq), \
		wiphy_name(wiphy));
#else
#define REG_DEBUG_BEACON_FLAG(desc) do {} while (0)
#endif
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

	assert_cfg80211_lock();

	sband = wiphy->bands[reg_beacon->chan.band];
	chan = &sband->channels[chan_idx];

	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
		return;

	if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
		chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
		REG_DEBUG_BEACON_FLAG("active scanning");
	}

	if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
		chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
		REG_DEBUG_BEACON_FLAG("beaconing");
	}

	chan->beacon_found = true;
#undef REG_DEBUG_BEACON_FLAG
}

/*
 * Called when a scan on a wiphy finds a beacon on
 * new channel
 */
static void wiphy_update_new_beacon(struct wiphy *wiphy,
				    struct reg_beacon *reg_beacon)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	assert_cfg80211_lock();

	if (!wiphy->bands[reg_beacon->chan.band])
		return;

	sband = wiphy->bands[reg_beacon->chan.band];

	for (i = 0; i < sband->n_channels; i++)
		handle_reg_beacon(wiphy, i, reg_beacon);
}

/*
 * Called upon reg changes or a new wiphy is added
 */
static void wiphy_update_beacon_reg(struct wiphy *wiphy)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;
	struct reg_beacon *reg_beacon;

	assert_cfg80211_lock();

	if (list_empty(&reg_beacon_list))
		return;

	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
		if (!wiphy->bands[reg_beacon->chan.band])
			continue;
		sband = wiphy->bands[reg_beacon->chan.band];
		for (i = 0; i < sband->n_channels; i++)
			handle_reg_beacon(wiphy, i, reg_beacon);
	}
}

static bool reg_is_world_roaming(struct wiphy *wiphy)
{
	if (is_world_regdom(cfg80211_regdomain->alpha2) ||
	    (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
		return true;
	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE &&
	    wiphy->custom_regulatory)
		return true;
	return false;
}

/* Reap the advantages of previously found beacons */
static void reg_process_beacons(struct wiphy *wiphy)
{
	if (!reg_is_world_roaming(wiphy))
		return;
	wiphy_update_beacon_reg(wiphy);
}

1129 1130 1131
void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
{
	enum ieee80211_band band;
1132 1133

	if (ignore_reg_update(wiphy, setby))
1134
		goto out;
1135
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1136
		if (wiphy->bands[band])
1137
			handle_band(wiphy, band);
1138
	}
1139 1140
out:
	reg_process_beacons(wiphy);
1141
	if (wiphy->reg_notifier)
1142
		wiphy->reg_notifier(wiphy, last_request);
1143 1144
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
		&max_bandwidth, &reg_rule, regd);

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;

	chan->flags |= map_regdom_flags(reg_rule->flags);
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			handle_band_custom(wiphy, band, regd);
1198 1199
	}
}
1200 1201
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{
	struct ieee80211_regdomain *regd;
	int size_of_regd = 0;
	unsigned int i;

	size_of_regd = sizeof(struct ieee80211_regdomain) +
	  ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));

	regd = kzalloc(size_of_regd, GFP_KERNEL);
	if (!regd)
		return -ENOMEM;

	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));

	for (i = 0; i < src_regd->n_reg_rules; i++)
		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
			sizeof(struct ieee80211_reg_rule));

	*dst_regd = regd;
	return 0;
}
1225

1226 1227 1228 1229
/*
 * Return value which can be used by ignore_request() to indicate
 * it has been determined we should intersect two regulatory domains
 */
1230 1231
#define REG_INTERSECT	1

1232 1233 1234 1235 1236
/* This has the logic which determines when a new request
 * should be ignored. */
static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
			  const char *alpha2)
{
1237
	struct wiphy *last_wiphy = NULL;
1238 1239 1240

	assert_cfg80211_lock();

1241 1242 1243 1244 1245 1246 1247 1248
	/* All initial requests are respected */
	if (!last_request)
		return 0;

	switch (set_by) {
	case REGDOM_SET_BY_INIT:
		return -EINVAL;
	case REGDOM_SET_BY_CORE:
1249
		return -EINVAL;
1250
	case REGDOM_SET_BY_COUNTRY_IE:
1251 1252 1253

		last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1254 1255 1256
		if (unlikely(!is_an_alpha2(alpha2)))
			return -EINVAL;
		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1257
			if (last_wiphy != wiphy) {
1258 1259 1260 1261 1262 1263
				/*
				 * Two cards with two APs claiming different
				 * different Country IE alpha2s. We could
				 * intersect them, but that seems unlikely
				 * to be correct. Reject second one for now.
				 */
1264
				if (regdom_changes(alpha2))
1265 1266 1267
					return -EOPNOTSUPP;
				return -EALREADY;
			}
1268 1269 1270 1271
			/*
			 * Two consecutive Country IE hints on the same wiphy.
			 * This should be picked up early by the driver/stack
			 */
1272
			if (WARN_ON(regdom_changes(alpha2)))
1273 1274 1275
				return 0;
			return -EALREADY;
		}
1276
		return REG_INTERSECT;
1277
	case REGDOM_SET_BY_DRIVER:
1278 1279 1280
		if (last_request->initiator == REGDOM_SET_BY_CORE) {
			if (is_old_static_regdom(cfg80211_regdomain))
				return 0;
1281
			if (regdom_changes(alpha2))
1282
				return 0;
1283
			return -EALREADY;
1284
		}
1285 1286 1287 1288 1289 1290 1291

		/*
		 * This would happen if you unplug and plug your card
		 * back in or if you add a new device for which the previously
		 * loaded card also agrees on the regulatory domain.
		 */
		if (last_request->initiator == REGDOM_SET_BY_DRIVER &&
1292
		    !regdom_changes(alpha2))
1293 1294
			return -EALREADY;

1295
		return REG_INTERSECT;
1296 1297
	case REGDOM_SET_BY_USER:
		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
1298
			return REG_INTERSECT;
1299 1300 1301 1302
		/*
		 * If the user knows better the user should set the regdom
		 * to their country before the IE is picked up
		 */
1303 1304 1305
		if (last_request->initiator == REGDOM_SET_BY_USER &&
			  last_request->intersect)
			return -EOPNOTSUPP;
1306 1307 1308 1309
		/*
		 * Process user requests only after previous user/driver/core
		 * requests have been processed
		 */
1310 1311 1312
		if (last_request->initiator == REGDOM_SET_BY_CORE ||
		    last_request->initiator == REGDOM_SET_BY_DRIVER ||
		    last_request->initiator == REGDOM_SET_BY_USER) {
1313
			if (regdom_changes(last_request->alpha2))
1314 1315 1316
				return -EAGAIN;
		}

1317
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1318
		    !regdom_changes(alpha2))
1319 1320
			return -EALREADY;

1321 1322 1323 1324 1325 1326
		return 0;
	}

	return -EINVAL;
}

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
/**
 * __regulatory_hint - hint to the wireless core a regulatory domain
 * @wiphy: if the hint comes from country information from an AP, this
 *	is required to be set to the wiphy that received the information
 * @alpha2: the ISO/IEC 3166 alpha2 being claimed the regulatory domain
 *	should be in.
 * @country_ie_checksum: checksum of processed country IE, set this to 0
 * 	if the hint did not come from a country IE
 * @country_ie_env: the environment the IE told us we are in, %ENVIRON_*
 *
 * The Wireless subsystem can use this function to hint to the wireless core
 * what it believes should be the current regulatory domain by giving it an
 * ISO/IEC 3166 alpha2 country code it knows its regulatory domain should be
 * in.
 *
 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
 * already been set or other standard error codes.
 *
 * Caller must hold &cfg80211_mutex
 */
static int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by,
1348 1349 1350
			const char *alpha2,
			u32 country_ie_checksum,
			enum environment_cap env)
1351 1352
{
	struct regulatory_request *request;
1353
	bool intersect = false;
1354 1355
	int r = 0;

1356 1357
	assert_cfg80211_lock();

1358
	r = ignore_request(wiphy, set_by, alpha2);
1359

1360 1361 1362 1363 1364 1365
	if (r == REG_INTERSECT) {
		if (set_by == REGDOM_SET_BY_DRIVER) {
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
			if (r)
				return r;
		}
1366
		intersect = true;
1367
	} else if (r) {
1368 1369
		/*
		 * If the regulatory domain being requested by the
1370
		 * driver has already been set just copy it to the
1371 1372
		 * wiphy
		 */
1373 1374 1375 1376 1377 1378 1379
		if (r == -EALREADY && set_by == REGDOM_SET_BY_DRIVER) {
			r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
			if (r)
				return r;
			r = -EALREADY;
			goto new_request;
		}
1380
		return r;
1381
	}
1382

1383
new_request:
1384 1385 1386 1387 1388 1389 1390 1391
	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = set_by;
1392
	request->wiphy_idx = get_wiphy_idx(wiphy);
1393
	request->intersect = intersect;
1394 1395
	request->country_ie_checksum = country_ie_checksum;
	request->country_ie_env = env;
1396 1397 1398

	kfree(last_request);
	last_request = request;
1399 1400 1401 1402 1403

	/* When r == REG_INTERSECT we do need to call CRDA */
	if (r < 0)
		return r;

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	/*
	 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
	 * AND if CRDA is NOT present nothing will happen, if someone
	 * wants to bother with 11d with OLD_REG you can add a timer.
	 * If after x amount of time nothing happens you can call:
	 *
	 * return set_regdom(country_ie_regdomain);
	 *
	 * to intersect with the static rd
	 */
1414
	return call_crda(alpha2);
1415 1416
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
/* This currently only processes user and driver regulatory hints */
static int reg_process_hint(struct regulatory_request *reg_request)
{
	int r = 0;
	struct wiphy *wiphy = NULL;

	BUG_ON(!reg_request->alpha2);

	mutex_lock(&cfg80211_mutex);

	if (wiphy_idx_valid(reg_request->wiphy_idx))
		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);

	if (reg_request->initiator == REGDOM_SET_BY_DRIVER &&
	    !wiphy) {
		r = -ENODEV;
		goto out;
	}

	r = __regulatory_hint(wiphy,
			      reg_request->initiator,
			      reg_request->alpha2,
			      reg_request->country_ie_checksum,
			      reg_request->country_ie_env);
	/* This is required so that the orig_* parameters are saved */
	if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
		wiphy_update_regulatory(wiphy, reg_request->initiator);
out:
	mutex_unlock(&cfg80211_mutex);

	if (r == -EALREADY)
		r = 0;

	return r;
}

1453
/* Processes regulatory hints, this is all the REGDOM_SET_BY_* */
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static void reg_process_pending_hints(void)
	{
	struct regulatory_request *reg_request;
	int r;

	spin_lock(&reg_requests_lock);
	while (!list_empty(&reg_requests_list)) {
		reg_request = list_first_entry(&reg_requests_list,
					       struct regulatory_request,
					       list);
		list_del_init(&reg_request->list);
		spin_unlock(&reg_requests_lock);

		r = reg_process_hint(reg_request);
#ifdef CONFIG_CFG80211_REG_DEBUG
		if (r && (reg_request->initiator == REGDOM_SET_BY_DRIVER ||
		    reg_request->initiator == REGDOM_SET_BY_COUNTRY_IE))
			printk(KERN_ERR "cfg80211: wiphy_idx %d sent a "
				"regulatory hint for %c%c but now has "
				"gone fishing, ignoring request\n",
				reg_request->wiphy_idx,
				reg_request->alpha2[0],
				reg_request->alpha2[1]);
#endif
		kfree(reg_request);
		spin_lock(&reg_requests_lock);
	}
	spin_unlock(&reg_requests_lock);
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
/* Processes beacon hints -- this has nothing to do with country IEs */
static void reg_process_pending_beacon_hints(void)
{
	struct cfg80211_registered_device *drv;
	struct reg_beacon *pending_beacon, *tmp;

	mutex_lock(&cfg80211_mutex);

	/* This goes through the _pending_ beacon list */
	spin_lock_bh(&reg_pending_beacons_lock);

	if (list_empty(&reg_pending_beacons)) {
		spin_unlock_bh(&reg_pending_beacons_lock);
		goto out;
	}

	list_for_each_entry_safe(pending_beacon, tmp,
				 &reg_pending_beacons, list) {

		list_del_init(&pending_beacon->list);

		/* Applies the beacon hint to current wiphys */
		list_for_each_entry(drv, &cfg80211_drv_list, list)
			wiphy_update_new_beacon(&drv->wiphy, pending_beacon);

		/* Remembers the beacon hint for new wiphys or reg changes */
		list_add_tail(&pending_beacon->list, &reg_beacon_list);
	}

	spin_unlock_bh(&reg_pending_beacons_lock);
out:
	mutex_unlock(&cfg80211_mutex);
}

1518 1519 1520
static void reg_todo(struct work_struct *work)
{
	reg_process_pending_hints();
1521
	reg_process_pending_beacon_hints();
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
}

static DECLARE_WORK(reg_work, reg_todo);

static void queue_regulatory_request(struct regulatory_request *request)
{
	spin_lock(&reg_requests_lock);
	list_add_tail(&request->list, &reg_requests_list);
	spin_unlock(&reg_requests_lock);

	schedule_work(&reg_work);
}

/* Core regulatory hint -- happens once during cfg80211_init() */
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
static int regulatory_hint_core(const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(last_request);

	request = kzalloc(sizeof(struct regulatory_request),
			  GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = REGDOM_SET_BY_CORE;

1551
	queue_regulatory_request(request);
1552

1553
	return 0;
1554 1555
}

1556 1557
/* User hints */
int regulatory_hint_user(const char *alpha2)
1558
{
1559 1560
	struct regulatory_request *request;

1561
	BUG_ON(!alpha2);
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = WIPHY_IDX_STALE;
	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = REGDOM_SET_BY_USER,

	queue_regulatory_request(request);

	return 0;
}

/* Driver hints */
int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
{
	struct regulatory_request *request;

	BUG_ON(!alpha2);
	BUG_ON(!wiphy);

	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		return -ENOMEM;

	request->wiphy_idx = get_wiphy_idx(wiphy);

	/* Must have registered wiphy first */
	BUG_ON(!wiphy_idx_valid(request->wiphy_idx));

	request->alpha2[0] = alpha2[0];
	request->alpha2[1] = alpha2[1];
	request->initiator = REGDOM_SET_BY_DRIVER;

	queue_regulatory_request(request);

	return 0;
1601 1602 1603
}
EXPORT_SYMBOL(regulatory_hint);

1604 1605 1606
static bool reg_same_country_ie_hint(struct wiphy *wiphy,
			u32 country_ie_checksum)
{
1607 1608
	struct wiphy *request_wiphy;

1609 1610
	assert_cfg80211_lock();

1611 1612 1613
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

	if (!request_wiphy)
1614
		return false;
1615 1616

	if (likely(request_wiphy != wiphy))
1617
		return !country_ie_integrity_changes(country_ie_checksum);
1618 1619
	/*
	 * We should not have let these through at this point, they
1620
	 * should have been picked up earlier by the first alpha2 check
1621 1622
	 * on the device
	 */
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
		return true;
	return false;
}

void regulatory_hint_11d(struct wiphy *wiphy,
			u8 *country_ie,
			u8 country_ie_len)
{
	struct ieee80211_regdomain *rd = NULL;
	char alpha2[2];
	u32 checksum = 0;
	enum environment_cap env = ENVIRON_ANY;
1636
	struct regulatory_request *request;
1637

1638
	mutex_lock(&cfg80211_mutex);
1639

1640 1641 1642 1643 1644
	if (unlikely(!last_request)) {
		mutex_unlock(&cfg80211_mutex);
		return;
	}

1645 1646 1647 1648 1649 1650 1651
	/* IE len must be evenly divisible by 2 */
	if (country_ie_len & 0x01)
		goto out;

	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
		goto out;

1652 1653
	/*
	 * Pending country IE processing, this can happen after we
1654
	 * call CRDA and wait for a response if a beacon was received before
1655 1656
	 * we were able to process the last regulatory_hint_11d() call
	 */
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
	if (country_ie_regdomain)
		goto out;

	alpha2[0] = country_ie[0];
	alpha2[1] = country_ie[1];

	if (country_ie[2] == 'I')
		env = ENVIRON_INDOOR;
	else if (country_ie[2] == 'O')
		env = ENVIRON_OUTDOOR;

1668 1669
	/*
	 * We will run this for *every* beacon processed for the BSSID, so
1670
	 * we optimize an early check to exit out early if we don't have to
1671 1672
	 * do anything
	 */
1673
	if (likely(wiphy_idx_valid(last_request->wiphy_idx))) {
1674 1675
		struct cfg80211_registered_device *drv_last_ie;

1676 1677
		drv_last_ie =
			cfg80211_drv_by_wiphy_idx(last_request->wiphy_idx);
1678

1679 1680 1681 1682
		/*
		 * Lets keep this simple -- we trust the first AP
		 * after we intersect with CRDA
		 */
1683
		if (likely(&drv_last_ie->wiphy == wiphy)) {
1684 1685 1686 1687
			/*
			 * Ignore IEs coming in on this wiphy with
			 * the same alpha2 and environment cap
			 */
1688 1689 1690 1691 1692
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
1693 1694
			/*
			 * the wiphy moved on to another BSSID or the AP
1695 1696 1697
			 * was reconfigured. XXX: We need to deal with the
			 * case where the user suspends and goes to goes
			 * to another country, and then gets IEs from an
1698 1699
			 * AP with different settings
			 */
1700 1701
			goto out;
		} else {
1702 1703 1704 1705
			/*
			 * Ignore IEs coming in on two separate wiphys with
			 * the same alpha2 and environment cap
			 */
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
			if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
				  alpha2) &&
				  env == drv_last_ie->env)) {
				goto out;
			}
			/* We could potentially intersect though */
			goto out;
		}
	}

	rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
	if (!rd)
		goto out;

1720 1721
	/*
	 * This will not happen right now but we leave it here for the
1722 1723
	 * the future when we want to add suspend/resume support and having
	 * the user move to another country after doing so, or having the user
1724 1725 1726 1727 1728 1729
	 * move to another AP. Right now we just trust the first AP.
	 *
	 * If we hit this before we add this support we want to be informed of
	 * it as it would indicate a mistake in the current design
	 */
	if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
1730
		goto free_rd_out;
1731

1732 1733 1734 1735
	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
	if (!request)
		goto free_rd_out;

1736 1737 1738 1739
	/*
	 * We keep this around for when CRDA comes back with a response so
	 * we can intersect with that
	 */
1740 1741
	country_ie_regdomain = rd;

1742 1743 1744 1745 1746 1747 1748 1749
	request->wiphy_idx = get_wiphy_idx(wiphy);
	request->alpha2[0] = rd->alpha2[0];
	request->alpha2[1] = rd->alpha2[1];
	request->initiator = REGDOM_SET_BY_COUNTRY_IE;
	request->country_ie_checksum = checksum;
	request->country_ie_env = env;

	mutex_unlock(&cfg80211_mutex);
1750

1751 1752 1753
	queue_regulatory_request(request);

	return;
1754 1755 1756

free_rd_out:
	kfree(rd);
1757
out:
1758
	mutex_unlock(&cfg80211_mutex);
1759 1760
}
EXPORT_SYMBOL(regulatory_hint_11d);
1761

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
static bool freq_is_chan_12_13_14(u16 freq)
{
	if (freq == ieee80211_channel_to_frequency(12) ||
	    freq == ieee80211_channel_to_frequency(13) ||
	    freq == ieee80211_channel_to_frequency(14))
		return true;
	return false;
}

int regulatory_hint_found_beacon(struct wiphy *wiphy,
				 struct ieee80211_channel *beacon_chan,
				 gfp_t gfp)
{
	struct reg_beacon *reg_beacon;

	if (likely((beacon_chan->beacon_found ||
	    (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
		return 0;

	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
	if (!reg_beacon)
		return -ENOMEM;

#ifdef CONFIG_CFG80211_REG_DEBUG
	printk(KERN_DEBUG "cfg80211: Found new beacon on "
		"frequency: %d MHz (Ch %d) on %s\n",
		beacon_chan->center_freq,
		ieee80211_frequency_to_channel(beacon_chan->center_freq),
		wiphy_name(wiphy));
#endif
	memcpy(&reg_beacon->chan, beacon_chan,
		sizeof(struct ieee80211_channel));


	/*
	 * Since we can be called from BH or and non-BH context
	 * we must use spin_lock_bh()
	 */
	spin_lock_bh(&reg_pending_beacons_lock);
	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
	spin_unlock_bh(&reg_pending_beacons_lock);

	schedule_work(&reg_work);

	return 0;
}

1811
static void print_rd_rules(const struct ieee80211_regdomain *rd)
1812 1813
{
	unsigned int i;
1814 1815 1816
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_freq_range *freq_range = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
1817 1818 1819 1820 1821 1822 1823 1824 1825

	printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
		"(max_antenna_gain, max_eirp)\n");

	for (i = 0; i < rd->n_reg_rules; i++) {
		reg_rule = &rd->reg_rules[i];
		freq_range = &reg_rule->freq_range;
		power_rule = &reg_rule->power_rule;

1826 1827 1828 1829
		/*
		 * There may not be documentation for max antenna gain
		 * in certain regions
		 */
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
		if (power_rule->max_antenna_gain)
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(%d mBi, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_antenna_gain,
				power_rule->max_eirp);
		else
			printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
				"(N/A, %d mBm)\n",
				freq_range->start_freq_khz,
				freq_range->end_freq_khz,
				freq_range->max_bandwidth_khz,
				power_rule->max_eirp);
	}
}

1848
static void print_regdomain(const struct ieee80211_regdomain *rd)
1849 1850
{

1851 1852 1853
	if (is_intersected_alpha2(rd->alpha2)) {

		if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1854 1855 1856 1857
			struct cfg80211_registered_device *drv;
			drv = cfg80211_drv_by_wiphy_idx(
				last_request->wiphy_idx);
			if (drv) {
1858 1859 1860 1861 1862 1863 1864 1865 1866
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain updated by AP to: %c%c\n",
					drv->country_ie_alpha2[0],
					drv->country_ie_alpha2[1]);
			} else
				printk(KERN_INFO "cfg80211: Current regulatory "
					"domain intersected: \n");
		} else
				printk(KERN_INFO "cfg80211: Current regulatory "
1867
					"domain intersected: \n");
1868
	} else if (is_world_regdom(rd->alpha2))
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
		printk(KERN_INFO "cfg80211: World regulatory "
			"domain updated:\n");
	else {
		if (is_unknown_alpha2(rd->alpha2))
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to driver built-in settings "
				"(unknown country)\n");
		else
			printk(KERN_INFO "cfg80211: Regulatory domain "
				"changed to country: %c%c\n",
				rd->alpha2[0], rd->alpha2[1]);
	}
	print_rd_rules(rd);
}

1884
static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1885 1886 1887 1888 1889 1890
{
	printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
		rd->alpha2[0], rd->alpha2[1]);
	print_rd_rules(rd);
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
#ifdef CONFIG_CFG80211_REG_DEBUG
static void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
	printk(KERN_DEBUG "cfg80211: Received country IE:\n");
	print_regdomain_info(country_ie_regdomain);
	printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
	print_regdomain_info(rd);
	if (intersected_rd) {
		printk(KERN_DEBUG "cfg80211: We intersect both of these "
			"and get:\n");
1904
		print_regdomain_info(intersected_rd);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
		return;
	}
	printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
}
#else
static inline void reg_country_ie_process_debug(
	const struct ieee80211_regdomain *rd,
	const struct ieee80211_regdomain *country_ie_regdomain,
	const struct ieee80211_regdomain *intersected_rd)
{
}
#endif

1918
/* Takes ownership of rd only if it doesn't fail */
1919
static int __set_regdom(const struct ieee80211_regdomain *rd)
1920
{
1921
	const struct ieee80211_regdomain *intersected_rd = NULL;
1922
	struct cfg80211_registered_device *drv = NULL;
1923
	struct wiphy *request_wiphy;
1924 1925 1926
	/* Some basic sanity checks first */

	if (is_world_regdom(rd->alpha2)) {
1927
		if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1928 1929 1930 1931 1932 1933 1934 1935 1936
			return -EINVAL;
		update_world_regdomain(rd);
		return 0;
	}

	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
			!is_unknown_alpha2(rd->alpha2))
		return -EINVAL;

1937
	if (!last_request)
1938 1939
		return -EINVAL;

1940 1941
	/*
	 * Lets only bother proceeding on the same alpha2 if the current
1942
	 * rd is non static (it means CRDA was present and was used last)
1943 1944
	 * and the pending request came in from a country IE
	 */
1945
	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1946 1947 1948 1949
		/*
		 * If someone else asked us to change the rd lets only bother
		 * checking if the alpha2 changes if CRDA was already called
		 */
1950
		if (!is_old_static_regdom(cfg80211_regdomain) &&
1951
		    !regdom_changes(rd->alpha2))
1952 1953 1954
			return -EINVAL;
	}

1955 1956
	/*
	 * Now lets set the regulatory domain, update all driver channels
1957 1958
	 * and finally inform them of what we have done, in case they want
	 * to review or adjust their own settings based on their own
1959 1960
	 * internal EEPROM data
	 */
1961

1962
	if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1963 1964
		return -EINVAL;

1965 1966 1967 1968 1969
	if (!is_valid_rd(rd)) {
		printk(KERN_ERR "cfg80211: Invalid "
			"regulatory domain detected:\n");
		print_regdomain_info(rd);
		return -EINVAL;
1970 1971
	}

1972 1973
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

1974
	if (!last_request->intersect) {
1975 1976 1977 1978 1979 1980 1981 1982
		int r;

		if (last_request->initiator != REGDOM_SET_BY_DRIVER) {
			reset_regdomains();
			cfg80211_regdomain = rd;
			return 0;
		}

1983 1984 1985 1986
		/*
		 * For a driver hint, lets copy the regulatory domain the
		 * driver wanted to the wiphy to deal with conflicts
		 */
1987

1988
		BUG_ON(request_wiphy->regd);
1989

1990
		r = reg_copy_regd(&request_wiphy->regd, rd);
1991 1992 1993
		if (r)
			return r;

1994 1995 1996 1997 1998 1999 2000 2001 2002
		reset_regdomains();
		cfg80211_regdomain = rd;
		return 0;
	}

	/* Intersection requires a bit more work */

	if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {

2003 2004 2005
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
		if (!intersected_rd)
			return -EINVAL;
2006

2007 2008
		/*
		 * We can trash what CRDA provided now.
2009
		 * However if a driver requested this specific regulatory
2010 2011
		 * domain we keep it for its private use
		 */
2012
		if (last_request->initiator == REGDOM_SET_BY_DRIVER)
2013
			request_wiphy->regd = rd;
2014 2015 2016
		else
			kfree(rd);

2017 2018 2019 2020 2021 2022
		rd = NULL;

		reset_regdomains();
		cfg80211_regdomain = intersected_rd;

		return 0;
2023 2024
	}

2025 2026 2027 2028 2029 2030 2031 2032
	/*
	 * Country IE requests are handled a bit differently, we intersect
	 * the country IE rd with what CRDA believes that country should have
	 */

	BUG_ON(!country_ie_regdomain);

	if (rd != country_ie_regdomain) {
2033 2034 2035 2036
		/*
		 * Intersect what CRDA returned and our what we
		 * had built from the Country IE received
		 */
2037 2038 2039 2040 2041 2042 2043 2044 2045

		intersected_rd = regdom_intersect(rd, country_ie_regdomain);

		reg_country_ie_process_debug(rd, country_ie_regdomain,
			intersected_rd);

		kfree(country_ie_regdomain);
		country_ie_regdomain = NULL;
	} else {
2046 2047
		/*
		 * This would happen when CRDA was not present and
2048
		 * OLD_REGULATORY was enabled. We intersect our Country
2049 2050
		 * IE rd and what was set on cfg80211 originally
		 */
2051 2052 2053 2054 2055 2056
		intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
	}

	if (!intersected_rd)
		return -EINVAL;

2057
	drv = wiphy_to_dev(request_wiphy);
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067

	drv->country_ie_alpha2[0] = rd->alpha2[0];
	drv->country_ie_alpha2[1] = rd->alpha2[1];
	drv->env = last_request->country_ie_env;

	BUG_ON(intersected_rd == rd);

	kfree(rd);
	rd = NULL;

2068
	reset_regdomains();
2069
	cfg80211_regdomain = intersected_rd;
2070 2071 2072 2073 2074

	return 0;
}


2075 2076
/*
 * Use this call to set the current regulatory domain. Conflicts with
2077
 * multiple drivers can be ironed out later. Caller must've already
2078 2079
 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
 */
2080
int set_regdom(const struct ieee80211_regdomain *rd)
2081 2082 2083
{
	int r;

2084 2085
	assert_cfg80211_lock();

2086 2087
	/* Note that this doesn't update the wiphys, this is done below */
	r = __set_regdom(rd);
2088 2089
	if (r) {
		kfree(rd);
2090
		return r;
2091
	}
2092 2093

	/* This would make this whole thing pointless */
2094 2095
	if (!last_request->intersect)
		BUG_ON(rd != cfg80211_regdomain);
2096 2097

	/* update all wiphys now with the new established regulatory domain */
2098
	update_all_wiphy_regulatory(last_request->initiator);
2099

2100
	print_regdomain(cfg80211_regdomain);
2101 2102 2103 2104

	return r;
}

2105
/* Caller must hold cfg80211_mutex */
2106 2107
void reg_device_remove(struct wiphy *wiphy)
{
2108 2109
	struct wiphy *request_wiphy;

2110 2111
	assert_cfg80211_lock();

2112 2113
	request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);

2114
	kfree(wiphy->regd);
2115
	if (!last_request || !request_wiphy)
2116
		return;
2117
	if (request_wiphy != wiphy)
2118
		return;
2119
	last_request->wiphy_idx = WIPHY_IDX_STALE;
2120 2121 2122
	last_request->country_ie_env = ENVIRON_ANY;
}

2123 2124
int regulatory_init(void)
{
2125
	int err = 0;
2126

2127 2128 2129
	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
	if (IS_ERR(reg_pdev))
		return PTR_ERR(reg_pdev);
2130

2131
	spin_lock_init(&reg_requests_lock);
2132
	spin_lock_init(&reg_pending_beacons_lock);
2133

2134
#ifdef CONFIG_WIRELESS_OLD_REGULATORY
2135
	cfg80211_regdomain = static_regdom(ieee80211_regdom);
2136

2137
	printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
2138
	print_regdomain_info(cfg80211_regdomain);
2139 2140
	/*
	 * The old code still requests for a new regdomain and if
2141 2142
	 * you have CRDA you get it updated, otherwise you get
	 * stuck with the static values. We ignore "EU" code as
2143 2144
	 * that is not a valid ISO / IEC 3166 alpha2
	 */
J
Johannes Berg 已提交
2145
	if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
2146
		err = regulatory_hint_core(ieee80211_regdom);
2147
#else
2148
	cfg80211_regdomain = cfg80211_world_regdom;
2149

2150
	err = regulatory_hint_core("00");
2151
#endif
2152
	if (err) {
2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
		if (err == -ENOMEM)
			return err;
		/*
		 * N.B. kobject_uevent_env() can fail mainly for when we're out
		 * memory which is handled and propagated appropriately above
		 * but it can also fail during a netlink_broadcast() or during
		 * early boot for call_usermodehelper(). For now treat these
		 * errors as non-fatal.
		 */
		printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
			"to call CRDA during init");
#ifdef CONFIG_CFG80211_REG_DEBUG
		/* We want to find out exactly why when debugging */
		WARN_ON(err);
2167
#endif
2168
	}
2169

2170 2171 2172 2173 2174
	return 0;
}

void regulatory_exit(void)
{
2175
	struct regulatory_request *reg_request, *tmp;
2176
	struct reg_beacon *reg_beacon, *btmp;
2177 2178 2179

	cancel_work_sync(&reg_work);

2180
	mutex_lock(&cfg80211_mutex);
2181

2182
	reset_regdomains();
2183

2184 2185 2186
	kfree(country_ie_regdomain);
	country_ie_regdomain = NULL;

2187 2188
	kfree(last_request);

2189
	platform_device_unregister(reg_pdev);
2190

2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
	spin_lock_bh(&reg_pending_beacons_lock);
	if (!list_empty(&reg_pending_beacons)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_pending_beacons, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}
	spin_unlock_bh(&reg_pending_beacons_lock);

	if (!list_empty(&reg_beacon_list)) {
		list_for_each_entry_safe(reg_beacon, btmp,
					 &reg_beacon_list, list) {
			list_del(&reg_beacon->list);
			kfree(reg_beacon);
		}
	}

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
	spin_lock(&reg_requests_lock);
	if (!list_empty(&reg_requests_list)) {
		list_for_each_entry_safe(reg_request, tmp,
					 &reg_requests_list, list) {
			list_del(&reg_request->list);
			kfree(reg_request);
		}
	}
	spin_unlock(&reg_requests_lock);

2219
	mutex_unlock(&cfg80211_mutex);
2220
}