hrtimer.c 44.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50 51 52 53 54 55

#include <asm/uaccess.h>

/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
56
ktime_t ktime_get(void)
57 58 59 60 61 62 63
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
64
EXPORT_SYMBOL_GPL(ktime_get);
65 66 67 68 69 70

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
71
ktime_t ktime_get_real(void)
72 73 74 75 76 77 78 79 80 81 82 83
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
84 85 86 87 88 89
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
90
 */
91
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
92
{
93 94

	.clock_base =
95
	{
96 97 98
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
99
			.resolution = KTIME_LOW_RES,
100 101 102 103
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
104
			.resolution = KTIME_LOW_RES,
105 106
		},
	}
107 108 109 110 111 112 113 114
};

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
115
 * in normalized timespec format in the variable pointed to by @ts.
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
132
EXPORT_SYMBOL_GPL(ktime_get_ts);
133

134 135 136 137
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
138
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
139 140
{
	ktime_t xtim, tomono;
141
	struct timespec xts, tom;
142 143 144 145
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
146
		xts = current_kernel_time();
147
		tom = wall_to_monotonic;
148 149
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
150
	xtim = timespec_to_ktime(xts);
151
	tomono = timespec_to_ktime(tom);
152 153 154
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
155 156
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
175 176 177
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
178
{
179
	struct hrtimer_clock_base *base;
180 181 182 183

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
184
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
185 186 187
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
188
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
189 190 191 192 193 194 195 196
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
197
static inline struct hrtimer_clock_base *
198 199
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
200
{
201 202
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
203 204 205 206 207 208 209 210 211 212
	int cpu, preferred_cpu = -1;

	cpu = smp_processor_id();
#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
		preferred_cpu = get_nohz_load_balancer();
		if (preferred_cpu >= 0)
			cpu = preferred_cpu;
	}
#endif
213

214 215
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
216
	new_base = &new_cpu_base->clock_base[base->index];
217 218 219 220 221 222 223 224 225 226 227

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
228
		if (unlikely(hrtimer_callback_running(timer)))
229 230 231 232
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
233 234
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

		/* Optimized away for NOHZ=n SMP=n */
		if (cpu == preferred_cpu) {
			/* Calculate clock monotonic expiry time */
#ifdef CONFIG_HIGH_RES_TIMERS
			ktime_t expires = ktime_sub(hrtimer_get_expires(timer),
							new_base->offset);
#else
			ktime_t expires = hrtimer_get_expires(timer);
#endif

			/*
			 * Get the next event on target cpu from the
			 * clock events layer.
			 * This covers the highres=off nohz=on case as well.
			 */
			ktime_t next = clockevents_get_next_event(cpu);

			ktime_t delta = ktime_sub(expires, next);

			/*
			 * We do not migrate the timer when it is expiring
			 * before the next event on the target cpu because
			 * we cannot reprogram the target cpu hardware and
			 * we would cause it to fire late.
			 */
			if (delta.tv64 < 0) {
				cpu = smp_processor_id();
				spin_unlock(&new_base->cpu_base->lock);
				spin_lock(&base->cpu_base->lock);
				timer->base = base;
				goto again;
			}
		}
269 270 271 272 273 274 275
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

276
static inline struct hrtimer_clock_base *
277 278
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
279
	struct hrtimer_clock_base *base = timer->base;
280

281
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
282 283 284 285

	return base;
}

286
# define switch_hrtimer_base(t, b, p)	(b)
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
317 318

EXPORT_SYMBOL_GPL(ktime_add_ns);
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
343 344 345 346 347
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
348
u64 ktime_divns(const ktime_t kt, s64 div)
349
{
350
	u64 dclc;
351 352
	int sft = 0;

353
	dclc = ktime_to_ns(kt);
354 355 356 357 358 359 360 361
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
362
	return dclc;
363 364 365
}
#endif /* BITS_PER_LONG >= 64 */

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
551
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
552 553 554 555 556 557 558
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
580
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
581 582
	int res;

583
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
584

585 586 587
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
588
	 * the callback is executed in the hrtimer_interrupt context. The
589 590 591 592 593 594
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

595 596 597 598 599 600 601 602 603
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
663
	on_each_cpu(retrigger_next_event, NULL, 1);
664 665
}

666 667 668 669 670 671
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
672 673 674
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

675 676 677
	retrigger_next_event(NULL);
}

678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

694

695 696 697 698 699 700 701
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
702 703
					    struct hrtimer_clock_base *base,
					    int wakeup)
704 705
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
706 707 708 709 710 711 712
		if (wakeup) {
			spin_unlock(&base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			spin_lock(&base->cpu_base->lock);
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

713
		return 1;
714
	}
715

716 717 718 719 720 721
	return 0;
}

/*
 * Switch to high resolution mode
 */
722
static int hrtimer_switch_to_hres(void)
723
{
I
Ingo Molnar 已提交
724 725
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
726 727 728
	unsigned long flags;

	if (base->hres_active)
729
		return 1;
730 731 732 733 734

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
735 736
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
737
		return 0;
738 739 740 741 742 743 744 745 746 747
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
748
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
749
	       smp_processor_id());
750
	return 1;
751 752 753 754 755 756
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
757
static inline int hrtimer_switch_to_hres(void) { return 0; }
758 759
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
760 761
					    struct hrtimer_clock_base *base,
					    int wakeup)
762 763 764 765 766 767 768 769
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

770 771 772 773 774 775 776 777 778 779 780 781
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

782
/*
783
 * Counterpart to lock_hrtimer_base above:
784 785 786 787
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
788
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
789 790 791 792 793
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
794
 * @now:	forward past this time
795 796 797
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
798
 * Returns the number of overruns.
799
 */
D
Davide Libenzi 已提交
800
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
801
{
D
Davide Libenzi 已提交
802
	u64 orun = 1;
803
	ktime_t delta;
804

805
	delta = ktime_sub(now, hrtimer_get_expires(timer));
806 807 808 809

	if (delta.tv64 < 0)
		return 0;

810 811 812
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

813
	if (unlikely(delta.tv64 >= interval.tv64)) {
814
		s64 incr = ktime_to_ns(interval);
815 816

		orun = ktime_divns(delta, incr);
817 818
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
819 820 821 822 823 824 825
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
826
	hrtimer_add_expires(timer, interval);
827 828 829

	return orun;
}
S
Stas Sergeev 已提交
830
EXPORT_SYMBOL_GPL(hrtimer_forward);
831 832 833 834 835 836

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
837 838
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
839
 */
840 841
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
842 843 844 845
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
846
	int leftmost = 1;
847

848 849
	debug_hrtimer_activate(timer);

850 851 852 853 854 855 856 857 858 859
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
860 861
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
862
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
863
		} else {
864
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
865 866
			leftmost = 0;
		}
867 868 869
	}

	/*
870 871
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
872
	 */
873
	if (leftmost)
874 875
		base->first = &timer->node;

876 877
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
878 879 880 881 882
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
883 884

	return leftmost;
885
}
886 887 888 889 890

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
891 892 893 894 895
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
896
 */
897
static void __remove_hrtimer(struct hrtimer *timer,
898
			     struct hrtimer_clock_base *base,
899
			     unsigned long newstate, int reprogram)
900
{
901
	if (timer->state & HRTIMER_STATE_ENQUEUED) {
902 903 904 905 906 907 908 909 910 911 912 913
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
914
	timer->state = newstate;
915 916 917 918 919 920
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
921
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
922
{
923
	if (hrtimer_is_queued(timer)) {
924 925 926 927 928 929 930 931 932 933
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
934
		debug_hrtimer_deactivate(timer);
935
		timer_stats_hrtimer_clear_start_info(timer);
936 937 938
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
939 940 941 942 943
		return 1;
	}
	return 0;
}

944 945 946
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
947
{
948
	struct hrtimer_clock_base *base, *new_base;
949
	unsigned long flags;
950
	int ret, leftmost;
951 952 953 954 955 956 957

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
958
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
959

960
	if (mode & HRTIMER_MODE_REL) {
961
		tim = ktime_add_safe(tim, new_base->get_time());
962 963 964 965 966 967 968 969
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
970
		tim = ktime_add_safe(tim, base->resolution);
971 972
#endif
	}
973

974
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
975

976 977
	timer_stats_hrtimer_set_start_info(timer);

978 979
	leftmost = enqueue_hrtimer(timer, new_base);

980 981 982
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
983 984
	 *
	 * XXX send_remote_softirq() ?
985
	 */
986
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
987
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
988 989 990 991 992

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1010 1011 1012
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1013
 * hrtimer_start - (re)start an hrtimer on the current CPU
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1025
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1026
}
1027
EXPORT_SYMBOL_GPL(hrtimer_start);
1028

1029

1030 1031 1032 1033 1034 1035 1036 1037
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1038
 *    cannot be stopped
1039 1040 1041
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1042
	struct hrtimer_clock_base *base;
1043 1044 1045 1046 1047
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1048
	if (!hrtimer_callback_running(timer))
1049 1050 1051 1052 1053 1054 1055
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1056
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1073
		cpu_relax();
1074 1075
	}
}
1076
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1077 1078 1079 1080 1081 1082 1083

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1084
	struct hrtimer_clock_base *base;
1085 1086 1087 1088
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1089
	rem = hrtimer_expires_remaining(timer);
1090 1091 1092 1093
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1094
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1095

1096
#ifdef CONFIG_NO_HZ
1097 1098 1099 1100 1101 1102 1103 1104
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1105 1106
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1107 1108 1109 1110
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1111 1112
	spin_lock_irqsave(&cpu_base->lock, flags);

1113 1114 1115
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1116

1117 1118
			if (!base->first)
				continue;
1119

1120
			timer = rb_entry(base->first, struct hrtimer, node);
1121
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1122 1123 1124 1125
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1126
	}
1127 1128 1129

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1130 1131 1132 1133 1134 1135
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1136 1137
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1138
{
1139
	struct hrtimer_cpu_base *cpu_base;
1140

1141 1142
	memset(timer, 0, sizeof(struct hrtimer));

1143
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1144

1145
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1146 1147
		clock_id = CLOCK_MONOTONIC;

1148
	timer->base = &cpu_base->clock_base[clock_id];
1149
	INIT_LIST_HEAD(&timer->cb_entry);
1150
	hrtimer_init_timer_hres(timer);
1151 1152 1153 1154 1155 1156

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1157
}
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1171
EXPORT_SYMBOL_GPL(hrtimer_init);
1172 1173 1174 1175 1176 1177

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1178 1179
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1180 1181 1182
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1183
	struct hrtimer_cpu_base *cpu_base;
1184

1185 1186
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1187 1188 1189

	return 0;
}
1190
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1191

1192 1193 1194 1195 1196 1197 1198
static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1199 1200
	WARN_ON(!irqs_disabled());

1201
	debug_hrtimer_deactivate(timer);
1202 1203 1204
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1205 1206 1207 1208 1209 1210 1211 1212 1213

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
	spin_unlock(&cpu_base->lock);
	restart = fn(timer);
	spin_lock(&cpu_base->lock);
1214 1215

	/*
T
Thomas Gleixner 已提交
1216 1217 1218
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1219 1220 1221
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1222
		enqueue_hrtimer(timer, base);
1223 1224 1225 1226
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1227 1228
#ifdef CONFIG_HIGH_RES_TIMERS

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
static int force_clock_reprogram;

/*
 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
 * is hanging, which could happen with something that slows the interrupt
 * such as the tracing. Then we force the clock reprogramming for each future
 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
 * threshold that we will overwrite.
 * The next tick event will be scheduled to 3 times we currently spend on
 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
 * 1/4 of their time to process the hrtimer interrupts. This is enough to
 * let it running without serious starvation.
 */

static inline void
hrtimer_interrupt_hanging(struct clock_event_device *dev,
			ktime_t try_time)
{
	force_clock_reprogram = 1;
	dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
	printk(KERN_WARNING "hrtimer: interrupt too slow, "
		"forcing clock min delta to %lu ns\n", dev->min_delta_ns);
}
1252 1253 1254 1255 1256 1257 1258 1259 1260
/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
1261
	int nr_retries = 0;
1262
	int i;
1263 1264 1265 1266 1267 1268

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
1269 1270 1271 1272
	/* 5 retries is enough to notice a hang */
	if (!(++nr_retries % 5))
		hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1306 1307
				ktime_t expires;

1308
				expires = ktime_sub(hrtimer_get_expires(timer),
1309 1310 1311 1312 1313 1314
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1315
			__run_hrtimer(timer);
1316 1317 1318 1319 1320 1321 1322 1323 1324
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
1325
		if (tick_program_event(expires_next, force_clock_reprogram))
1326 1327 1328 1329
			goto retry;
	}
}

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1357
	unsigned long flags;
1358

1359
	local_irq_save(flags);
1360
	__hrtimer_peek_ahead_timers();
1361 1362 1363
	local_irq_restore(flags);
}

1364 1365 1366 1367 1368
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1369 1370 1371 1372 1373
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1374

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1397 1398
}

1399
/*
1400
 * Called from hardirq context every jiffy
1401
 */
1402
void hrtimer_run_queues(void)
1403
{
1404
	struct rb_node *node;
1405 1406 1407
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1408

1409
	if (hrtimer_hres_active())
1410 1411
		return;

1412 1413
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1414

1415
		if (!base->first)
1416
			continue;
1417

1418
		if (gettime) {
1419 1420
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1421
		}
1422

1423
		spin_lock(&cpu_base->lock);
1424

1425 1426
		while ((node = base->first)) {
			struct hrtimer *timer;
1427

1428
			timer = rb_entry(node, struct hrtimer, node);
1429 1430
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1431 1432 1433 1434 1435 1436
				break;

			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1437 1438
}

1439 1440 1441
/*
 * Sleep related functions:
 */
1442
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1455
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1456 1457 1458 1459 1460
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

1461
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1462
{
1463
	hrtimer_init_sleeper(t, current);
1464

1465 1466
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1467
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1468 1469
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1470

1471 1472
		if (likely(t->task))
			schedule();
1473

1474
		hrtimer_cancel(&t->timer);
1475
		mode = HRTIMER_MODE_ABS;
1476 1477

	} while (t->task && !signal_pending(current));
1478

1479 1480
	__set_current_state(TASK_RUNNING);

1481
	return t->task == NULL;
1482 1483
}

1484 1485 1486 1487 1488
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1489
	rem = hrtimer_expires_remaining(timer);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1500
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1501
{
1502
	struct hrtimer_sleeper t;
1503
	struct timespec __user  *rmtp;
1504
	int ret = 0;
1505

1506 1507
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1508
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1509

1510
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1511
		goto out;
1512

1513
	rmtp = restart->nanosleep.rmtp;
1514
	if (rmtp) {
1515
		ret = update_rmtp(&t.timer, rmtp);
1516
		if (ret <= 0)
1517
			goto out;
1518
	}
1519 1520

	/* The other values in restart are already filled in */
1521 1522 1523 1524
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1525 1526
}

1527
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1528 1529 1530
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1531
	struct hrtimer_sleeper t;
1532
	int ret = 0;
1533 1534 1535 1536 1537
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1538

1539
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1540
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1541
	if (do_nanosleep(&t, mode))
1542
		goto out;
1543

1544
	/* Absolute timers do not update the rmtp value and restart: */
1545 1546 1547 1548
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1549

1550
	if (rmtp) {
1551
		ret = update_rmtp(&t.timer, rmtp);
1552
		if (ret <= 0)
1553
			goto out;
1554
	}
1555 1556

	restart = &current_thread_info()->restart_block;
1557
	restart->fn = hrtimer_nanosleep_restart;
1558 1559
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1560
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1561

1562 1563 1564 1565
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1566 1567
}

1568 1569
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1570
{
1571
	struct timespec tu;
1572 1573 1574 1575 1576 1577 1578

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1579
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1580 1581
}

1582 1583 1584
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1585
static void __cpuinit init_hrtimers_cpu(int cpu)
1586
{
1587
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1588 1589
	int i;

1590 1591 1592 1593 1594
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1595
	hrtimer_init_hres(cpu_base);
1596 1597 1598 1599
}

#ifdef CONFIG_HOTPLUG_CPU

1600
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1601
				struct hrtimer_clock_base *new_base)
1602 1603 1604 1605 1606 1607
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1608
		BUG_ON(hrtimer_callback_running(timer));
1609
		debug_hrtimer_deactivate(timer);
T
Thomas Gleixner 已提交
1610 1611 1612 1613 1614 1615 1616

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1617
		timer->base = new_base;
1618
		/*
T
Thomas Gleixner 已提交
1619 1620 1621 1622 1623 1624
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1625
		 */
1626
		enqueue_hrtimer(timer, new_base);
1627

T
Thomas Gleixner 已提交
1628 1629
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1630 1631 1632
	}
}

1633
static void migrate_hrtimers(int scpu)
1634
{
1635
	struct hrtimer_cpu_base *old_base, *new_base;
1636
	int i;
1637

1638 1639
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1640 1641 1642 1643

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1644 1645 1646 1647
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1648
	spin_lock(&new_base->lock);
1649
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1650

1651
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1652
		migrate_hrtimer_list(&old_base->clock_base[i],
1653
				     &new_base->clock_base[i]);
1654 1655
	}

1656
	spin_unlock(&old_base->lock);
1657
	spin_unlock(&new_base->lock);
1658

1659 1660 1661
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1662
}
1663

1664 1665
#endif /* CONFIG_HOTPLUG_CPU */

1666
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1667 1668
					unsigned long action, void *hcpu)
{
1669
	int scpu = (long)hcpu;
1670 1671 1672 1673

	switch (action) {

	case CPU_UP_PREPARE:
1674
	case CPU_UP_PREPARE_FROZEN:
1675
		init_hrtimers_cpu(scpu);
1676 1677 1678
		break;

#ifdef CONFIG_HOTPLUG_CPU
1679 1680 1681 1682
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1683
	case CPU_DEAD:
1684
	case CPU_DEAD_FROZEN:
1685
	{
1686
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1687
		migrate_hrtimers(scpu);
1688
		break;
1689
	}
1690 1691 1692 1693 1694 1695 1696 1697 1698
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1699
static struct notifier_block __cpuinitdata hrtimers_nb = {
1700 1701 1702 1703 1704 1705 1706 1707
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1708 1709 1710
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1711 1712
}

1713
/**
1714
 * schedule_hrtimeout_range - sleep until timeout
1715
 * @expires:	timeout value (ktime_t)
1716
 * @delta:	slack in expires timeout (ktime_t)
1717 1718 1719 1720 1721 1722
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1723 1724 1725 1726 1727
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1741
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1765
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1766 1767 1768

	hrtimer_init_sleeper(&t, current);

1769
	hrtimer_start_expires(&t.timer, mode);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1812
EXPORT_SYMBOL_GPL(schedule_hrtimeout);