hugetlb.c 75.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/io.h>
D
David Gibson 已提交
28 29

#include <linux/hugetlb.h>
30
#include <linux/node.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32 33

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36

37 38 39 40
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

41 42
__initdata LIST_HEAD(huge_boot_pages);

43 44 45
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
46
static unsigned long __initdata default_hstate_size;
47 48 49

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50

51 52 53 54
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
59 60 61 62 63 64 65 66 67 68
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
149
		/* We overlap with this area, if it extends further than
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

215 216 217 218
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
219 220
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
221
{
222 223
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
224 225
}

226 227 228 229 230 231
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
247
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248

249 250 251 252 253 254 255 256 257 258 259 260 261
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

262 263 264 265 266 267 268
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
269
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270

271 272 273 274 275 276 277 278 279
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
280 281 282 283 284 285 286 287 288
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
289
 */
290 291 292 293 294 295 296 297 298 299 300
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

301 302 303 304 305
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

306
static struct resv_map *resv_map_alloc(void)
307 308 309 310 311 312 313 314 315 316 317
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

318
static void resv_map_release(struct kref *ref)
319 320 321 322 323 324 325 326 327
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330
	if (!(vma->vm_flags & VM_MAYSHARE))
331 332
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
333
	return NULL;
334 335
}

336
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 338
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340

341 342
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
343 344 345 346 347
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349 350

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 352 353 354 355
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356 357

	return (get_vma_private_data(vma) & flag) != 0;
358 359 360
}

/* Decrement the reserved pages in the hugepage pool by one */
361 362
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
363
{
364 365 366
	if (vma->vm_flags & VM_NORESERVE)
		return;

367
	if (vma->vm_flags & VM_MAYSHARE) {
368
		/* Shared mappings always use reserves */
369
		h->resv_huge_pages--;
370
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 372 373 374
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
375
		h->resv_huge_pages--;
376 377 378
	}
}

379
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 381 382
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383
	if (!(vma->vm_flags & VM_MAYSHARE))
384 385 386 387
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
388
static int vma_has_reserves(struct vm_area_struct *vma)
389
{
390
	if (vma->vm_flags & VM_MAYSHARE)
391 392 393 394
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

431
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
432 433
{
	int nid = page_to_nid(page);
434 435 436
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
437 438
}

439 440 441 442 443 444 445 446
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
	list_del(&page->lru);
447
	set_page_refcounted(page);
448 449 450 451 452
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

453 454
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
455
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
456 457
{
	struct page *page = NULL;
458
	struct mempolicy *mpol;
459
	nodemask_t *nodemask;
460
	struct zonelist *zonelist;
461 462
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
463

464 465 466
	get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
467 468 469 470 471
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
472
	if (!vma_has_reserves(vma) &&
473
			h->free_huge_pages - h->resv_huge_pages == 0)
474
		goto err;
475

476
	/* If reserves cannot be used, ensure enough pages are in the pool */
477
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478
		goto err;
479

480 481
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
482 483 484 485 486 487 488
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
489
		}
L
Linus Torvalds 已提交
490
	}
491
err:
492
	mpol_cond_put(mpol);
493
	put_mems_allowed();
L
Linus Torvalds 已提交
494 495 496
	return page;
}

497
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
498 499
{
	int i;
500

501 502
	VM_BUG_ON(h->order >= MAX_ORDER);

503 504 505
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
506 507 508 509 510 511
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
512
	arch_release_hugepage(page);
513
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
514 515
}

516 517 518 519 520 521 522 523 524 525 526
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

527 528
static void free_huge_page(struct page *page)
{
529 530 531 532
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
533
	struct hstate *h = page_hstate(page);
534
	int nid = page_to_nid(page);
535
	struct address_space *mapping;
536

537
	mapping = (struct address_space *) page_private(page);
538
	set_page_private(page, 0);
539
	page->mapping = NULL;
540
	BUG_ON(page_count(page));
541
	BUG_ON(page_mapcount(page));
542 543 544
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
545
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
546 547 548
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
549
	} else {
550
		enqueue_huge_page(h, page);
551
	}
552
	spin_unlock(&hugetlb_lock);
553
	if (mapping)
554
		hugetlb_put_quota(mapping, 1);
555 556
}

557
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
558 559 560
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
561 562
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
563 564 565 566
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

595 596
EXPORT_SYMBOL_GPL(PageHuge);

597
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
598 599
{
	struct page *page;
600

601 602 603
	if (h->order >= MAX_ORDER)
		return NULL;

604
	page = alloc_pages_exact_node(nid,
605 606
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
607
		huge_page_order(h));
L
Linus Torvalds 已提交
608
	if (page) {
609
		if (arch_prepare_hugepage(page)) {
610
			__free_pages(page, huge_page_order(h));
611
			return NULL;
612
		}
613
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
614
	}
615 616 617 618

	return page;
}

619
/*
620 621 622 623 624
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
625
 */
626
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
627
{
628
	nid = next_node(nid, *nodes_allowed);
629
	if (nid == MAX_NUMNODES)
630
		nid = first_node(*nodes_allowed);
631 632 633 634 635
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

636 637 638 639 640 641 642
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

643
/*
644 645 646 647
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
648
 */
649 650
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
651
{
652 653 654 655 656 657
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
658 659

	return nid;
660 661
}

662
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
663 664 665 666 667 668
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

669
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
670
	next_nid = start_nid;
671 672

	do {
673
		page = alloc_fresh_huge_page_node(h, next_nid);
674
		if (page) {
675
			ret = 1;
676 677
			break;
		}
678
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
679
	} while (next_nid != start_nid);
680

681 682 683 684 685
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

686
	return ret;
L
Linus Torvalds 已提交
687 688
}

689
/*
690 691 692 693
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
694
 */
695
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
696
{
697 698 699 700 701 702
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
703 704

	return nid;
705 706 707 708 709 710 711 712
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
713 714
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
715 716 717 718 719
{
	int start_nid;
	int next_nid;
	int ret = 0;

720
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
721 722 723
	next_nid = start_nid;

	do {
724 725 726 727 728 729
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
730 731 732 733 734 735
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
736 737 738 739
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
740 741
			update_and_free_page(h, page);
			ret = 1;
742
			break;
743
		}
744
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
745
	} while (next_nid != start_nid);
746 747 748 749

	return ret;
}

750
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
751 752
{
	struct page *page;
753
	unsigned int r_nid;
754

755 756 757
	if (h->order >= MAX_ORDER)
		return NULL;

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
782
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
783 784 785
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
786 787
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
788 789 790
	}
	spin_unlock(&hugetlb_lock);

791 792 793 794 795 796 797 798
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
799

800 801 802 803 804
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

805
	spin_lock(&hugetlb_lock);
806
	if (page) {
807
		r_nid = page_to_nid(page);
808
		set_compound_page_dtor(page, free_huge_page);
809 810 811
		/*
		 * We incremented the global counters already
		 */
812 813
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
814
		__count_vm_event(HTLB_BUDDY_PGALLOC);
815
	} else {
816 817
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
818
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
819
	}
820
	spin_unlock(&hugetlb_lock);
821 822 823 824

	return page;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

	if (!page)
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

844
/*
L
Lucas De Marchi 已提交
845
 * Increase the hugetlb pool such that it can accommodate a reservation
846 847
 * of size 'delta'.
 */
848
static int gather_surplus_pages(struct hstate *h, int delta)
849 850 851 852 853 854
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

855
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
856
	if (needed <= 0) {
857
		h->resv_huge_pages += delta;
858
		return 0;
859
	}
860 861 862 863 864 865 866 867

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
868
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
869
		if (!page)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			goto free;

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
886 887
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
888 889 890 891 892
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
893
	 * needed to accommodate the reservation.  Add the appropriate number
894
	 * of pages to the hugetlb pool and free the extras back to the buddy
895 896 897
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
898 899
	 */
	needed += allocated;
900
	h->resv_huge_pages += delta;
901
	ret = 0;
902 903

	spin_unlock(&hugetlb_lock);
904
	/* Free the needed pages to the hugetlb pool */
905
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906 907
		if ((--needed) < 0)
			break;
908
		list_del(&page->lru);
909 910 911 912 913 914
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
915
		enqueue_huge_page(h, page);
916 917 918
	}

	/* Free unnecessary surplus pages to the buddy allocator */
919
free:
920 921 922
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
923
			put_page(page);
924
		}
925
	}
926
	spin_lock(&hugetlb_lock);
927 928 929 930 931 932 933 934

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
935
 * Called with hugetlb_lock held.
936
 */
937 938
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
939 940 941
{
	unsigned long nr_pages;

942
	/* Uncommit the reservation */
943
	h->resv_huge_pages -= unused_resv_pages;
944

945 946 947 948
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

949
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
950

951 952
	/*
	 * We want to release as many surplus pages as possible, spread
953 954 955 956 957
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
958 959
	 */
	while (nr_pages--) {
960
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
961
			break;
962 963 964
	}
}

965 966 967 968 969 970 971 972 973
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
974
static long vma_needs_reservation(struct hstate *h,
975
			struct vm_area_struct *vma, unsigned long addr)
976 977 978 979
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

980
	if (vma->vm_flags & VM_MAYSHARE) {
981
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
982 983 984
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

985 986
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
987

988
	} else  {
989
		long err;
990
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991 992 993 994 995 996 997
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
998
}
999 1000
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1001 1002 1003 1004
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1005
	if (vma->vm_flags & VM_MAYSHARE) {
1006
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1007
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1008 1009

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1010
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1011 1012 1013 1014
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1015 1016 1017
	}
}

1018
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1019
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1020
{
1021
	struct hstate *h = hstate_vma(vma);
1022
	struct page *page;
1023 1024
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1025
	long chg;
1026 1027 1028 1029 1030

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1031 1032
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1033
	 */
1034
	chg = vma_needs_reservation(h, vma, addr);
1035 1036 1037
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
1038 1039
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1040 1041

	spin_lock(&hugetlb_lock);
1042
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1043
	spin_unlock(&hugetlb_lock);
1044

K
Ken Chen 已提交
1045
	if (!page) {
1046
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1047
		if (!page) {
1048
			hugetlb_put_quota(inode->i_mapping, chg);
1049
			return ERR_PTR(-VM_FAULT_SIGBUS);
K
Ken Chen 已提交
1050 1051
		}
	}
1052

1053
	set_page_private(page, (unsigned long) mapping);
1054

1055
	vma_commit_reservation(h, vma, addr);
1056

1057
	return page;
1058 1059
}

1060
int __weak alloc_bootmem_huge_page(struct hstate *h)
1061 1062
{
	struct huge_bootmem_page *m;
1063
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1064 1065 1066 1067 1068

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1069
				NODE_DATA(hstate_next_node_to_alloc(h,
1070
						&node_states[N_HIGH_MEMORY])),
1071 1072 1073 1074 1075 1076 1077 1078 1079
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1080
			goto found;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1094 1095 1096 1097 1098 1099 1100 1101
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1112
		prep_compound_huge_page(page, h->order);
1113 1114 1115 1116
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1117
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1118 1119
{
	unsigned long i;
1120

1121
	for (i = 0; i < h->max_huge_pages; ++i) {
1122 1123 1124
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1125 1126
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1127 1128
			break;
	}
1129
	h->max_huge_pages = i;
1130 1131 1132 1133 1134 1135 1136
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1137 1138 1139
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1140 1141 1142
	}
}

A
Andi Kleen 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1154 1155 1156 1157 1158
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1159 1160 1161 1162 1163
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1164 1165 1166
	}
}

L
Linus Torvalds 已提交
1167
#ifdef CONFIG_HIGHMEM
1168 1169
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1170
{
1171 1172
	int i;

1173 1174 1175
	if (h->order >= MAX_ORDER)
		return;

1176
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1177
		struct page *page, *next;
1178 1179 1180
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1181
				return;
L
Linus Torvalds 已提交
1182 1183 1184
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1185
			update_and_free_page(h, page);
1186 1187
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1188 1189 1190 1191
		}
	}
}
#else
1192 1193
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1194 1195 1196 1197
{
}
#endif

1198 1199 1200 1201 1202
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1203 1204
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1205
{
1206
	int start_nid, next_nid;
1207 1208 1209 1210
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1211
	if (delta < 0)
1212
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1213
	else
1214
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1215 1216 1217 1218 1219 1220 1221 1222
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1223
			if (!h->surplus_huge_pages_node[nid]) {
1224 1225
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1226
				continue;
1227
			}
1228 1229 1230 1231 1232 1233
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1234
						h->nr_huge_pages_node[nid]) {
1235 1236
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1237
				continue;
1238
			}
1239
		}
1240 1241 1242 1243 1244

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1245
	} while (next_nid != start_nid);
1246 1247 1248 1249

	return ret;
}

1250
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1251 1252
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1253
{
1254
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1255

1256 1257 1258
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1259 1260 1261 1262
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1263 1264 1265 1266 1267 1268
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1269
	 */
L
Linus Torvalds 已提交
1270
	spin_lock(&hugetlb_lock);
1271
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1272
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1273 1274 1275
			break;
	}

1276
	while (count > persistent_huge_pages(h)) {
1277 1278 1279 1280 1281 1282
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1283
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1284 1285 1286 1287
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1288 1289 1290
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1291 1292 1293 1294 1295 1296 1297 1298
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1299 1300 1301 1302 1303 1304 1305 1306
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1307
	 */
1308
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1309
	min_count = max(count, min_count);
1310
	try_to_free_low(h, min_count, nodes_allowed);
1311
	while (min_count < persistent_huge_pages(h)) {
1312
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1313 1314
			break;
	}
1315
	while (count < persistent_huge_pages(h)) {
1316
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1317 1318 1319
			break;
	}
out:
1320
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1321
	spin_unlock(&hugetlb_lock);
1322
	return ret;
L
Linus Torvalds 已提交
1323 1324
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1335 1336 1337
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1338 1339
{
	int i;
1340

1341
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1342 1343 1344
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1345
			return &hstates[i];
1346 1347 1348
		}

	return kobj_to_node_hstate(kobj, nidp);
1349 1350
}

1351
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1352 1353
					struct kobj_attribute *attr, char *buf)
{
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1365
}
1366

1367 1368 1369
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1370 1371
{
	int err;
1372
	int nid;
1373
	unsigned long count;
1374
	struct hstate *h;
1375
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1376

1377
	err = strict_strtoul(buf, 10, &count);
1378
	if (err)
1379
		goto out;
1380

1381
	h = kobj_to_hstate(kobj, &nid);
1382 1383 1384 1385 1386
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1406
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1407

1408
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1409 1410 1411
		NODEMASK_FREE(nodes_allowed);

	return len;
1412 1413 1414
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1427 1428 1429
}
HSTATE_ATTR(nr_hugepages);

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1451 1452 1453
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1454
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1455 1456
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1457

1458 1459 1460 1461 1462
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1463
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1464

1465 1466 1467
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1468 1469
	err = strict_strtoul(buf, 10, &input);
	if (err)
1470
		return err;
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1494 1495 1496 1497 1498 1499
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1500
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1501 1502 1503 1504 1505 1506 1507
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1519 1520 1521 1522 1523 1524 1525 1526 1527
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1528 1529 1530
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1531 1532 1533 1534 1535 1536 1537
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1538 1539 1540
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1541 1542
{
	int retval;
1543
	int hi = h - hstates;
1544

1545 1546
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1547 1548
		return -ENOMEM;

1549
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1550
	if (retval)
1551
		kobject_put(hstate_kobjs[hi]);
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1566 1567
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1568 1569 1570 1571 1572 1573
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
 * with node sysdevs in node_devices[] using a parallel array.  The array
 * index of a node sysdev or _hstate == node id.
 * This is here to avoid any static dependency of the node sysdev driver, in
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
 * A subset of global hstate attributes for node sysdevs
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
 * Unregister hstate attributes from a single node sysdev.
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];

	if (!nhs->hugepages_kobj)
1636
		return;		/* no hstate attributes */
1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

	for_each_hstate(h)
		if (nhs->hstate_kobjs[h - hstates]) {
			kobject_put(nhs->hstate_kobjs[h - hstates]);
			nhs->hstate_kobjs[h - hstates] = NULL;
		}

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
 * hugetlb module exit:  unregister hstate attributes from node sysdevs
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
	 * disable node sysdev registrations.
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
 * Register hstate attributes for a single node sysdev.
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
							&node->sysdev.kobj);
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
						h->name, node->sysdev.id);
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1701 1702 1703
 * hugetlb init time:  register hstate attributes for all registered node
 * sysdevs of nodes that have memory.  All on-line nodes should have
 * registered their associated sysdev by this time.
1704 1705 1706 1707 1708
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1709
	for_each_node_state(nid, N_HIGH_MEMORY) {
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
		struct node *node = &node_devices[nid];
		if (node->sysdev.id == nid)
			hugetlb_register_node(node);
	}

	/*
	 * Let the node sysdev driver know we're here so it can
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1738 1739 1740 1741
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1742 1743
	hugetlb_unregister_all_nodes();

1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1754 1755 1756 1757 1758 1759
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1760

1761 1762 1763 1764
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1765
	}
1766 1767 1768
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1769 1770 1771

	hugetlb_init_hstates();

1772 1773
	gather_bootmem_prealloc();

1774 1775 1776 1777
	report_hugepages();

	hugetlb_sysfs_init();

1778 1779
	hugetlb_register_all_nodes();

1780 1781 1782 1783 1784 1785 1786 1787
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1788 1789
	unsigned long i;

1790 1791 1792 1793 1794 1795 1796 1797 1798
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1799 1800 1801 1802
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1803 1804
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1805 1806
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1807

1808 1809 1810
	parsed_hstate = h;
}

1811
static int __init hugetlb_nrpages_setup(char *s)
1812 1813
{
	unsigned long *mhp;
1814
	static unsigned long *last_mhp;
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1825 1826 1827 1828 1829 1830
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1831 1832 1833
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1844 1845
	return 1;
}
1846 1847 1848 1849 1850 1851 1852 1853
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1854

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1867 1868 1869
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1870
{
1871 1872
	struct hstate *h = &default_hstate;
	unsigned long tmp;
1873
	int ret;
1874

1875
	tmp = h->max_huge_pages;
1876

1877 1878 1879
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

1880 1881
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1882 1883 1884
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1885

1886
	if (write) {
1887 1888
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
1899 1900
out:
	return ret;
L
Linus Torvalds 已提交
1901
}
1902

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

1920
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1921
			void __user *buffer,
1922 1923
			size_t *length, loff_t *ppos)
{
1924
	proc_dointvec(table, write, buffer, length, ppos);
1925 1926 1927 1928 1929 1930 1931
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1932
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1933
			void __user *buffer,
1934 1935
			size_t *length, loff_t *ppos)
{
1936
	struct hstate *h = &default_hstate;
1937
	unsigned long tmp;
1938
	int ret;
1939

1940
	tmp = h->nr_overcommit_huge_pages;
1941

1942 1943 1944
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

1945 1946
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1947 1948 1949
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1950 1951 1952 1953 1954 1955

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
1956 1957
out:
	return ret;
1958 1959
}

L
Linus Torvalds 已提交
1960 1961
#endif /* CONFIG_SYSCTL */

1962
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1963
{
1964
	struct hstate *h = &default_hstate;
1965
	seq_printf(m,
1966 1967 1968 1969 1970
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1971 1972 1973 1974 1975
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1976 1977 1978 1979
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1980
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1981 1982
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1983 1984
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1985 1986 1987
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1988 1989 1990 1991 1992
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1993 1994
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1995 1996
}

1997
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2020
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2021 2022
			goto out;

2023 2024
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2025 2026 2027 2028 2029 2030
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2031
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2032 2033 2034 2035 2036 2037

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2038 2039 2040 2041 2042 2043 2044 2045
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2046
	 * has a reference to the reservation map it cannot disappear until
2047 2048 2049 2050 2051 2052 2053
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2054 2055
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2056
	struct hstate *h = hstate_vma(vma);
2057 2058 2059 2060 2061 2062
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2063 2064
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2065 2066 2067 2068 2069 2070

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

2071
		if (reserve) {
2072
			hugetlb_acct_memory(h, -reserve);
2073 2074
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
2075
	}
2076 2077
}

L
Linus Torvalds 已提交
2078 2079 2080 2081 2082 2083
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2084
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2085 2086
{
	BUG();
N
Nick Piggin 已提交
2087
	return 0;
L
Linus Torvalds 已提交
2088 2089
}

2090
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2091
	.fault = hugetlb_vm_op_fault,
2092
	.open = hugetlb_vm_op_open,
2093
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2094 2095
};

2096 2097
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2098 2099 2100
{
	pte_t entry;

2101
	if (writable) {
D
David Gibson 已提交
2102 2103 2104
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2105
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2106 2107 2108 2109 2110 2111 2112
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

2113 2114 2115 2116 2117
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2118 2119
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2120
		update_mmu_cache(vma, address, ptep);
2121
	}
2122 2123 2124
}


D
David Gibson 已提交
2125 2126 2127 2128 2129
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2130
	unsigned long addr;
2131
	int cow;
2132 2133
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2134 2135

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2136

2137
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2138 2139 2140
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2141
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2142 2143
		if (!dst_pte)
			goto nomem;
2144 2145 2146 2147 2148

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2149
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2150
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2151
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2152
			if (cow)
2153 2154
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2155 2156
			ptepage = pte_page(entry);
			get_page(ptepage);
2157
			page_dup_rmap(ptepage);
2158 2159 2160
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2161
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2162 2163 2164 2165 2166 2167 2168
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp)) {
		return 1;
	} else
		return 0;
}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
		return 1;
	} else
		return 0;
}

2195
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2196
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
2197 2198 2199
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2200
	pte_t *ptep;
D
David Gibson 已提交
2201 2202
	pte_t pte;
	struct page *page;
2203
	struct page *tmp;
2204 2205 2206
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

2207
	/*
2208
	 * A page gathering list, protected by per file i_mmap_mutex. The
2209 2210 2211
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
2212
	LIST_HEAD(page_list);
D
David Gibson 已提交
2213 2214

	WARN_ON(!is_vm_hugetlb_page(vma));
2215 2216
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2217

A
Andrea Arcangeli 已提交
2218
	mmu_notifier_invalidate_range_start(mm, start, end);
2219
	spin_lock(&mm->page_table_lock);
2220
	for (address = start; address < end; address += sz) {
2221
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2222
		if (!ptep)
2223 2224
			continue;

2225 2226 2227
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2249
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2250
		if (huge_pte_none(pte))
D
David Gibson 已提交
2251
			continue;
2252

2253 2254 2255 2256 2257 2258
		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

D
David Gibson 已提交
2259
		page = pte_page(pte);
2260 2261
		if (pte_dirty(pte))
			set_page_dirty(page);
2262
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
2263
	}
L
Linus Torvalds 已提交
2264
	spin_unlock(&mm->page_table_lock);
2265
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
2266
	mmu_notifier_invalidate_range_end(mm, start, end);
2267
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2268
		page_remove_rmap(page);
2269 2270 2271
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
2272
}
D
David Gibson 已提交
2273

2274
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2275
			  unsigned long end, struct page *ref_page)
2276
{
2277
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2278
	__unmap_hugepage_range(vma, start, end, ref_page);
2279
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2280 2281
}

2282 2283 2284 2285 2286 2287
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2288 2289
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2290
{
2291
	struct hstate *h = hstate_vma(vma);
2292 2293 2294 2295 2296 2297 2298 2299 2300
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2301
	address = address & huge_page_mask(h);
2302 2303 2304 2305
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

2306 2307 2308 2309 2310
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2311
	mutex_lock(&mapping->i_mmap_mutex);
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2325
			__unmap_hugepage_range(iter_vma,
2326
				address, address + huge_page_size(h),
2327 2328
				page);
	}
2329
	mutex_unlock(&mapping->i_mmap_mutex);
2330 2331 2332 2333

	return 1;
}

2334 2335 2336
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
 */
2337
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2338 2339
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2340
{
2341
	struct hstate *h = hstate_vma(vma);
2342
	struct page *old_page, *new_page;
2343
	int avoidcopy;
2344
	int outside_reserve = 0;
2345 2346 2347

	old_page = pte_page(pte);

2348
retry_avoidcopy:
2349 2350
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2351
	avoidcopy = (page_mapcount(old_page) == 1);
2352
	if (avoidcopy) {
2353 2354
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2355
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2356
		return 0;
2357 2358
	}

2359 2360 2361 2362 2363 2364 2365 2366 2367
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2368
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2369 2370 2371 2372
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2373
	page_cache_get(old_page);
2374 2375 2376

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2377
	new_page = alloc_huge_page(vma, address, outside_reserve);
2378

2379
	if (IS_ERR(new_page)) {
2380
		page_cache_release(old_page);
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
2394
				spin_lock(&mm->page_table_lock);
2395 2396 2397 2398 2399
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

2400 2401
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2402
		return -PTR_ERR(new_page);
2403 2404
	}

2405 2406 2407 2408
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2409 2410 2411
	if (unlikely(anon_vma_prepare(vma))) {
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2412
		return VM_FAULT_OOM;
2413
	}
2414

A
Andrea Arcangeli 已提交
2415 2416
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2417
	__SetPageUptodate(new_page);
2418

2419 2420 2421 2422 2423
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2424
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2425
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2426
		/* Break COW */
2427 2428 2429
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2430
		huge_ptep_clear_flush(vma, address, ptep);
2431 2432
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2433
		page_remove_rmap(old_page);
2434
		hugepage_add_new_anon_rmap(new_page, vma, address);
2435 2436
		/* Make the old page be freed below */
		new_page = old_page;
2437 2438 2439
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2440 2441 2442
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2443
	return 0;
2444 2445
}

2446
/* Return the pagecache page at a given address within a VMA */
2447 2448
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2449 2450
{
	struct address_space *mapping;
2451
	pgoff_t idx;
2452 2453

	mapping = vma->vm_file->f_mapping;
2454
	idx = vma_hugecache_offset(h, vma, address);
2455 2456 2457 2458

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2459 2460 2461 2462 2463
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2479
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2480
			unsigned long address, pte_t *ptep, unsigned int flags)
2481
{
2482
	struct hstate *h = hstate_vma(vma);
2483
	int ret = VM_FAULT_SIGBUS;
2484
	pgoff_t idx;
A
Adam Litke 已提交
2485 2486 2487
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2488
	pte_t new_pte;
A
Adam Litke 已提交
2489

2490 2491 2492
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2493
	 * COW. Warn that such a situation has occurred as it may not be obvious
2494 2495 2496 2497 2498 2499 2500 2501
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2502
	mapping = vma->vm_file->f_mapping;
2503
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2504 2505 2506 2507 2508

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2509 2510 2511
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2512
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2513 2514
		if (idx >= size)
			goto out;
2515
		page = alloc_huge_page(vma, address, 0);
2516 2517
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2518 2519
			goto out;
		}
A
Andrea Arcangeli 已提交
2520
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2521
		__SetPageUptodate(page);
2522

2523
		if (vma->vm_flags & VM_MAYSHARE) {
2524
			int err;
K
Ken Chen 已提交
2525
			struct inode *inode = mapping->host;
2526 2527 2528 2529 2530 2531 2532 2533

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2534 2535

			spin_lock(&inode->i_lock);
2536
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2537
			spin_unlock(&inode->i_lock);
2538
			page_dup_rmap(page);
2539
		} else {
2540
			lock_page(page);
2541 2542 2543 2544 2545
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
			hugepage_add_new_anon_rmap(page, vma, address);
2546
		}
2547
	} else {
2548 2549 2550 2551 2552 2553
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2554 2555
			ret = VM_FAULT_HWPOISON | 
			      VM_FAULT_SET_HINDEX(h - hstates);
2556 2557
			goto backout_unlocked;
		}
2558
		page_dup_rmap(page);
2559
	}
2560

2561 2562 2563 2564 2565 2566
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2567
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2568 2569 2570 2571
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2572

2573
	spin_lock(&mm->page_table_lock);
2574
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2575 2576 2577
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2578
	ret = 0;
2579
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2580 2581
		goto backout;

2582 2583 2584 2585
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2586
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2587
		/* Optimization, do the COW without a second fault */
2588
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2589 2590
	}

2591
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2592 2593
	unlock_page(page);
out:
2594
	return ret;
A
Adam Litke 已提交
2595 2596 2597

backout:
	spin_unlock(&mm->page_table_lock);
2598
backout_unlocked:
A
Adam Litke 已提交
2599 2600 2601
	unlock_page(page);
	put_page(page);
	goto out;
2602 2603
}

2604
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2605
			unsigned long address, unsigned int flags)
2606 2607 2608
{
	pte_t *ptep;
	pte_t entry;
2609
	int ret;
2610
	struct page *page = NULL;
2611
	struct page *pagecache_page = NULL;
2612
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2613
	struct hstate *h = hstate_vma(vma);
2614

2615 2616 2617
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2618 2619 2620 2621
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2622 2623
			return VM_FAULT_HWPOISON_LARGE | 
			       VM_FAULT_SET_HINDEX(h - hstates);
2624 2625
	}

2626
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2627 2628 2629
	if (!ptep)
		return VM_FAULT_OOM;

2630 2631 2632 2633 2634 2635
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2636 2637
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2638
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2639
		goto out_mutex;
2640
	}
2641

N
Nick Piggin 已提交
2642
	ret = 0;
2643

2644 2645 2646 2647 2648 2649 2650 2651
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2652
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2653 2654
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2655
			goto out_mutex;
2656
		}
2657

2658
		if (!(vma->vm_flags & VM_MAYSHARE))
2659 2660 2661 2662
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2663 2664 2665 2666 2667 2668 2669 2670 2671
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
2672 2673
		lock_page(page);

2674 2675
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2676 2677 2678 2679
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2680
	if (flags & FAULT_FLAG_WRITE) {
2681
		if (!pte_write(entry)) {
2682 2683
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2684 2685 2686 2687 2688
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2689 2690
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2691
		update_mmu_cache(vma, address, ptep);
2692 2693

out_page_table_lock:
2694
	spin_unlock(&mm->page_table_lock);
2695 2696 2697 2698 2699

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2700 2701
	if (page != pagecache_page)
		unlock_page(page);
2702

2703
out_mutex:
2704
	mutex_unlock(&hugetlb_instantiation_mutex);
2705 2706

	return ret;
2707 2708
}

A
Andi Kleen 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2718 2719
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2720
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2721
			unsigned int flags)
D
David Gibson 已提交
2722
{
2723 2724
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2725
	int remainder = *length;
2726
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2727

2728
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2729
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2730
		pte_t *pte;
H
Hugh Dickins 已提交
2731
		int absent;
A
Adam Litke 已提交
2732
		struct page *page;
D
David Gibson 已提交
2733

A
Adam Litke 已提交
2734 2735
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2736
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2737 2738
		 * first, for the page indexing below to work.
		 */
2739
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2740 2741 2742 2743
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2744 2745 2746 2747
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2748
		 */
H
Hugh Dickins 已提交
2749 2750
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2751 2752 2753
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2754

H
Hugh Dickins 已提交
2755 2756
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2757
			int ret;
D
David Gibson 已提交
2758

A
Adam Litke 已提交
2759
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2760 2761
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2762
			spin_lock(&mm->page_table_lock);
2763
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2764
				continue;
D
David Gibson 已提交
2765

A
Adam Litke 已提交
2766 2767 2768 2769
			remainder = 0;
			break;
		}

2770
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2771
		page = pte_page(huge_ptep_get(pte));
2772
same_page:
2773
		if (pages) {
H
Hugh Dickins 已提交
2774
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2775
			get_page(pages[i]);
2776
		}
D
David Gibson 已提交
2777 2778 2779 2780 2781

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2782
		++pfn_offset;
D
David Gibson 已提交
2783 2784
		--remainder;
		++i;
2785
		if (vaddr < vma->vm_end && remainder &&
2786
				pfn_offset < pages_per_huge_page(h)) {
2787 2788 2789 2790 2791 2792
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2793
	}
2794
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2795 2796 2797
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2798
	return i ? i : -EFAULT;
D
David Gibson 已提交
2799
}
2800 2801 2802 2803 2804 2805 2806 2807

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2808
	struct hstate *h = hstate_vma(vma);
2809 2810 2811 2812

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2813
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2814
	spin_lock(&mm->page_table_lock);
2815
	for (; address < end; address += huge_page_size(h)) {
2816 2817 2818
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2819 2820
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2821
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2822 2823 2824 2825 2826 2827
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2828
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2829 2830 2831 2832

	flush_tlb_range(vma, start, end);
}

2833 2834
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2835
					struct vm_area_struct *vma,
2836
					vm_flags_t vm_flags)
2837
{
2838
	long ret, chg;
2839
	struct hstate *h = hstate_inode(inode);
2840

2841 2842 2843 2844 2845
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
2846
	if (vm_flags & VM_NORESERVE)
2847 2848
		return 0;

2849 2850 2851 2852 2853 2854
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2855
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2856
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2857 2858 2859 2860 2861
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2862
		chg = to - from;
2863

2864 2865 2866 2867
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2868 2869
	if (chg < 0)
		return chg;
2870

2871
	/* There must be enough filesystem quota for the mapping */
2872 2873
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2874 2875

	/*
2876 2877
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2878
	 */
2879
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2880 2881
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2882
		return ret;
K
Ken Chen 已提交
2883
	}
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2896
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2897
		region_add(&inode->i_mapping->private_list, from, to);
2898 2899 2900 2901 2902
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2903
	struct hstate *h = hstate_inode(inode);
2904
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2905 2906

	spin_lock(&inode->i_lock);
2907
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2908 2909
	spin_unlock(&inode->i_lock);

2910
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2911
	hugetlb_acct_memory(h, -(chg - freed));
2912
}
2913

2914 2915
#ifdef CONFIG_MEMORY_FAILURE

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

2930 2931 2932 2933
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
2934
int dequeue_hwpoisoned_huge_page(struct page *hpage)
2935 2936 2937
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
2938
	int ret = -EBUSY;
2939 2940

	spin_lock(&hugetlb_lock);
2941 2942
	if (is_hugepage_on_freelist(hpage)) {
		list_del(&hpage->lru);
2943
		set_page_refcounted(hpage);
2944 2945 2946 2947
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
2948
	spin_unlock(&hugetlb_lock);
2949
	return ret;
2950
}
2951
#endif