slub.c 124.9 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

172 173
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
174
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
175

C
Christoph Lameter 已提交
176
/* Internal SLUB flags */
C
Christoph Lameter 已提交
177
#define __OBJECT_POISON		0x80000000UL /* Poison object */
178
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
179 180 181 182 183

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

184 185 186
/*
 * Tracking user of a slab.
 */
187
#define TRACK_ADDRS_COUNT 16
188
struct track {
189
	unsigned long addr;	/* Called from address */
190 191 192
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
193 194 195 196 197 198 199
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

200
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
201 202
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
203
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
204
#else
205 206 207
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
208
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
209 210
#endif

211
static inline void stat(const struct kmem_cache *s, enum stat_item si)
212 213
{
#ifdef CONFIG_SLUB_STATS
214 215 216 217 218
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
219 220 221
#endif
}

C
Christoph Lameter 已提交
222 223 224 225
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
226
/* Verify that a pointer has an address that is valid within a slab page */
227 228 229 230 231
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

232
	if (!object)
233 234
		return 1;

235
	base = page_address(page);
236
	if (object < base || object >= base + page->objects * s->size ||
237 238 239 240 241 242 243
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

244 245 246 247 248
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

249 250 251 252 253
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

254 255 256 257 258 259 260 261 262 263 264 265
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

266 267 268 269 270 271
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
272 273
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 275
			__p += (__s)->size)

276 277 278 279
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

280 281 282 283 284 285
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

286 287 288 289 290 291 292 293
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294
		return s->object_size;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

310 311 312 313 314
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

315
static inline struct kmem_cache_order_objects oo_make(int order,
316
		unsigned long size, int reserved)
317 318
{
	struct kmem_cache_order_objects x = {
319
		(order << OO_SHIFT) + order_objects(order, size, reserved)
320 321 322 323 324 325 326
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
327
	return x.x >> OO_SHIFT;
328 329 330 331
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
332
	return x.x & OO_MASK;
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

363 364 365 366 367 368 369
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
370 371
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372
	if (s->flags & __CMPXCHG_DOUBLE) {
373
		if (cmpxchg_double(&page->freelist, &page->counters,
374 375 376
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return 1;
377 378 379 380
	} else
#endif
	{
		slab_lock(page);
381 382
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
383
			page->freelist = freelist_new;
384
			set_page_slub_counters(page, counters_new);
385 386 387 388 389 390 391 392 393 394
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
395
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 397 398 399 400
#endif

	return 0;
}

401 402 403 404 405
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
406 407
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408
	if (s->flags & __CMPXCHG_DOUBLE) {
409
		if (cmpxchg_double(&page->freelist, &page->counters,
410 411 412
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return 1;
413 414 415
	} else
#endif
	{
416 417 418
		unsigned long flags;

		local_irq_save(flags);
419
		slab_lock(page);
420 421
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
422
			page->freelist = freelist_new;
423
			set_page_slub_counters(page, counters_new);
424
			slab_unlock(page);
425
			local_irq_restore(flags);
426 427
			return 1;
		}
428
		slab_unlock(page);
429
		local_irq_restore(flags);
430 431 432 433 434 435
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
436
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 438 439 440 441
#endif

	return 0;
}

C
Christoph Lameter 已提交
442
#ifdef CONFIG_SLUB_DEBUG
443 444 445
/*
 * Determine a map of object in use on a page.
 *
446
 * Node listlock must be held to guarantee that the page does
447 448 449 450 451 452 453 454 455 456 457
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
458 459 460
/*
 * Debug settings:
 */
461 462 463
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
464
static int slub_debug;
465
#endif
C
Christoph Lameter 已提交
466 467

static char *slub_debug_slabs;
468
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
469

C
Christoph Lameter 已提交
470 471 472 473 474
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
475 476
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
493
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
494
{
A
Akinobu Mita 已提交
495
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
496 497

	if (addr) {
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
516 517
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
518
		p->pid = current->pid;
C
Christoph Lameter 已提交
519 520 521 522 523 524 525
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
526 527 528
	if (!(s->flags & SLAB_STORE_USER))
		return;

529 530
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
531 532 533 534 535 536 537
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

538 539
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
540 541 542 543 544
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
545
				pr_err("\t%pS\n", (void *)t->addrs[i]);
546 547 548 549
			else
				break;
	}
#endif
550 551 552 553 554 555 556 557 558 559 560 561 562
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
563
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
564
	       page, page->objects, page->inuse, page->freelist, page->flags);
565 566 567 568 569

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
570
	struct va_format vaf;
571 572 573
	va_list args;

	va_start(args, fmt);
574 575
	vaf.fmt = fmt;
	vaf.va = &args;
576
	pr_err("=============================================================================\n");
577
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
578
	pr_err("-----------------------------------------------------------------------------\n\n");
579

580
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
581
	va_end(args);
C
Christoph Lameter 已提交
582 583
}

584 585
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
586
	struct va_format vaf;
587 588 589
	va_list args;

	va_start(args, fmt);
590 591 592
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
593 594 595 596
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
597 598
{
	unsigned int off;	/* Offset of last byte */
599
	u8 *addr = page_address(page);
600 601 602 603 604

	print_tracking(s, p);

	print_page_info(page);

605 606
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
607 608

	if (p > addr + 16)
609
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
610

611
	print_section("Object ", p, min_t(unsigned long, s->object_size,
612
				PAGE_SIZE));
C
Christoph Lameter 已提交
613
	if (s->flags & SLAB_RED_ZONE)
614 615
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
616 617 618 619 620 621

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

622
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
623 624 625 626
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
627
		print_section("Padding ", p + off, s->size - off);
628 629

	dump_stack();
C
Christoph Lameter 已提交
630 631 632 633 634
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
635
	slab_bug(s, "%s", reason);
636
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
637 638
}

639 640
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
641 642 643 644
{
	va_list args;
	char buf[100];

645 646
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
647
	va_end(args);
648
	slab_bug(s, "%s", buf);
649
	print_page_info(page);
C
Christoph Lameter 已提交
650 651 652
	dump_stack();
}

653
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
654 655 656 657
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
658 659
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
660 661 662
	}

	if (s->flags & SLAB_RED_ZONE)
663
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
664 665
}

666 667 668 669 670 671 672 673 674
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
675
			u8 *start, unsigned int value, unsigned int bytes)
676 677 678 679
{
	u8 *fault;
	u8 *end;

680
	fault = memchr_inv(start, value, bytes);
681 682 683 684 685 686 687 688
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
689
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 691 692 693 694
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
695 696 697 698 699 700 701 702 703
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
704
 *
C
Christoph Lameter 已提交
705 706 707
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
708
 * object + s->object_size
C
Christoph Lameter 已提交
709
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
710
 * 	Padding is extended by another word if Redzoning is enabled and
711
 * 	object_size == inuse.
C
Christoph Lameter 已提交
712
 *
C
Christoph Lameter 已提交
713 714 715 716
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
717 718
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
719 720
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
721
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
722
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
723 724 725
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
726 727
 *
 * object + s->size
C
Christoph Lameter 已提交
728
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
729
 *
730
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
731
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

750 751
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
752 753
}

754
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
755 756
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
757 758 759 760 761
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
762 763 764 765

	if (!(s->flags & SLAB_POISON))
		return 1;

766
	start = page_address(page);
767
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 769
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
770 771 772
	if (!remainder)
		return 1;

773
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 775 776 777 778 779
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780
	print_section("Padding ", end - remainder, remainder);
781

E
Eric Dumazet 已提交
782
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783
	return 0;
C
Christoph Lameter 已提交
784 785 786
}

static int check_object(struct kmem_cache *s, struct page *page,
787
					void *object, u8 val)
C
Christoph Lameter 已提交
788 789
{
	u8 *p = object;
790
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
791 792

	if (s->flags & SLAB_RED_ZONE) {
793
		if (!check_bytes_and_report(s, page, object, "Redzone",
794
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
795 796
			return 0;
	} else {
797
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
798
			check_bytes_and_report(s, page, p, "Alignment padding",
799 800
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
801
		}
C
Christoph Lameter 已提交
802 803 804
	}

	if (s->flags & SLAB_POISON) {
805
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
806
			(!check_bytes_and_report(s, page, p, "Poison", p,
807
					POISON_FREE, s->object_size - 1) ||
808
			 !check_bytes_and_report(s, page, p, "Poison",
809
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
810 811 812 813 814 815 816
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

817
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
818 819 820 821 822 823 824 825 826 827
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
828
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
829
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
830
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
831
		 */
832
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
833 834 835 836 837 838 839
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
840 841
	int maxobj;

C
Christoph Lameter 已提交
842 843 844
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
845
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
846 847
		return 0;
	}
848

849
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
850 851
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
852
			page->objects, maxobj);
853 854 855
		return 0;
	}
	if (page->inuse > page->objects) {
856
		slab_err(s, page, "inuse %u > max %u",
857
			page->inuse, page->objects);
C
Christoph Lameter 已提交
858 859 860 861 862 863 864 865
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
866 867
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
868 869 870 871
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
872
	void *fp;
C
Christoph Lameter 已提交
873
	void *object = NULL;
874
	int max_objects;
C
Christoph Lameter 已提交
875

876
	fp = page->freelist;
877
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
878 879 880 881 882 883
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
884
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
885
			} else {
886
				slab_err(s, page, "Freepointer corrupt");
887
				page->freelist = NULL;
888
				page->inuse = page->objects;
889
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
890 891 892 893 894 895 896 897 898
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

899
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 901
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
902 903 904 905 906 907 908

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
909
	if (page->inuse != page->objects - nr) {
910
		slab_err(s, page, "Wrong object count. Counter is %d but "
911 912
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
913
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
914 915 916 917
	}
	return search == NULL;
}

918 919
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
920 921
{
	if (s->flags & SLAB_TRACE) {
922
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
923 924 925 926 927 928
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
929 930
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
931 932 933 934 935

		dump_stack();
	}
}

936
/*
C
Christoph Lameter 已提交
937
 * Tracking of fully allocated slabs for debugging purposes.
938
 */
939 940
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
941
{
942 943 944
	if (!(s->flags & SLAB_STORE_USER))
		return;

945
	lockdep_assert_held(&n->list_lock);
946 947 948
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
949
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
950 951 952 953
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

954
	lockdep_assert_held(&n->list_lock);
955 956 957
	list_del(&page->lru);
}

958 959 960 961 962 963 964 965
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

966 967 968 969 970
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

971
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
972 973 974 975 976 977 978 979 980
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
981
	if (likely(n)) {
982
		atomic_long_inc(&n->nr_slabs);
983 984
		atomic_long_add(objects, &n->total_objects);
	}
985
}
986
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
987 988 989 990
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
991
	atomic_long_sub(objects, &n->total_objects);
992 993 994
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
995 996 997 998 999 1000
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1001
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1002 1003 1004
	init_tracking(s, object);
}

1005 1006
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1007
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1008 1009 1010 1011 1012 1013
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1014
		goto bad;
C
Christoph Lameter 已提交
1015 1016
	}

1017
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1018 1019
		goto bad;

C
Christoph Lameter 已提交
1020 1021 1022 1023
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1024
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1025
	return 1;
C
Christoph Lameter 已提交
1026

C
Christoph Lameter 已提交
1027 1028 1029 1030 1031
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1032
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1033
		 */
1034
		slab_fix(s, "Marking all objects used");
1035
		page->inuse = page->objects;
1036
		page->freelist = NULL;
C
Christoph Lameter 已提交
1037 1038 1039 1040
	}
	return 0;
}

1041 1042 1043
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1044
{
1045
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1046

1047
	spin_lock_irqsave(&n->list_lock, *flags);
1048 1049
	slab_lock(page);

C
Christoph Lameter 已提交
1050 1051 1052 1053
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1054
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1055 1056 1057 1058
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1059
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1060 1061 1062
		goto fail;
	}

1063
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1064
		goto out;
C
Christoph Lameter 已提交
1065

1066
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1067
		if (!PageSlab(page)) {
1068 1069
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1070
		} else if (!page->slab_cache) {
1071 1072
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1073
			dump_stack();
P
Pekka Enberg 已提交
1074
		} else
1075 1076
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1077 1078
		goto fail;
	}
C
Christoph Lameter 已提交
1079 1080 1081 1082

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1083
	init_object(s, object, SLUB_RED_INACTIVE);
1084
out:
1085
	slab_unlock(page);
1086 1087 1088 1089 1090
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1091

C
Christoph Lameter 已提交
1092
fail:
1093 1094
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1095
	slab_fix(s, "Object at 0x%p not freed", object);
1096
	return NULL;
C
Christoph Lameter 已提交
1097 1098
}

C
Christoph Lameter 已提交
1099 1100
static int __init setup_slub_debug(char *str)
{
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1115 1116 1117 1118 1119 1120 1121 1122 1123
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1134
	for (; *str && *str != ','; str++) {
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1151 1152 1153
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1154
		default:
1155 1156
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1157
		}
C
Christoph Lameter 已提交
1158 1159
	}

1160
check_slabs:
C
Christoph Lameter 已提交
1161 1162
	if (*str == ',')
		slub_debug_slabs = str + 1;
1163
out:
C
Christoph Lameter 已提交
1164 1165 1166 1167 1168
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1169
unsigned long kmem_cache_flags(unsigned long object_size,
1170
	unsigned long flags, const char *name,
1171
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1172 1173
{
	/*
1174
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1175
	 */
1176 1177
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1178
		flags |= slub_debug;
1179 1180

	return flags;
C
Christoph Lameter 已提交
1181 1182
}
#else
C
Christoph Lameter 已提交
1183 1184
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1185

C
Christoph Lameter 已提交
1186
static inline int alloc_debug_processing(struct kmem_cache *s,
1187
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1188

1189 1190 1191
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1192 1193 1194 1195

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1196
			void *object, u8 val) { return 1; }
1197 1198
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1199 1200
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1201
unsigned long kmem_cache_flags(unsigned long object_size,
1202
	unsigned long flags, const char *name,
1203
	void (*ctor)(void *))
1204 1205 1206
{
	return flags;
}
C
Christoph Lameter 已提交
1207
#define slub_debug 0
1208

1209 1210
#define disable_higher_order_debug 0

1211 1212
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1213 1214
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1215 1216 1217 1218
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1219

1220 1221 1222 1223 1224 1225
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1236
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1237 1238 1239 1240
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);
1241

1242 1243 1244 1245 1246
	return should_failslab(s->object_size, flags, s->flags);
}

static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
1247
{
1248 1249 1250
	flags &= gfp_allowed_mask;
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1251
}
1252

1253 1254 1255
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
}
1275

C
Christoph Lameter 已提交
1276 1277 1278
/*
 * Slab allocation and freeing
 */
1279 1280
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1281
{
1282
	struct page *page;
1283 1284
	int order = oo_order(oo);

1285 1286
	flags |= __GFP_NOTRACK;

1287 1288 1289
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1290
	if (node == NUMA_NO_NODE)
1291
		page = alloc_pages(flags, order);
1292
	else
1293 1294 1295 1296 1297 1298
		page = alloc_pages_exact_node(node, flags, order);

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1299 1300
}

C
Christoph Lameter 已提交
1301 1302
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1303
	struct page *page;
1304
	struct kmem_cache_order_objects oo = s->oo;
1305
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1306

1307 1308 1309 1310 1311
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1312
	flags |= s->allocflags;
1313

1314 1315 1316 1317 1318 1319
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

1320
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1321 1322
	if (unlikely(!page)) {
		oo = s->min;
1323
		alloc_gfp = flags;
1324 1325 1326 1327
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1328
		page = alloc_slab_page(s, alloc_gfp, node, oo);
C
Christoph Lameter 已提交
1329

1330 1331
		if (page)
			stat(s, ORDER_FALLBACK);
1332
	}
V
Vegard Nossum 已提交
1333

1334
	if (kmemcheck_enabled && page
1335
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1336 1337
		int pages = 1 << oo_order(oo);

1338
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1339 1340 1341 1342 1343 1344 1345 1346 1347

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1348 1349
	}

1350 1351 1352 1353 1354
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1355
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1356 1357 1358
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1359
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1360 1361 1362 1363 1364 1365 1366

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1367
	setup_object_debug(s, page, object);
1368
	if (unlikely(s->ctor))
1369
		s->ctor(object);
C
Christoph Lameter 已提交
1370 1371 1372 1373 1374 1375 1376
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *p;
G
Glauber Costa 已提交
1377
	int order;
1378
	int idx;
C
Christoph Lameter 已提交
1379

1380 1381 1382 1383
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
1384

C
Christoph Lameter 已提交
1385 1386
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1387 1388 1389
	if (!page)
		goto out;

G
Glauber Costa 已提交
1390
	order = compound_order(page);
1391
	inc_slabs_node(s, page_to_nid(page), page->objects);
1392
	page->slab_cache = s;
1393
	__SetPageSlab(page);
1394 1395
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1396 1397 1398 1399

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1400
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1401

1402 1403 1404 1405 1406 1407
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1408 1409 1410
	}

	page->freelist = start;
1411
	page->inuse = page->objects;
1412
	page->frozen = 1;
C
Christoph Lameter 已提交
1413 1414 1415 1416 1417 1418
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1419 1420
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1421

1422
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1423 1424 1425
		void *p;

		slab_pad_check(s, page);
1426 1427
		for_each_object(p, s, page_address(page),
						page->objects)
1428
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1429 1430
	}

1431
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1432

C
Christoph Lameter 已提交
1433 1434 1435
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1436
		-pages);
C
Christoph Lameter 已提交
1437

1438
	__ClearPageSlabPfmemalloc(page);
1439
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1440

1441
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1442 1443
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1444 1445
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
C
Christoph Lameter 已提交
1446 1447
}

1448 1449 1450
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1451 1452 1453 1454
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1455 1456 1457 1458 1459
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1460
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1461 1462 1463 1464 1465
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1480 1481 1482 1483 1484 1485 1486 1487

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1488
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1489 1490 1491 1492
	free_slab(s, page);
}

/*
1493
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1494
 */
1495 1496
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1497
{
C
Christoph Lameter 已提交
1498
	n->nr_partial++;
1499
	if (tail == DEACTIVATE_TO_TAIL)
1500 1501 1502
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1503 1504
}

1505 1506
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1507
{
P
Peter Zijlstra 已提交
1508
	lockdep_assert_held(&n->list_lock);
1509 1510
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1511

1512 1513 1514
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1515 1516 1517 1518
	list_del(&page->lru);
	n->nr_partial--;
}

1519 1520 1521 1522 1523 1524 1525
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1526
/*
1527 1528
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1529
 *
1530
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1531
 */
1532
static inline void *acquire_slab(struct kmem_cache *s,
1533
		struct kmem_cache_node *n, struct page *page,
1534
		int mode, int *objects)
C
Christoph Lameter 已提交
1535
{
1536 1537 1538 1539
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1540 1541
	lockdep_assert_held(&n->list_lock);

1542 1543 1544 1545 1546
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1547 1548 1549
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1550
	*objects = new.objects - new.inuse;
1551
	if (mode) {
1552
		new.inuse = page->objects;
1553 1554 1555 1556
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1557

1558
	VM_BUG_ON(new.frozen);
1559
	new.frozen = 1;
1560

1561
	if (!__cmpxchg_double_slab(s, page,
1562
			freelist, counters,
1563
			new.freelist, new.counters,
1564 1565
			"acquire_slab"))
		return NULL;
1566 1567

	remove_partial(n, page);
1568
	WARN_ON(!freelist);
1569
	return freelist;
C
Christoph Lameter 已提交
1570 1571
}

1572
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1573
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1574

C
Christoph Lameter 已提交
1575
/*
C
Christoph Lameter 已提交
1576
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1577
 */
1578 1579
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1580
{
1581 1582
	struct page *page, *page2;
	void *object = NULL;
1583 1584
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1585 1586 1587 1588

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1589 1590
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1591 1592 1593 1594 1595
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1596
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1597
		void *t;
1598

1599 1600 1601
		if (!pfmemalloc_match(page, flags))
			continue;

1602
		t = acquire_slab(s, n, page, object == NULL, &objects);
1603 1604 1605
		if (!t)
			break;

1606
		available += objects;
1607
		if (!object) {
1608 1609 1610 1611
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1612
			put_cpu_partial(s, page, 0);
1613
			stat(s, CPU_PARTIAL_NODE);
1614
		}
1615 1616
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1617 1618
			break;

1619
	}
C
Christoph Lameter 已提交
1620
	spin_unlock(&n->list_lock);
1621
	return object;
C
Christoph Lameter 已提交
1622 1623 1624
}

/*
C
Christoph Lameter 已提交
1625
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1626
 */
1627
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1628
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1629 1630 1631
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1632
	struct zoneref *z;
1633 1634
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1635
	void *object;
1636
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1637 1638

	/*
C
Christoph Lameter 已提交
1639 1640 1641 1642
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1643
	 *
C
Christoph Lameter 已提交
1644 1645 1646 1647
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1648
	 *
C
Christoph Lameter 已提交
1649
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1650 1651 1652 1653 1654
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1655
	 */
1656 1657
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1658 1659
		return NULL;

1660
	do {
1661
		cpuset_mems_cookie = read_mems_allowed_begin();
1662
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1663 1664 1665 1666 1667 1668 1669
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1670
				object = get_partial_node(s, n, c, flags);
1671 1672
				if (object) {
					/*
1673 1674 1675 1676 1677
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1678 1679 1680
					 */
					return object;
				}
1681
			}
C
Christoph Lameter 已提交
1682
		}
1683
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1684 1685 1686 1687 1688 1689 1690
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1691
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1692
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1693
{
1694
	void *object;
1695 1696 1697 1698 1699 1700
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1701

1702
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1703 1704
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1705

1706
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1707 1708
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1750
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1751 1752 1753

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1754
		pr_warn("due to cpu change %d -> %d\n",
1755 1756 1757 1758
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1759
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1760 1761
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1762
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1763 1764
			actual_tid, tid, next_tid(tid));
#endif
1765
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1766 1767
}

1768
static void init_kmem_cache_cpus(struct kmem_cache *s)
1769 1770 1771 1772 1773 1774
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1775

C
Christoph Lameter 已提交
1776 1777 1778
/*
 * Remove the cpu slab
 */
1779 1780
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1781
{
1782 1783 1784 1785 1786
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1787
	int tail = DEACTIVATE_TO_HEAD;
1788 1789 1790 1791
	struct page new;
	struct page old;

	if (page->freelist) {
1792
		stat(s, DEACTIVATE_REMOTE_FREES);
1793
		tail = DEACTIVATE_TO_TAIL;
1794 1795
	}

1796
	/*
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1814
			VM_BUG_ON(!new.frozen);
1815

1816
		} while (!__cmpxchg_double_slab(s, page,
1817 1818 1819 1820 1821 1822 1823
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1824
	/*
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1837
	 */
1838
redo:
1839

1840 1841
	old.freelist = page->freelist;
	old.counters = page->counters;
1842
	VM_BUG_ON(!old.frozen);
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1855
	if (!new.inuse && n->nr_partial >= s->min_partial)
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1888

P
Peter Zijlstra 已提交
1889
			remove_full(s, n, page);
1890 1891 1892 1893

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1894
			stat(s, tail);
1895 1896

		} else if (m == M_FULL) {
1897

1898 1899 1900 1901 1902 1903 1904
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1905
	if (!__cmpxchg_double_slab(s, page,
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1918
	}
C
Christoph Lameter 已提交
1919 1920
}

1921 1922 1923
/*
 * Unfreeze all the cpu partial slabs.
 *
1924 1925 1926
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1927
 */
1928 1929
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1930
{
1931
#ifdef CONFIG_SLUB_CPU_PARTIAL
1932
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1933
	struct page *page, *discard_page = NULL;
1934 1935 1936 1937 1938 1939

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1940 1941 1942 1943 1944 1945 1946 1947 1948

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1949 1950 1951 1952 1953

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1954
			VM_BUG_ON(!old.frozen);
1955 1956 1957 1958 1959 1960

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1961
		} while (!__cmpxchg_double_slab(s, page,
1962 1963 1964 1965
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1966
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1967 1968
			page->next = discard_page;
			discard_page = page;
1969 1970 1971
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1972 1973 1974 1975 1976
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1977 1978 1979 1980 1981 1982 1983 1984 1985

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1986
#endif
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
1998
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1999
{
2000
#ifdef CONFIG_SLUB_CPU_PARTIAL
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2020
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2021
				local_irq_restore(flags);
2022
				oldpage = NULL;
2023 2024
				pobjects = 0;
				pages = 0;
2025
				stat(s, CPU_PARTIAL_DRAIN);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2036 2037
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2038
#endif
2039 2040
}

2041
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2042
{
2043
	stat(s, CPUSLAB_FLUSH);
2044 2045 2046 2047 2048
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2049 2050 2051 2052
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2053
 *
C
Christoph Lameter 已提交
2054 2055
 * Called from IPI handler with interrupts disabled.
 */
2056
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2057
{
2058
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2059

2060 2061 2062 2063
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2064
		unfreeze_partials(s, c);
2065
	}
C
Christoph Lameter 已提交
2066 2067 2068 2069 2070 2071
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2072
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2073 2074
}

2075 2076 2077 2078 2079
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2080
	return c->page || c->partial;
2081 2082
}

C
Christoph Lameter 已提交
2083 2084
static void flush_all(struct kmem_cache *s)
{
2085
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2086 2087
}

2088 2089 2090 2091
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2092
static inline int node_match(struct page *page, int node)
2093 2094
{
#ifdef CONFIG_NUMA
2095
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2096 2097 2098 2099 2100
		return 0;
#endif
	return 1;
}

2101
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2102 2103 2104 2105 2106
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2107 2108 2109 2110 2111 2112 2113
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2127
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2128

P
Pekka Enberg 已提交
2129 2130 2131
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2132 2133 2134
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2135
	int node;
C
Christoph Lameter 已提交
2136
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2137

2138 2139 2140
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2141
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2142
		nid, gfpflags);
2143 2144 2145
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2146

2147
	if (oo_order(s->min) > get_order(s->object_size))
2148 2149
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2150

C
Christoph Lameter 已提交
2151
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2152 2153 2154 2155
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2156 2157 2158
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2159

2160
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2161 2162
			node, nr_slabs, nr_objs, nr_free);
	}
2163
#endif
P
Pekka Enberg 已提交
2164 2165
}

2166 2167 2168
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2169
	void *freelist;
2170 2171
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2172

2173
	freelist = get_partial(s, flags, node, c);
2174

2175 2176 2177 2178
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2179
	if (page) {
2180
		c = raw_cpu_ptr(s->cpu_slab);
2181 2182 2183 2184 2185 2186 2187
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2188
		freelist = page->freelist;
2189 2190 2191 2192 2193 2194
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2195
		freelist = NULL;
2196

2197
	return freelist;
2198 2199
}

2200 2201 2202 2203 2204 2205 2206 2207
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2208
/*
2209 2210
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2211 2212 2213 2214
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2215 2216
 *
 * This function must be called with interrupt disabled.
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2227

2228
		new.counters = counters;
2229
		VM_BUG_ON(!new.frozen);
2230 2231 2232 2233

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2234
	} while (!__cmpxchg_double_slab(s, page,
2235 2236 2237 2238 2239 2240 2241
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2242
/*
2243 2244 2245 2246 2247 2248
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2249
 *
2250 2251 2252
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2253
 *
2254
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2255 2256
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2257
 */
2258 2259
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2260
{
2261
	void *freelist;
2262
	struct page *page;
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2274

2275 2276
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2277
		goto new_slab;
2278
redo:
2279

2280
	if (unlikely(!node_match(page, node))) {
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2293
	}
C
Christoph Lameter 已提交
2294

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2307
	/* must check again c->freelist in case of cpu migration or IRQ */
2308 2309
	freelist = c->freelist;
	if (freelist)
2310
		goto load_freelist;
2311

2312
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2313

2314
	if (!freelist) {
2315 2316
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2317
		goto new_slab;
2318
	}
C
Christoph Lameter 已提交
2319

2320
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2321

2322
load_freelist:
2323 2324 2325 2326 2327
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2328
	VM_BUG_ON(!c->page->frozen);
2329
	c->freelist = get_freepointer(s, freelist);
2330 2331
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2332
	return freelist;
C
Christoph Lameter 已提交
2333 2334

new_slab:
2335

2336
	if (c->partial) {
2337 2338
		page = c->page = c->partial;
		c->partial = page->next;
2339 2340 2341
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2342 2343
	}

2344
	freelist = new_slab_objects(s, gfpflags, node, &c);
2345

2346
	if (unlikely(!freelist)) {
2347
		slab_out_of_memory(s, gfpflags, node);
2348 2349
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2350
	}
2351

2352
	page = c->page;
2353
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2354
		goto load_freelist;
2355

2356
	/* Only entered in the debug case */
2357 2358
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2359
		goto new_slab;	/* Slab failed checks. Next slab needed */
2360

2361
	deactivate_slab(s, page, get_freepointer(s, freelist));
2362 2363
	c->page = NULL;
	c->freelist = NULL;
2364
	local_irq_restore(flags);
2365
	return freelist;
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2378
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2379
		gfp_t gfpflags, int node, unsigned long addr)
2380 2381
{
	void **object;
2382
	struct kmem_cache_cpu *c;
2383
	struct page *page;
2384
	unsigned long tid;
2385

2386
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2387
		return NULL;
2388

2389
	s = memcg_kmem_get_cache(s, gfpflags);
2390 2391 2392 2393 2394 2395
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2396 2397 2398 2399 2400
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2401
	 */
2402
	preempt_disable();
2403
	c = this_cpu_ptr(s->cpu_slab);
2404 2405 2406 2407 2408 2409 2410 2411

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2412
	preempt_enable();
2413

2414
	object = c->freelist;
2415
	page = c->page;
D
Dave Hansen 已提交
2416
	if (unlikely(!object || !node_match(page, node))) {
2417
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2418 2419
		stat(s, ALLOC_SLOWPATH);
	} else {
2420 2421
		void *next_object = get_freepointer_safe(s, object);

2422
		/*
L
Lucas De Marchi 已提交
2423
		 * The cmpxchg will only match if there was no additional
2424 2425
		 * operation and if we are on the right processor.
		 *
2426 2427
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2428 2429 2430 2431
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2432 2433 2434
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2435
		 */
2436
		if (unlikely(!this_cpu_cmpxchg_double(
2437 2438
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2439
				next_object, next_tid(tid)))) {
2440 2441 2442 2443

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2444
		prefetch_freepointer(s, next_object);
2445
		stat(s, ALLOC_FASTPATH);
2446
	}
2447

2448
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2449
		memset(object, 0, s->object_size);
2450

2451
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2452

2453
	return object;
C
Christoph Lameter 已提交
2454 2455
}

2456 2457 2458 2459 2460 2461
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2462 2463
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2464
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2465

2466 2467
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2468 2469

	return ret;
C
Christoph Lameter 已提交
2470 2471 2472
}
EXPORT_SYMBOL(kmem_cache_alloc);

2473
#ifdef CONFIG_TRACING
2474 2475
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2476
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2477 2478 2479 2480
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2481 2482
#endif

C
Christoph Lameter 已提交
2483 2484 2485
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2486
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2487

2488
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2489
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2490 2491

	return ret;
C
Christoph Lameter 已提交
2492 2493 2494
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2495
#ifdef CONFIG_TRACING
2496
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2497
				    gfp_t gfpflags,
2498
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2499
{
2500
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2501 2502 2503 2504

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2505
}
2506
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2507
#endif
2508
#endif
E
Eduard - Gabriel Munteanu 已提交
2509

C
Christoph Lameter 已提交
2510
/*
2511 2512
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2513
 *
2514 2515 2516
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2517
 */
2518
static void __slab_free(struct kmem_cache *s, struct page *page,
2519
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2520 2521 2522
{
	void *prior;
	void **object = (void *)x;
2523 2524 2525 2526
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2527
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2528

2529
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2530

2531 2532
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2533
		return;
C
Christoph Lameter 已提交
2534

2535
	do {
2536 2537 2538 2539
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2540 2541 2542 2543 2544 2545
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2546
		if ((!new.inuse || !prior) && !was_frozen) {
2547

P
Peter Zijlstra 已提交
2548
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2549 2550

				/*
2551 2552 2553 2554
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2555 2556 2557
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2558
			} else { /* Needs to be taken off a list */
2559

2560
				n = get_node(s, page_to_nid(page));
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2572
		}
C
Christoph Lameter 已提交
2573

2574 2575 2576 2577
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2578

2579
	if (likely(!n)) {
2580 2581 2582 2583 2584

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2585
		if (new.frozen && !was_frozen) {
2586
			put_cpu_partial(s, page, 1);
2587 2588
			stat(s, CPU_PARTIAL_FREE);
		}
2589
		/*
2590 2591 2592
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2593 2594 2595 2596
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2597

2598
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2599 2600
		goto slab_empty;

C
Christoph Lameter 已提交
2601
	/*
2602 2603
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2604
	 */
2605 2606
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2607
			remove_full(s, n, page);
2608 2609
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2610
	}
2611
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2612 2613 2614
	return;

slab_empty:
2615
	if (prior) {
C
Christoph Lameter 已提交
2616
		/*
2617
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2618
		 */
2619
		remove_partial(n, page);
2620
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2621
	} else {
2622
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2623 2624
		remove_full(s, n, page);
	}
2625

2626
	spin_unlock_irqrestore(&n->list_lock, flags);
2627
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2628 2629 2630
	discard_slab(s, page);
}

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2642
static __always_inline void slab_free(struct kmem_cache *s,
2643
			struct page *page, void *x, unsigned long addr)
2644 2645
{
	void **object = (void *)x;
2646
	struct kmem_cache_cpu *c;
2647
	unsigned long tid;
2648

2649 2650
	slab_free_hook(s, x);

2651 2652 2653 2654 2655 2656 2657
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2658
	preempt_disable();
2659
	c = this_cpu_ptr(s->cpu_slab);
2660

2661
	tid = c->tid;
2662
	preempt_enable();
2663

2664
	if (likely(page == c->page)) {
2665
		set_freepointer(s, object, c->freelist);
2666

2667
		if (unlikely(!this_cpu_cmpxchg_double(
2668 2669 2670 2671 2672 2673 2674
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2675
		stat(s, FREE_FASTPATH);
2676
	} else
2677
		__slab_free(s, page, x, addr);
2678 2679 2680

}

C
Christoph Lameter 已提交
2681 2682
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2683 2684
	s = cache_from_obj(s, x);
	if (!s)
2685
		return;
2686
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2687
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2688 2689 2690 2691
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2692 2693 2694 2695
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2696 2697 2698 2699
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2700
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2711
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2712
static int slub_min_objects;
C
Christoph Lameter 已提交
2713 2714 2715 2716

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2717 2718 2719 2720
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2721
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2722 2723 2724 2725 2726 2727
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2728
 *
C
Christoph Lameter 已提交
2729 2730 2731 2732
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2733
 *
C
Christoph Lameter 已提交
2734 2735 2736 2737
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2738
 */
2739
static inline int slab_order(int size, int min_objects,
2740
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2741 2742 2743
{
	int order;
	int rem;
2744
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2745

2746
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2747
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2748

2749
	for (order = max(min_order,
2750 2751
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2752

2753
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2754

2755
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2756 2757
			continue;

2758
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2759

2760
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2761 2762 2763
			break;

	}
C
Christoph Lameter 已提交
2764

C
Christoph Lameter 已提交
2765 2766 2767
	return order;
}

2768
static inline int calculate_order(int size, int reserved)
2769 2770 2771 2772
{
	int order;
	int min_objects;
	int fraction;
2773
	int max_objects;
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2784 2785
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2786
	max_objects = order_objects(slub_max_order, size, reserved);
2787 2788
	min_objects = min(min_objects, max_objects);

2789
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2790
		fraction = 16;
2791 2792
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2793
					slub_max_order, fraction, reserved);
2794 2795 2796 2797
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2798
		min_objects--;
2799 2800 2801 2802 2803 2804
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2805
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2806 2807 2808 2809 2810 2811
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2812
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2813
	if (order < MAX_ORDER)
2814 2815 2816 2817
		return order;
	return -ENOSYS;
}

2818
static void
2819
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2820 2821 2822 2823
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2824
#ifdef CONFIG_SLUB_DEBUG
2825
	atomic_long_set(&n->nr_slabs, 0);
2826
	atomic_long_set(&n->total_objects, 0);
2827
	INIT_LIST_HEAD(&n->full);
2828
#endif
C
Christoph Lameter 已提交
2829 2830
}

2831
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2832
{
2833
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2834
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2835

2836
	/*
2837 2838
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2839
	 */
2840 2841
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2842 2843 2844 2845 2846

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2847

2848
	return 1;
2849 2850
}

2851 2852
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2853 2854 2855 2856 2857
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2858 2859
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2860
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2861
 */
2862
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2863 2864 2865 2866
{
	struct page *page;
	struct kmem_cache_node *n;

2867
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2868

2869
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2870 2871

	BUG_ON(!page);
2872
	if (page_to_nid(page) != node) {
2873 2874
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2875 2876
	}

C
Christoph Lameter 已提交
2877 2878
	n = page->freelist;
	BUG_ON(!n);
2879
	page->freelist = get_freepointer(kmem_cache_node, n);
2880
	page->inuse = 1;
2881
	page->frozen = 0;
2882
	kmem_cache_node->node[node] = n;
2883
#ifdef CONFIG_SLUB_DEBUG
2884
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2885
	init_tracking(kmem_cache_node, n);
2886
#endif
2887
	init_kmem_cache_node(n);
2888
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2889

2890
	/*
2891 2892
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2893
	 */
2894
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2895 2896 2897 2898 2899
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
2900
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
2901

C
Christoph Lameter 已提交
2902 2903
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
2904 2905 2906 2907
		s->node[node] = NULL;
	}
}

2908
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2909 2910 2911
{
	int node;

C
Christoph Lameter 已提交
2912
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2913 2914
		struct kmem_cache_node *n;

2915
		if (slab_state == DOWN) {
2916
			early_kmem_cache_node_alloc(node);
2917 2918
			continue;
		}
2919
		n = kmem_cache_alloc_node(kmem_cache_node,
2920
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2921

2922 2923 2924
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2925
		}
2926

C
Christoph Lameter 已提交
2927
		s->node[node] = n;
2928
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2929 2930 2931 2932
	}
	return 1;
}

2933
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2934 2935 2936 2937 2938 2939 2940 2941
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2942 2943 2944 2945
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2946
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2947 2948
{
	unsigned long flags = s->flags;
2949
	unsigned long size = s->object_size;
2950
	int order;
C
Christoph Lameter 已提交
2951

2952 2953 2954 2955 2956 2957 2958 2959
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2960 2961 2962 2963 2964 2965
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2966
			!s->ctor)
C
Christoph Lameter 已提交
2967 2968 2969 2970 2971 2972
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2973
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2974
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2975
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2976
	 */
2977
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2978
		size += sizeof(void *);
C
Christoph Lameter 已提交
2979
#endif
C
Christoph Lameter 已提交
2980 2981

	/*
C
Christoph Lameter 已提交
2982 2983
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2984 2985 2986 2987
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2988
		s->ctor)) {
C
Christoph Lameter 已提交
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3001
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3002 3003 3004 3005 3006 3007 3008
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3009
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3010 3011 3012 3013
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3014
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3015 3016 3017
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3018
#endif
C
Christoph Lameter 已提交
3019

C
Christoph Lameter 已提交
3020 3021 3022 3023 3024
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3025
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3026
	s->size = size;
3027 3028 3029
	if (forced_order >= 0)
		order = forced_order;
	else
3030
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3031

3032
	if (order < 0)
C
Christoph Lameter 已提交
3033 3034
		return 0;

3035
	s->allocflags = 0;
3036
	if (order)
3037 3038 3039
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3040
		s->allocflags |= GFP_DMA;
3041 3042 3043 3044

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3045 3046 3047
	/*
	 * Determine the number of objects per slab
	 */
3048 3049
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3050 3051
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3052

3053
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3054 3055
}

3056
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3057
{
3058
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3059
	s->reserved = 0;
C
Christoph Lameter 已提交
3060

3061 3062
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3063

3064
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3065
		goto error;
3066 3067 3068 3069 3070
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3071
		if (get_order(s->size) > get_order(s->object_size)) {
3072 3073 3074 3075 3076 3077
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3078

3079 3080
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3081 3082 3083 3084 3085
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3086 3087 3088 3089
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3105
	 * B) The number of objects in cpu partial slabs to extract from the
3106 3107
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3108
	 */
3109
	if (!kmem_cache_has_cpu_partial(s))
3110 3111
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3112 3113 3114 3115 3116 3117 3118 3119
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3120
#ifdef CONFIG_NUMA
3121
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3122
#endif
3123
	if (!init_kmem_cache_nodes(s))
3124
		goto error;
C
Christoph Lameter 已提交
3125

3126
	if (alloc_kmem_cache_cpus(s))
3127
		return 0;
3128

3129
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3130 3131 3132 3133
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3134 3135
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3136
	return -EINVAL;
C
Christoph Lameter 已提交
3137 3138
}

3139 3140 3141 3142 3143 3144
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3145 3146
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3147 3148
	if (!map)
		return;
3149
	slab_err(s, page, text, s->name);
3150 3151
	slab_lock(page);

3152
	get_map(s, page, map);
3153 3154 3155
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3156
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3157 3158 3159 3160
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3161
	kfree(map);
3162 3163 3164
#endif
}

C
Christoph Lameter 已提交
3165
/*
C
Christoph Lameter 已提交
3166
 * Attempt to free all partial slabs on a node.
3167 3168
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3169
 */
C
Christoph Lameter 已提交
3170
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3171 3172 3173
{
	struct page *page, *h;

3174
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3175
		if (!page->inuse) {
3176
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3177
			discard_slab(s, page);
3178 3179
		} else {
			list_slab_objects(s, page,
3180
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3181
		}
3182
	}
C
Christoph Lameter 已提交
3183 3184 3185
}

/*
C
Christoph Lameter 已提交
3186
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3187
 */
3188
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3189 3190
{
	int node;
C
Christoph Lameter 已提交
3191
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3192 3193 3194

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3195
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3196 3197
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3198 3199
			return 1;
	}
3200
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3201 3202 3203 3204
	free_kmem_cache_nodes(s);
	return 0;
}

3205
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3206
{
3207
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3208 3209 3210 3211 3212 3213 3214 3215
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3216
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3217 3218 3219 3220 3221 3222 3223 3224

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3225
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3226
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3227 3228 3229 3230 3231 3232 3233 3234

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3235
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3236 3237 3238 3239 3240 3241 3242 3243

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3244
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3245
	void *ret;
C
Christoph Lameter 已提交
3246

3247
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3248
		return kmalloc_large(size, flags);
3249

3250
	s = kmalloc_slab(size, flags);
3251 3252

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3253 3254
		return s;

3255
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3256

3257
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3258 3259

	return ret;
C
Christoph Lameter 已提交
3260 3261 3262
}
EXPORT_SYMBOL(__kmalloc);

3263
#ifdef CONFIG_NUMA
3264 3265
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3266
	struct page *page;
3267
	void *ptr = NULL;
3268

V
Vladimir Davydov 已提交
3269 3270
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3271
	if (page)
3272 3273
		ptr = page_address(page);

3274
	kmalloc_large_node_hook(ptr, size, flags);
3275
	return ptr;
3276 3277
}

C
Christoph Lameter 已提交
3278 3279
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3280
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3281
	void *ret;
C
Christoph Lameter 已提交
3282

3283
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3284 3285
		ret = kmalloc_large_node(size, flags, node);

3286 3287 3288
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3289 3290 3291

		return ret;
	}
3292

3293
	s = kmalloc_slab(size, flags);
3294 3295

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3296 3297
		return s;

3298
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3299

3300
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3301 3302

	return ret;
C
Christoph Lameter 已提交
3303 3304 3305 3306 3307 3308
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3309
	struct page *page;
C
Christoph Lameter 已提交
3310

3311
	if (unlikely(object == ZERO_SIZE_PTR))
3312 3313
		return 0;

3314 3315
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3316 3317
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3318
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3319
	}
C
Christoph Lameter 已提交
3320

3321
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3322
}
K
Kirill A. Shutemov 已提交
3323
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3324 3325 3326 3327

void kfree(const void *x)
{
	struct page *page;
3328
	void *object = (void *)x;
C
Christoph Lameter 已提交
3329

3330 3331
	trace_kfree(_RET_IP_, x);

3332
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3333 3334
		return;

3335
	page = virt_to_head_page(x);
3336
	if (unlikely(!PageSlab(page))) {
3337
		BUG_ON(!PageCompound(page));
3338
		kfree_hook(x);
V
Vladimir Davydov 已提交
3339
		__free_kmem_pages(page, compound_order(page));
3340 3341
		return;
	}
3342
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3343 3344 3345
}
EXPORT_SYMBOL(kfree);

3346
/*
C
Christoph Lameter 已提交
3347 3348 3349 3350 3351 3352 3353 3354
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3355
 */
3356
int __kmem_cache_shrink(struct kmem_cache *s)
3357 3358 3359 3360 3361 3362
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3363
	int objects = oo_objects(s->max);
3364
	struct list_head *slabs_by_inuse =
3365
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3366 3367 3368 3369 3370 3371
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3372
	for_each_kmem_cache_node(s, node, n) {
3373 3374 3375
		if (!n->nr_partial)
			continue;

3376
		for (i = 0; i < objects; i++)
3377 3378 3379 3380 3381
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3382
		 * Build lists indexed by the items in use in each slab.
3383
		 *
C
Christoph Lameter 已提交
3384 3385
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3386 3387
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3388 3389 3390
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3391 3392 3393
		}

		/*
C
Christoph Lameter 已提交
3394 3395
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3396
		 */
3397
		for (i = objects - 1; i > 0; i--)
3398 3399 3400
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3401 3402 3403 3404

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3405 3406 3407 3408 3409 3410
	}

	kfree(slabs_by_inuse);
	return 0;
}

3411 3412 3413 3414
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3415
	mutex_lock(&slab_mutex);
3416
	list_for_each_entry(s, &slab_caches, list)
3417
		__kmem_cache_shrink(s);
3418
	mutex_unlock(&slab_mutex);
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3430
	offline_node = marg->status_change_nid_normal;
3431 3432 3433 3434 3435 3436 3437 3438

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3439
	mutex_lock(&slab_mutex);
3440 3441 3442 3443 3444 3445
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3446
			 * and offline_pages() function shouldn't call this
3447 3448
			 * callback. So, we must fail.
			 */
3449
			BUG_ON(slabs_node(s, offline_node));
3450 3451

			s->node[offline_node] = NULL;
3452
			kmem_cache_free(kmem_cache_node, n);
3453 3454
		}
	}
3455
	mutex_unlock(&slab_mutex);
3456 3457 3458 3459 3460 3461 3462
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3463
	int nid = marg->status_change_nid_normal;
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3474
	 * We are bringing a node online. No memory is available yet. We must
3475 3476 3477
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3478
	mutex_lock(&slab_mutex);
3479 3480 3481 3482 3483 3484
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3485
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3486 3487 3488 3489
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3490
		init_kmem_cache_node(n);
3491 3492 3493
		s->node[nid] = n;
	}
out:
3494
	mutex_unlock(&slab_mutex);
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3518 3519 3520 3521
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3522 3523 3524
	return ret;
}

3525 3526 3527 3528
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3529

C
Christoph Lameter 已提交
3530 3531 3532 3533
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3534 3535
/*
 * Used for early kmem_cache structures that were allocated using
3536 3537
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3538 3539
 */

3540
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3541 3542
{
	int node;
3543
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3544
	struct kmem_cache_node *n;
3545

3546
	memcpy(s, static_cache, kmem_cache->object_size);
3547

3548 3549 3550 3551 3552 3553
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3554
	for_each_kmem_cache_node(s, node, n) {
3555 3556
		struct page *p;

C
Christoph Lameter 已提交
3557 3558
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3559

L
Li Zefan 已提交
3560
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3561 3562
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3563 3564
#endif
	}
3565 3566
	list_add(&s->list, &slab_caches);
	return s;
3567 3568
}

C
Christoph Lameter 已提交
3569 3570
void __init kmem_cache_init(void)
{
3571 3572
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3573

3574 3575 3576
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3577 3578
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3579

3580 3581
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3582

3583
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3584 3585 3586 3587

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3588 3589 3590 3591
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3592

3593
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3594

3595 3596 3597 3598 3599
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3600
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3601 3602

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3603
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3604 3605 3606

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3607
#endif
C
Christoph Lameter 已提交
3608

3609
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3610
		cache_line_size(),
C
Christoph Lameter 已提交
3611 3612 3613 3614
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3615 3616 3617 3618
void __init kmem_cache_init_late(void)
{
}

3619
struct kmem_cache *
3620 3621
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3622 3623 3624
{
	struct kmem_cache *s;

3625
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3626
	if (s) {
3627 3628 3629
		int i;
		struct kmem_cache *c;

C
Christoph Lameter 已提交
3630
		s->refcount++;
3631

C
Christoph Lameter 已提交
3632 3633 3634 3635
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3636
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3637
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3638

3639 3640 3641 3642 3643 3644 3645 3646 3647
		for_each_memcg_cache_index(i) {
			c = cache_from_memcg_idx(s, i);
			if (!c)
				continue;
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3648 3649
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3650
			s = NULL;
3651
		}
3652
	}
C
Christoph Lameter 已提交
3653

3654 3655
	return s;
}
P
Pekka Enberg 已提交
3656

3657
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3658
{
3659 3660 3661 3662 3663
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3664

3665 3666 3667 3668
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3669
	memcg_propagate_slab_attrs(s);
3670 3671 3672
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3673

3674
	return err;
C
Christoph Lameter 已提交
3675 3676 3677 3678
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3679 3680
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3681
 */
3682
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3683 3684 3685
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3686 3687
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3688 3689 3690

	switch (action) {
	case CPU_UP_CANCELED:
3691
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3692
	case CPU_DEAD:
3693
	case CPU_DEAD_FROZEN:
3694
		mutex_lock(&slab_mutex);
3695 3696 3697 3698 3699
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3700
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3701 3702 3703 3704 3705 3706 3707
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3708
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3709
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3710
};
C
Christoph Lameter 已提交
3711 3712 3713

#endif

3714
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3715
{
3716
	struct kmem_cache *s;
3717
	void *ret;
3718

3719
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3720 3721
		return kmalloc_large(size, gfpflags);

3722
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3723

3724
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3725
		return s;
C
Christoph Lameter 已提交
3726

3727
	ret = slab_alloc(s, gfpflags, caller);
3728

L
Lucas De Marchi 已提交
3729
	/* Honor the call site pointer we received. */
3730
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3731 3732

	return ret;
C
Christoph Lameter 已提交
3733 3734
}

3735
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3736
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3737
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3738
{
3739
	struct kmem_cache *s;
3740
	void *ret;
3741

3742
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3743 3744 3745 3746 3747 3748 3749 3750
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3751

3752
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3753

3754
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3755
		return s;
C
Christoph Lameter 已提交
3756

3757
	ret = slab_alloc_node(s, gfpflags, node, caller);
3758

L
Lucas De Marchi 已提交
3759
	/* Honor the call site pointer we received. */
3760
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3761 3762

	return ret;
C
Christoph Lameter 已提交
3763
}
3764
#endif
C
Christoph Lameter 已提交
3765

3766
#ifdef CONFIG_SYSFS
3767 3768 3769 3770 3771 3772 3773 3774 3775
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3776
#endif
3777

3778
#ifdef CONFIG_SLUB_DEBUG
3779 3780
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3781 3782
{
	void *p;
3783
	void *addr = page_address(page);
3784 3785 3786 3787 3788 3789

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3790
	bitmap_zero(map, page->objects);
3791

3792 3793 3794 3795 3796
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3797 3798
	}

3799
	for_each_object(p, s, addr, page->objects)
3800
		if (!test_bit(slab_index(p, s, addr), map))
3801
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3802 3803 3804 3805
				return 0;
	return 1;
}

3806 3807
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3808
{
3809 3810 3811
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3812 3813
}

3814 3815
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3816 3817 3818 3819 3820 3821 3822 3823
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3824
		validate_slab_slab(s, page, map);
3825 3826 3827
		count++;
	}
	if (count != n->nr_partial)
3828 3829
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
3830 3831 3832 3833 3834

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3835
		validate_slab_slab(s, page, map);
3836 3837 3838
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
3839 3840
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
3841 3842 3843 3844 3845 3846

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3847
static long validate_slab_cache(struct kmem_cache *s)
3848 3849 3850
{
	int node;
	unsigned long count = 0;
3851
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3852
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
3853
	struct kmem_cache_node *n;
3854 3855 3856

	if (!map)
		return -ENOMEM;
3857 3858

	flush_all(s);
C
Christoph Lameter 已提交
3859
	for_each_kmem_cache_node(s, node, n)
3860 3861
		count += validate_slab_node(s, n, map);
	kfree(map);
3862 3863
	return count;
}
3864
/*
C
Christoph Lameter 已提交
3865
 * Generate lists of code addresses where slabcache objects are allocated
3866 3867 3868 3869 3870
 * and freed.
 */

struct location {
	unsigned long count;
3871
	unsigned long addr;
3872 3873 3874 3875 3876
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3877
	DECLARE_BITMAP(cpus, NR_CPUS);
3878
	nodemask_t nodes;
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3894
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3895 3896 3897 3898 3899 3900
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3901
	l = (void *)__get_free_pages(flags, order);
3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3915
				const struct track *track)
3916 3917 3918
{
	long start, end, pos;
	struct location *l;
3919
	unsigned long caddr;
3920
	unsigned long age = jiffies - track->when;
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
3952 3953
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
3954 3955
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3956 3957 3958
			return 1;
		}

3959
		if (track->addr < caddr)
3960 3961 3962 3963 3964 3965
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3966
	 * Not found. Insert new tracking element.
3967
	 */
3968
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3969 3970 3971 3972 3973 3974 3975 3976
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3977 3978 3979 3980 3981 3982
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
3983 3984
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3985 3986
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
3987 3988 3989 3990
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
3991
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
3992
		unsigned long *map)
3993
{
3994
	void *addr = page_address(page);
3995 3996
	void *p;

3997
	bitmap_zero(map, page->objects);
3998
	get_map(s, page, map);
3999

4000
	for_each_object(p, s, addr, page->objects)
4001 4002
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4003 4004 4005 4006 4007
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4008
	int len = 0;
4009
	unsigned long i;
4010
	struct loc_track t = { 0, 0, NULL };
4011
	int node;
E
Eric Dumazet 已提交
4012 4013
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4014
	struct kmem_cache_node *n;
4015

E
Eric Dumazet 已提交
4016 4017 4018
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4019
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4020
	}
4021 4022 4023
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4024
	for_each_kmem_cache_node(s, node, n) {
4025 4026 4027
		unsigned long flags;
		struct page *page;

4028
		if (!atomic_long_read(&n->nr_slabs))
4029 4030 4031 4032
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4033
			process_slab(&t, s, page, alloc, map);
4034
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4035
			process_slab(&t, s, page, alloc, map);
4036 4037 4038 4039
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4040
		struct location *l = &t.loc[i];
4041

H
Hugh Dickins 已提交
4042
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4043
			break;
4044
		len += sprintf(buf + len, "%7ld ", l->count);
4045 4046

		if (l->addr)
J
Joe Perches 已提交
4047
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4048
		else
4049
			len += sprintf(buf + len, "<not-available>");
4050 4051

		if (l->sum_time != l->min_time) {
4052
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4053 4054 4055
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4056
		} else
4057
			len += sprintf(buf + len, " age=%ld",
4058 4059 4060
				l->min_time);

		if (l->min_pid != l->max_pid)
4061
			len += sprintf(buf + len, " pid=%ld-%ld",
4062 4063
				l->min_pid, l->max_pid);
		else
4064
			len += sprintf(buf + len, " pid=%ld",
4065 4066
				l->min_pid);

R
Rusty Russell 已提交
4067 4068
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4069 4070
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4071 4072
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4073
						 to_cpumask(l->cpus));
4074 4075
		}

4076
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4077 4078
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4079 4080 4081
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4082 4083
		}

4084
		len += sprintf(buf + len, "\n");
4085 4086 4087
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4088
	kfree(map);
4089
	if (!t.count)
4090 4091
		len += sprintf(buf, "No data\n");
	return len;
4092
}
4093
#endif
4094

4095
#ifdef SLUB_RESILIENCY_TEST
4096
static void __init resiliency_test(void)
4097 4098 4099
{
	u8 *p;

4100
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4101

4102 4103 4104
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4105 4106 4107

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4108 4109
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4110 4111 4112 4113 4114 4115

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4116 4117 4118
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4119 4120 4121 4122 4123

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4124 4125 4126
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4127 4128
	validate_slab_cache(kmalloc_caches[6]);

4129
	pr_err("\nB. Corruption after free\n");
4130 4131 4132
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4133
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4134 4135 4136 4137 4138
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4139
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4140 4141 4142 4143 4144
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4145
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4146 4147 4148 4149 4150 4151 4152 4153
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4154
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4155
enum slab_stat_type {
4156 4157 4158 4159 4160
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4161 4162
};

4163
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4164 4165 4166
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4167
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4168

4169 4170
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4171 4172 4173 4174 4175 4176
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4177
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4178 4179
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4180

4181 4182
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4183

4184
		for_each_possible_cpu(cpu) {
4185 4186
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4187
			int node;
4188
			struct page *page;
4189

4190
			page = ACCESS_ONCE(c->page);
4191 4192
			if (!page)
				continue;
4193

4194 4195 4196 4197 4198 4199 4200
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4201

4202 4203 4204 4205
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4206
			if (page) {
L
Li Zefan 已提交
4207 4208 4209 4210 4211 4212 4213
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4214 4215
				total += x;
				nodes[node] += x;
4216
			}
C
Christoph Lameter 已提交
4217 4218 4219
		}
	}

4220
	get_online_mems();
4221
#ifdef CONFIG_SLUB_DEBUG
4222
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4223 4224 4225
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4226

4227 4228 4229 4230 4231
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4232
			else
4233
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4234 4235 4236 4237
			total += x;
			nodes[node] += x;
		}

4238 4239 4240
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4241
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4242

C
Christoph Lameter 已提交
4243
		for_each_kmem_cache_node(s, node, n) {
4244 4245 4246 4247
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4248
			else
4249
				x = n->nr_partial;
C
Christoph Lameter 已提交
4250 4251 4252 4253 4254 4255
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4256
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4257 4258 4259 4260
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4261
	put_online_mems();
C
Christoph Lameter 已提交
4262 4263 4264 4265
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4266
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4267 4268 4269
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4270
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4271

C
Christoph Lameter 已提交
4272
	for_each_kmem_cache_node(s, node, n)
4273
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4274
			return 1;
C
Christoph Lameter 已提交
4275

C
Christoph Lameter 已提交
4276 4277
	return 0;
}
4278
#endif
C
Christoph Lameter 已提交
4279 4280

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4281
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4282 4283 4284 4285 4286 4287 4288 4289

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4290 4291
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4292 4293 4294

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4295
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4311
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4312 4313 4314 4315 4316
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4317
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4318 4319 4320
}
SLAB_ATTR_RO(objs_per_slab);

4321 4322 4323
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4324 4325 4326
	unsigned long order;
	int err;

4327
	err = kstrtoul(buf, 10, &order);
4328 4329
	if (err)
		return err;
4330 4331 4332 4333 4334 4335 4336 4337

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4338 4339
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4340
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4341
}
4342
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4343

4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4355
	err = kstrtoul(buf, 10, &min);
4356 4357 4358
	if (err)
		return err;

4359
	set_min_partial(s, min);
4360 4361 4362 4363
	return length;
}
SLAB_ATTR(min_partial);

4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4375
	err = kstrtoul(buf, 10, &objects);
4376 4377
	if (err)
		return err;
4378
	if (objects && !kmem_cache_has_cpu_partial(s))
4379
		return -EINVAL;
4380 4381 4382 4383 4384 4385 4386

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4387 4388
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4389 4390 4391
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4392 4393 4394 4395 4396
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4397
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4398 4399 4400 4401 4402
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4403
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4404 4405 4406 4407 4408
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4409
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4410 4411 4412 4413 4414
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4415
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4416 4417 4418
}
SLAB_ATTR_RO(objects);

4419 4420 4421 4422 4423 4424
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4491 4492 4493 4494 4495 4496
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4497
#ifdef CONFIG_SLUB_DEBUG
4498 4499 4500 4501 4502 4503
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4504 4505 4506 4507 4508 4509
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4510 4511 4512 4513 4514 4515 4516 4517 4518
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4519 4520
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4521
		s->flags |= SLAB_DEBUG_FREE;
4522
	}
C
Christoph Lameter 已提交
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4535 4536 4537 4538 4539 4540 4541 4542
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
4543
	s->flags &= ~SLAB_TRACE;
4544 4545
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4546
		s->flags |= SLAB_TRACE;
4547
	}
C
Christoph Lameter 已提交
4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4564 4565
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4566
		s->flags |= SLAB_RED_ZONE;
4567
	}
4568
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4585 4586
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4587
		s->flags |= SLAB_POISON;
4588
	}
4589
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4606 4607
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4608
		s->flags |= SLAB_STORE_USER;
4609
	}
4610
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4611 4612 4613 4614
	return length;
}
SLAB_ATTR(store_user);

4615 4616 4617 4618 4619 4620 4621 4622
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4623 4624 4625 4626 4627 4628 4629 4630
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4631 4632
}
SLAB_ATTR(validate);
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4660 4661 4662
	if (s->refcount > 1)
		return -EINVAL;

4663 4664 4665 4666 4667 4668
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4669
#endif
4670

4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4690
#ifdef CONFIG_NUMA
4691
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4692
{
4693
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4694 4695
}

4696
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4697 4698
				const char *buf, size_t length)
{
4699 4700 4701
	unsigned long ratio;
	int err;

4702
	err = kstrtoul(buf, 10, &ratio);
4703 4704 4705
	if (err)
		return err;

4706
	if (ratio <= 100)
4707
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4708 4709 4710

	return length;
}
4711
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4712 4713
#endif

4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4726
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4727 4728 4729 4730 4731 4732 4733

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4734
#ifdef CONFIG_SMP
4735 4736
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4737
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4738
	}
4739
#endif
4740 4741 4742 4743
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4744 4745 4746 4747 4748
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4749
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4750 4751
}

4752 4753 4754 4755 4756
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4777
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4778 4779 4780 4781 4782 4783 4784
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4785
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4786
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4787 4788
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4789 4790
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4791 4792
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4793 4794
#endif

P
Pekka Enberg 已提交
4795
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4796 4797 4798 4799
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4800
	&min_partial_attr.attr,
4801
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4802
	&objects_attr.attr,
4803
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4804 4805 4806 4807 4808 4809 4810 4811
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4812
	&shrink_attr.attr,
4813
	&reserved_attr.attr,
4814
	&slabs_cpu_partial_attr.attr,
4815
#ifdef CONFIG_SLUB_DEBUG
4816 4817 4818 4819
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4820 4821 4822
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4823
	&validate_attr.attr,
4824 4825
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4826
#endif
C
Christoph Lameter 已提交
4827 4828 4829 4830
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4831
	&remote_node_defrag_ratio_attr.attr,
4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4844
	&alloc_node_mismatch_attr.attr,
4845 4846 4847 4848 4849 4850 4851
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4852
	&deactivate_bypass_attr.attr,
4853
	&order_fallback_attr.attr,
4854 4855
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4856 4857
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4858 4859
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4860
#endif
4861 4862 4863 4864
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
4906 4907 4908
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
4909

4910 4911 4912 4913
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
4931
		for_each_memcg_cache_index(i) {
4932
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
4933 4934 4935 4936 4937 4938
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
4939 4940 4941
	return err;
}

4942 4943 4944 4945 4946
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
4947
	struct kmem_cache *root_cache;
4948

4949
	if (is_root_cache(s))
4950 4951
		return;

4952 4953
	root_cache = s->memcg_params->root_cache;

4954 4955 4956 4957
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
4958
	if (!root_cache->max_attr_size)
4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
4980
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
4981 4982 4983 4984 4985 4986 4987 4988
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

4989
		attr->show(root_cache, buf);
4990 4991 4992 4993 4994 4995 4996 4997
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

4998 4999 5000 5001 5002
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5003
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5004 5005 5006 5007 5008 5009
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5010
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5022
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5023 5024 5025
	.filter = uevent_filter,
};

5026
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5027

5028 5029 5030 5031 5032 5033 5034 5035 5036
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
		return s->memcg_params->root_cache->memcg_kset;
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5037 5038 5039
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5040 5041
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5064 5065
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5066 5067 5068
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5069

C
Christoph Lameter 已提交
5070 5071 5072 5073 5074 5075 5076 5077
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5078
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5079 5080 5081 5082 5083 5084 5085

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5086
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5087 5088 5089 5090 5091 5092 5093 5094 5095
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5096
	s->kobj.kset = cache_kset(s);
5097
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5098 5099
	if (err)
		goto out_put_kobj;
C
Christoph Lameter 已提交
5100 5101

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5102 5103
	if (err)
		goto out_del_kobj;
5104 5105 5106 5107 5108

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5109 5110
			err = -ENOMEM;
			goto out_del_kobj;
5111 5112 5113 5114
		}
	}
#endif

C
Christoph Lameter 已提交
5115 5116 5117 5118 5119
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5120 5121 5122 5123 5124 5125 5126 5127 5128
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5129 5130
}

5131
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5132
{
5133
	if (slab_state < FULL)
5134 5135 5136 5137 5138 5139
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5140 5141 5142
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5143 5144
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5145
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5146 5147 5148 5149
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5150
 * available lest we lose that information.
C
Christoph Lameter 已提交
5151 5152 5153 5154 5155 5156 5157
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5158
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5159 5160 5161 5162 5163

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5164
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5165 5166 5167
		/*
		 * If we have a leftover link then remove it.
		 */
5168 5169
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5185
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5186 5187
	int err;

5188
	mutex_lock(&slab_mutex);
5189

5190
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5191
	if (!slab_kset) {
5192
		mutex_unlock(&slab_mutex);
5193
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5194 5195 5196
		return -ENOSYS;
	}

5197
	slab_state = FULL;
5198

5199
	list_for_each_entry(s, &slab_caches, list) {
5200
		err = sysfs_slab_add(s);
5201
		if (err)
5202 5203
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5204
	}
C
Christoph Lameter 已提交
5205 5206 5207 5208 5209 5210

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5211
		if (err)
5212 5213
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5214 5215 5216
		kfree(al);
	}

5217
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5218 5219 5220 5221 5222
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5223
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5224 5225 5226 5227

/*
 * The /proc/slabinfo ABI
 */
5228
#ifdef CONFIG_SLABINFO
5229
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5230 5231
{
	unsigned long nr_slabs = 0;
5232 5233
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5234
	int node;
C
Christoph Lameter 已提交
5235
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5236

C
Christoph Lameter 已提交
5237
	for_each_kmem_cache_node(s, node, n) {
5238 5239
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5240
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5241 5242
	}

5243 5244 5245 5246 5247 5248
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5249 5250
}

5251
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5252 5253 5254
{
}

5255 5256
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5257
{
5258
	return -EIO;
5259
}
5260
#endif /* CONFIG_SLABINFO */