amd_iommu.c 97.0 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
J
Joerg Roedel 已提交
3
 * Author: Joerg Roedel <jroedel@suse.de>
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34 35 36 37 38 39
#include <linux/irq.h>
#include <linux/msi.h>
#include <asm/irq_remapping.h>
#include <asm/io_apic.h>
#include <asm/apic.h>
#include <asm/hw_irq.h>
40
#include <asm/msidef.h>
41
#include <asm/proto.h>
42
#include <asm/iommu.h>
43
#include <asm/gart.h>
44
#include <asm/dma.h>
45 46 47

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
48
#include "irq_remapping.h"
49 50 51

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

52
#define LOOP_TIMEOUT	100000
53

54 55 56 57 58 59
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
J
Joerg Roedel 已提交
60
 * 512GB Pages are not supported due to a hardware bug
61
 */
J
Joerg Roedel 已提交
62
#define AMD_IOMMU_PGSIZES	((~0xFFFUL) & ~(2ULL << 38))
63

64 65
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

66 67 68 69
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

70 71 72 73
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

74 75 76
LIST_HEAD(ioapic_map);
LIST_HEAD(hpet_map);

77 78 79 80 81 82
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

83
static const struct iommu_ops amd_iommu_ops;
84

85
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
86
int amd_iommu_max_glx_val = -1;
87

88 89
static struct dma_map_ops amd_iommu_dma_ops;

90 91 92 93 94 95
/*
 * This struct contains device specific data for the IOMMU
 */
struct iommu_dev_data {
	struct list_head list;		  /* For domain->dev_list */
	struct list_head dev_data_list;	  /* For global dev_data_list */
96
	struct list_head alias_list;      /* Link alias-groups together */
97 98 99 100 101 102 103 104 105 106 107 108 109 110
	struct iommu_dev_data *alias_data;/* The alias dev_data */
	struct protection_domain *domain; /* Domain the device is bound to */
	u16 devid;			  /* PCI Device ID */
	bool iommu_v2;			  /* Device can make use of IOMMUv2 */
	bool passthrough;		  /* Default for device is pt_domain */
	struct {
		bool enabled;
		int qdep;
	} ats;				  /* ATS state */
	bool pri_tlp;			  /* PASID TLB required for
					     PPR completions */
	u32 errata;			  /* Bitmap for errata to apply */
};

111 112 113
/*
 * general struct to manage commands send to an IOMMU
 */
114
struct iommu_cmd {
115 116 117
	u32 data[4];
};

118 119
struct kmem_cache *amd_iommu_irq_cache;

120
static void update_domain(struct protection_domain *domain);
121
static int __init alloc_passthrough_domain(void);
122

123 124 125 126 127 128
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

129
static struct iommu_dev_data *alloc_dev_data(u16 devid)
130 131 132 133 134 135 136 137
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

138 139
	INIT_LIST_HEAD(&dev_data->alias_list);

140
	dev_data->devid = devid;
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

191 192 193 194
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

195
	return PCI_DEVID(pdev->bus->number, pdev->devfn);
196 197
}

198 199 200 201 202
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

203 204 205 206
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
207 208
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
209 210 211 212 213 214 215 216 217 218 219 220
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

221 222 223 224 225 226 227 228 229
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

258 259 260 261 262 263 264 265 266 267 268
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

269 270
	/* No PCI device */
	if (!dev_is_pci(dev))
271 272 273 274 275 276 277 278 279 280 281 282 283 284
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

285
static void init_iommu_group(struct device *dev)
286 287 288
{
	struct iommu_group *group;

289
	group = iommu_group_get_for_dev(dev);
290 291
	if (!IS_ERR(group))
		iommu_group_put(group);
292 293
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static int __last_alias(struct pci_dev *pdev, u16 alias, void *data)
{
	*(u16 *)data = alias;
	return 0;
}

static u16 get_alias(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid, ivrs_alias, pci_alias;

	devid = get_device_id(dev);
	ivrs_alias = amd_iommu_alias_table[devid];
	pci_for_each_dma_alias(pdev, __last_alias, &pci_alias);

	if (ivrs_alias == pci_alias)
		return ivrs_alias;

	/*
	 * DMA alias showdown
	 *
	 * The IVRS is fairly reliable in telling us about aliases, but it
	 * can't know about every screwy device.  If we don't have an IVRS
	 * reported alias, use the PCI reported alias.  In that case we may
	 * still need to initialize the rlookup and dev_table entries if the
	 * alias is to a non-existent device.
	 */
	if (ivrs_alias == devid) {
		if (!amd_iommu_rlookup_table[pci_alias]) {
			amd_iommu_rlookup_table[pci_alias] =
				amd_iommu_rlookup_table[devid];
			memcpy(amd_iommu_dev_table[pci_alias].data,
			       amd_iommu_dev_table[devid].data,
			       sizeof(amd_iommu_dev_table[pci_alias].data));
		}

		return pci_alias;
	}

	pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
		"for device %s[%04x:%04x], kernel reported alias "
		"%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias), PCI_SLOT(ivrs_alias),
		PCI_FUNC(ivrs_alias), dev_name(dev), pdev->vendor, pdev->device,
		PCI_BUS_NUM(pci_alias), PCI_SLOT(pci_alias),
		PCI_FUNC(pci_alias));

	/*
	 * If we don't have a PCI DMA alias and the IVRS alias is on the same
	 * bus, then the IVRS table may know about a quirk that we don't.
	 */
	if (pci_alias == devid &&
	    PCI_BUS_NUM(ivrs_alias) == pdev->bus->number) {
		pdev->dev_flags |= PCI_DEV_FLAGS_DMA_ALIAS_DEVFN;
		pdev->dma_alias_devfn = ivrs_alias & 0xff;
		pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
			PCI_SLOT(ivrs_alias), PCI_FUNC(ivrs_alias),
			dev_name(dev));
	}

	return ivrs_alias;
}

356 357 358 359 360 361 362 363 364 365 366 367 368
static int iommu_init_device(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	struct iommu_dev_data *dev_data;
	u16 alias;

	if (dev->archdata.iommu)
		return 0;

	dev_data = find_dev_data(get_device_id(dev));
	if (!dev_data)
		return -ENOMEM;

369 370
	alias = get_alias(dev);

371 372 373 374 375 376 377 378 379 380 381 382
	if (alias != dev_data->devid) {
		struct iommu_dev_data *alias_data;

		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
		dev_data->alias_data = alias_data;

383 384
		/* Add device to the alias_list */
		list_add(&dev_data->alias_list, &alias_data->alias_list);
385
	}
386

387 388 389 390 391 392 393
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

394 395
	dev->archdata.iommu = dev_data;

A
Alex Williamson 已提交
396 397 398
	iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			  dev);

399 400 401
	return 0;
}

402 403 404 405 406 407 408 409 410 411 412 413 414 415
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

416 417
static void iommu_uninit_device(struct device *dev)
{
418 419 420 421 422
	struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));

	if (!dev_data)
		return;

A
Alex Williamson 已提交
423 424 425
	iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
			    dev);

426 427
	iommu_group_remove_device(dev);

428 429 430
	/* Unlink from alias, it may change if another device is re-plugged */
	dev_data->alias_data = NULL;

431
	/*
432 433
	 * We keep dev_data around for unplugged devices and reuse it when the
	 * device is re-plugged - not doing so would introduce a ton of races.
434
	 */
435
}
J
Joerg Roedel 已提交
436 437 438

void __init amd_iommu_uninit_devices(void)
{
439
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
440 441 442 443 444 445 446 447 448
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
449 450 451 452

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
466 467 468
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
469 470 471
			goto out_free;
	}

472 473 474 475 476 477 478 479 480
	/*
	 * Initialize IOMMU groups only after iommu_init_device() has
	 * had a chance to populate any IVRS defined aliases.
	 */
	for_each_pci_dev(pdev) {
		if (check_device(&pdev->dev))
			init_iommu_group(&pdev->dev);
	}

J
Joerg Roedel 已提交
481 482 483 484 485 486 487 488
	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
489 490 491 492 493 494
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

495
DECLARE_STATS_COUNTER(compl_wait);
496
DECLARE_STATS_COUNTER(cnt_map_single);
497
DECLARE_STATS_COUNTER(cnt_unmap_single);
498
DECLARE_STATS_COUNTER(cnt_map_sg);
499
DECLARE_STATS_COUNTER(cnt_unmap_sg);
500
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
501
DECLARE_STATS_COUNTER(cnt_free_coherent);
502
DECLARE_STATS_COUNTER(cross_page);
503
DECLARE_STATS_COUNTER(domain_flush_single);
504
DECLARE_STATS_COUNTER(domain_flush_all);
505
DECLARE_STATS_COUNTER(alloced_io_mem);
506
DECLARE_STATS_COUNTER(total_map_requests);
507 508 509 510 511
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
531
					 &amd_iommu_unmap_flush);
532 533

	amd_iommu_stats_add(&compl_wait);
534
	amd_iommu_stats_add(&cnt_map_single);
535
	amd_iommu_stats_add(&cnt_unmap_single);
536
	amd_iommu_stats_add(&cnt_map_sg);
537
	amd_iommu_stats_add(&cnt_unmap_sg);
538
	amd_iommu_stats_add(&cnt_alloc_coherent);
539
	amd_iommu_stats_add(&cnt_free_coherent);
540
	amd_iommu_stats_add(&cross_page);
541
	amd_iommu_stats_add(&domain_flush_single);
542
	amd_iommu_stats_add(&domain_flush_all);
543
	amd_iommu_stats_add(&alloced_io_mem);
544
	amd_iommu_stats_add(&total_map_requests);
545 546 547 548
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
549 550 551 552
}

#endif

553 554 555 556 557 558
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

559 560 561 562
static void dump_dte_entry(u16 devid)
{
	int i;

563 564
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
565 566 567
			amd_iommu_dev_table[devid].data[i]);
}

568 569 570 571 572 573 574 575 576
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

577
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
578
{
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	int type, devid, domid, flags;
	volatile u32 *event = __evt;
	int count = 0;
	u64 address;

retry:
	type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	address = (u64)(((u64)event[3]) << 32) | event[2];

	if (type == 0) {
		/* Did we hit the erratum? */
		if (++count == LOOP_TIMEOUT) {
			pr_err("AMD-Vi: No event written to event log\n");
			return;
		}
		udelay(1);
		goto retry;
	}
600

601
	printk(KERN_ERR "AMD-Vi: Event logged [");
602 603 604 605 606

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
607
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
608
		       address, flags);
609
		dump_dte_entry(devid);
610 611 612 613
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
614
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
615 616 617 618 619
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
620
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
621 622 623 624 625
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
626
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
627 628 629 630
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
631
		dump_command(address);
632 633 634 635 636 637 638 639
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
640
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
641 642 643 644 645
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
646
		       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
647 648 649 650 651
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
652 653

	memset(__evt, 0, 4 * sizeof(u32));
654 655 656 657 658 659 660 661 662 663
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
664
		iommu_print_event(iommu, iommu->evt_buf + head);
665 666 667 668 669 670
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
}

671
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
672 673 674
{
	struct amd_iommu_fault fault;

675 676
	INC_STATS_COUNTER(pri_requests);

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
		volatile u64 *raw;
		u64 entry[2];
		int i;

		raw = (u64 *)(iommu->ppr_log + head);

		/*
		 * Hardware bug: Interrupt may arrive before the entry is
		 * written to memory. If this happens we need to wait for the
		 * entry to arrive.
		 */
		for (i = 0; i < LOOP_TIMEOUT; ++i) {
			if (PPR_REQ_TYPE(raw[0]) != 0)
				break;
			udelay(1);
		}
718

719 720 721
		/* Avoid memcpy function-call overhead */
		entry[0] = raw[0];
		entry[1] = raw[1];
722

723 724 725 726 727 728 729
		/*
		 * To detect the hardware bug we need to clear the entry
		 * back to zero.
		 */
		raw[0] = raw[1] = 0UL;

		/* Update head pointer of hardware ring-buffer */
730 731
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
732 733 734 735 736 737

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, entry);

		/* Refresh ring-buffer information */
		head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
738 739 740 741
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}
}

742
irqreturn_t amd_iommu_int_thread(int irq, void *data)
743
{
744 745
	struct amd_iommu *iommu = (struct amd_iommu *) data;
	u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
746

747 748 749 750
	while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
		/* Enable EVT and PPR interrupts again */
		writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
			iommu->mmio_base + MMIO_STATUS_OFFSET);
751

752 753 754 755
		if (status & MMIO_STATUS_EVT_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
			iommu_poll_events(iommu);
		}
756

757 758 759 760
		if (status & MMIO_STATUS_PPR_INT_MASK) {
			pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
			iommu_poll_ppr_log(iommu);
		}
761

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
		/*
		 * Hardware bug: ERBT1312
		 * When re-enabling interrupt (by writing 1
		 * to clear the bit), the hardware might also try to set
		 * the interrupt bit in the event status register.
		 * In this scenario, the bit will be set, and disable
		 * subsequent interrupts.
		 *
		 * Workaround: The IOMMU driver should read back the
		 * status register and check if the interrupt bits are cleared.
		 * If not, driver will need to go through the interrupt handler
		 * again and re-clear the bits
		 */
		status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
	}
777
	return IRQ_HANDLED;
778 779
}

780 781 782 783 784
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

785 786 787 788 789 790
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
811 812 813
{
	u8 *target;

814
	target = iommu->cmd_buf + tail;
815 816 817 818 819 820
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
821
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
822
}
823

824
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
825
{
826 827
	WARN_ON(address & 0x7ULL);

828
	memset(cmd, 0, sizeof(*cmd));
829 830 831
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
832 833 834
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

835 836 837 838 839 840 841
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

842 843 844 845
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
846
	bool s;
847 848

	pages = iommu_num_pages(address, size, PAGE_SIZE);
849
	s     = false;
850 851 852 853 854 855 856

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
857
		s = true;
858 859 860 861 862 863 864 865 866 867 868
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
F
Frank Arnold 已提交
869
	if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
870 871 872
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

873 874 875 876
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
877
	bool s;
878 879

	pages = iommu_num_pages(address, size, PAGE_SIZE);
880
	s     = false;
881 882 883 884 885 886 887

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
888
		s = true;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

904 905 906 907 908 909 910
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

911
	cmd->data[0]  = pasid;
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
930
	cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
931 932
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
933
	cmd->data[1] |= (pasid & 0xff) << 16;
934 935 936 937 938 939 940 941
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

942 943 944 945 946 947 948
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
949
		cmd->data[1]  = pasid;
950 951 952 953 954 955 956 957
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

958 959 960 961
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
962 963
}

964 965 966 967 968 969 970
static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_IRT);
}

971 972
/*
 * Writes the command to the IOMMUs command buffer and informs the
973
 * hardware about the new command.
974
 */
975 976 977
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
978
{
979
	u32 left, tail, head, next_tail;
980 981
	unsigned long flags;

982
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
983 984

again:
985 986
	spin_lock_irqsave(&iommu->lock, flags);

987 988 989 990
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
991

992 993 994 995
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
996

997 998
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
999

1000 1001 1002 1003 1004 1005
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
1006 1007
	}

1008 1009 1010
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
1011
	iommu->need_sync = sync;
1012

1013
	spin_unlock_irqrestore(&iommu->lock, flags);
1014

1015
	return 0;
1016 1017
}

1018 1019 1020 1021 1022
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

1023 1024 1025 1026
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
1027
static int iommu_completion_wait(struct amd_iommu *iommu)
1028 1029
{
	struct iommu_cmd cmd;
1030
	volatile u64 sem = 0;
1031
	int ret;
1032

1033
	if (!iommu->need_sync)
1034
		return 0;
1035

1036
	build_completion_wait(&cmd, (u64)&sem);
1037

1038
	ret = iommu_queue_command_sync(iommu, &cmd, false);
1039
	if (ret)
1040
		return ret;
1041

1042
	return wait_on_sem(&sem);
1043 1044
}

1045
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1046
{
1047
	struct iommu_cmd cmd;
1048

1049
	build_inv_dte(&cmd, devid);
1050

1051 1052
	return iommu_queue_command(iommu, &cmd);
}
1053

1054 1055 1056
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
1057

1058 1059
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
1060

1061 1062
	iommu_completion_wait(iommu);
}
1063

1064 1065 1066 1067 1068 1069 1070
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
1071

1072 1073 1074 1075 1076 1077
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
1078

1079
	iommu_completion_wait(iommu);
1080 1081
}

1082
static void iommu_flush_all(struct amd_iommu *iommu)
1083
{
1084
	struct iommu_cmd cmd;
1085

1086
	build_inv_all(&cmd);
1087

1088 1089 1090 1091
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
{
	struct iommu_cmd cmd;

	build_inv_irt(&cmd, devid);

	iommu_queue_command(iommu, &cmd);
}

static void iommu_flush_irt_all(struct amd_iommu *iommu)
{
	u32 devid;

	for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
		iommu_flush_irt(iommu, devid);

	iommu_completion_wait(iommu);
}

1111 1112
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
1113 1114 1115 1116
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
1117
		iommu_flush_irt_all(iommu);
1118
		iommu_flush_tlb_all(iommu);
1119 1120 1121
	}
}

1122
/*
1123
 * Command send function for flushing on-device TLB
1124
 */
1125 1126
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
1127 1128
{
	struct amd_iommu *iommu;
1129
	struct iommu_cmd cmd;
1130
	int qdep;
1131

1132 1133
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
1134

1135
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1136 1137

	return iommu_queue_command(iommu, &cmd);
1138 1139
}

1140 1141 1142
/*
 * Command send function for invalidating a device table entry
 */
1143
static int device_flush_dte(struct iommu_dev_data *dev_data)
1144
{
1145
	struct amd_iommu *iommu;
1146
	int ret;
1147

1148
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1149

1150
	ret = iommu_flush_dte(iommu, dev_data->devid);
1151 1152 1153
	if (ret)
		return ret;

1154
	if (dev_data->ats.enabled)
1155
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
1156 1157

	return ret;
1158 1159
}

1160 1161 1162 1163 1164
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
1165 1166
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
1167
{
1168
	struct iommu_dev_data *dev_data;
1169 1170
	struct iommu_cmd cmd;
	int ret = 0, i;
1171

1172
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1173

1174 1175 1176 1177 1178 1179 1180 1181
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
1182
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
1183 1184
	}

1185 1186
	list_for_each_entry(dev_data, &domain->dev_list, list) {

1187
		if (!dev_data->ats.enabled)
1188 1189
			continue;

1190
		ret |= device_flush_iotlb(dev_data, address, size);
1191 1192
	}

1193
	WARN_ON(ret);
1194 1195
}

1196 1197
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1198
{
1199
	__domain_flush_pages(domain, address, size, 0);
1200
}
1201

1202
/* Flush the whole IO/TLB for a given protection domain */
1203
static void domain_flush_tlb(struct protection_domain *domain)
1204
{
1205
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1206 1207
}

1208
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1209
static void domain_flush_tlb_pde(struct protection_domain *domain)
1210
{
1211
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1212 1213
}

1214
static void domain_flush_complete(struct protection_domain *domain)
1215
{
1216
	int i;
1217

1218 1219 1220
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1221

1222 1223 1224 1225 1226
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1227
	}
1228 1229
}

1230

1231
/*
1232
 * This function flushes the DTEs for all devices in domain
1233
 */
1234
static void domain_flush_devices(struct protection_domain *domain)
1235
{
1236
	struct iommu_dev_data *dev_data;
1237

1238
	list_for_each_entry(dev_data, &domain->dev_list, list)
1239
		device_flush_dte(dev_data);
1240 1241
}

1242 1243 1244 1245 1246 1247 1248
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1278
		      unsigned long page_size,
1279 1280 1281
		      u64 **pte_page,
		      gfp_t gfp)
{
1282
	int level, end_lvl;
1283
	u64 *pte, *page;
1284 1285

	BUG_ON(!is_power_of_2(page_size));
1286 1287 1288 1289

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1290 1291 1292 1293
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1294 1295 1296 1297 1298 1299 1300 1301 1302

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1303 1304 1305 1306
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1324
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1325 1326 1327 1328
{
	int level;
	u64 *pte;

1329 1330 1331 1332 1333
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1334

1335 1336 1337
	while (level > 0) {

		/* Not Present */
1338 1339 1340
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1360 1361
		level -= 1;

1362
		/* Walk to the next level */
1363 1364 1365 1366 1367 1368 1369
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1370 1371 1372 1373 1374 1375 1376
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1377 1378 1379
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1380
			  int prot,
1381
			  unsigned long page_size)
1382
{
1383
	u64 __pte, *pte;
1384
	int i, count;
1385

1386
	if (!(prot & IOMMU_PROT_MASK))
1387 1388
		return -EINVAL;

1389 1390 1391 1392 1393
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

1394 1395 1396
	if (!pte)
		return -ENOMEM;

1397 1398 1399
	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1400

1401 1402 1403 1404 1405
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1406 1407 1408 1409 1410 1411

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1412 1413
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1414

1415 1416
	update_domain(dom);

1417 1418 1419
	return 0;
}

1420 1421 1422
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1423
{
1424 1425 1426 1427 1428 1429
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1430

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
1450 1451 1452 1453

			/* Only unmap from the first pte in the page */
			if ((unmap_size - 1) & bus_addr)
				break;
1454 1455 1456 1457 1458 1459 1460 1461 1462
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

1463
	BUG_ON(unmapped && !is_power_of_2(unmapped));
1464

1465
	return unmapped;
1466 1467
}

1468 1469 1470 1471
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1486 1487 1488 1489
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1490 1491 1492 1493 1494 1495 1496 1497
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1498
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1499
				     PAGE_SIZE);
1500 1501 1502 1503 1504 1505 1506
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1507
			__set_bit(addr >> PAGE_SHIFT,
1508
				  dma_dom->aperture[0]->bitmap);
1509 1510 1511 1512 1513
	}

	return 0;
}

1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1536 1537 1538
/*
 * Inits the unity mappings required for a specific device
 */
1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1556 1557 1558 1559 1560 1561 1562 1563 1564
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1565

1566
/*
1567
 * The address allocator core functions.
1568 1569 1570
 *
 * called with domain->lock held
 */
1571

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1592 1593 1594 1595 1596
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1597
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1598 1599 1600
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1601
	struct amd_iommu *iommu;
1602
	unsigned long i, old_size;
1603

1604 1605 1606 1607
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1627
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1638
	old_size                = dma_dom->aperture_size;
1639 1640
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1653
	/* Initialize the exclusion range if necessary */
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1676
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1677 1678 1679
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1680
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1681 1682
	}

1683 1684
	update_domain(&dma_dom->domain);

1685 1686 1687
	return 0;

out_free:
1688 1689
	update_domain(&dma_dom->domain);

1690 1691 1692 1693 1694 1695 1696 1697
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1698 1699 1700 1701 1702 1703 1704
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1705
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1706 1707 1708 1709 1710 1711
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1712 1713
	next_bit >>= PAGE_SHIFT;

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1732
			dom->next_address = address + (pages << PAGE_SHIFT);
1733 1734 1735 1736 1737 1738 1739 1740 1741
			break;
		}

		next_bit = 0;
	}

	return address;
}

1742 1743
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1744
					     unsigned int pages,
1745 1746
					     unsigned long align_mask,
					     u64 dma_mask)
1747 1748 1749
{
	unsigned long address;

1750 1751 1752 1753
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1754

1755
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1756
				     dma_mask, dom->next_address);
1757

1758
	if (address == -1) {
1759
		dom->next_address = 0;
1760 1761
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1762 1763
		dom->need_flush = true;
	}
1764

1765
	if (unlikely(address == -1))
1766
		address = DMA_ERROR_CODE;
1767 1768 1769 1770 1771 1772

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1773 1774 1775 1776 1777
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1778 1779 1780 1781
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1782 1783
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1784

1785 1786
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1787 1788 1789 1790
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1791

1792
	if (address >= dom->next_address)
1793
		dom->need_flush = true;
1794 1795

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1796

A
Akinobu Mita 已提交
1797
	bitmap_clear(range->bitmap, address, pages);
1798

1799 1800
}

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
#define DEFINE_FREE_PT_FN(LVL, FN)				\
static void free_pt_##LVL (unsigned long __pt)			\
{								\
	unsigned long p;					\
	u64 *pt;						\
	int i;							\
								\
	pt = (u64 *)__pt;					\
								\
	for (i = 0; i < 512; ++i) {				\
		if (!IOMMU_PTE_PRESENT(pt[i]))			\
			continue;				\
								\
		p = (unsigned long)IOMMU_PTE_PAGE(pt[i]);	\
		FN(p);						\
	}							\
	free_page((unsigned long)pt);				\
}

DEFINE_FREE_PT_FN(l2, free_page)
DEFINE_FREE_PT_FN(l3, free_pt_l2)
DEFINE_FREE_PT_FN(l4, free_pt_l3)
DEFINE_FREE_PT_FN(l5, free_pt_l4)
DEFINE_FREE_PT_FN(l6, free_pt_l5)

1888
static void free_pagetable(struct protection_domain *domain)
1889
{
1890
	unsigned long root = (unsigned long)domain->pt_root;
1891

1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	switch (domain->mode) {
	case PAGE_MODE_NONE:
		break;
	case PAGE_MODE_1_LEVEL:
		free_page(root);
		break;
	case PAGE_MODE_2_LEVEL:
		free_pt_l2(root);
		break;
	case PAGE_MODE_3_LEVEL:
		free_pt_l3(root);
		break;
	case PAGE_MODE_4_LEVEL:
		free_pt_l4(root);
		break;
	case PAGE_MODE_5_LEVEL:
		free_pt_l5(root);
		break;
	case PAGE_MODE_6_LEVEL:
		free_pt_l6(root);
		break;
	default:
		BUG();
1915 1916 1917
	}
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1948 1949
static void free_gcr3_table(struct protection_domain *domain)
{
1950 1951 1952 1953 1954 1955 1956
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1957 1958 1959
	free_page((unsigned long)domain->gcr3_tbl);
}

1960 1961 1962 1963
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1964 1965
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1966 1967
	int i;

1968 1969 1970
	if (!dom)
		return;

1971 1972
	del_domain_from_list(&dom->domain);

1973
	free_pagetable(&dom->domain);
1974

1975 1976 1977 1978 1979 1980
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1981 1982 1983 1984

	kfree(dom);
}

1985 1986
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1987
 * It also initializes the page table and the address allocator data
1988 1989
 * structures required for the dma_ops interface
 */
1990
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
2003
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2004
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2005
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2006
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
2007 2008 2009 2010
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

2011
	dma_dom->need_flush = false;
2012
	dma_dom->target_dev = 0xffff;
2013

2014 2015
	add_domain_to_list(&dma_dom->domain);

2016
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2017 2018
		goto free_dma_dom;

2019
	/*
2020 2021
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
2022
	 */
2023
	dma_dom->aperture[0]->bitmap[0] = 1;
2024
	dma_dom->next_address = 0;
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

2035 2036 2037 2038 2039 2040 2041 2042 2043
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

2044
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2045
{
2046
	u64 pte_root = 0;
2047
	u64 flags = 0;
2048

2049 2050 2051
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

2052 2053 2054
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2055

2056 2057
	flags = amd_iommu_dev_table[devid].data[1];

2058 2059 2060
	if (ats)
		flags |= DTE_FLAG_IOTLB;

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

2087 2088 2089 2090 2091
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
2092 2093 2094 2095 2096 2097 2098 2099 2100
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
2101 2102
}

2103 2104
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
2105 2106
{
	struct amd_iommu *iommu;
2107
	bool ats;
2108

2109 2110
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
2111 2112 2113 2114

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
2115
	set_dte_entry(dev_data->devid, domain, ats);
2116 2117 2118 2119 2120 2121

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
2122
	device_flush_dte(dev_data);
2123 2124
}

2125
static void do_detach(struct iommu_dev_data *dev_data)
2126 2127 2128
{
	struct amd_iommu *iommu;

2129
	iommu = amd_iommu_rlookup_table[dev_data->devid];
2130 2131

	/* decrease reference counters */
2132 2133 2134 2135 2136 2137
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
2138
	clear_dte_entry(dev_data->devid);
2139

2140
	/* Flush the DTE entry */
2141
	device_flush_dte(dev_data);
2142 2143 2144 2145 2146 2147
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2148
static int __attach_device(struct iommu_dev_data *dev_data,
2149
			   struct protection_domain *domain)
2150
{
2151
	struct iommu_dev_data *head, *entry;
2152
	int ret;
2153

2154 2155 2156
	/* lock domain */
	spin_lock(&domain->lock);

2157
	head = dev_data;
2158

2159 2160
	if (head->alias_data != NULL)
		head = head->alias_data;
2161

2162
	/* Now we have the root of the alias group, if any */
2163

2164 2165 2166
	ret = -EBUSY;
	if (head->domain != NULL)
		goto out_unlock;
2167

2168 2169
	/* Attach alias group root */
	do_attach(head, domain);
2170

2171 2172 2173
	/* Attach other devices in the alias group */
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_attach(entry, domain);
2174

2175 2176 2177 2178
	ret = 0;

out_unlock:

2179 2180
	/* ready */
	spin_unlock(&domain->lock);
2181

2182
	return ret;
2183
}
2184

2185 2186 2187 2188 2189 2190 2191 2192

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

2193 2194 2195 2196 2197 2198
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2199
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2200 2201 2202
	if (!pos)
		return -EINVAL;

2203 2204 2205
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2206 2207 2208 2209

	return 0;
}

2210 2211
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
2212 2213 2214 2215 2216 2217 2218 2219
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2231 2232
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2233 2234 2235
	if (ret)
		goto out_err;

2236 2237 2238 2239 2240 2241
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2255
/* FIXME: Move this to PCI code */
2256
#define PCI_PRI_TLP_OFF		(1 << 15)
2257

J
Joerg Roedel 已提交
2258
static bool pci_pri_tlp_required(struct pci_dev *pdev)
2259
{
2260
	u16 status;
2261 2262
	int pos;

2263
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2264 2265 2266
	if (!pos)
		return false;

2267
	pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2268

2269
	return (status & PCI_PRI_TLP_OFF) ? true : false;
2270 2271
}

2272
/*
F
Frank Arnold 已提交
2273
 * If a device is not yet associated with a domain, this function
2274 2275
 * assigns it visible for the hardware
 */
2276 2277
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2278
{
2279
	struct pci_dev *pdev = to_pci_dev(dev);
2280
	struct iommu_dev_data *dev_data;
2281
	unsigned long flags;
2282
	int ret;
2283

2284 2285
	dev_data = get_dev_data(dev);

2286 2287 2288 2289 2290 2291 2292 2293 2294
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2295
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2296 2297
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2298 2299 2300
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2301

2302
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2303
	ret = __attach_device(dev_data, domain);
2304 2305
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2306 2307 2308 2309 2310
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2311
	domain_flush_tlb_pde(domain);
2312 2313

	return ret;
2314 2315
}

2316 2317 2318
/*
 * Removes a device from a protection domain (unlocked)
 */
2319
static void __detach_device(struct iommu_dev_data *dev_data)
2320
{
2321
	struct iommu_dev_data *head, *entry;
2322
	struct protection_domain *domain;
2323
	unsigned long flags;
2324

2325
	BUG_ON(!dev_data->domain);
2326

2327 2328 2329
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2330

2331 2332 2333
	head = dev_data;
	if (head->alias_data != NULL)
		head = head->alias_data;
2334

2335 2336
	list_for_each_entry(entry, &head->alias_list, alias_list)
		do_detach(entry);
2337

2338
	do_detach(head);
2339

2340
	spin_unlock_irqrestore(&domain->lock, flags);
2341 2342 2343

	/*
	 * If we run in passthrough mode the device must be assigned to the
2344 2345
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2346
	 */
2347
	if (dev_data->passthrough &&
2348
	    (dev_data->domain == NULL && domain != pt_domain))
2349
		__attach_device(dev_data, pt_domain);
2350 2351 2352 2353 2354
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2355
static void detach_device(struct device *dev)
2356
{
2357
	struct protection_domain *domain;
2358
	struct iommu_dev_data *dev_data;
2359 2360
	unsigned long flags;

2361
	dev_data = get_dev_data(dev);
2362
	domain   = dev_data->domain;
2363

2364 2365
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2366
	__detach_device(dev_data);
2367
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2368

2369 2370 2371
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2372
		pci_disable_ats(to_pci_dev(dev));
2373 2374

	dev_data->ats.enabled = false;
2375
}
2376

2377 2378 2379 2380 2381 2382
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2383
	struct iommu_dev_data *dev_data;
2384
	struct protection_domain *dom = NULL;
2385 2386
	unsigned long flags;

2387
	dev_data   = get_dev_data(dev);
2388

2389 2390
	if (dev_data->domain)
		return dev_data->domain;
2391

2392 2393
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2394 2395 2396 2397 2398 2399 2400 2401

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2402 2403 2404 2405

	return dom;
}

2406 2407 2408 2409
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2410 2411 2412
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2413
	struct amd_iommu *iommu;
2414
	unsigned long flags;
2415
	u16 devid;
2416

2417 2418
	if (!check_device(dev))
		return 0;
2419

2420 2421 2422
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2423 2424

	switch (action) {
2425
	case BUS_NOTIFY_UNBOUND_DRIVER:
2426 2427 2428

		domain = domain_for_device(dev);

2429 2430
		if (!domain)
			goto out;
2431
		if (dev_data->passthrough)
2432
			break;
2433
		detach_device(dev);
2434 2435
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2436 2437

		iommu_init_device(dev);
2438
		init_iommu_group(dev);
2439

2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
		/*
		 * dev_data is still NULL and
		 * got initialized in iommu_init_device
		 */
		dev_data = get_dev_data(dev);

		if (iommu_pass_through || dev_data->iommu_v2) {
			dev_data->passthrough = true;
			attach_device(dev, pt_domain);
			break;
		}

2452 2453
		domain = domain_for_device(dev);

2454 2455
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
		if (!dma_domain) {
			dma_domain = dma_ops_domain_alloc();
			if (!dma_domain)
				goto out;
			dma_domain->target_dev = devid;

			spin_lock_irqsave(&iommu_pd_list_lock, flags);
			list_add_tail(&dma_domain->list, &iommu_pd_list);
			spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
		}
2466

2467
		dev->archdata.dma_ops = &amd_iommu_dma_ops;
2468

2469
		break;
2470 2471 2472 2473
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2484
static struct notifier_block device_nb = {
2485 2486
	.notifier_call = device_change_notifier,
};
2487

2488 2489 2490 2491 2492
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2506
static struct protection_domain *get_domain(struct device *dev)
2507
{
2508
	struct protection_domain *domain;
2509
	struct dma_ops_domain *dma_dom;
2510
	u16 devid = get_device_id(dev);
2511

2512
	if (!check_device(dev))
2513
		return ERR_PTR(-EINVAL);
2514

2515 2516 2517
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2518

2519 2520
	if (domain != NULL)
		return domain;
2521

F
Frank Arnold 已提交
2522
	/* Device not bound yet - bind it */
2523
	dma_dom = find_protection_domain(devid);
2524
	if (!dma_dom)
2525 2526
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2527
	DUMP_printk("Using protection domain %d for device %s\n",
2528
		    dma_dom->domain.id, dev_name(dev));
2529

2530
	return &dma_dom->domain;
2531 2532
}

2533 2534
static void update_device_table(struct protection_domain *domain)
{
2535
	struct iommu_dev_data *dev_data;
2536

2537 2538
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2539 2540 2541 2542 2543 2544 2545 2546
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2547 2548 2549

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2550 2551 2552 2553

	domain->updated = false;
}

2554 2555 2556 2557 2558 2559
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2560
	struct aperture_range *aperture;
2561 2562
	u64 *pte, *pte_page;

2563 2564 2565 2566 2567
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2568
	if (!pte) {
2569
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2570
				GFP_ATOMIC);
2571 2572
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2573
		pte += PM_LEVEL_INDEX(0, address);
2574

2575
	update_domain(&dom->domain);
2576 2577 2578 2579

	return pte;
}

2580 2581 2582 2583
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2584
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2595
	pte  = dma_ops_get_pte(dom, address);
2596
	if (!pte)
2597
		return DMA_ERROR_CODE;
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2615 2616 2617
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2618
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2619 2620
				 unsigned long address)
{
2621
	struct aperture_range *aperture;
2622 2623 2624 2625 2626
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2627 2628 2629 2630 2631 2632 2633
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2634

2635
	pte += PM_LEVEL_INDEX(0, address);
2636 2637 2638 2639 2640 2641

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2642 2643
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2644 2645
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2646 2647
 * Must be called with the domain lock held.
 */
2648 2649 2650 2651
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2652
			       int dir,
2653 2654
			       bool align,
			       u64 dma_mask)
2655 2656
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2657
	dma_addr_t address, start, ret;
2658
	unsigned int pages;
2659
	unsigned long align_mask = 0;
2660 2661
	int i;

2662
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2663 2664
	paddr &= PAGE_MASK;

2665 2666
	INC_STATS_COUNTER(total_map_requests);

2667 2668 2669
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2670 2671 2672
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2673
retry:
2674 2675
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2676
	if (unlikely(address == DMA_ERROR_CODE)) {
2677 2678 2679 2680 2681 2682 2683
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2684
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2685 2686 2687
			goto out;

		/*
2688
		 * aperture was successfully enlarged by 128 MB, try
2689 2690 2691 2692
		 * allocation again
		 */
		goto retry;
	}
2693 2694 2695

	start = address;
	for (i = 0; i < pages; ++i) {
2696
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2697
		if (ret == DMA_ERROR_CODE)
2698 2699
			goto out_unmap;

2700 2701 2702 2703 2704
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2705 2706
	ADD_STATS_COUNTER(alloced_io_mem, size);

2707
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2708
		domain_flush_tlb(&dma_dom->domain);
2709
		dma_dom->need_flush = false;
2710
	} else if (unlikely(amd_iommu_np_cache))
2711
		domain_flush_pages(&dma_dom->domain, address, size);
2712

2713 2714
out:
	return address;
2715 2716 2717 2718 2719

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2720
		dma_ops_domain_unmap(dma_dom, start);
2721 2722 2723 2724
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2725
	return DMA_ERROR_CODE;
2726 2727
}

2728 2729 2730 2731
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2732
static void __unmap_single(struct dma_ops_domain *dma_dom,
2733 2734 2735 2736
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2737
	dma_addr_t flush_addr;
2738 2739 2740
	dma_addr_t i, start;
	unsigned int pages;

2741
	if ((dma_addr == DMA_ERROR_CODE) ||
2742
	    (dma_addr + size > dma_dom->aperture_size))
2743 2744
		return;

2745
	flush_addr = dma_addr;
2746
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2747 2748 2749 2750
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2751
		dma_ops_domain_unmap(dma_dom, start);
2752 2753 2754
		start += PAGE_SIZE;
	}

2755 2756
	SUB_STATS_COUNTER(alloced_io_mem, size);

2757
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2758

2759
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2760
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2761 2762
		dma_dom->need_flush = false;
	}
2763 2764
}

2765 2766 2767
/*
 * The exported map_single function for dma_ops.
 */
2768 2769 2770 2771
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2772 2773 2774 2775
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2776
	u64 dma_mask;
2777
	phys_addr_t paddr = page_to_phys(page) + offset;
2778

2779 2780
	INC_STATS_COUNTER(cnt_map_single);

2781 2782
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2783
		return (dma_addr_t)paddr;
2784 2785
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2786

2787 2788
	dma_mask = *dev->dma_mask;

2789
	spin_lock_irqsave(&domain->lock, flags);
2790

2791
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2792
			    dma_mask);
2793
	if (addr == DMA_ERROR_CODE)
2794 2795
		goto out;

2796
	domain_flush_complete(domain);
2797 2798 2799 2800 2801 2802 2803

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2804 2805 2806
/*
 * The exported unmap_single function for dma_ops.
 */
2807 2808
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2809 2810 2811 2812
{
	unsigned long flags;
	struct protection_domain *domain;

2813 2814
	INC_STATS_COUNTER(cnt_unmap_single);

2815 2816
	domain = get_domain(dev);
	if (IS_ERR(domain))
2817 2818
		return;

2819 2820
	spin_lock_irqsave(&domain->lock, flags);

2821
	__unmap_single(domain->priv, dma_addr, size, dir);
2822

2823
	domain_flush_complete(domain);
2824 2825 2826 2827

	spin_unlock_irqrestore(&domain->lock, flags);
}

2828 2829 2830 2831
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2832
static int map_sg(struct device *dev, struct scatterlist *sglist,
2833 2834
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2835 2836 2837 2838 2839 2840 2841
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2842
	u64 dma_mask;
2843

2844 2845
	INC_STATS_COUNTER(cnt_map_sg);

2846
	domain = get_domain(dev);
2847
	if (IS_ERR(domain))
2848
		return 0;
2849

2850
	dma_mask = *dev->dma_mask;
2851 2852 2853 2854 2855 2856

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2857
		s->dma_address = __map_single(dev, domain->priv,
2858 2859
					      paddr, s->length, dir, false,
					      dma_mask);
2860 2861 2862 2863 2864 2865 2866 2867

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2868
	domain_flush_complete(domain);
2869 2870 2871 2872 2873 2874 2875 2876

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2877
			__unmap_single(domain->priv, s->dma_address,
2878 2879 2880 2881 2882 2883 2884 2885 2886
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2887 2888 2889 2890
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2891
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2892 2893
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2894 2895 2896 2897 2898 2899
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2900 2901
	INC_STATS_COUNTER(cnt_unmap_sg);

2902 2903
	domain = get_domain(dev);
	if (IS_ERR(domain))
2904 2905
		return;

2906 2907 2908
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2909
		__unmap_single(domain->priv, s->dma_address,
2910 2911 2912 2913
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2914
	domain_flush_complete(domain);
2915 2916 2917 2918

	spin_unlock_irqrestore(&domain->lock, flags);
}

2919 2920 2921
/*
 * The exported alloc_coherent function for dma_ops.
 */
2922
static void *alloc_coherent(struct device *dev, size_t size,
2923 2924
			    dma_addr_t *dma_addr, gfp_t flag,
			    struct dma_attrs *attrs)
2925 2926 2927 2928 2929
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2930
	u64 dma_mask = dev->coherent_dma_mask;
2931

2932 2933
	INC_STATS_COUNTER(cnt_alloc_coherent);

2934 2935
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2936 2937 2938
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2939 2940
	} else if (IS_ERR(domain))
		return NULL;
2941

2942 2943 2944
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2945 2946 2947

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2948
		return NULL;
2949 2950 2951

	paddr = virt_to_phys(virt_addr);

2952 2953 2954
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2955 2956
	spin_lock_irqsave(&domain->lock, flags);

2957
	*dma_addr = __map_single(dev, domain->priv, paddr,
2958
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2959

2960
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2961
		spin_unlock_irqrestore(&domain->lock, flags);
2962
		goto out_free;
J
Jiri Slaby 已提交
2963
	}
2964

2965
	domain_flush_complete(domain);
2966 2967 2968 2969

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2970 2971 2972 2973 2974 2975

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2976 2977
}

2978 2979 2980
/*
 * The exported free_coherent function for dma_ops.
 */
2981
static void free_coherent(struct device *dev, size_t size,
2982 2983
			  void *virt_addr, dma_addr_t dma_addr,
			  struct dma_attrs *attrs)
2984 2985 2986 2987
{
	unsigned long flags;
	struct protection_domain *domain;

2988 2989
	INC_STATS_COUNTER(cnt_free_coherent);

2990 2991
	domain = get_domain(dev);
	if (IS_ERR(domain))
2992 2993
		goto free_mem;

2994 2995
	spin_lock_irqsave(&domain->lock, flags);

2996
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2997

2998
	domain_flush_complete(domain);
2999 3000 3001 3002 3003 3004 3005

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

3006 3007 3008 3009 3010 3011
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
3012
	return check_device(dev);
3013 3014
}

3015
/*
3016 3017
 * The function for pre-allocating protection domains.
 *
3018 3019 3020 3021
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
S
Steffen Persvold 已提交
3022
static void __init prealloc_protection_domains(void)
3023
{
3024
	struct iommu_dev_data *dev_data;
3025
	struct dma_ops_domain *dma_dom;
3026
	struct pci_dev *dev = NULL;
3027
	u16 devid;
3028

3029
	for_each_pci_dev(dev) {
3030 3031 3032

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
3033
			continue;
3034

3035 3036 3037 3038 3039 3040
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
F
Frank Arnold 已提交
3041
			pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3042 3043 3044
				dev_name(&dev->dev));
		}

3045
		/* Is there already any domain for it? */
3046
		if (domain_for_device(&dev->dev))
3047
			continue;
3048 3049 3050

		devid = get_device_id(&dev->dev);

3051
		dma_dom = dma_ops_domain_alloc();
3052 3053 3054
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
3055 3056
		dma_dom->target_dev = devid;

3057
		attach_device(&dev->dev, &dma_dom->domain);
3058

3059
		list_add_tail(&dma_dom->list, &iommu_pd_list);
3060 3061 3062
	}
}

3063
static struct dma_map_ops amd_iommu_dma_ops = {
3064 3065
	.alloc = alloc_coherent,
	.free = free_coherent,
3066 3067
	.map_page = map_page,
	.unmap_page = unmap_page,
3068 3069
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
3070
	.dma_supported = amd_iommu_dma_supported,
3071 3072
};

3073 3074
static unsigned device_dma_ops_init(void)
{
3075
	struct iommu_dev_data *dev_data;
3076 3077 3078 3079 3080
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
3081 3082 3083

			iommu_ignore_device(&pdev->dev);

3084 3085 3086 3087
			unhandled += 1;
			continue;
		}

3088 3089 3090 3091 3092 3093
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3094 3095 3096 3097 3098
	}

	return unhandled;
}

3099 3100 3101
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
3102 3103 3104

void __init amd_iommu_init_api(void)
{
3105
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3106 3107
}

3108 3109 3110
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
3111
	int ret, unhandled;
3112

3113 3114 3115 3116 3117
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
3118
	for_each_iommu(iommu) {
3119
		iommu->default_dom = dma_ops_domain_alloc();
3120 3121
		if (iommu->default_dom == NULL)
			return -ENOMEM;
3122
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3123 3124 3125 3126 3127
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

3128
	/*
3129
	 * Pre-allocate the protection domains for each device.
3130
	 */
3131
	prealloc_protection_domains();
3132 3133

	iommu_detected = 1;
3134
	swiotlb = 0;
3135

3136
	/* Make the driver finally visible to the drivers */
3137 3138 3139 3140 3141
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
3142

3143 3144
	amd_iommu_stats_init();

3145 3146 3147 3148 3149
	if (amd_iommu_unmap_flush)
		pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
	else
		pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");

3150 3151 3152 3153
	return 0;

free_domains:

3154
	for_each_iommu(iommu) {
3155
		dma_ops_domain_free(iommu->default_dom);
3156 3157 3158 3159
	}

	return ret;
}
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
3173
	struct iommu_dev_data *entry;
3174 3175 3176 3177
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

3178 3179 3180 3181
	while (!list_empty(&domain->dev_list)) {
		entry = list_first_entry(&domain->dev_list,
					 struct iommu_dev_data, list);
		__detach_device(entry);
3182
	}
3183 3184 3185 3186

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

3187 3188 3189 3190 3191
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

3192 3193
	del_domain_from_list(domain);

3194 3195 3196 3197 3198 3199 3200
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
3201 3202 3203 3204 3205
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
3206
		return NULL;
3207 3208

	spin_lock_init(&domain->lock);
3209
	mutex_init(&domain->api_lock);
3210 3211
	domain->id = domain_id_alloc();
	if (!domain->id)
3212
		goto out_err;
3213
	INIT_LIST_HEAD(&domain->dev_list);
3214

3215 3216
	add_domain_to_list(domain);

3217 3218 3219 3220 3221 3222 3223 3224
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3239 3240 3241 3242 3243 3244
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3245
		goto out_free;
3246 3247

	domain->mode    = PAGE_MODE_3_LEVEL;
3248 3249 3250 3251
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3252 3253
	domain->iommu_domain = dom;

3254 3255
	dom->priv = domain;

3256 3257 3258 3259
	dom->geometry.aperture_start = 0;
	dom->geometry.aperture_end   = ~0ULL;
	dom->geometry.force_aperture = true;

3260 3261 3262
	return 0;

out_free:
3263
	protection_domain_free(domain);
3264 3265 3266 3267

	return -ENOMEM;
}

3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3280 3281
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3282

3283 3284 3285
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3286
	protection_domain_free(domain);
3287 3288 3289 3290

	dom->priv = NULL;
}

3291 3292 3293
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3294
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3295 3296 3297
	struct amd_iommu *iommu;
	u16 devid;

3298
	if (!check_device(dev))
3299 3300
		return;

3301
	devid = get_device_id(dev);
3302

3303
	if (dev_data->domain != NULL)
3304
		detach_device(dev);
3305 3306 3307 3308 3309 3310 3311 3312

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3313 3314 3315 3316
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3317
	struct iommu_dev_data *dev_data;
3318
	struct amd_iommu *iommu;
3319
	int ret;
3320

3321
	if (!check_device(dev))
3322 3323
		return -EINVAL;

3324 3325
	dev_data = dev->archdata.iommu;

3326
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3327 3328 3329
	if (!iommu)
		return -EINVAL;

3330
	if (dev_data->domain)
3331
		detach_device(dev);
3332

3333
	ret = attach_device(dev, domain);
3334 3335 3336

	iommu_completion_wait(iommu);

3337
	return ret;
3338 3339
}

3340
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3341
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3342 3343 3344 3345 3346
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3347 3348 3349
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3350 3351 3352 3353 3354
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3355
	mutex_lock(&domain->api_lock);
3356
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3357 3358
	mutex_unlock(&domain->api_lock);

3359
	return ret;
3360 3361
}

3362 3363
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3364 3365
{
	struct protection_domain *domain = dom->priv;
3366
	size_t unmap_size;
3367

3368 3369 3370
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3371
	mutex_lock(&domain->api_lock);
3372
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3373
	mutex_unlock(&domain->api_lock);
3374

3375
	domain_flush_tlb_pde(domain);
3376

3377
	return unmap_size;
3378 3379
}

3380
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3381
					  dma_addr_t iova)
3382 3383
{
	struct protection_domain *domain = dom->priv;
3384
	unsigned long offset_mask;
3385
	phys_addr_t paddr;
3386
	u64 *pte, __pte;
3387

3388 3389 3390
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3391
	pte = fetch_pte(domain, iova);
3392

3393
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3394 3395
		return 0;

3396 3397 3398 3399 3400 3401 3402
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3403 3404 3405 3406

	return paddr;
}

3407
static bool amd_iommu_capable(enum iommu_cap cap)
S
Sheng Yang 已提交
3408
{
3409 3410
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
3411
		return true;
3412
	case IOMMU_CAP_INTR_REMAP:
3413
		return (irq_remapping_enabled == 1);
3414 3415
	case IOMMU_CAP_NOEXEC:
		return false;
3416 3417
	}

3418
	return false;
S
Sheng Yang 已提交
3419 3420
}

3421
static const struct iommu_ops amd_iommu_ops = {
3422
	.capable = amd_iommu_capable,
3423 3424 3425 3426
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3427 3428
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
O
Olav Haugan 已提交
3429
	.map_sg = default_iommu_map_sg,
3430
	.iova_to_phys = amd_iommu_iova_to_phys,
3431
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3432 3433
};

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3446
	struct iommu_dev_data *dev_data;
3447
	struct pci_dev *dev = NULL;
3448
	int ret;
3449

3450 3451 3452
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3453

3454
	for_each_pci_dev(dev) {
3455
		if (!check_device(&dev->dev))
3456 3457
			continue;

3458 3459 3460
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3461
		attach_device(&dev->dev, pt_domain);
3462 3463
	}

J
Joerg Roedel 已提交
3464 3465
	amd_iommu_stats_init();

3466 3467 3468 3469
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3611 3612
	INC_STATS_COUNTER(invalidate_iotlb);

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3633 3634
	INC_STATS_COUNTER(invalidate_iotlb_all);

3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3746 3747 3748 3749 3750 3751 3752 3753

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3754 3755
	INC_STATS_COUNTER(complete_ppr);

3756 3757 3758 3759 3760 3761 3762 3763 3764
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911

#ifdef CONFIG_IRQ_REMAP

/*****************************************************************************
 *
 * Interrupt Remapping Implementation
 *
 *****************************************************************************/

union irte {
	u32 val;
	struct {
		u32 valid	: 1,
		    no_fault	: 1,
		    int_type	: 3,
		    rq_eoi	: 1,
		    dm		: 1,
		    rsvd_1	: 1,
		    destination	: 8,
		    vector	: 8,
		    rsvd_2	: 8;
	} fields;
};

#define DTE_IRQ_PHYS_ADDR_MASK	(((1ULL << 45)-1) << 6)
#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
#define DTE_IRQ_REMAP_ENABLE    1ULL

static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
{
	u64 dte;

	dte	= amd_iommu_dev_table[devid].data[2];
	dte	&= ~DTE_IRQ_PHYS_ADDR_MASK;
	dte	|= virt_to_phys(table->table);
	dte	|= DTE_IRQ_REMAP_INTCTL;
	dte	|= DTE_IRQ_TABLE_LEN;
	dte	|= DTE_IRQ_REMAP_ENABLE;

	amd_iommu_dev_table[devid].data[2] = dte;
}

#define IRTE_ALLOCATED (~1U)

static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
{
	struct irq_remap_table *table = NULL;
	struct amd_iommu *iommu;
	unsigned long flags;
	u16 alias;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		goto out_unlock;

	table = irq_lookup_table[devid];
	if (table)
		goto out;

	alias = amd_iommu_alias_table[devid];
	table = irq_lookup_table[alias];
	if (table) {
		irq_lookup_table[devid] = table;
		set_dte_irq_entry(devid, table);
		iommu_flush_dte(iommu, devid);
		goto out;
	}

	/* Nothing there yet, allocate new irq remapping table */
	table = kzalloc(sizeof(*table), GFP_ATOMIC);
	if (!table)
		goto out;

3912 3913 3914
	/* Initialize table spin-lock */
	spin_lock_init(&table->lock);

3915 3916 3917 3918 3919 3920 3921
	if (ioapic)
		/* Keep the first 32 indexes free for IOAPIC interrupts */
		table->min_index = 32;

	table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
	if (!table->table) {
		kfree(table);
3922
		table = NULL;
3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
		goto out;
	}

	memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));

	if (ioapic) {
		int i;

		for (i = 0; i < 32; ++i)
			table->table[i] = IRTE_ALLOCATED;
	}

	irq_lookup_table[devid] = table;
	set_dte_irq_entry(devid, table);
	iommu_flush_dte(iommu, devid);
	if (devid != alias) {
		irq_lookup_table[alias] = table;
3940
		set_dte_irq_entry(alias, table);
3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
		iommu_flush_dte(iommu, alias);
	}

out:
	iommu_completion_wait(iommu);

out_unlock:
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return table;
}

static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
{
	struct irq_remap_table *table;
	unsigned long flags;
	int index, c;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENODEV;

	spin_lock_irqsave(&table->lock, flags);

	/* Scan table for free entries */
	for (c = 0, index = table->min_index;
	     index < MAX_IRQS_PER_TABLE;
	     ++index) {
		if (table->table[index] == 0)
			c += 1;
		else
			c = 0;

		if (c == count)	{
3975
			struct irq_2_irte *irte_info;
3976 3977 3978 3979 3980 3981

			for (; c != 0; --c)
				table->table[index - c + 1] = IRTE_ALLOCATED;

			index -= count - 1;

3982
			cfg->remapped	      = 1;
3983 3984 3985
			irte_info             = &cfg->irq_2_irte;
			irte_info->devid      = devid;
			irte_info->index      = index;
3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

			goto out;
		}
	}

	index = -ENOSPC;

out:
	spin_unlock_irqrestore(&table->lock, flags);

	return index;
}

static int get_irte(u16 devid, int index, union irte *irte)
{
	struct irq_remap_table *table;
	unsigned long flags;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	irte->val = table->table[index];
	spin_unlock_irqrestore(&table->lock, flags);

	return 0;
}

static int modify_irte(u16 devid, int index, union irte irte)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return -EINVAL;

	table = get_irq_table(devid, false);
	if (!table)
		return -ENOMEM;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = irte.val;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);

	return 0;
}

static void free_irte(u16 devid, int index)
{
	struct irq_remap_table *table;
	struct amd_iommu *iommu;
	unsigned long flags;

	iommu = amd_iommu_rlookup_table[devid];
	if (iommu == NULL)
		return;

	table = get_irq_table(devid, false);
	if (!table)
		return;

	spin_lock_irqsave(&table->lock, flags);
	table->table[index] = 0;
	spin_unlock_irqrestore(&table->lock, flags);

	iommu_flush_irt(iommu, devid);
	iommu_completion_wait(iommu);
}

4061 4062 4063 4064 4065
static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
			      unsigned int destination, int vector,
			      struct io_apic_irq_attr *attr)
{
	struct irq_remap_table *table;
4066
	struct irq_2_irte *irte_info;
4067 4068 4069 4070 4071 4072 4073
	struct irq_cfg *cfg;
	union irte irte;
	int ioapic_id;
	int index;
	int devid;
	int ret;

4074
	cfg = irq_cfg(irq);
4075 4076 4077
	if (!cfg)
		return -EINVAL;

4078
	irte_info = &cfg->irq_2_irte;
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
	ioapic_id = mpc_ioapic_id(attr->ioapic);
	devid     = get_ioapic_devid(ioapic_id);

	if (devid < 0)
		return devid;

	table = get_irq_table(devid, true);
	if (table == NULL)
		return -ENOMEM;

	index = attr->ioapic_pin;

	/* Setup IRQ remapping info */
4092
	cfg->remapped	      = 1;
4093 4094
	irte_info->devid      = devid;
	irte_info->index      = index;
4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127

	/* Setup IRTE for IOMMU */
	irte.val		= 0;
	irte.fields.vector      = vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination = destination;
	irte.fields.dm          = apic->irq_dest_mode;
	irte.fields.valid       = 1;

	ret = modify_irte(devid, index, irte);
	if (ret)
		return ret;

	/* Setup IOAPIC entry */
	memset(entry, 0, sizeof(*entry));

	entry->vector        = index;
	entry->mask          = 0;
	entry->trigger       = attr->trigger;
	entry->polarity      = attr->polarity;

	/*
	 * Mask level triggered irqs.
	 */
	if (attr->trigger)
		entry->mask = 1;

	return 0;
}

static int set_affinity(struct irq_data *data, const struct cpumask *mask,
			bool force)
{
4128
	struct irq_2_irte *irte_info;
4129 4130 4131 4132 4133 4134 4135 4136
	unsigned int dest, irq;
	struct irq_cfg *cfg;
	union irte irte;
	int err;

	if (!config_enabled(CONFIG_SMP))
		return -1;

4137
	cfg       = irqd_cfg(data);
4138
	irq       = data->irq;
4139
	irte_info = &cfg->irq_2_irte;
4140 4141 4142 4143

	if (!cpumask_intersects(mask, cpu_online_mask))
		return -EINVAL;

4144
	if (get_irte(irte_info->devid, irte_info->index, &irte))
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
		return -EBUSY;

	if (assign_irq_vector(irq, cfg, mask))
		return -EBUSY;

	err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
	if (err) {
		if (assign_irq_vector(irq, cfg, data->affinity))
			pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
		return err;
	}

	irte.fields.vector      = cfg->vector;
	irte.fields.destination = dest;

4160
	modify_irte(irte_info->devid, irte_info->index, irte);
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171

	if (cfg->move_in_progress)
		send_cleanup_vector(cfg);

	cpumask_copy(data->affinity, mask);

	return 0;
}

static int free_irq(int irq)
{
4172
	struct irq_2_irte *irte_info;
4173 4174
	struct irq_cfg *cfg;

4175
	cfg = irq_cfg(irq);
4176 4177 4178
	if (!cfg)
		return -EINVAL;

4179
	irte_info = &cfg->irq_2_irte;
4180

4181
	free_irte(irte_info->devid, irte_info->index);
4182 4183 4184 4185

	return 0;
}

4186 4187 4188 4189
static void compose_msi_msg(struct pci_dev *pdev,
			    unsigned int irq, unsigned int dest,
			    struct msi_msg *msg, u8 hpet_id)
{
4190
	struct irq_2_irte *irte_info;
4191 4192 4193
	struct irq_cfg *cfg;
	union irte irte;

4194
	cfg = irq_cfg(irq);
4195 4196 4197
	if (!cfg)
		return;

4198
	irte_info = &cfg->irq_2_irte;
4199 4200 4201 4202 4203 4204 4205 4206

	irte.val		= 0;
	irte.fields.vector	= cfg->vector;
	irte.fields.int_type    = apic->irq_delivery_mode;
	irte.fields.destination	= dest;
	irte.fields.dm		= apic->irq_dest_mode;
	irte.fields.valid	= 1;

4207
	modify_irte(irte_info->devid, irte_info->index, irte);
4208 4209 4210

	msg->address_hi = MSI_ADDR_BASE_HI;
	msg->address_lo = MSI_ADDR_BASE_LO;
4211
	msg->data       = irte_info->index;
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
}

static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
{
	struct irq_cfg *cfg;
	int index;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4223
	cfg = irq_cfg(irq);
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
	if (!cfg)
		return -EINVAL;

	devid = get_device_id(&pdev->dev);
	index = alloc_irq_index(cfg, devid, nvec);

	return index < 0 ? MAX_IRQS_PER_TABLE : index;
}

static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
			 int index, int offset)
{
4236
	struct irq_2_irte *irte_info;
4237 4238 4239 4240 4241 4242
	struct irq_cfg *cfg;
	u16 devid;

	if (!pdev)
		return -EINVAL;

4243
	cfg = irq_cfg(irq);
4244 4245 4246 4247 4248 4249 4250
	if (!cfg)
		return -EINVAL;

	if (index >= MAX_IRQS_PER_TABLE)
		return 0;

	devid		= get_device_id(&pdev->dev);
4251
	irte_info	= &cfg->irq_2_irte;
4252

4253
	cfg->remapped	      = 1;
4254 4255
	irte_info->devid      = devid;
	irte_info->index      = index + offset;
4256 4257 4258 4259

	return 0;
}

4260
static int alloc_hpet_msi(unsigned int irq, unsigned int id)
4261
{
4262
	struct irq_2_irte *irte_info;
4263 4264 4265
	struct irq_cfg *cfg;
	int index, devid;

4266
	cfg = irq_cfg(irq);
4267 4268 4269
	if (!cfg)
		return -EINVAL;

4270
	irte_info = &cfg->irq_2_irte;
4271 4272 4273 4274 4275 4276 4277 4278
	devid     = get_hpet_devid(id);
	if (devid < 0)
		return devid;

	index = alloc_irq_index(cfg, devid, 1);
	if (index < 0)
		return index;

4279
	cfg->remapped	      = 1;
4280 4281
	irte_info->devid      = devid;
	irte_info->index      = index;
4282 4283 4284 4285

	return 0;
}

4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
struct irq_remap_ops amd_iommu_irq_ops = {
	.prepare		= amd_iommu_prepare,
	.enable			= amd_iommu_enable,
	.disable		= amd_iommu_disable,
	.reenable		= amd_iommu_reenable,
	.enable_faulting	= amd_iommu_enable_faulting,
	.setup_ioapic_entry	= setup_ioapic_entry,
	.set_affinity		= set_affinity,
	.free_irq		= free_irq,
	.compose_msi_msg	= compose_msi_msg,
	.msi_alloc_irq		= msi_alloc_irq,
	.msi_setup_irq		= msi_setup_irq,
4298
	.alloc_hpet_msi		= alloc_hpet_msi,
4299
};
4300
#endif