timekeeping.c 28.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26 27
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
	struct clocksource *clock;
28 29
	/* The shift value of the current clocksource. */
	int	shift;
30 31 32 33 34

	/* Number of clock cycles in one NTP interval. */
	cycle_t cycle_interval;
	/* Number of clock shifted nano seconds in one NTP interval. */
	u64	xtime_interval;
35 36
	/* shifted nano seconds left over when rounding cycle_interval */
	s64	xtime_remainder;
37 38 39 40 41 42 43 44
	/* Raw nano seconds accumulated per NTP interval. */
	u32	raw_interval;

	/* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
	u64	xtime_nsec;
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
	s64	ntp_error;
45 46 47
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
	int	ntp_error_shift;
48 49
	/* NTP adjusted clock multiplier */
	u32	mult;
50 51
};

52
static struct timekeeper timekeeper;
53 54 55 56 57 58 59 60 61 62 63 64 65 66

/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
static void timekeeper_setup_internals(struct clocksource *clock)
{
	cycle_t interval;
67
	u64 tmp, ntpinterval;
68 69 70 71 72 73 74

	timekeeper.clock = clock;
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
75
	ntpinterval = tmp;
76 77
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
78 79 80 81 82 83 84 85
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
	timekeeper.cycle_interval = interval;

	/* Go back from cycles -> shifted ns */
	timekeeper.xtime_interval = (u64) interval * clock->mult;
86
	timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
87
	timekeeper.raw_interval =
88
		((u64) interval * clock->mult) >> clock->shift;
89 90

	timekeeper.xtime_nsec = 0;
91
	timekeeper.shift = clock->shift;
92 93

	timekeeper.ntp_error = 0;
94
	timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
95 96 97 98 99 100 101

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
	timekeeper.mult = clock->mult;
102
}
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/* Timekeeper helper functions. */
static inline s64 timekeeping_get_ns(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
}

static inline s64 timekeeping_get_ns_raw(void)
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;

	/* read clocksource: */
	clock = timekeeper.clock;
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

	/* return delta convert to nanoseconds using ntp adjusted mult. */
	return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
}

138 139
/*
 * This read-write spinlock protects us from races in SMP while
140
 * playing with xtime.
141
 */
A
Adrian Bunk 已提交
142
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
143 144 145 146 147 148 149 150 151


/*
 * The current time
 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
 * at zero at system boot time, so wall_to_monotonic will be negative,
 * however, we will ALWAYS keep the tv_nsec part positive so we can use
 * the usual normalization.
T
Tomas Janousek 已提交
152 153 154 155 156 157 158
 *
 * wall_to_monotonic is moved after resume from suspend for the monotonic
 * time not to jump. We need to add total_sleep_time to wall_to_monotonic
 * to get the real boot based time offset.
 *
 * - wall_to_monotonic is no longer the boot time, getboottime must be
 * used instead.
159
 */
160 161
static struct timespec xtime __attribute__ ((aligned (16)));
static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
162
static struct timespec total_sleep_time;
163

164 165 166
/*
 * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
 */
167
static struct timespec raw_time;
168

169 170 171
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

172 173 174 175 176
/* must hold xtime_lock */
void timekeeping_leap_insert(int leapsecond)
{
	xtime.tv_sec += leapsecond;
	wall_to_monotonic.tv_sec -= leapsecond;
177 178
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
			timekeeper.mult);
179
}
180 181

/**
182
 * timekeeping_forward_now - update clock to the current time
183
 *
184 185 186
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
187
 */
188
static void timekeeping_forward_now(void)
189 190
{
	cycle_t cycle_now, cycle_delta;
191
	struct clocksource *clock;
192
	s64 nsec;
193

194
	clock = timekeeper.clock;
195
	cycle_now = clock->read(clock);
196
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
197
	clock->cycle_last = cycle_now;
198

199 200
	nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
				  timekeeper.shift);
201 202 203 204

	/* If arch requires, add in gettimeoffset() */
	nsec += arch_gettimeoffset();

205
	timespec_add_ns(&xtime, nsec);
206

207
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
208
	timespec_add_ns(&raw_time, nsec);
209 210 211
}

/**
212
 * getnstimeofday - Returns the time of day in a timespec
213 214
 * @ts:		pointer to the timespec to be set
 *
215
 * Returns the time of day in a timespec.
216
 */
217
void getnstimeofday(struct timespec *ts)
218 219 220 221
{
	unsigned long seq;
	s64 nsecs;

222 223
	WARN_ON(timekeeping_suspended);

224 225 226 227
	do {
		seq = read_seqbegin(&xtime_lock);

		*ts = xtime;
228
		nsecs = timekeeping_get_ns();
229

230 231 232
		/* If arch requires, add in gettimeoffset() */
		nsecs += arch_gettimeoffset();

233 234 235 236 237 238 239
	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}

EXPORT_SYMBOL(getnstimeofday);

240 241 242 243 244 245 246 247 248 249 250
ktime_t ktime_get(void)
{
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
		nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
251
		nsecs += timekeeping_get_ns();
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

	} while (read_seqretry(&xtime_lock, seq));
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
282
		nsecs = timekeeping_get_ns();
283 284 285 286 287 288 289 290

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
		u32 arch_offset;

		seq = read_seqbegin(&xtime_lock);

		*ts_raw = raw_time;
		*ts_real = xtime;

		nsecs_raw = timekeeping_get_ns_raw();
		nsecs_real = timekeeping_get_ns();

		/* If arch requires, add in gettimeoffset() */
		arch_offset = arch_gettimeoffset();
		nsecs_raw += arch_offset;
		nsecs_real += arch_offset;

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

334 335 336 337
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
338
 * NOTE: Users should be converted to using getnstimeofday()
339 340 341 342 343
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

344
	getnstimeofday(&now);
345 346 347 348 349 350 351 352 353 354 355
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}

EXPORT_SYMBOL(do_gettimeofday);
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
356
int do_settimeofday(const struct timespec *tv)
357
{
358
	struct timespec ts_delta;
359 360 361 362 363 364 365
	unsigned long flags;

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

366
	timekeeping_forward_now();
367 368 369 370

	ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
	wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
371

372
	xtime = *tv;
373

374
	timekeeper.ntp_error = 0;
375 376
	ntp_clear();

377 378
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
379 380 381 382 383 384 385 386 387 388 389

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425

/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
	unsigned long flags;

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);

	timekeeping_forward_now();

	xtime = timespec_add(xtime, *ts);
	wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);

	timekeeper.ntp_error = 0;
	ntp_clear();

	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(timekeeping_inject_offset);

426 427 428 429 430
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
431
static int change_clocksource(void *data)
432
{
433
	struct clocksource *new, *old;
434

435
	new = (struct clocksource *) data;
436

437
	timekeeping_forward_now();
438 439 440 441 442 443 444 445
	if (!new->enable || new->enable(new) == 0) {
		old = timekeeper.clock;
		timekeeper_setup_internals(new);
		if (old->disable)
			old->disable(old);
	}
	return 0;
}
446

447 448 449 450 451 452 453 454 455 456
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
	if (timekeeper.clock == clock)
457
		return;
458
	stop_machine(change_clocksource, clock, NULL);
459 460
	tick_clock_notify();
}
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
476

477 478 479 480 481 482 483 484 485 486 487 488 489
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
	unsigned long seq;
	s64 nsecs;

	do {
		seq = read_seqbegin(&xtime_lock);
490
		nsecs = timekeeping_get_ns_raw();
491
		*ts = raw_time;
492 493 494 495 496 497 498 499

	} while (read_seqretry(&xtime_lock, seq));

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);


500
/**
501
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
502
 */
503
int timekeeping_valid_for_hres(void)
504 505 506 507 508 509 510
{
	unsigned long seq;
	int ret;

	do {
		seq = read_seqbegin(&xtime_lock);

511
		ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
512 513 514 515 516 517

	} while (read_seqretry(&xtime_lock, seq));

	return ret;
}

518 519 520 521 522 523 524 525 526 527 528
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 *
 * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
 * ensure that the clocksource does not change!
 */
u64 timekeeping_max_deferment(void)
{
	return timekeeper.clock->max_idle_ns;
}

529
/**
530
 * read_persistent_clock -  Return time from the persistent clock.
531 532
 *
 * Weak dummy function for arches that do not yet support it.
533 534
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
535 536 537
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
538
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
539
{
540 541
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
542 543
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

559 560 561 562 563
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
564
	struct clocksource *clock;
565
	unsigned long flags;
566
	struct timespec now, boot;
567 568

	read_persistent_clock(&now);
569
	read_boot_clock(&boot);
570 571 572

	write_seqlock_irqsave(&xtime_lock, flags);

R
Roman Zippel 已提交
573
	ntp_init();
574

575
	clock = clocksource_default_clock();
576 577
	if (clock->enable)
		clock->enable(clock);
578
	timekeeper_setup_internals(clock);
579

580 581
	xtime.tv_sec = now.tv_sec;
	xtime.tv_nsec = now.tv_nsec;
582 583
	raw_time.tv_sec = 0;
	raw_time.tv_nsec = 0;
584 585 586 587
	if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
		boot.tv_sec = xtime.tv_sec;
		boot.tv_nsec = xtime.tv_nsec;
	}
588
	set_normalized_timespec(&wall_to_monotonic,
589
				-boot.tv_sec, -boot.tv_nsec);
590 591
	total_sleep_time.tv_sec = 0;
	total_sleep_time.tv_nsec = 0;
592 593 594 595
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* time in seconds when suspend began */
596
static struct timespec timekeeping_suspend_time;
597

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
static void __timekeeping_inject_sleeptime(struct timespec *delta)
{
	xtime = timespec_add(xtime, *delta);
	wall_to_monotonic = timespec_sub(wall_to_monotonic, *delta);
	total_sleep_time = timespec_add(total_sleep_time, *delta);
}


/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
	unsigned long flags;
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

	write_seqlock_irqsave(&xtime_lock, flags);
	timekeeping_forward_now();

	__timekeeping_inject_sleeptime(delta);

	timekeeper.ntp_error = 0;
	ntp_clear();
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);

	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* signal hrtimers about time change */
	clock_was_set();
}


650 651 652 653 654 655 656
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
657
static void timekeeping_resume(void)
658 659
{
	unsigned long flags;
660 661 662
	struct timespec ts;

	read_persistent_clock(&ts);
663

664 665
	clocksource_resume();

666 667
	write_seqlock_irqsave(&xtime_lock, flags);

668 669
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
670
		__timekeeping_inject_sleeptime(&ts);
671 672
	}
	/* re-base the last cycle value */
673 674
	timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
	timekeeper.ntp_error = 0;
675 676 677 678 679 680 681 682
	timekeeping_suspended = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
683
	hrtimers_resume();
684 685
}

686
static int timekeeping_suspend(void)
687 688 689
{
	unsigned long flags;

690
	read_persistent_clock(&timekeeping_suspend_time);
691

692
	write_seqlock_irqsave(&xtime_lock, flags);
693
	timekeeping_forward_now();
694 695 696 697
	timekeeping_suspended = 1;
	write_sequnlock_irqrestore(&xtime_lock, flags);

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
698
	clocksource_suspend();
699 700 701 702 703

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
704
static struct syscore_ops timekeeping_syscore_ops = {
705 706 707 708
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

709
static int __init timekeeping_init_ops(void)
710
{
711 712
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
713 714
}

715
device_initcall(timekeeping_init_ops);
716 717 718 719 720

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
721
static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
722 723 724 725 726 727 728 729 730 731 732 733
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
734
	 * here.  This is tuned so that an error of about 1 msec is adjusted
735 736
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
737
	error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
738 739 740 741 742 743 744 745
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
746
	tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
747
	tick_error -= timekeeper.xtime_interval >> 1;
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
772
static void timekeeping_adjust(s64 offset)
773
{
774
	s64 error, interval = timekeeper.cycle_interval;
775 776
	int adj;

777
	error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
778 779 780 781 782
	if (error > interval) {
		error >>= 2;
		if (likely(error <= interval))
			adj = 1;
		else
783
			adj = timekeeping_bigadjust(error, &interval, &offset);
784 785 786 787 788 789 790
	} else if (error < -interval) {
		error >>= 2;
		if (likely(error >= -interval)) {
			adj = -1;
			interval = -interval;
			offset = -offset;
		} else
791
			adj = timekeeping_bigadjust(error, &interval, &offset);
792 793 794
	} else
		return;

795
	timekeeper.mult += adj;
796 797 798
	timekeeper.xtime_interval += interval;
	timekeeper.xtime_nsec -= offset;
	timekeeper.ntp_error -= (interval - offset) <<
799
				timekeeper.ntp_error_shift;
800 801
}

L
Linus Torvalds 已提交
802

803 804 805 806 807 808 809 810 811 812 813 814
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
{
	u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
815
	u64 raw_nsecs;
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < timekeeper.cycle_interval<<shift)
		return offset;

	/* Accumulate one shifted interval */
	offset -= timekeeper.cycle_interval << shift;
	timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;

	timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
	while (timekeeper.xtime_nsec >= nsecps) {
		timekeeper.xtime_nsec -= nsecps;
		xtime.tv_sec++;
		second_overflow();
	}

832 833 834
	/* Accumulate raw time */
	raw_nsecs = timekeeper.raw_interval << shift;
	raw_nsecs += raw_time.tv_nsec;
835 836 837 838
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
		raw_time.tv_sec += raw_secs;
839
	}
840
	raw_time.tv_nsec = raw_nsecs;
841 842 843

	/* Accumulate error between NTP and clock interval */
	timekeeper.ntp_error += tick_length << shift;
844 845
	timekeeper.ntp_error -=
	    (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
846 847 848 849 850
				(timekeeper.ntp_error_shift + shift);

	return offset;
}

L
Linus Torvalds 已提交
851

852 853 854 855 856
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 * Called from the timer interrupt, must hold a write on xtime_lock.
 */
857
static void update_wall_time(void)
858
{
859
	struct clocksource *clock;
860
	cycle_t offset;
861
	int shift = 0, maxshift;
862 863 864 865 866

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
		return;

867
	clock = timekeeper.clock;
J
John Stultz 已提交
868 869

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
870
	offset = timekeeper.cycle_interval;
J
John Stultz 已提交
871 872
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
873
#endif
874
	timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
875

876 877 878 879 880 881 882
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
	 * that is smaller then the offset. We then accumulate that
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
883
	 */
884 885 886 887 888
	shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
	shift = max(0, shift);
	/* Bound shift to one less then what overflows tick_length */
	maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
	shift = min(shift, maxshift);
889
	while (offset >= timekeeper.cycle_interval) {
890
		offset = logarithmic_accumulation(offset, shift);
891 892
		if(offset < timekeeper.cycle_interval<<shift)
			shift--;
893 894 895
	}

	/* correct the clock when NTP error is too big */
896
	timekeeping_adjust(offset);
897

898 899 900 901
	/*
	 * Since in the loop above, we accumulate any amount of time
	 * in xtime_nsec over a second into xtime.tv_sec, its possible for
	 * xtime_nsec to be fairly small after the loop. Further, if we're
902
	 * slightly speeding the clocksource up in timekeeping_adjust(),
903 904 905 906 907 908 909 910 911 912 913
	 * its possible the required corrective factor to xtime_nsec could
	 * cause it to underflow.
	 *
	 * Now, we cannot simply roll the accumulated second back, since
	 * the NTP subsystem has been notified via second_overflow. So
	 * instead we push xtime_nsec forward by the amount we underflowed,
	 * and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
914 915 916
	if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
		s64 neg = -(s64)timekeeper.xtime_nsec;
		timekeeper.xtime_nsec = 0;
917
		timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
918 919
	}

J
John Stultz 已提交
920 921 922

	/*
	 * Store full nanoseconds into xtime after rounding it up and
923 924
	 * add the remainder to the error difference.
	 */
925 926 927 928
	xtime.tv_nsec =	((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
	timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
	timekeeper.ntp_error +=	timekeeper.xtime_nsec <<
				timekeeper.ntp_error_shift;
929

J
John Stultz 已提交
930 931 932 933 934 935 936 937 938
	/*
	 * Finally, make sure that after the rounding
	 * xtime.tv_nsec isn't larger then NSEC_PER_SEC
	 */
	if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
		xtime.tv_nsec -= NSEC_PER_SEC;
		xtime.tv_sec++;
		second_overflow();
	}
L
Linus Torvalds 已提交
939

940
	/* check to see if there is a new clocksource to use */
941 942
	update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
				timekeeper.mult);
943
}
T
Tomas Janousek 已提交
944 945 946 947 948

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
949
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
950 951 952 953 954 955 956 957
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
958 959 960 961
	struct timespec boottime = {
		.tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
		.tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
	};
962 963

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
964
}
965
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
966

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
	struct timespec tomono, sleep;
	unsigned int seq;
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqbegin(&xtime_lock);
		*ts = xtime;
		tomono = wall_to_monotonic;
		sleep = total_sleep_time;
		nsecs = timekeeping_get_ns();

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1016 1017 1018 1019 1020 1021
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
J
John Stultz 已提交
1022
	*ts = timespec_add(*ts, total_sleep_time);
T
Tomas Janousek 已提交
1023
}
1024
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1025

1026 1027
unsigned long get_seconds(void)
{
J
John Stultz 已提交
1028
	return xtime.tv_sec;
1029 1030 1031
}
EXPORT_SYMBOL(get_seconds);

1032 1033
struct timespec __current_kernel_time(void)
{
J
John Stultz 已提交
1034
	return xtime;
1035
}
1036

1037 1038 1039 1040 1041 1042 1043
struct timespec current_kernel_time(void)
{
	struct timespec now;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1044

J
John Stultz 已提交
1045
		now = xtime;
1046 1047 1048 1049 1050
	} while (read_seqretry(&xtime_lock, seq));

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1051 1052 1053 1054 1055 1056 1057 1058

struct timespec get_monotonic_coarse(void)
{
	struct timespec now, mono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
L
Linus Torvalds 已提交
1059

J
John Stultz 已提交
1060
		now = xtime;
1061 1062 1063 1064 1065 1066 1067
		mono = wall_to_monotonic;
	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1080 1081

/**
1082 1083
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1084 1085
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1086
 * @sleep:	pointer to timespec to be set with time in suspend
1087
 */
1088 1089
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1090 1091 1092 1093 1094 1095 1096
{
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		*xtim = xtime;
		*wtom = wall_to_monotonic;
1097
		*sleep = total_sleep_time;
1098 1099
	} while (read_seqretry(&xtime_lock, seq));
}
T
Torben Hohn 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112

/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}