timekeeping.c 37.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
16
#include <linux/sched.h>
17
#include <linux/syscore_ops.h>
18 19 20 21
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
22
#include <linux/stop_machine.h>
23

24 25 26
/* Structure holding internal timekeeping values. */
struct timekeeper {
	/* Current clocksource used for timekeeping. */
27
	struct clocksource	*clock;
28
	/* NTP adjusted clock multiplier */
29
	u32			mult;
30
	/* The shift value of the current clocksource. */
31
	u32			shift;
32
	/* Number of clock cycles in one NTP interval. */
33
	cycle_t			cycle_interval;
34
	/* Number of clock shifted nano seconds in one NTP interval. */
35
	u64			xtime_interval;
36
	/* shifted nano seconds left over when rounding cycle_interval */
37
	s64			xtime_remainder;
38
	/* Raw nano seconds accumulated per NTP interval. */
39
	u32			raw_interval;
40

41 42 43
	/* Current CLOCK_REALTIME time in seconds */
	u64			xtime_sec;
	/* Clock shifted nano seconds */
44
	u64			xtime_nsec;
45

46 47
	/* Difference between accumulated time and NTP time in ntp
	 * shifted nano seconds. */
48
	s64			ntp_error;
49 50
	/* Shift conversion between clock shifted nano seconds and
	 * ntp shifted nano seconds. */
51
	u32			ntp_error_shift;
52

53 54 55 56 57 58 59 60 61 62 63 64 65 66
	/*
	 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
	 * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
	 * at zero at system boot time, so wall_to_monotonic will be negative,
	 * however, we will ALWAYS keep the tv_nsec part positive so we can use
	 * the usual normalization.
	 *
	 * wall_to_monotonic is moved after resume from suspend for the
	 * monotonic time not to jump. We need to add total_sleep_time to
	 * wall_to_monotonic to get the real boot based time offset.
	 *
	 * - wall_to_monotonic is no longer the boot time, getboottime must be
	 * used instead.
	 */
67
	struct timespec		wall_to_monotonic;
68
	/* Offset clock monotonic -> clock realtime */
69
	ktime_t			offs_real;
70 71
	/* time spent in suspend */
	struct timespec		total_sleep_time;
72
	/* Offset clock monotonic -> clock boottime */
73
	ktime_t			offs_boot;
74 75
	/* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
	struct timespec		raw_time;
J
John Stultz 已提交
76
	/* Seqlock for all timekeeper values */
77
	seqlock_t		lock;
78 79
};

80
static struct timekeeper timekeeper;
81

82 83 84 85 86 87 88 89 90
/*
 * This read-write spinlock protects us from races in SMP while
 * playing with xtime.
 */
__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);

/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static struct timespec tk_xtime(struct timekeeper *tk)
{
	struct timespec ts;

	ts.tv_sec = tk->xtime_sec;
	ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
	return ts;
}
107

108 109 110
static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
111
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
112 113 114 115 116
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
117
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
118
	tk_normalize_xtime(tk);
119
}
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

146 147 148 149 150 151 152 153 154 155
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
156
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
157 158
{
	cycle_t interval;
159
	u64 tmp, ntpinterval;
160
	struct clocksource *old_clock;
161

162 163
	old_clock = tk->clock;
	tk->clock = clock;
164 165 166 167 168
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
169
	ntpinterval = tmp;
170 171
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
172 173 174 175
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
176
	tk->cycle_interval = interval;
177 178

	/* Go back from cycles -> shifted ns */
179 180 181
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
182
		((u64) interval * clock->mult) >> clock->shift;
183

184 185 186 187
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
188
			tk->xtime_nsec >>= -shift_change;
189
		else
190
			tk->xtime_nsec <<= shift_change;
191
	}
192
	tk->shift = clock->shift;
193

194 195
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
196 197 198 199 200 201

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
202
	tk->mult = clock->mult;
203
}
204

205
/* Timekeeper helper functions. */
206
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
207 208 209
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
210
	s64 nsec;
211 212

	/* read clocksource: */
213
	clock = tk->clock;
214 215 216 217 218
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

219 220
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
221 222 223

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
224 225
}

226
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
227 228 229
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
230
	s64 nsec;
231 232

	/* read clocksource: */
233
	clock = tk->clock;
234 235 236 237 238
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

239 240 241 242 243
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

	/* If arch requires, add in gettimeoffset() */
	return nsec + arch_gettimeoffset();
244 245
}

246
/* must hold write on timekeeper.lock */
247
static void timekeeping_update(struct timekeeper *tk, bool clearntp)
248
{
249 250
	struct timespec xt;

251
	if (clearntp) {
252
		tk->ntp_error = 0;
253 254
		ntp_clear();
	}
255 256
	xt = tk_xtime(tk);
	update_vsyscall(&xt, &tk->wall_to_monotonic, tk->clock, tk->mult);
257 258
}

259
/**
260
 * timekeeping_forward_now - update clock to the current time
261
 *
262 263 264
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
265
 */
266
static void timekeeping_forward_now(struct timekeeper *tk)
267 268
{
	cycle_t cycle_now, cycle_delta;
269
	struct clocksource *clock;
270
	s64 nsec;
271

272
	clock = tk->clock;
273
	cycle_now = clock->read(clock);
274
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
275
	clock->cycle_last = cycle_now;
276

277
	tk->xtime_nsec += cycle_delta * tk->mult;
278 279

	/* If arch requires, add in gettimeoffset() */
280
	tk->xtime_nsec += (u64)arch_gettimeoffset() << tk->shift;
281

282
	tk_normalize_xtime(tk);
283

284
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
285
	timespec_add_ns(&tk->raw_time, nsec);
286 287 288
}

/**
289
 * getnstimeofday - Returns the time of day in a timespec
290 291
 * @ts:		pointer to the timespec to be set
 *
292
 * Returns the time of day in a timespec.
293
 */
294
void getnstimeofday(struct timespec *ts)
295
{
296
	struct timekeeper *tk = &timekeeper;
297
	unsigned long seq;
298
	s64 nsecs = 0;
299

300 301
	WARN_ON(timekeeping_suspended);

302
	do {
303
		seq = read_seqbegin(&tk->lock);
304

305 306
		ts->tv_sec = tk->xtime_sec;
		ts->tv_nsec = timekeeping_get_ns(tk);
307

308
	} while (read_seqretry(&tk->lock, seq));
309 310 311 312 313

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getnstimeofday);

314 315
ktime_t ktime_get(void)
{
316
	struct timekeeper *tk = &timekeeper;
317 318 319 320 321 322
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
323 324 325
		seq = read_seqbegin(&tk->lock);
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
326

327
	} while (read_seqretry(&tk->lock, seq));
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
346
	struct timekeeper *tk = &timekeeper;
347 348 349 350 351 352
	struct timespec tomono;
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
353 354 355 356
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
		ts->tv_nsec = timekeeping_get_ns(tk);
		tomono = tk->wall_to_monotonic;
357

358
	} while (read_seqretry(&tk->lock, seq));
359 360

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
361
				ts->tv_nsec + tomono.tv_nsec);
362 363 364
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

365 366 367 368 369 370 371 372 373 374 375 376 377
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
378
	struct timekeeper *tk = &timekeeper;
379 380 381 382 383 384
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
385
		seq = read_seqbegin(&tk->lock);
386

387 388
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
389
		ts_real->tv_nsec = 0;
390

391 392
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
393

394
	} while (read_seqretry(&tk->lock, seq));
395 396 397 398 399 400 401 402

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

403 404 405 406
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
407
 * NOTE: Users should be converted to using getnstimeofday()
408 409 410 411 412
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

413
	getnstimeofday(&now);
414 415 416 417
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
418

419 420 421 422 423 424
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
425
int do_settimeofday(const struct timespec *tv)
426
{
427
	struct timekeeper *tk = &timekeeper;
428
	struct timespec ts_delta, xt;
429
	unsigned long flags;
430

431
	if (!timespec_valid(tv))
432 433
		return -EINVAL;

434
	write_seqlock_irqsave(&tk->lock, flags);
435

436
	timekeeping_forward_now(tk);
437

438
	xt = tk_xtime(tk);
439 440 441
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

442
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
443

444
	tk_set_xtime(tk, tv);
445

446
	timekeeping_update(tk, true);
447

448
	write_sequnlock_irqrestore(&tk->lock, flags);
449 450 451 452 453 454 455 456

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

457 458 459 460 461 462 463 464
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
465
	struct timekeeper *tk = &timekeeper;
466
	unsigned long flags;
467 468
	struct timespec tmp;
	int ret = 0;
469 470 471 472

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

473
	write_seqlock_irqsave(&tk->lock, flags);
474

475
	timekeeping_forward_now(tk);
476

477 478 479 480 481 482
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
	if (!timespec_valid(&tmp)) {
		ret = -EINVAL;
		goto error;
	}
483

484 485
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
486

487
error: /* even if we error out, we forwarded the time, so call update */
488
	timekeeping_update(tk, true);
489

490
	write_sequnlock_irqrestore(&tk->lock, flags);
491 492 493 494

	/* signal hrtimers about time change */
	clock_was_set();

495
	return ret;
496 497 498
}
EXPORT_SYMBOL(timekeeping_inject_offset);

499 500 501 502 503
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
504
static int change_clocksource(void *data)
505
{
506
	struct timekeeper *tk = &timekeeper;
507
	struct clocksource *new, *old;
508
	unsigned long flags;
509

510
	new = (struct clocksource *) data;
511

512
	write_seqlock_irqsave(&tk->lock, flags);
513

514
	timekeeping_forward_now(tk);
515
	if (!new->enable || new->enable(new) == 0) {
516 517
		old = tk->clock;
		tk_setup_internals(tk, new);
518 519 520
		if (old->disable)
			old->disable(old);
	}
521
	timekeeping_update(tk, true);
522

523
	write_sequnlock_irqrestore(&tk->lock, flags);
524

525 526
	return 0;
}
527

528 529 530 531 532 533 534 535 536
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
537 538 539
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
540
		return;
541
	stop_machine(change_clocksource, clock, NULL);
542 543
	tick_clock_notify();
}
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
559

560 561 562 563 564 565 566 567
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
568
	struct timekeeper *tk = &timekeeper;
569 570 571 572
	unsigned long seq;
	s64 nsecs;

	do {
573 574 575
		seq = read_seqbegin(&tk->lock);
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
576

577
	} while (read_seqretry(&tk->lock, seq));
578 579 580 581 582

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

583
/**
584
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
585
 */
586
int timekeeping_valid_for_hres(void)
587
{
588
	struct timekeeper *tk = &timekeeper;
589 590 591 592
	unsigned long seq;
	int ret;

	do {
593
		seq = read_seqbegin(&tk->lock);
594

595
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
596

597
	} while (read_seqretry(&tk->lock, seq));
598 599 600 601

	return ret;
}

602 603 604 605 606
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
607
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
608 609
	unsigned long seq;
	u64 ret;
610

J
John Stultz 已提交
611
	do {
612
		seq = read_seqbegin(&tk->lock);
J
John Stultz 已提交
613

614
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
615

616
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
617 618

	return ret;
619 620
}

621
/**
622
 * read_persistent_clock -  Return time from the persistent clock.
623 624
 *
 * Weak dummy function for arches that do not yet support it.
625 626
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
627 628 629
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
630
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
631
{
632 633
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
634 635
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

651 652 653 654 655
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
656
	struct timekeeper *tk = &timekeeper;
657
	struct clocksource *clock;
658
	unsigned long flags;
659
	struct timespec now, boot, tmp;
660 661

	read_persistent_clock(&now);
662 663 664 665 666 667 668
	if (!timespec_valid(&now)) {
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
	}

669
	read_boot_clock(&boot);
670 671 672 673 674 675
	if (!timespec_valid(&boot)) {
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
676

677
	seqlock_init(&tk->lock);
678

R
Roman Zippel 已提交
679
	ntp_init();
680

681
	write_seqlock_irqsave(&tk->lock, flags);
682
	clock = clocksource_default_clock();
683 684
	if (clock->enable)
		clock->enable(clock);
685
	tk_setup_internals(tk, clock);
686

687 688 689
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
690
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
691
		boot = tk_xtime(tk);
692

693
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
694
	tk_set_wall_to_mono(tk, tmp);
695 696 697

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
698
	tk_set_sleep_time(tk, tmp);
699

700
	write_sequnlock_irqrestore(&tk->lock, flags);
701 702 703
}

/* time in seconds when suspend began */
704
static struct timespec timekeeping_suspend_time;
705

706 707 708 709 710 711 712
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
713 714
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
715
{
716
	if (!timespec_valid(delta)) {
717
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
718 719 720
					"sleep delta value!\n");
		return;
	}
721
	tk_xtime_add(tk, delta);
722 723
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
724 725 726 727 728 729 730 731 732 733 734 735 736 737
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
738
	struct timekeeper *tk = &timekeeper;
739
	unsigned long flags;
740 741 742 743 744 745 746
	struct timespec ts;

	/* Make sure we don't set the clock twice */
	read_persistent_clock(&ts);
	if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
		return;

747
	write_seqlock_irqsave(&tk->lock, flags);
J
John Stultz 已提交
748

749
	timekeeping_forward_now(tk);
750

751
	__timekeeping_inject_sleeptime(tk, delta);
752

753
	timekeeping_update(tk, true);
754

755
	write_sequnlock_irqrestore(&tk->lock, flags);
756 757 758 759 760

	/* signal hrtimers about time change */
	clock_was_set();
}

761 762 763 764 765 766 767
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
768
static void timekeeping_resume(void)
769
{
770
	struct timekeeper *tk = &timekeeper;
771
	unsigned long flags;
772 773 774
	struct timespec ts;

	read_persistent_clock(&ts);
775

776 777
	clocksource_resume();

778
	write_seqlock_irqsave(&tk->lock, flags);
779

780 781
	if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
		ts = timespec_sub(ts, timekeeping_suspend_time);
782
		__timekeeping_inject_sleeptime(tk, &ts);
783 784
	}
	/* re-base the last cycle value */
785 786
	tk->clock->cycle_last = tk->clock->read(tk->clock);
	tk->ntp_error = 0;
787
	timekeeping_suspended = 0;
788 789
	timekeeping_update(tk, false);
	write_sequnlock_irqrestore(&tk->lock, flags);
790 791 792 793 794 795

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
796
	hrtimers_resume();
797 798
}

799
static int timekeeping_suspend(void)
800
{
801
	struct timekeeper *tk = &timekeeper;
802
	unsigned long flags;
803 804
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
805

806
	read_persistent_clock(&timekeeping_suspend_time);
807

808 809
	write_seqlock_irqsave(&tk->lock, flags);
	timekeeping_forward_now(tk);
810
	timekeeping_suspended = 1;
811 812 813 814 815 816 817

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
818
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
819 820 821 822 823 824 825 826 827 828 829 830
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
831
	write_sequnlock_irqrestore(&tk->lock, flags);
832 833

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
834
	clocksource_suspend();
835 836 837 838 839

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
840
static struct syscore_ops timekeeping_syscore_ops = {
841 842 843 844
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

845
static int __init timekeeping_init_ops(void)
846
{
847 848
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
849 850
}

851
device_initcall(timekeeping_init_ops);
852 853 854 855 856

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
857 858
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
859 860 861 862 863 864 865 866 867 868 869 870
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
871
	 * here.  This is tuned so that an error of about 1 msec is adjusted
872 873
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
874
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
875 876 877 878 879 880 881 882
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
883 884
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
909
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
910
{
911
	s64 error, interval = tk->cycle_interval;
912 913
	int adj;

914
	/*
915
	 * The point of this is to check if the error is greater than half
916 917 918 919 920
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
921 922
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
923
	 * larger than half an interval.
924
	 *
925
	 * Note: It does not "save" on aggravation when reading the code.
926
	 */
927
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
928
	if (error > interval) {
929 930
		/*
		 * We now divide error by 4(via shift), which checks if
931
		 * the error is greater than twice the interval.
932 933 934
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
935
		error >>= 2;
936 937 938 939 940
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
941
		 * The proper fix is to avoid rounding up by using
942
		 * the high precision tk->xtime_nsec instead of
943 944 945
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
946 947 948
		if (likely(error <= interval))
			adj = 1;
		else
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
965

966 967
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
968 969
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
970 971
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
972
	}
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1022 1023 1024 1025
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1026

1027
out_adjust:
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1042 1043 1044 1045
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1046 1047
	}

1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1070 1071 1072 1073
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1074

1075 1076 1077 1078 1079 1080 1081
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

			clock_was_set_delayed();
		}
1082 1083 1084
	}
}

1085 1086 1087 1088 1089 1090 1091 1092 1093
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1094 1095
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
						u32 shift)
1096
{
1097
	u64 raw_nsecs;
1098

1099 1100
	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < tk->cycle_interval<<shift)
1101 1102 1103
		return offset;

	/* Accumulate one shifted interval */
1104 1105
	offset -= tk->cycle_interval << shift;
	tk->clock->cycle_last += tk->cycle_interval << shift;
1106

1107 1108
	tk->xtime_nsec += tk->xtime_interval << shift;
	accumulate_nsecs_to_secs(tk);
1109

1110
	/* Accumulate raw time */
1111 1112
	raw_nsecs = tk->raw_interval << shift;
	raw_nsecs += tk->raw_time.tv_nsec;
1113 1114 1115
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1116
		tk->raw_time.tv_sec += raw_secs;
1117
	}
1118
	tk->raw_time.tv_nsec = raw_nsecs;
1119 1120

	/* Accumulate error between NTP and clock interval */
1121 1122 1123
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1124 1125 1126 1127

	return offset;
}

1128 1129 1130 1131
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1132
static void update_wall_time(void)
1133
{
1134
	struct clocksource *clock;
1135
	struct timekeeper *tk = &timekeeper;
1136
	cycle_t offset;
1137
	int shift = 0, maxshift;
J
John Stultz 已提交
1138
	unsigned long flags;
1139
	s64 remainder;
J
John Stultz 已提交
1140

1141
	write_seqlock_irqsave(&tk->lock, flags);
1142 1143 1144

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1145
		goto out;
1146

1147
	clock = tk->clock;
J
John Stultz 已提交
1148 1149

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1150
	offset = tk->cycle_interval;
J
John Stultz 已提交
1151 1152
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1153 1154
#endif

1155 1156 1157 1158
	/* Check if there's really nothing to do */
	if (offset < tk->cycle_interval)
		goto out;

1159 1160 1161 1162
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1163
	 * that is smaller than the offset.  We then accumulate that
1164 1165
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1166
	 */
1167
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1168
	shift = max(0, shift);
1169
	/* Bound shift to one less than what overflows tick_length */
1170
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1171
	shift = min(shift, maxshift);
1172 1173 1174
	while (offset >= tk->cycle_interval) {
		offset = logarithmic_accumulation(tk, offset, shift);
		if (offset < tk->cycle_interval<<shift)
1175
			shift--;
1176 1177 1178
	}

	/* correct the clock when NTP error is too big */
1179
	timekeeping_adjust(tk, offset);
1180

1181

J
John Stultz 已提交
1182
	/*
1183 1184 1185 1186 1187 1188 1189 1190
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), this can be killed.
	*/
1191
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
1192
	tk->xtime_nsec -= remainder;
1193
	tk->xtime_nsec += 1ULL << tk->shift;
1194
	tk->ntp_error += remainder << tk->ntp_error_shift;
1195

J
John Stultz 已提交
1196 1197
	/*
	 * Finally, make sure that after the rounding
1198
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1199
	 */
1200
	accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1201

1202
	timekeeping_update(tk, false);
J
John Stultz 已提交
1203 1204

out:
1205
	write_sequnlock_irqrestore(&tk->lock, flags);
J
John Stultz 已提交
1206

1207
}
T
Tomas Janousek 已提交
1208 1209 1210 1211 1212

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1213
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1214 1215 1216 1217 1218 1219 1220 1221
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1222
	struct timekeeper *tk = &timekeeper;
1223
	struct timespec boottime = {
1224 1225 1226 1227
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1228
	};
1229 1230

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1231
}
1232
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1245
	struct timekeeper *tk = &timekeeper;
1246 1247 1248 1249 1250 1251
	struct timespec tomono, sleep;
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1252 1253 1254 1255 1256
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
		ts->tv_nsec = timekeeping_get_ns(tk);
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1257

1258
	} while (read_seqretry(&tk->lock, seq));
1259 1260

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1261
			ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec);
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1282 1283 1284 1285 1286 1287
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1288 1289 1290
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1291
}
1292
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1293

1294 1295
unsigned long get_seconds(void)
{
1296 1297 1298
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1299 1300 1301
}
EXPORT_SYMBOL(get_seconds);

1302 1303
struct timespec __current_kernel_time(void)
{
1304 1305 1306
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1307
}
1308

1309 1310
struct timespec current_kernel_time(void)
{
1311
	struct timekeeper *tk = &timekeeper;
1312 1313 1314 1315
	struct timespec now;
	unsigned long seq;

	do {
1316
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1317

1318 1319
		now = tk_xtime(tk);
	} while (read_seqretry(&tk->lock, seq));
1320 1321 1322 1323

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1324 1325 1326

struct timespec get_monotonic_coarse(void)
{
1327
	struct timekeeper *tk = &timekeeper;
1328 1329 1330 1331
	struct timespec now, mono;
	unsigned long seq;

	do {
1332
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1333

1334 1335 1336
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
1337 1338 1339 1340 1341

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

/*
 * The 64-bit jiffies value is not atomic - you MUST NOT read it
 * without sampling the sequence number in xtime_lock.
 * jiffies is defined in the linker script...
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1354 1355

/**
1356 1357
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1358 1359
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1360
 * @sleep:	pointer to timespec to be set with time in suspend
1361
 */
1362 1363
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1364
{
1365
	struct timekeeper *tk = &timekeeper;
1366 1367 1368
	unsigned long seq;

	do {
1369 1370 1371 1372 1373
		seq = read_seqbegin(&tk->lock);
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
	} while (read_seqretry(&tk->lock, seq));
1374
}
T
Torben Hohn 已提交
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
{
1387
	struct timekeeper *tk = &timekeeper;
1388 1389 1390 1391 1392
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1393
		seq = read_seqbegin(&tk->lock);
1394

1395 1396
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1397

1398 1399 1400
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
	} while (read_seqretry(&tk->lock, seq));
1401 1402 1403 1404 1405 1406 1407

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1408 1409 1410 1411 1412
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1413
	struct timekeeper *tk = &timekeeper;
1414 1415 1416 1417
	unsigned long seq;
	struct timespec wtom;

	do {
1418 1419 1420
		seq = read_seqbegin(&tk->lock);
		wtom = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
1421

1422 1423
	return timespec_to_ktime(wtom);
}
1424 1425
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

T
Torben Hohn 已提交
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
	write_seqlock(&xtime_lock);
	do_timer(ticks);
	write_sequnlock(&xtime_lock);
}