timekeeping.c 39.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25

26

27
static struct timekeeper timekeeper;
28

29 30 31
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

32 33 34
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

35 36 37 38 39 40 41 42 43 44 45
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
	while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
		tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
		tk->xtime_sec++;
	}
}

static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec = ts->tv_sec;
46
	tk->xtime_nsec = (u64)ts->tv_nsec << tk->shift;
47 48 49 50 51
}

static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
{
	tk->xtime_sec += ts->tv_sec;
52
	tk->xtime_nsec += (u64)ts->tv_nsec << tk->shift;
53
	tk_normalize_xtime(tk);
54
}
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec wtm)
{
	struct timespec tmp;

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
	set_normalized_timespec(&tmp, -tk->wall_to_monotonic.tv_sec,
					-tk->wall_to_monotonic.tv_nsec);
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec_to_ktime(tmp).tv64);
	tk->wall_to_monotonic = wtm;
	set_normalized_timespec(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec_to_ktime(tmp);
}

static void tk_set_sleep_time(struct timekeeper *tk, struct timespec t)
{
	/* Verify consistency before modifying */
	WARN_ON_ONCE(tk->offs_boot.tv64 != timespec_to_ktime(tk->total_sleep_time).tv64);

	tk->total_sleep_time	= t;
	tk->offs_boot		= timespec_to_ktime(t);
}

81 82 83 84 85 86 87 88 89 90
/**
 * timekeeper_setup_internals - Set up internals to use clocksource clock.
 *
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
91
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
92 93
{
	cycle_t interval;
94
	u64 tmp, ntpinterval;
95
	struct clocksource *old_clock;
96

97 98
	old_clock = tk->clock;
	tk->clock = clock;
99 100 101 102 103
	clock->cycle_last = clock->read(clock);

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
104
	ntpinterval = tmp;
105 106
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
107 108 109 110
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
111
	tk->cycle_interval = interval;
112 113

	/* Go back from cycles -> shifted ns */
114 115 116
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
117
		((u64) interval * clock->mult) >> clock->shift;
118

119 120 121 122
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
123
			tk->xtime_nsec >>= -shift_change;
124
		else
125
			tk->xtime_nsec <<= shift_change;
126
	}
127
	tk->shift = clock->shift;
128

129 130
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
131 132 133 134 135 136

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
137
	tk->mult = clock->mult;
138
}
139

140
/* Timekeeper helper functions. */
141 142 143 144 145 146 147 148 149 150 151 152 153 154

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
u32 (*arch_gettimeoffset)(void);

u32 get_arch_timeoffset(void)
{
	if (likely(arch_gettimeoffset))
		return arch_gettimeoffset();
	return 0;
}
#else
static inline u32 get_arch_timeoffset(void) { return 0; }
#endif

155
static inline s64 timekeeping_get_ns(struct timekeeper *tk)
156 157 158
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
159
	s64 nsec;
160 161

	/* read clocksource: */
162
	clock = tk->clock;
163 164 165 166 167
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

168 169
	nsec = cycle_delta * tk->mult + tk->xtime_nsec;
	nsec >>= tk->shift;
170

171 172
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
173 174
}

175
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
176 177 178
{
	cycle_t cycle_now, cycle_delta;
	struct clocksource *clock;
179
	s64 nsec;
180 181

	/* read clocksource: */
182
	clock = tk->clock;
183 184 185 186 187
	cycle_now = clock->read(clock);

	/* calculate the delta since the last update_wall_time: */
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

188 189 190
	/* convert delta to nanoseconds. */
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);

191 192
	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + get_arch_timeoffset();
193 194
}

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

static void update_pvclock_gtod(struct timekeeper *tk)
{
	raw_notifier_call_chain(&pvclock_gtod_chain, 0, tk);
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 *
 * Must hold write on timekeeper.lock
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;
	int ret;

	write_seqlock_irqsave(&tk->lock, flags);
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
	/* update timekeeping data */
	update_pvclock_gtod(tk);
	write_sequnlock_irqrestore(&tk->lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 *
 * Must hold write on timekeeper.lock
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;
	int ret;

	write_seqlock_irqsave(&tk->lock, flags);
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
	write_sequnlock_irqrestore(&tk->lock, flags);

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

243
/* must hold write on timekeeper.lock */
244
static void timekeeping_update(struct timekeeper *tk, bool clearntp)
245 246
{
	if (clearntp) {
247
		tk->ntp_error = 0;
248 249
		ntp_clear();
	}
250
	update_vsyscall(tk);
251
	update_pvclock_gtod(tk);
252 253
}

254
/**
255
 * timekeeping_forward_now - update clock to the current time
256
 *
257 258 259
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
260
 */
261
static void timekeeping_forward_now(struct timekeeper *tk)
262 263
{
	cycle_t cycle_now, cycle_delta;
264
	struct clocksource *clock;
265
	s64 nsec;
266

267
	clock = tk->clock;
268
	cycle_now = clock->read(clock);
269
	cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
270
	clock->cycle_last = cycle_now;
271

272
	tk->xtime_nsec += cycle_delta * tk->mult;
273

274 275
	/* If arch requires, add in get_arch_timeoffset() */
	tk->xtime_nsec += (u64)get_arch_timeoffset() << tk->shift;
276

277
	tk_normalize_xtime(tk);
278

279
	nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
280
	timespec_add_ns(&tk->raw_time, nsec);
281 282 283
}

/**
284
 * __getnstimeofday - Returns the time of day in a timespec.
285 286
 * @ts:		pointer to the timespec to be set
 *
287 288
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
289
 */
290
int __getnstimeofday(struct timespec *ts)
291
{
292
	struct timekeeper *tk = &timekeeper;
293
	unsigned long seq;
294
	s64 nsecs = 0;
295 296

	do {
297
		seq = read_seqbegin(&tk->lock);
298

299
		ts->tv_sec = tk->xtime_sec;
300
		nsecs = timekeeping_get_ns(tk);
301

302
	} while (read_seqretry(&tk->lock, seq));
303

304
	ts->tv_nsec = 0;
305
	timespec_add_ns(ts, nsecs);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
EXPORT_SYMBOL(__getnstimeofday);

/**
 * getnstimeofday - Returns the time of day in a timespec.
 * @ts:		pointer to the timespec to be set
 *
 * Returns the time of day in a timespec (WARN if suspended).
 */
void getnstimeofday(struct timespec *ts)
{
	WARN_ON(__getnstimeofday(ts));
326 327 328
}
EXPORT_SYMBOL(getnstimeofday);

329 330
ktime_t ktime_get(void)
{
331
	struct timekeeper *tk = &timekeeper;
332 333 334 335 336 337
	unsigned int seq;
	s64 secs, nsecs;

	WARN_ON(timekeeping_suspended);

	do {
338 339 340
		seq = read_seqbegin(&tk->lock);
		secs = tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
		nsecs = timekeeping_get_ns(tk) + tk->wall_to_monotonic.tv_nsec;
341

342
	} while (read_seqretry(&tk->lock, seq));
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	/*
	 * Use ktime_set/ktime_add_ns to create a proper ktime on
	 * 32-bit architectures without CONFIG_KTIME_SCALAR.
	 */
	return ktime_add_ns(ktime_set(secs, 0), nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);

/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
 * in normalized timespec format in the variable pointed to by @ts.
 */
void ktime_get_ts(struct timespec *ts)
{
361
	struct timekeeper *tk = &timekeeper;
362
	struct timespec tomono;
363
	s64 nsec;
364 365 366 367 368
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
369 370
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
371
		nsec = timekeeping_get_ns(tk);
372
		tomono = tk->wall_to_monotonic;
373

374
	} while (read_seqretry(&tk->lock, seq));
375

376 377 378
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec);
379 380 381
}
EXPORT_SYMBOL_GPL(ktime_get_ts);

382 383 384 385 386 387 388 389 390 391 392 393 394
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
395
	struct timekeeper *tk = &timekeeper;
396 397 398 399 400 401
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
402
		seq = read_seqbegin(&tk->lock);
403

404 405
		*ts_raw = tk->raw_time;
		ts_real->tv_sec = tk->xtime_sec;
406
		ts_real->tv_nsec = 0;
407

408 409
		nsecs_raw = timekeeping_get_ns_raw(tk);
		nsecs_real = timekeeping_get_ns(tk);
410

411
	} while (read_seqretry(&tk->lock, seq));
412 413 414 415 416 417 418 419

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

420 421 422 423
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
424
 * NOTE: Users should be converted to using getnstimeofday()
425 426 427 428 429
 */
void do_gettimeofday(struct timeval *tv)
{
	struct timespec now;

430
	getnstimeofday(&now);
431 432 433 434
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
435

436 437 438 439 440 441
/**
 * do_settimeofday - Sets the time of day
 * @tv:		pointer to the timespec variable containing the new time
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
442
int do_settimeofday(const struct timespec *tv)
443
{
444
	struct timekeeper *tk = &timekeeper;
445
	struct timespec ts_delta, xt;
446
	unsigned long flags;
447

448
	if (!timespec_valid_strict(tv))
449 450
		return -EINVAL;

451
	write_seqlock_irqsave(&tk->lock, flags);
452

453
	timekeeping_forward_now(tk);
454

455
	xt = tk_xtime(tk);
456 457 458
	ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;

459
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, ts_delta));
460

461
	tk_set_xtime(tk, tv);
462

463
	timekeeping_update(tk, true);
464

465
	write_sequnlock_irqrestore(&tk->lock, flags);
466 467 468 469 470 471 472 473

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
EXPORT_SYMBOL(do_settimeofday);

474 475 476 477 478 479 480 481
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
482
	struct timekeeper *tk = &timekeeper;
483
	unsigned long flags;
484 485
	struct timespec tmp;
	int ret = 0;
486 487 488 489

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

490
	write_seqlock_irqsave(&tk->lock, flags);
491

492
	timekeeping_forward_now(tk);
493

494 495
	/* Make sure the proposed value is valid */
	tmp = timespec_add(tk_xtime(tk),  *ts);
496
	if (!timespec_valid_strict(&tmp)) {
497 498 499
		ret = -EINVAL;
		goto error;
	}
500

501 502
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *ts));
503

504
error: /* even if we error out, we forwarded the time, so call update */
505
	timekeeping_update(tk, true);
506

507
	write_sequnlock_irqrestore(&tk->lock, flags);
508 509 510 511

	/* signal hrtimers about time change */
	clock_was_set();

512
	return ret;
513 514 515
}
EXPORT_SYMBOL(timekeeping_inject_offset);

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
	struct timekeeper *tk = &timekeeper;
	unsigned int seq;
	s32 ret;

	do {
		seq = read_seqbegin(&tk->lock);
		ret = tk->tai_offset;
	} while (read_seqretry(&tk->lock, seq));

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
{
	tk->tai_offset = tai_offset;
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
	struct timekeeper *tk = &timekeeper;
	unsigned long flags;

	write_seqlock_irqsave(&tk->lock, flags);
	__timekeeping_set_tai_offset(tk, tai_offset);
	write_sequnlock_irqrestore(&tk->lock, flags);
}

558 559 560 561 562
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
563
static int change_clocksource(void *data)
564
{
565
	struct timekeeper *tk = &timekeeper;
566
	struct clocksource *new, *old;
567
	unsigned long flags;
568

569
	new = (struct clocksource *) data;
570

571
	write_seqlock_irqsave(&tk->lock, flags);
572

573
	timekeeping_forward_now(tk);
574
	if (!new->enable || new->enable(new) == 0) {
575 576
		old = tk->clock;
		tk_setup_internals(tk, new);
577 578 579
		if (old->disable)
			old->disable(old);
	}
580
	timekeeping_update(tk, true);
581

582
	write_sequnlock_irqrestore(&tk->lock, flags);
583

584 585
	return 0;
}
586

587 588 589 590 591 592 593 594 595
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
void timekeeping_notify(struct clocksource *clock)
{
596 597 598
	struct timekeeper *tk = &timekeeper;

	if (tk->clock == clock)
599
		return;
600
	stop_machine(change_clocksource, clock, NULL);
601 602
	tick_clock_notify();
}
603

604 605 606 607 608 609 610 611 612 613 614 615 616 617
/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
ktime_t ktime_get_real(void)
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}
EXPORT_SYMBOL_GPL(ktime_get_real);
618

619 620 621 622 623 624 625 626
/**
 * getrawmonotonic - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec to be set
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
void getrawmonotonic(struct timespec *ts)
{
627
	struct timekeeper *tk = &timekeeper;
628 629 630 631
	unsigned long seq;
	s64 nsecs;

	do {
632 633 634
		seq = read_seqbegin(&tk->lock);
		nsecs = timekeeping_get_ns_raw(tk);
		*ts = tk->raw_time;
635

636
	} while (read_seqretry(&tk->lock, seq));
637 638 639 640 641

	timespec_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(getrawmonotonic);

642
/**
643
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
644
 */
645
int timekeeping_valid_for_hres(void)
646
{
647
	struct timekeeper *tk = &timekeeper;
648 649 650 651
	unsigned long seq;
	int ret;

	do {
652
		seq = read_seqbegin(&tk->lock);
653

654
		ret = tk->clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
655

656
	} while (read_seqretry(&tk->lock, seq));
657 658 659 660

	return ret;
}

661 662 663 664 665
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
666
	struct timekeeper *tk = &timekeeper;
J
John Stultz 已提交
667 668
	unsigned long seq;
	u64 ret;
669

J
John Stultz 已提交
670
	do {
671
		seq = read_seqbegin(&tk->lock);
J
John Stultz 已提交
672

673
		ret = tk->clock->max_idle_ns;
J
John Stultz 已提交
674

675
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
676 677

	return ret;
678 679
}

680
/**
681
 * read_persistent_clock -  Return time from the persistent clock.
682 683
 *
 * Weak dummy function for arches that do not yet support it.
684 685
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
686 687 688
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
689
void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
690
{
691 692
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
693 694
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
void __attribute__((weak)) read_boot_clock(struct timespec *ts)
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

710 711 712 713 714
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
715
	struct timekeeper *tk = &timekeeper;
716
	struct clocksource *clock;
717
	unsigned long flags;
718
	struct timespec now, boot, tmp;
719 720

	read_persistent_clock(&now);
721

722
	if (!timespec_valid_strict(&now)) {
723 724 725 726
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
727 728
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
729

730
	read_boot_clock(&boot);
731
	if (!timespec_valid_strict(&boot)) {
732 733 734 735 736
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
737

738
	seqlock_init(&tk->lock);
739

R
Roman Zippel 已提交
740
	ntp_init();
741

742
	write_seqlock_irqsave(&tk->lock, flags);
743
	clock = clocksource_default_clock();
744 745
	if (clock->enable)
		clock->enable(clock);
746
	tk_setup_internals(tk, clock);
747

748 749 750
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
751
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
752
		boot = tk_xtime(tk);
753

754
	set_normalized_timespec(&tmp, -boot.tv_sec, -boot.tv_nsec);
755
	tk_set_wall_to_mono(tk, tmp);
756 757 758

	tmp.tv_sec = 0;
	tmp.tv_nsec = 0;
759
	tk_set_sleep_time(tk, tmp);
760

761
	write_sequnlock_irqrestore(&tk->lock, flags);
762 763 764
}

/* time in seconds when suspend began */
765
static struct timespec timekeeping_suspend_time;
766

767 768 769 770 771 772 773
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
774 775
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
							struct timespec *delta)
776
{
777
	if (!timespec_valid_strict(delta)) {
778
		printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
779 780 781
					"sleep delta value!\n");
		return;
	}
782
	tk_xtime_add(tk, delta);
783 784
	tk_set_wall_to_mono(tk, timespec_sub(tk->wall_to_monotonic, *delta));
	tk_set_sleep_time(tk, timespec_add(tk->total_sleep_time, *delta));
785 786 787 788 789 790 791 792 793 794 795 796 797 798
}

/**
 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec delta value
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
void timekeeping_inject_sleeptime(struct timespec *delta)
{
799
	struct timekeeper *tk = &timekeeper;
800
	unsigned long flags;
801

802 803 804 805 806
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
807 808
		return;

809
	write_seqlock_irqsave(&tk->lock, flags);
J
John Stultz 已提交
810

811
	timekeeping_forward_now(tk);
812

813
	__timekeeping_inject_sleeptime(tk, delta);
814

815
	timekeeping_update(tk, true);
816

817
	write_sequnlock_irqrestore(&tk->lock, flags);
818 819 820 821 822

	/* signal hrtimers about time change */
	clock_was_set();
}

823 824 825 826 827 828 829
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
830
static void timekeeping_resume(void)
831
{
832
	struct timekeeper *tk = &timekeeper;
833
	struct clocksource *clock = tk->clock;
834
	unsigned long flags;
835 836 837
	struct timespec ts_new, ts_delta;
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
838

839
	read_persistent_clock(&ts_new);
840

841
	clockevents_resume();
842 843
	clocksource_resume();

844
	write_seqlock_irqsave(&tk->lock, flags);
845

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
	cycle_now = clock->read(clock);
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
		cycle_now > clock->cycle_last) {
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

		cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

		ts_delta = ns_to_timespec(nsec);
		suspendtime_found = true;
	} else if (timespec_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec_sub(ts_new, timekeeping_suspend_time);
		suspendtime_found = true;
886
	}
887 888 889 890 891 892

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
	clock->cycle_last = cycle_now;
893
	tk->ntp_error = 0;
894
	timekeeping_suspended = 0;
895 896
	timekeeping_update(tk, false);
	write_sequnlock_irqrestore(&tk->lock, flags);
897 898 899 900 901 902

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
903
	hrtimers_resume();
904 905
}

906
static int timekeeping_suspend(void)
907
{
908
	struct timekeeper *tk = &timekeeper;
909
	unsigned long flags;
910 911
	struct timespec		delta, delta_delta;
	static struct timespec	old_delta;
912

913
	read_persistent_clock(&timekeeping_suspend_time);
914

915 916
	write_seqlock_irqsave(&tk->lock, flags);
	timekeeping_forward_now(tk);
917
	timekeeping_suspended = 1;
918 919 920 921 922 923 924

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
925
	delta = timespec_sub(tk_xtime(tk), timekeeping_suspend_time);
926 927 928 929 930 931 932 933 934 935 936 937
	delta_delta = timespec_sub(delta, old_delta);
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
			timespec_add(timekeeping_suspend_time, delta_delta);
	}
938
	write_sequnlock_irqrestore(&tk->lock, flags);
939 940

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
941
	clocksource_suspend();
942
	clockevents_suspend();
943 944 945 946 947

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
948
static struct syscore_ops timekeeping_syscore_ops = {
949 950 951 952
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

953
static int __init timekeeping_init_ops(void)
954
{
955 956
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
957 958
}

959
device_initcall(timekeeping_init_ops);
960 961 962 963 964

/*
 * If the error is already larger, we look ahead even further
 * to compensate for late or lost adjustments.
 */
965 966
static __always_inline int timekeeping_bigadjust(struct timekeeper *tk,
						 s64 error, s64 *interval,
967 968 969 970 971 972 973 974 975 976 977 978
						 s64 *offset)
{
	s64 tick_error, i;
	u32 look_ahead, adj;
	s32 error2, mult;

	/*
	 * Use the current error value to determine how much to look ahead.
	 * The larger the error the slower we adjust for it to avoid problems
	 * with losing too many ticks, otherwise we would overadjust and
	 * produce an even larger error.  The smaller the adjustment the
	 * faster we try to adjust for it, as lost ticks can do less harm
L
Li Zefan 已提交
979
	 * here.  This is tuned so that an error of about 1 msec is adjusted
980 981
	 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
	 */
982
	error2 = tk->ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
983 984 985 986 987 988 989 990
	error2 = abs(error2);
	for (look_ahead = 0; error2 > 0; look_ahead++)
		error2 >>= 2;

	/*
	 * Now calculate the error in (1 << look_ahead) ticks, but first
	 * remove the single look ahead already included in the error.
	 */
991 992
	tick_error = ntp_tick_length() >> (tk->ntp_error_shift + 1);
	tick_error -= tk->xtime_interval >> 1;
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	error = ((error - tick_error) >> look_ahead) + tick_error;

	/* Finally calculate the adjustment shift value.  */
	i = *interval;
	mult = 1;
	if (error < 0) {
		error = -error;
		*interval = -*interval;
		*offset = -*offset;
		mult = -1;
	}
	for (adj = 0; error > i; adj++)
		error >>= 1;

	*interval <<= adj;
	*offset <<= adj;
	return mult << adj;
}

/*
 * Adjust the multiplier to reduce the error value,
 * this is optimized for the most common adjustments of -1,0,1,
 * for other values we can do a bit more work.
 */
1017
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1018
{
1019
	s64 error, interval = tk->cycle_interval;
1020 1021
	int adj;

1022
	/*
1023
	 * The point of this is to check if the error is greater than half
1024 1025 1026 1027 1028
	 * an interval.
	 *
	 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
	 *
	 * Note we subtract one in the shift, so that error is really error*2.
1029 1030
	 * This "saves" dividing(shifting) interval twice, but keeps the
	 * (error > interval) comparison as still measuring if error is
1031
	 * larger than half an interval.
1032
	 *
1033
	 * Note: It does not "save" on aggravation when reading the code.
1034
	 */
1035
	error = tk->ntp_error >> (tk->ntp_error_shift - 1);
1036
	if (error > interval) {
1037 1038
		/*
		 * We now divide error by 4(via shift), which checks if
1039
		 * the error is greater than twice the interval.
1040 1041 1042
		 * If it is greater, we need a bigadjust, if its smaller,
		 * we can adjust by 1.
		 */
1043
		error >>= 2;
1044 1045 1046 1047 1048
		/*
		 * XXX - In update_wall_time, we round up to the next
		 * nanosecond, and store the amount rounded up into
		 * the error. This causes the likely below to be unlikely.
		 *
1049
		 * The proper fix is to avoid rounding up by using
1050
		 * the high precision tk->xtime_nsec instead of
1051 1052 1053
		 * xtime.tv_nsec everywhere. Fixing this will take some
		 * time.
		 */
1054 1055 1056
		if (likely(error <= interval))
			adj = 1;
		else
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
			adj = timekeeping_bigadjust(tk, error, &interval, &offset);
	} else {
		if (error < -interval) {
			/* See comment above, this is just switched for the negative */
			error >>= 2;
			if (likely(error >= -interval)) {
				adj = -1;
				interval = -interval;
				offset = -offset;
			} else {
				adj = timekeeping_bigadjust(tk, error, &interval, &offset);
			}
		} else {
			goto out_adjust;
		}
	}
1073

1074 1075
	if (unlikely(tk->clock->maxadj &&
		(tk->mult + adj > tk->clock->mult + tk->clock->maxadj))) {
1076 1077
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1078 1079
			tk->clock->name, (long)tk->mult + adj,
			(long)tk->clock->mult + tk->clock->maxadj);
1080
	}
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	/*
	 * So the following can be confusing.
	 *
	 * To keep things simple, lets assume adj == 1 for now.
	 *
	 * When adj != 1, remember that the interval and offset values
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1130 1131 1132 1133
	tk->mult += adj;
	tk->xtime_interval += interval;
	tk->xtime_nsec -= offset;
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1134

1135
out_adjust:
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1150 1151 1152 1153
	if (unlikely((s64)tk->xtime_nsec < 0)) {
		s64 neg = -(s64)tk->xtime_nsec;
		tk->xtime_nsec = 0;
		tk->ntp_error += neg << tk->ntp_error_shift;
1154 1155
	}

1156 1157
}

1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
{
	u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;

	while (tk->xtime_nsec >= nsecps) {
		int leap;

		tk->xtime_nsec -= nsecps;
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1178 1179 1180 1181
		if (unlikely(leap)) {
			struct timespec ts;

			tk->xtime_sec += leap;
1182

1183 1184 1185 1186 1187
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
				timespec_sub(tk->wall_to_monotonic, ts));

1188 1189
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1190 1191
			clock_was_set_delayed();
		}
1192 1193 1194
	}
}

1195 1196 1197 1198 1199 1200 1201 1202 1203
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1204 1205
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
						u32 shift)
1206
{
1207
	u64 raw_nsecs;
1208

1209 1210
	/* If the offset is smaller then a shifted interval, do nothing */
	if (offset < tk->cycle_interval<<shift)
1211 1212 1213
		return offset;

	/* Accumulate one shifted interval */
1214 1215
	offset -= tk->cycle_interval << shift;
	tk->clock->cycle_last += tk->cycle_interval << shift;
1216

1217 1218
	tk->xtime_nsec += tk->xtime_interval << shift;
	accumulate_nsecs_to_secs(tk);
1219

1220
	/* Accumulate raw time */
1221
	raw_nsecs = (u64)tk->raw_interval << shift;
1222
	raw_nsecs += tk->raw_time.tv_nsec;
1223 1224 1225
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1226
		tk->raw_time.tv_sec += raw_secs;
1227
	}
1228
	tk->raw_time.tv_nsec = raw_nsecs;
1229 1230

	/* Accumulate error between NTP and clock interval */
1231 1232 1233
	tk->ntp_error += ntp_tick_length() << shift;
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1234 1235 1236 1237

	return offset;
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
	remainder = tk->xtime_nsec & ((1ULL << tk->shift) - 1);
	tk->xtime_nsec -= remainder;
	tk->xtime_nsec += 1ULL << tk->shift;
	tk->ntp_error += remainder << tk->ntp_error_shift;

}
#else
#define old_vsyscall_fixup(tk)
#endif



1265 1266 1267 1268
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1269
static void update_wall_time(void)
1270
{
1271
	struct clocksource *clock;
1272
	struct timekeeper *tk = &timekeeper;
1273
	cycle_t offset;
1274
	int shift = 0, maxshift;
J
John Stultz 已提交
1275 1276
	unsigned long flags;

1277
	write_seqlock_irqsave(&tk->lock, flags);
1278 1279 1280

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1281
		goto out;
1282

1283
	clock = tk->clock;
J
John Stultz 已提交
1284 1285

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1286
	offset = tk->cycle_interval;
J
John Stultz 已提交
1287 1288
#else
	offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
1289 1290
#endif

1291 1292 1293 1294
	/* Check if there's really nothing to do */
	if (offset < tk->cycle_interval)
		goto out;

1295 1296 1297 1298
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1299
	 * that is smaller than the offset.  We then accumulate that
1300 1301
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1302
	 */
1303
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1304
	shift = max(0, shift);
1305
	/* Bound shift to one less than what overflows tick_length */
1306
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1307
	shift = min(shift, maxshift);
1308 1309 1310
	while (offset >= tk->cycle_interval) {
		offset = logarithmic_accumulation(tk, offset, shift);
		if (offset < tk->cycle_interval<<shift)
1311
			shift--;
1312 1313 1314
	}

	/* correct the clock when NTP error is too big */
1315
	timekeeping_adjust(tk, offset);
1316

J
John Stultz 已提交
1317
	/*
1318 1319 1320 1321
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1322

J
John Stultz 已提交
1323 1324
	/*
	 * Finally, make sure that after the rounding
1325
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1326
	 */
1327
	accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1328

1329
	timekeeping_update(tk, false);
J
John Stultz 已提交
1330 1331

out:
1332
	write_sequnlock_irqrestore(&tk->lock, flags);
J
John Stultz 已提交
1333

1334
}
T
Tomas Janousek 已提交
1335 1336 1337 1338 1339

/**
 * getboottime - Return the real time of system boot.
 * @ts:		pointer to the timespec to be set
 *
1340
 * Returns the wall-time of boot in a timespec.
T
Tomas Janousek 已提交
1341 1342 1343 1344 1345 1346 1347 1348
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
void getboottime(struct timespec *ts)
{
1349
	struct timekeeper *tk = &timekeeper;
1350
	struct timespec boottime = {
1351 1352 1353 1354
		.tv_sec = tk->wall_to_monotonic.tv_sec +
				tk->total_sleep_time.tv_sec,
		.tv_nsec = tk->wall_to_monotonic.tv_nsec +
				tk->total_sleep_time.tv_nsec
1355
	};
1356 1357

	set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
T
Tomas Janousek 已提交
1358
}
1359
EXPORT_SYMBOL_GPL(getboottime);
T
Tomas Janousek 已提交
1360

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
/**
 * get_monotonic_boottime - Returns monotonic time since boot
 * @ts:		pointer to the timespec to be set
 *
 * Returns the monotonic time since boot in a timespec.
 *
 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
 * includes the time spent in suspend.
 */
void get_monotonic_boottime(struct timespec *ts)
{
1372
	struct timekeeper *tk = &timekeeper;
1373
	struct timespec tomono, sleep;
1374
	s64 nsec;
1375 1376 1377 1378 1379
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
1380 1381
		seq = read_seqbegin(&tk->lock);
		ts->tv_sec = tk->xtime_sec;
1382
		nsec = timekeeping_get_ns(tk);
1383 1384
		tomono = tk->wall_to_monotonic;
		sleep = tk->total_sleep_time;
1385

1386
	} while (read_seqretry(&tk->lock, seq));
1387

1388 1389 1390
	ts->tv_sec += tomono.tv_sec + sleep.tv_sec;
	ts->tv_nsec = 0;
	timespec_add_ns(ts, nsec + tomono.tv_nsec + sleep.tv_nsec);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
}
EXPORT_SYMBOL_GPL(get_monotonic_boottime);

/**
 * ktime_get_boottime - Returns monotonic time since boot in a ktime
 *
 * Returns the monotonic time since boot in a ktime
 *
 * This is similar to CLOCK_MONTONIC/ktime_get, but also
 * includes the time spent in suspend.
 */
ktime_t ktime_get_boottime(void)
{
	struct timespec ts;

	get_monotonic_boottime(&ts);
	return timespec_to_ktime(ts);
}
EXPORT_SYMBOL_GPL(ktime_get_boottime);

T
Tomas Janousek 已提交
1411 1412 1413 1414 1415 1416
/**
 * monotonic_to_bootbased - Convert the monotonic time to boot based.
 * @ts:		pointer to the timespec to be converted
 */
void monotonic_to_bootbased(struct timespec *ts)
{
1417 1418 1419
	struct timekeeper *tk = &timekeeper;

	*ts = timespec_add(*ts, tk->total_sleep_time);
T
Tomas Janousek 已提交
1420
}
1421
EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
1422

1423 1424
unsigned long get_seconds(void)
{
1425 1426 1427
	struct timekeeper *tk = &timekeeper;

	return tk->xtime_sec;
1428 1429 1430
}
EXPORT_SYMBOL(get_seconds);

1431 1432
struct timespec __current_kernel_time(void)
{
1433 1434 1435
	struct timekeeper *tk = &timekeeper;

	return tk_xtime(tk);
1436
}
1437

1438 1439
struct timespec current_kernel_time(void)
{
1440
	struct timekeeper *tk = &timekeeper;
1441 1442 1443 1444
	struct timespec now;
	unsigned long seq;

	do {
1445
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1446

1447 1448
		now = tk_xtime(tk);
	} while (read_seqretry(&tk->lock, seq));
1449 1450 1451 1452

	return now;
}
EXPORT_SYMBOL(current_kernel_time);
1453 1454 1455

struct timespec get_monotonic_coarse(void)
{
1456
	struct timekeeper *tk = &timekeeper;
1457 1458 1459 1460
	struct timespec now, mono;
	unsigned long seq;

	do {
1461
		seq = read_seqbegin(&tk->lock);
L
Linus Torvalds 已提交
1462

1463 1464 1465
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
1466 1467 1468 1469 1470

	set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
				now.tv_nsec + mono.tv_nsec);
	return now;
}
1471 1472

/*
1473
 * Must hold jiffies_lock
1474 1475 1476 1477 1478 1479 1480
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	update_wall_time();
	calc_global_load(ticks);
}
1481 1482

/**
1483 1484
 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
 *    and sleep offsets.
1485 1486
 * @xtim:	pointer to timespec to be set with xtime
 * @wtom:	pointer to timespec to be set with wall_to_monotonic
1487
 * @sleep:	pointer to timespec to be set with time in suspend
1488
 */
1489 1490
void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
				struct timespec *wtom, struct timespec *sleep)
1491
{
1492
	struct timekeeper *tk = &timekeeper;
1493 1494 1495
	unsigned long seq;

	do {
1496 1497 1498 1499 1500
		seq = read_seqbegin(&tk->lock);
		*xtim = tk_xtime(tk);
		*wtom = tk->wall_to_monotonic;
		*sleep = tk->total_sleep_time;
	} while (read_seqretry(&tk->lock, seq));
1501
}
T
Torben Hohn 已提交
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
#ifdef CONFIG_HIGH_RES_TIMERS
/**
 * ktime_get_update_offsets - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 *
 * Returns current monotonic time and updates the offsets
 * Called from hrtimer_interupt() or retrigger_next_event()
 */
ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
{
1514
	struct timekeeper *tk = &timekeeper;
1515 1516 1517 1518 1519
	ktime_t now;
	unsigned int seq;
	u64 secs, nsecs;

	do {
1520
		seq = read_seqbegin(&tk->lock);
1521

1522 1523
		secs = tk->xtime_sec;
		nsecs = timekeeping_get_ns(tk);
1524

1525 1526 1527
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
	} while (read_seqretry(&tk->lock, seq));
1528 1529 1530 1531 1532 1533 1534

	now = ktime_add_ns(ktime_set(secs, 0), nsecs);
	now = ktime_sub(now, *offs_real);
	return now;
}
#endif

1535 1536 1537 1538 1539
/**
 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
 */
ktime_t ktime_get_monotonic_offset(void)
{
1540
	struct timekeeper *tk = &timekeeper;
1541 1542 1543 1544
	unsigned long seq;
	struct timespec wtom;

	do {
1545 1546 1547
		seq = read_seqbegin(&tk->lock);
		wtom = tk->wall_to_monotonic;
	} while (read_seqretry(&tk->lock, seq));
J
John Stultz 已提交
1548

1549 1550
	return timespec_to_ktime(wtom);
}
1551 1552
EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);

T
Torben Hohn 已提交
1553 1554 1555 1556 1557 1558 1559 1560
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
1561
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
1562
	do_timer(ticks);
1563
	write_sequnlock(&jiffies_lock);
T
Torben Hohn 已提交
1564
}