slub.c 125.6 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

172 173
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
174
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
175

C
Christoph Lameter 已提交
176
/* Internal SLUB flags */
C
Christoph Lameter 已提交
177
#define __OBJECT_POISON		0x80000000UL /* Poison object */
178
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
179 180 181 182 183

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

184 185 186
/*
 * Tracking user of a slab.
 */
187
#define TRACK_ADDRS_COUNT 16
188
struct track {
189
	unsigned long addr;	/* Called from address */
190 191 192
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
193 194 195 196 197 198 199
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

200
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
201 202
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
203
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
204
#else
205 206 207
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
208
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
209 210
#endif

211
static inline void stat(const struct kmem_cache *s, enum stat_item si)
212 213
{
#ifdef CONFIG_SLUB_STATS
214 215 216 217 218
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
219 220 221
#endif
}

C
Christoph Lameter 已提交
222 223 224 225
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
226
/* Verify that a pointer has an address that is valid within a slab page */
227 228 229 230 231
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

232
	if (!object)
233 234
		return 1;

235
	base = page_address(page);
236
	if (object < base || object >= base + page->objects * s->size ||
237 238 239 240 241 242 243
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

244 245 246 247 248
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

249 250 251 252 253
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

254 255 256 257 258 259 260 261 262 263 264 265
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

266 267 268 269 270 271
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
272 273
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
274 275
			__p += (__s)->size)

276 277 278 279
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

280 281 282 283 284 285
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

286 287 288 289 290 291 292 293
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
294
		return s->object_size;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

310 311 312 313 314
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

315
static inline struct kmem_cache_order_objects oo_make(int order,
316
		unsigned long size, int reserved)
317 318
{
	struct kmem_cache_order_objects x = {
319
		(order << OO_SHIFT) + order_objects(order, size, reserved)
320 321 322 323 324 325 326
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
327
	return x.x >> OO_SHIFT;
328 329 330 331
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
332
	return x.x & OO_MASK;
333 334
}

335 336 337 338 339 340 341 342 343 344 345 346 347
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

363 364 365 366 367 368 369
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
370 371
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
372
	if (s->flags & __CMPXCHG_DOUBLE) {
373
		if (cmpxchg_double(&page->freelist, &page->counters,
374 375 376
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return 1;
377 378 379 380
	} else
#endif
	{
		slab_lock(page);
381 382
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
383
			page->freelist = freelist_new;
384
			set_page_slub_counters(page, counters_new);
385 386 387 388 389 390 391 392 393 394
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
395
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
396 397 398 399 400
#endif

	return 0;
}

401 402 403 404 405
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
406 407
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
408
	if (s->flags & __CMPXCHG_DOUBLE) {
409
		if (cmpxchg_double(&page->freelist, &page->counters,
410 411 412
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return 1;
413 414 415
	} else
#endif
	{
416 417 418
		unsigned long flags;

		local_irq_save(flags);
419
		slab_lock(page);
420 421
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
422
			page->freelist = freelist_new;
423
			set_page_slub_counters(page, counters_new);
424
			slab_unlock(page);
425
			local_irq_restore(flags);
426 427
			return 1;
		}
428
		slab_unlock(page);
429
		local_irq_restore(flags);
430 431 432 433 434 435
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
436
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
437 438 439 440 441
#endif

	return 0;
}

C
Christoph Lameter 已提交
442
#ifdef CONFIG_SLUB_DEBUG
443 444 445
/*
 * Determine a map of object in use on a page.
 *
446
 * Node listlock must be held to guarantee that the page does
447 448 449 450 451 452 453 454 455 456 457
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
458 459 460
/*
 * Debug settings:
 */
461 462 463
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
464
static int slub_debug;
465
#endif
C
Christoph Lameter 已提交
466 467

static char *slub_debug_slabs;
468
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
469

C
Christoph Lameter 已提交
470 471 472 473 474
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
475 476
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
493
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
494
{
A
Akinobu Mita 已提交
495
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
496 497

	if (addr) {
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
516 517
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
518
		p->pid = current->pid;
C
Christoph Lameter 已提交
519 520 521 522 523 524 525
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
526 527 528
	if (!(s->flags & SLAB_STORE_USER))
		return;

529 530
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
531 532 533 534 535 536 537
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

538 539
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
540 541 542 543 544
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
545
				pr_err("\t%pS\n", (void *)t->addrs[i]);
546 547 548 549
			else
				break;
	}
#endif
550 551 552 553 554 555 556 557 558 559 560 561 562
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
563
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
564
	       page, page->objects, page->inuse, page->freelist, page->flags);
565 566 567 568 569

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
570
	struct va_format vaf;
571 572 573
	va_list args;

	va_start(args, fmt);
574 575
	vaf.fmt = fmt;
	vaf.va = &args;
576
	pr_err("=============================================================================\n");
577
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
578
	pr_err("-----------------------------------------------------------------------------\n\n");
579

580
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
581
	va_end(args);
C
Christoph Lameter 已提交
582 583
}

584 585
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
586
	struct va_format vaf;
587 588 589
	va_list args;

	va_start(args, fmt);
590 591 592
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
593 594 595 596
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
597 598
{
	unsigned int off;	/* Offset of last byte */
599
	u8 *addr = page_address(page);
600 601 602 603 604

	print_tracking(s, p);

	print_page_info(page);

605 606
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
607 608

	if (p > addr + 16)
609
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
610

611
	print_section("Object ", p, min_t(unsigned long, s->object_size,
612
				PAGE_SIZE));
C
Christoph Lameter 已提交
613
	if (s->flags & SLAB_RED_ZONE)
614 615
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
616 617 618 619 620 621

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

622
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
623 624 625 626
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
627
		print_section("Padding ", p + off, s->size - off);
628 629

	dump_stack();
C
Christoph Lameter 已提交
630 631 632 633 634
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
635
	slab_bug(s, "%s", reason);
636
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
637 638
}

639 640
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
641 642 643 644
{
	va_list args;
	char buf[100];

645 646
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
647
	va_end(args);
648
	slab_bug(s, "%s", buf);
649
	print_page_info(page);
C
Christoph Lameter 已提交
650 651 652
	dump_stack();
}

653
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
654 655 656 657
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
658 659
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
660 661 662
	}

	if (s->flags & SLAB_RED_ZONE)
663
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
664 665
}

666 667 668 669 670 671 672 673 674
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
675
			u8 *start, unsigned int value, unsigned int bytes)
676 677 678 679
{
	u8 *fault;
	u8 *end;

680
	fault = memchr_inv(start, value, bytes);
681 682 683 684 685 686 687 688
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
689
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
690 691 692 693 694
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
695 696 697 698 699 700 701 702 703
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
704
 *
C
Christoph Lameter 已提交
705 706 707
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
708
 * object + s->object_size
C
Christoph Lameter 已提交
709
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
710
 * 	Padding is extended by another word if Redzoning is enabled and
711
 * 	object_size == inuse.
C
Christoph Lameter 已提交
712
 *
C
Christoph Lameter 已提交
713 714 715 716
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
717 718
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
719 720
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
721
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
722
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
723 724 725
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
726 727
 *
 * object + s->size
C
Christoph Lameter 已提交
728
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
729
 *
730
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
731
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

750 751
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
752 753
}

754
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
755 756
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
757 758 759 760 761
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
762 763 764 765

	if (!(s->flags & SLAB_POISON))
		return 1;

766
	start = page_address(page);
767
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
768 769
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
770 771 772
	if (!remainder)
		return 1;

773
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
774 775 776 777 778 779
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
780
	print_section("Padding ", end - remainder, remainder);
781

E
Eric Dumazet 已提交
782
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
783
	return 0;
C
Christoph Lameter 已提交
784 785 786
}

static int check_object(struct kmem_cache *s, struct page *page,
787
					void *object, u8 val)
C
Christoph Lameter 已提交
788 789
{
	u8 *p = object;
790
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
791 792

	if (s->flags & SLAB_RED_ZONE) {
793
		if (!check_bytes_and_report(s, page, object, "Redzone",
794
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
795 796
			return 0;
	} else {
797
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
798
			check_bytes_and_report(s, page, p, "Alignment padding",
799 800
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
801
		}
C
Christoph Lameter 已提交
802 803 804
	}

	if (s->flags & SLAB_POISON) {
805
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
806
			(!check_bytes_and_report(s, page, p, "Poison", p,
807
					POISON_FREE, s->object_size - 1) ||
808
			 !check_bytes_and_report(s, page, p, "Poison",
809
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
810 811 812 813 814 815 816
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

817
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
818 819 820 821 822 823 824 825 826 827
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
828
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
829
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
830
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
831
		 */
832
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
833 834 835 836 837 838 839
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
840 841
	int maxobj;

C
Christoph Lameter 已提交
842 843 844
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
845
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
846 847
		return 0;
	}
848

849
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
850 851
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
852
			page->objects, maxobj);
853 854 855
		return 0;
	}
	if (page->inuse > page->objects) {
856
		slab_err(s, page, "inuse %u > max %u",
857
			page->inuse, page->objects);
C
Christoph Lameter 已提交
858 859 860 861 862 863 864 865
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
866 867
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
868 869 870 871
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
872
	void *fp;
C
Christoph Lameter 已提交
873
	void *object = NULL;
874
	int max_objects;
C
Christoph Lameter 已提交
875

876
	fp = page->freelist;
877
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
878 879 880 881 882 883
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
884
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
885
			} else {
886
				slab_err(s, page, "Freepointer corrupt");
887
				page->freelist = NULL;
888
				page->inuse = page->objects;
889
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
890 891 892 893 894 895 896 897 898
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

899
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
900 901
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
902 903 904 905 906 907 908

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
909
	if (page->inuse != page->objects - nr) {
910
		slab_err(s, page, "Wrong object count. Counter is %d but "
911 912
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
913
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
914 915 916 917
	}
	return search == NULL;
}

918 919
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
920 921
{
	if (s->flags & SLAB_TRACE) {
922
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
923 924 925 926 927 928
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
929 930
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
931 932 933 934 935

		dump_stack();
	}
}

936
/*
C
Christoph Lameter 已提交
937
 * Tracking of fully allocated slabs for debugging purposes.
938
 */
939 940
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
941
{
942 943 944
	if (!(s->flags & SLAB_STORE_USER))
		return;

945
	lockdep_assert_held(&n->list_lock);
946 947 948
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
949
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
950 951 952 953
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

954
	lockdep_assert_held(&n->list_lock);
955 956 957
	list_del(&page->lru);
}

958 959 960 961 962 963 964 965
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

966 967 968 969 970
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

971
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
972 973 974 975 976 977 978 979 980
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
981
	if (likely(n)) {
982
		atomic_long_inc(&n->nr_slabs);
983 984
		atomic_long_add(objects, &n->total_objects);
	}
985
}
986
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
987 988 989 990
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
991
	atomic_long_sub(objects, &n->total_objects);
992 993 994
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
995 996 997 998 999 1000
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1001
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1002 1003 1004
	init_tracking(s, object);
}

1005 1006
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1007
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1008 1009 1010 1011 1012 1013
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1014
		goto bad;
C
Christoph Lameter 已提交
1015 1016
	}

1017
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1018 1019
		goto bad;

C
Christoph Lameter 已提交
1020 1021 1022 1023
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1024
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1025
	return 1;
C
Christoph Lameter 已提交
1026

C
Christoph Lameter 已提交
1027 1028 1029 1030 1031
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1032
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1033
		 */
1034
		slab_fix(s, "Marking all objects used");
1035
		page->inuse = page->objects;
1036
		page->freelist = NULL;
C
Christoph Lameter 已提交
1037 1038 1039 1040
	}
	return 0;
}

1041 1042 1043
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1044
{
1045
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1046

1047
	spin_lock_irqsave(&n->list_lock, *flags);
1048 1049
	slab_lock(page);

C
Christoph Lameter 已提交
1050 1051 1052 1053
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1054
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1055 1056 1057 1058
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1059
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1060 1061 1062
		goto fail;
	}

1063
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1064
		goto out;
C
Christoph Lameter 已提交
1065

1066
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1067
		if (!PageSlab(page)) {
1068 1069
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1070
		} else if (!page->slab_cache) {
1071 1072
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1073
			dump_stack();
P
Pekka Enberg 已提交
1074
		} else
1075 1076
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1077 1078
		goto fail;
	}
C
Christoph Lameter 已提交
1079 1080 1081 1082

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1083
	init_object(s, object, SLUB_RED_INACTIVE);
1084
out:
1085
	slab_unlock(page);
1086 1087 1088 1089 1090
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1091

C
Christoph Lameter 已提交
1092
fail:
1093 1094
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1095
	slab_fix(s, "Object at 0x%p not freed", object);
1096
	return NULL;
C
Christoph Lameter 已提交
1097 1098
}

C
Christoph Lameter 已提交
1099 1100
static int __init setup_slub_debug(char *str)
{
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1115 1116 1117 1118 1119 1120 1121 1122 1123
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1134
	for (; *str && *str != ','; str++) {
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1151 1152 1153
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1154
		default:
1155 1156
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1157
		}
C
Christoph Lameter 已提交
1158 1159
	}

1160
check_slabs:
C
Christoph Lameter 已提交
1161 1162
	if (*str == ',')
		slub_debug_slabs = str + 1;
1163
out:
C
Christoph Lameter 已提交
1164 1165 1166 1167 1168
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1169
unsigned long kmem_cache_flags(unsigned long object_size,
1170
	unsigned long flags, const char *name,
1171
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1172 1173
{
	/*
1174
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1175
	 */
1176 1177
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1178
		flags |= slub_debug;
1179 1180

	return flags;
C
Christoph Lameter 已提交
1181 1182
}
#else
C
Christoph Lameter 已提交
1183 1184
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1185

C
Christoph Lameter 已提交
1186
static inline int alloc_debug_processing(struct kmem_cache *s,
1187
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1188

1189 1190 1191
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1192 1193 1194 1195

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1196
			void *object, u8 val) { return 1; }
1197 1198
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1199 1200
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1201
unsigned long kmem_cache_flags(unsigned long object_size,
1202
	unsigned long flags, const char *name,
1203
	void (*ctor)(void *))
1204 1205 1206
{
	return flags;
}
C
Christoph Lameter 已提交
1207
#define slub_debug 0
1208

1209 1210
#define disable_higher_order_debug 0

1211 1212
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1213 1214
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1215 1216 1217 1218
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1219

1220 1221 1222 1223 1224 1225
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1236 1237
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
						     gfp_t flags)
1238 1239 1240 1241
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);
1242

1243 1244 1245 1246
	if (should_failslab(s->object_size, flags, s->flags))
		return NULL;

	return memcg_kmem_get_cache(s, flags);
1247 1248 1249 1250
}

static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
1251
{
1252 1253 1254
	flags &= gfp_allowed_mask;
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1255
	memcg_kmem_put_cache(s);
1256
}
1257

1258 1259 1260
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
}
1280

C
Christoph Lameter 已提交
1281 1282 1283
/*
 * Slab allocation and freeing
 */
1284 1285
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1286
{
1287
	struct page *page;
1288 1289
	int order = oo_order(oo);

1290 1291
	flags |= __GFP_NOTRACK;

1292 1293 1294
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1295
	if (node == NUMA_NO_NODE)
1296
		page = alloc_pages(flags, order);
1297
	else
1298 1299 1300 1301 1302 1303
		page = alloc_pages_exact_node(node, flags, order);

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1304 1305
}

C
Christoph Lameter 已提交
1306 1307
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1308
	struct page *page;
1309
	struct kmem_cache_order_objects oo = s->oo;
1310
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1311

1312 1313 1314 1315 1316
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1317
	flags |= s->allocflags;
1318

1319 1320 1321 1322 1323 1324
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

1325
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1326 1327
	if (unlikely(!page)) {
		oo = s->min;
1328
		alloc_gfp = flags;
1329 1330 1331 1332
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1333
		page = alloc_slab_page(s, alloc_gfp, node, oo);
C
Christoph Lameter 已提交
1334

1335 1336
		if (page)
			stat(s, ORDER_FALLBACK);
1337
	}
V
Vegard Nossum 已提交
1338

1339
	if (kmemcheck_enabled && page
1340
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1341 1342
		int pages = 1 << oo_order(oo);

1343
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1344 1345 1346 1347 1348 1349 1350 1351 1352

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1353 1354
	}

1355 1356 1357 1358 1359
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1360
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1361 1362 1363
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1364
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1365 1366 1367 1368 1369 1370 1371

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1372
	setup_object_debug(s, page, object);
1373
	if (unlikely(s->ctor))
1374
		s->ctor(object);
C
Christoph Lameter 已提交
1375 1376 1377 1378 1379 1380 1381
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *p;
G
Glauber Costa 已提交
1382
	int order;
1383
	int idx;
C
Christoph Lameter 已提交
1384

1385 1386 1387 1388
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
		pr_emerg("gfp: %u\n", flags & GFP_SLAB_BUG_MASK);
		BUG();
	}
C
Christoph Lameter 已提交
1389

C
Christoph Lameter 已提交
1390 1391
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1392 1393 1394
	if (!page)
		goto out;

G
Glauber Costa 已提交
1395
	order = compound_order(page);
1396
	inc_slabs_node(s, page_to_nid(page), page->objects);
1397
	page->slab_cache = s;
1398
	__SetPageSlab(page);
1399 1400
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1401 1402 1403 1404

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1405
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1406

1407 1408 1409 1410 1411 1412
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1413 1414 1415
	}

	page->freelist = start;
1416
	page->inuse = page->objects;
1417
	page->frozen = 1;
C
Christoph Lameter 已提交
1418 1419 1420 1421 1422 1423
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1424 1425
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1426

1427
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1428 1429 1430
		void *p;

		slab_pad_check(s, page);
1431 1432
		for_each_object(p, s, page_address(page),
						page->objects)
1433
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1434 1435
	}

1436
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1437

C
Christoph Lameter 已提交
1438 1439 1440
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1441
		-pages);
C
Christoph Lameter 已提交
1442

1443
	__ClearPageSlabPfmemalloc(page);
1444
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1445

1446
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1447 1448
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1449 1450
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
C
Christoph Lameter 已提交
1451 1452
}

1453 1454 1455
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1456 1457 1458 1459
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1460 1461 1462 1463 1464
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1465
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1466 1467 1468 1469 1470
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1485 1486 1487 1488 1489 1490 1491 1492

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1493
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1494 1495 1496 1497
	free_slab(s, page);
}

/*
1498
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1499
 */
1500 1501
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1502
{
C
Christoph Lameter 已提交
1503
	n->nr_partial++;
1504
	if (tail == DEACTIVATE_TO_TAIL)
1505 1506 1507
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1508 1509
}

1510 1511
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1512
{
P
Peter Zijlstra 已提交
1513
	lockdep_assert_held(&n->list_lock);
1514 1515
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1516

1517 1518 1519
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1520 1521 1522 1523
	list_del(&page->lru);
	n->nr_partial--;
}

1524 1525 1526 1527 1528 1529 1530
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1531
/*
1532 1533
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1534
 *
1535
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1536
 */
1537
static inline void *acquire_slab(struct kmem_cache *s,
1538
		struct kmem_cache_node *n, struct page *page,
1539
		int mode, int *objects)
C
Christoph Lameter 已提交
1540
{
1541 1542 1543 1544
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1545 1546
	lockdep_assert_held(&n->list_lock);

1547 1548 1549 1550 1551
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1552 1553 1554
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1555
	*objects = new.objects - new.inuse;
1556
	if (mode) {
1557
		new.inuse = page->objects;
1558 1559 1560 1561
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1562

1563
	VM_BUG_ON(new.frozen);
1564
	new.frozen = 1;
1565

1566
	if (!__cmpxchg_double_slab(s, page,
1567
			freelist, counters,
1568
			new.freelist, new.counters,
1569 1570
			"acquire_slab"))
		return NULL;
1571 1572

	remove_partial(n, page);
1573
	WARN_ON(!freelist);
1574
	return freelist;
C
Christoph Lameter 已提交
1575 1576
}

1577
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1578
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1579

C
Christoph Lameter 已提交
1580
/*
C
Christoph Lameter 已提交
1581
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1582
 */
1583 1584
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1585
{
1586 1587
	struct page *page, *page2;
	void *object = NULL;
1588 1589
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1590 1591 1592 1593

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1594 1595
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1596 1597 1598 1599 1600
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1601
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1602
		void *t;
1603

1604 1605 1606
		if (!pfmemalloc_match(page, flags))
			continue;

1607
		t = acquire_slab(s, n, page, object == NULL, &objects);
1608 1609 1610
		if (!t)
			break;

1611
		available += objects;
1612
		if (!object) {
1613 1614 1615 1616
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1617
			put_cpu_partial(s, page, 0);
1618
			stat(s, CPU_PARTIAL_NODE);
1619
		}
1620 1621
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1622 1623
			break;

1624
	}
C
Christoph Lameter 已提交
1625
	spin_unlock(&n->list_lock);
1626
	return object;
C
Christoph Lameter 已提交
1627 1628 1629
}

/*
C
Christoph Lameter 已提交
1630
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1631
 */
1632
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1633
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1634 1635 1636
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1637
	struct zoneref *z;
1638 1639
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1640
	void *object;
1641
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1642 1643

	/*
C
Christoph Lameter 已提交
1644 1645 1646 1647
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1648
	 *
C
Christoph Lameter 已提交
1649 1650 1651 1652
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1653
	 *
C
Christoph Lameter 已提交
1654
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1655 1656 1657 1658 1659
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1660
	 */
1661 1662
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1663 1664
		return NULL;

1665
	do {
1666
		cpuset_mems_cookie = read_mems_allowed_begin();
1667
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1668 1669 1670 1671 1672
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1673
			if (n && cpuset_zone_allowed(zone, flags) &&
1674
					n->nr_partial > s->min_partial) {
1675
				object = get_partial_node(s, n, c, flags);
1676 1677
				if (object) {
					/*
1678 1679 1680 1681 1682
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1683 1684 1685
					 */
					return object;
				}
1686
			}
C
Christoph Lameter 已提交
1687
		}
1688
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1689 1690 1691 1692 1693 1694 1695
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1696
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1697
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1698
{
1699
	void *object;
1700 1701 1702 1703 1704 1705
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1706

1707
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1708 1709
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1710

1711
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1712 1713
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1755
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1756 1757 1758

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1759
		pr_warn("due to cpu change %d -> %d\n",
1760 1761 1762 1763
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1764
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1765 1766
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1767
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1768 1769
			actual_tid, tid, next_tid(tid));
#endif
1770
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1771 1772
}

1773
static void init_kmem_cache_cpus(struct kmem_cache *s)
1774 1775 1776 1777 1778 1779
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1780

C
Christoph Lameter 已提交
1781 1782 1783
/*
 * Remove the cpu slab
 */
1784 1785
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1786
{
1787 1788 1789 1790 1791
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1792
	int tail = DEACTIVATE_TO_HEAD;
1793 1794 1795 1796
	struct page new;
	struct page old;

	if (page->freelist) {
1797
		stat(s, DEACTIVATE_REMOTE_FREES);
1798
		tail = DEACTIVATE_TO_TAIL;
1799 1800
	}

1801
	/*
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1819
			VM_BUG_ON(!new.frozen);
1820

1821
		} while (!__cmpxchg_double_slab(s, page,
1822 1823 1824 1825 1826 1827 1828
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1829
	/*
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1842
	 */
1843
redo:
1844

1845 1846
	old.freelist = page->freelist;
	old.counters = page->counters;
1847
	VM_BUG_ON(!old.frozen);
1848

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1860
	if (!new.inuse && n->nr_partial >= s->min_partial)
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1893

P
Peter Zijlstra 已提交
1894
			remove_full(s, n, page);
1895 1896 1897 1898

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1899
			stat(s, tail);
1900 1901

		} else if (m == M_FULL) {
1902

1903 1904 1905 1906 1907 1908 1909
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1910
	if (!__cmpxchg_double_slab(s, page,
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1923
	}
C
Christoph Lameter 已提交
1924 1925
}

1926 1927 1928
/*
 * Unfreeze all the cpu partial slabs.
 *
1929 1930 1931
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1932
 */
1933 1934
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1935
{
1936
#ifdef CONFIG_SLUB_CPU_PARTIAL
1937
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1938
	struct page *page, *discard_page = NULL;
1939 1940 1941 1942 1943 1944

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1945 1946 1947 1948 1949 1950 1951 1952 1953

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1954 1955 1956 1957 1958

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1959
			VM_BUG_ON(!old.frozen);
1960 1961 1962 1963 1964 1965

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1966
		} while (!__cmpxchg_double_slab(s, page,
1967 1968 1969 1970
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1971
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1972 1973
			page->next = discard_page;
			discard_page = page;
1974 1975 1976
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1977 1978 1979 1980 1981
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1982 1983 1984 1985 1986 1987 1988 1989 1990

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1991
#endif
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2003
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2004
{
2005
#ifdef CONFIG_SLUB_CPU_PARTIAL
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2025
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2026
				local_irq_restore(flags);
2027
				oldpage = NULL;
2028 2029
				pobjects = 0;
				pages = 0;
2030
				stat(s, CPU_PARTIAL_DRAIN);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2041 2042
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2043
#endif
2044 2045
}

2046
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2047
{
2048
	stat(s, CPUSLAB_FLUSH);
2049 2050 2051 2052 2053
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2054 2055 2056 2057
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2058
 *
C
Christoph Lameter 已提交
2059 2060
 * Called from IPI handler with interrupts disabled.
 */
2061
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2062
{
2063
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2064

2065 2066 2067 2068
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2069
		unfreeze_partials(s, c);
2070
	}
C
Christoph Lameter 已提交
2071 2072 2073 2074 2075 2076
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2077
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2078 2079
}

2080 2081 2082 2083 2084
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2085
	return c->page || c->partial;
2086 2087
}

C
Christoph Lameter 已提交
2088 2089
static void flush_all(struct kmem_cache *s)
{
2090
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2091 2092
}

2093 2094 2095 2096
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2097
static inline int node_match(struct page *page, int node)
2098 2099
{
#ifdef CONFIG_NUMA
2100
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2101 2102 2103 2104 2105
		return 0;
#endif
	return 1;
}

2106
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2107 2108 2109 2110 2111
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2112 2113 2114 2115 2116 2117 2118
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2132
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2133

P
Pekka Enberg 已提交
2134 2135 2136
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2137 2138 2139
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2140
	int node;
C
Christoph Lameter 已提交
2141
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2142

2143 2144 2145
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2146
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2147
		nid, gfpflags);
2148 2149 2150
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2151

2152
	if (oo_order(s->min) > get_order(s->object_size))
2153 2154
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2155

C
Christoph Lameter 已提交
2156
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2157 2158 2159 2160
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2161 2162 2163
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2164

2165
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2166 2167
			node, nr_slabs, nr_objs, nr_free);
	}
2168
#endif
P
Pekka Enberg 已提交
2169 2170
}

2171 2172 2173
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2174
	void *freelist;
2175 2176
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2177

2178
	freelist = get_partial(s, flags, node, c);
2179

2180 2181 2182 2183
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2184
	if (page) {
2185
		c = raw_cpu_ptr(s->cpu_slab);
2186 2187 2188 2189 2190 2191 2192
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2193
		freelist = page->freelist;
2194 2195 2196 2197 2198 2199
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2200
		freelist = NULL;
2201

2202
	return freelist;
2203 2204
}

2205 2206 2207 2208 2209 2210 2211 2212
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2213
/*
2214 2215
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2216 2217 2218 2219
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2220 2221
 *
 * This function must be called with interrupt disabled.
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2232

2233
		new.counters = counters;
2234
		VM_BUG_ON(!new.frozen);
2235 2236 2237 2238

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2239
	} while (!__cmpxchg_double_slab(s, page,
2240 2241 2242 2243 2244 2245 2246
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2247
/*
2248 2249 2250 2251 2252 2253
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2254
 *
2255 2256 2257
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2258
 *
2259
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2260 2261
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2262
 */
2263 2264
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2265
{
2266
	void *freelist;
2267
	struct page *page;
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2279

2280 2281
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2282
		goto new_slab;
2283
redo:
2284

2285
	if (unlikely(!node_match(page, node))) {
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2298
	}
C
Christoph Lameter 已提交
2299

2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2312
	/* must check again c->freelist in case of cpu migration or IRQ */
2313 2314
	freelist = c->freelist;
	if (freelist)
2315
		goto load_freelist;
2316

2317
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2318

2319
	if (!freelist) {
2320 2321
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2322
		goto new_slab;
2323
	}
C
Christoph Lameter 已提交
2324

2325
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2326

2327
load_freelist:
2328 2329 2330 2331 2332
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2333
	VM_BUG_ON(!c->page->frozen);
2334
	c->freelist = get_freepointer(s, freelist);
2335 2336
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2337
	return freelist;
C
Christoph Lameter 已提交
2338 2339

new_slab:
2340

2341
	if (c->partial) {
2342 2343
		page = c->page = c->partial;
		c->partial = page->next;
2344 2345 2346
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2347 2348
	}

2349
	freelist = new_slab_objects(s, gfpflags, node, &c);
2350

2351
	if (unlikely(!freelist)) {
2352
		slab_out_of_memory(s, gfpflags, node);
2353 2354
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2355
	}
2356

2357
	page = c->page;
2358
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2359
		goto load_freelist;
2360

2361
	/* Only entered in the debug case */
2362 2363
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2364
		goto new_slab;	/* Slab failed checks. Next slab needed */
2365

2366
	deactivate_slab(s, page, get_freepointer(s, freelist));
2367 2368
	c->page = NULL;
	c->freelist = NULL;
2369
	local_irq_restore(flags);
2370
	return freelist;
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2383
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2384
		gfp_t gfpflags, int node, unsigned long addr)
2385 2386
{
	void **object;
2387
	struct kmem_cache_cpu *c;
2388
	struct page *page;
2389
	unsigned long tid;
2390

2391 2392
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2393
		return NULL;
2394 2395 2396 2397 2398 2399
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2400
	 *
2401 2402 2403
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2404
	 */
2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
	} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2419 2420 2421 2422 2423 2424 2425 2426

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2427
	object = c->freelist;
2428
	page = c->page;
D
Dave Hansen 已提交
2429
	if (unlikely(!object || !node_match(page, node))) {
2430
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2431 2432
		stat(s, ALLOC_SLOWPATH);
	} else {
2433 2434
		void *next_object = get_freepointer_safe(s, object);

2435
		/*
L
Lucas De Marchi 已提交
2436
		 * The cmpxchg will only match if there was no additional
2437 2438
		 * operation and if we are on the right processor.
		 *
2439 2440
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2441 2442 2443 2444
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2445 2446 2447
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2448
		 */
2449
		if (unlikely(!this_cpu_cmpxchg_double(
2450 2451
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2452
				next_object, next_tid(tid)))) {
2453 2454 2455 2456

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2457
		prefetch_freepointer(s, next_object);
2458
		stat(s, ALLOC_FASTPATH);
2459
	}
2460

2461
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2462
		memset(object, 0, s->object_size);
2463

2464
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2465

2466
	return object;
C
Christoph Lameter 已提交
2467 2468
}

2469 2470 2471 2472 2473 2474
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2475 2476
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2477
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2478

2479 2480
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2481 2482

	return ret;
C
Christoph Lameter 已提交
2483 2484 2485
}
EXPORT_SYMBOL(kmem_cache_alloc);

2486
#ifdef CONFIG_TRACING
2487 2488
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2489
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2490 2491 2492 2493
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2494 2495
#endif

C
Christoph Lameter 已提交
2496 2497 2498
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2499
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2500

2501
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2502
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2503 2504

	return ret;
C
Christoph Lameter 已提交
2505 2506 2507
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2508
#ifdef CONFIG_TRACING
2509
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2510
				    gfp_t gfpflags,
2511
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2512
{
2513
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2514 2515 2516 2517

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2518
}
2519
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2520
#endif
2521
#endif
E
Eduard - Gabriel Munteanu 已提交
2522

C
Christoph Lameter 已提交
2523
/*
2524 2525
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2526
 *
2527 2528 2529
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2530
 */
2531
static void __slab_free(struct kmem_cache *s, struct page *page,
2532
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2533 2534 2535
{
	void *prior;
	void **object = (void *)x;
2536 2537 2538 2539
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2540
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2541

2542
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2543

2544 2545
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2546
		return;
C
Christoph Lameter 已提交
2547

2548
	do {
2549 2550 2551 2552
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2553 2554 2555 2556 2557 2558
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2559
		if ((!new.inuse || !prior) && !was_frozen) {
2560

P
Peter Zijlstra 已提交
2561
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2562 2563

				/*
2564 2565 2566 2567
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2568 2569 2570
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2571
			} else { /* Needs to be taken off a list */
2572

2573
				n = get_node(s, page_to_nid(page));
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2585
		}
C
Christoph Lameter 已提交
2586

2587 2588 2589 2590
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2591

2592
	if (likely(!n)) {
2593 2594 2595 2596 2597

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2598
		if (new.frozen && !was_frozen) {
2599
			put_cpu_partial(s, page, 1);
2600 2601
			stat(s, CPU_PARTIAL_FREE);
		}
2602
		/*
2603 2604 2605
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2606 2607 2608 2609
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2610

2611
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2612 2613
		goto slab_empty;

C
Christoph Lameter 已提交
2614
	/*
2615 2616
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2617
	 */
2618 2619
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2620
			remove_full(s, n, page);
2621 2622
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2623
	}
2624
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2625 2626 2627
	return;

slab_empty:
2628
	if (prior) {
C
Christoph Lameter 已提交
2629
		/*
2630
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2631
		 */
2632
		remove_partial(n, page);
2633
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2634
	} else {
2635
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2636 2637
		remove_full(s, n, page);
	}
2638

2639
	spin_unlock_irqrestore(&n->list_lock, flags);
2640
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2641 2642 2643
	discard_slab(s, page);
}

2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2655
static __always_inline void slab_free(struct kmem_cache *s,
2656
			struct page *page, void *x, unsigned long addr)
2657 2658
{
	void **object = (void *)x;
2659
	struct kmem_cache_cpu *c;
2660
	unsigned long tid;
2661

2662 2663
	slab_free_hook(s, x);

2664 2665 2666 2667 2668 2669 2670
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2671 2672 2673 2674
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
	} while (IS_ENABLED(CONFIG_PREEMPT) && unlikely(tid != c->tid));
2675

2676 2677
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2678

2679
	if (likely(page == c->page)) {
2680
		set_freepointer(s, object, c->freelist);
2681

2682
		if (unlikely(!this_cpu_cmpxchg_double(
2683 2684 2685 2686 2687 2688 2689
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2690
		stat(s, FREE_FASTPATH);
2691
	} else
2692
		__slab_free(s, page, x, addr);
2693 2694 2695

}

C
Christoph Lameter 已提交
2696 2697
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2698 2699
	s = cache_from_obj(s, x);
	if (!s)
2700
		return;
2701
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2702
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2703 2704 2705 2706
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2707 2708 2709 2710
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2711 2712 2713 2714
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2715
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2726
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2727
static int slub_min_objects;
C
Christoph Lameter 已提交
2728 2729 2730 2731

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2732 2733 2734 2735
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2736
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2737 2738 2739 2740 2741 2742
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2743
 *
C
Christoph Lameter 已提交
2744 2745 2746 2747
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2748
 *
C
Christoph Lameter 已提交
2749 2750 2751 2752
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2753
 */
2754
static inline int slab_order(int size, int min_objects,
2755
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2756 2757 2758
{
	int order;
	int rem;
2759
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2760

2761
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2762
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2763

2764
	for (order = max(min_order,
2765 2766
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2767

2768
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2769

2770
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2771 2772
			continue;

2773
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2774

2775
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2776 2777 2778
			break;

	}
C
Christoph Lameter 已提交
2779

C
Christoph Lameter 已提交
2780 2781 2782
	return order;
}

2783
static inline int calculate_order(int size, int reserved)
2784 2785 2786 2787
{
	int order;
	int min_objects;
	int fraction;
2788
	int max_objects;
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2799 2800
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2801
	max_objects = order_objects(slub_max_order, size, reserved);
2802 2803
	min_objects = min(min_objects, max_objects);

2804
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2805
		fraction = 16;
2806 2807
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2808
					slub_max_order, fraction, reserved);
2809 2810 2811 2812
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2813
		min_objects--;
2814 2815 2816 2817 2818 2819
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2820
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2821 2822 2823 2824 2825 2826
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2827
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2828
	if (order < MAX_ORDER)
2829 2830 2831 2832
		return order;
	return -ENOSYS;
}

2833
static void
2834
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2835 2836 2837 2838
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2839
#ifdef CONFIG_SLUB_DEBUG
2840
	atomic_long_set(&n->nr_slabs, 0);
2841
	atomic_long_set(&n->total_objects, 0);
2842
	INIT_LIST_HEAD(&n->full);
2843
#endif
C
Christoph Lameter 已提交
2844 2845
}

2846
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2847
{
2848
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2849
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2850

2851
	/*
2852 2853
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2854
	 */
2855 2856
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2857 2858 2859 2860 2861

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2862

2863
	return 1;
2864 2865
}

2866 2867
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2868 2869 2870 2871 2872
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2873 2874
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2875
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2876
 */
2877
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2878 2879 2880 2881
{
	struct page *page;
	struct kmem_cache_node *n;

2882
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2883

2884
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2885 2886

	BUG_ON(!page);
2887
	if (page_to_nid(page) != node) {
2888 2889
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2890 2891
	}

C
Christoph Lameter 已提交
2892 2893
	n = page->freelist;
	BUG_ON(!n);
2894
	page->freelist = get_freepointer(kmem_cache_node, n);
2895
	page->inuse = 1;
2896
	page->frozen = 0;
2897
	kmem_cache_node->node[node] = n;
2898
#ifdef CONFIG_SLUB_DEBUG
2899
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2900
	init_tracking(kmem_cache_node, n);
2901
#endif
2902
	init_kmem_cache_node(n);
2903
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2904

2905
	/*
2906 2907
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2908
	 */
2909
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2910 2911 2912 2913 2914
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
2915
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
2916

C
Christoph Lameter 已提交
2917 2918
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
2919 2920 2921 2922
		s->node[node] = NULL;
	}
}

2923
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2924 2925 2926
{
	int node;

C
Christoph Lameter 已提交
2927
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2928 2929
		struct kmem_cache_node *n;

2930
		if (slab_state == DOWN) {
2931
			early_kmem_cache_node_alloc(node);
2932 2933
			continue;
		}
2934
		n = kmem_cache_alloc_node(kmem_cache_node,
2935
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2936

2937 2938 2939
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2940
		}
2941

C
Christoph Lameter 已提交
2942
		s->node[node] = n;
2943
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2944 2945 2946 2947
	}
	return 1;
}

2948
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2949 2950 2951 2952 2953 2954 2955 2956
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2957 2958 2959 2960
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2961
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2962 2963
{
	unsigned long flags = s->flags;
2964
	unsigned long size = s->object_size;
2965
	int order;
C
Christoph Lameter 已提交
2966

2967 2968 2969 2970 2971 2972 2973 2974
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2975 2976 2977 2978 2979 2980
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2981
			!s->ctor)
C
Christoph Lameter 已提交
2982 2983 2984 2985 2986 2987
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2988
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2989
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2990
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2991
	 */
2992
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2993
		size += sizeof(void *);
C
Christoph Lameter 已提交
2994
#endif
C
Christoph Lameter 已提交
2995 2996

	/*
C
Christoph Lameter 已提交
2997 2998
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2999 3000 3001 3002
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3003
		s->ctor)) {
C
Christoph Lameter 已提交
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3016
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3017 3018 3019 3020 3021 3022 3023
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3024
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3025 3026 3027 3028
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3029
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3030 3031 3032
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3033
#endif
C
Christoph Lameter 已提交
3034

C
Christoph Lameter 已提交
3035 3036 3037 3038 3039
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3040
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3041
	s->size = size;
3042 3043 3044
	if (forced_order >= 0)
		order = forced_order;
	else
3045
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3046

3047
	if (order < 0)
C
Christoph Lameter 已提交
3048 3049
		return 0;

3050
	s->allocflags = 0;
3051
	if (order)
3052 3053 3054
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3055
		s->allocflags |= GFP_DMA;
3056 3057 3058 3059

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3060 3061 3062
	/*
	 * Determine the number of objects per slab
	 */
3063 3064
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3065 3066
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3067

3068
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3069 3070
}

3071
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3072
{
3073
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3074
	s->reserved = 0;
C
Christoph Lameter 已提交
3075

3076 3077
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3078

3079
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3080
		goto error;
3081 3082 3083 3084 3085
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3086
		if (get_order(s->size) > get_order(s->object_size)) {
3087 3088 3089 3090 3091 3092
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3093

3094 3095
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3096 3097 3098 3099 3100
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3101 3102 3103 3104
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3120
	 * B) The number of objects in cpu partial slabs to extract from the
3121 3122
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3123
	 */
3124
	if (!kmem_cache_has_cpu_partial(s))
3125 3126
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3127 3128 3129 3130 3131 3132 3133 3134
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3135
#ifdef CONFIG_NUMA
3136
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3137
#endif
3138
	if (!init_kmem_cache_nodes(s))
3139
		goto error;
C
Christoph Lameter 已提交
3140

3141
	if (alloc_kmem_cache_cpus(s))
3142
		return 0;
3143

3144
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3145 3146 3147 3148
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3149 3150
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3151
	return -EINVAL;
C
Christoph Lameter 已提交
3152 3153
}

3154 3155 3156 3157 3158 3159
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3160 3161
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3162 3163
	if (!map)
		return;
3164
	slab_err(s, page, text, s->name);
3165 3166
	slab_lock(page);

3167
	get_map(s, page, map);
3168 3169 3170
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3171
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3172 3173 3174 3175
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3176
	kfree(map);
3177 3178 3179
#endif
}

C
Christoph Lameter 已提交
3180
/*
C
Christoph Lameter 已提交
3181
 * Attempt to free all partial slabs on a node.
3182 3183
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3184
 */
C
Christoph Lameter 已提交
3185
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3186 3187 3188
{
	struct page *page, *h;

3189
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3190
		if (!page->inuse) {
3191
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3192
			discard_slab(s, page);
3193 3194
		} else {
			list_slab_objects(s, page,
3195
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3196
		}
3197
	}
C
Christoph Lameter 已提交
3198 3199 3200
}

/*
C
Christoph Lameter 已提交
3201
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3202
 */
3203
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3204 3205
{
	int node;
C
Christoph Lameter 已提交
3206
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3207 3208 3209

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3210
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3211 3212
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3213 3214
			return 1;
	}
3215
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3216 3217 3218 3219
	free_kmem_cache_nodes(s);
	return 0;
}

3220
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3221
{
3222
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3223 3224 3225 3226 3227 3228 3229 3230
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3231
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3232 3233 3234 3235 3236 3237 3238 3239

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3240
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3241
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3242 3243 3244 3245 3246 3247 3248 3249

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3250
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3251 3252 3253 3254 3255 3256 3257 3258

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3259
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3260
	void *ret;
C
Christoph Lameter 已提交
3261

3262
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3263
		return kmalloc_large(size, flags);
3264

3265
	s = kmalloc_slab(size, flags);
3266 3267

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3268 3269
		return s;

3270
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3271

3272
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3273 3274

	return ret;
C
Christoph Lameter 已提交
3275 3276 3277
}
EXPORT_SYMBOL(__kmalloc);

3278
#ifdef CONFIG_NUMA
3279 3280
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3281
	struct page *page;
3282
	void *ptr = NULL;
3283

V
Vladimir Davydov 已提交
3284 3285
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3286
	if (page)
3287 3288
		ptr = page_address(page);

3289
	kmalloc_large_node_hook(ptr, size, flags);
3290
	return ptr;
3291 3292
}

C
Christoph Lameter 已提交
3293 3294
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3295
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3296
	void *ret;
C
Christoph Lameter 已提交
3297

3298
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3299 3300
		ret = kmalloc_large_node(size, flags, node);

3301 3302 3303
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3304 3305 3306

		return ret;
	}
3307

3308
	s = kmalloc_slab(size, flags);
3309 3310

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3311 3312
		return s;

3313
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3314

3315
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3316 3317

	return ret;
C
Christoph Lameter 已提交
3318 3319 3320 3321 3322 3323
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3324
	struct page *page;
C
Christoph Lameter 已提交
3325

3326
	if (unlikely(object == ZERO_SIZE_PTR))
3327 3328
		return 0;

3329 3330
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3331 3332
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3333
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3334
	}
C
Christoph Lameter 已提交
3335

3336
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3337
}
K
Kirill A. Shutemov 已提交
3338
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3339 3340 3341 3342

void kfree(const void *x)
{
	struct page *page;
3343
	void *object = (void *)x;
C
Christoph Lameter 已提交
3344

3345 3346
	trace_kfree(_RET_IP_, x);

3347
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3348 3349
		return;

3350
	page = virt_to_head_page(x);
3351
	if (unlikely(!PageSlab(page))) {
3352
		BUG_ON(!PageCompound(page));
3353
		kfree_hook(x);
V
Vladimir Davydov 已提交
3354
		__free_kmem_pages(page, compound_order(page));
3355 3356
		return;
	}
3357
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3358 3359 3360
}
EXPORT_SYMBOL(kfree);

3361
/*
C
Christoph Lameter 已提交
3362 3363 3364 3365 3366 3367 3368 3369
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3370
 */
3371
int __kmem_cache_shrink(struct kmem_cache *s)
3372 3373 3374 3375 3376 3377
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3378
	int objects = oo_objects(s->max);
3379
	struct list_head *slabs_by_inuse =
3380
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3381 3382 3383 3384 3385 3386
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3387
	for_each_kmem_cache_node(s, node, n) {
3388 3389 3390
		if (!n->nr_partial)
			continue;

3391
		for (i = 0; i < objects; i++)
3392 3393 3394 3395 3396
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3397
		 * Build lists indexed by the items in use in each slab.
3398
		 *
C
Christoph Lameter 已提交
3399 3400
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3401 3402
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3403 3404 3405
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3406 3407 3408
		}

		/*
C
Christoph Lameter 已提交
3409 3410
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3411
		 */
3412
		for (i = objects - 1; i > 0; i--)
3413 3414 3415
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3416 3417 3418 3419

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3420 3421 3422 3423 3424 3425
	}

	kfree(slabs_by_inuse);
	return 0;
}

3426 3427 3428 3429
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3430
	mutex_lock(&slab_mutex);
3431
	list_for_each_entry(s, &slab_caches, list)
3432
		__kmem_cache_shrink(s);
3433
	mutex_unlock(&slab_mutex);
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3445
	offline_node = marg->status_change_nid_normal;
3446 3447 3448 3449 3450 3451 3452 3453

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3454
	mutex_lock(&slab_mutex);
3455 3456 3457 3458 3459 3460
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3461
			 * and offline_pages() function shouldn't call this
3462 3463
			 * callback. So, we must fail.
			 */
3464
			BUG_ON(slabs_node(s, offline_node));
3465 3466

			s->node[offline_node] = NULL;
3467
			kmem_cache_free(kmem_cache_node, n);
3468 3469
		}
	}
3470
	mutex_unlock(&slab_mutex);
3471 3472 3473 3474 3475 3476 3477
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3478
	int nid = marg->status_change_nid_normal;
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3489
	 * We are bringing a node online. No memory is available yet. We must
3490 3491 3492
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3493
	mutex_lock(&slab_mutex);
3494 3495 3496 3497 3498 3499
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3500
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3501 3502 3503 3504
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3505
		init_kmem_cache_node(n);
3506 3507 3508
		s->node[nid] = n;
	}
out:
3509
	mutex_unlock(&slab_mutex);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3533 3534 3535 3536
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3537 3538 3539
	return ret;
}

3540 3541 3542 3543
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3544

C
Christoph Lameter 已提交
3545 3546 3547 3548
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3549 3550
/*
 * Used for early kmem_cache structures that were allocated using
3551 3552
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3553 3554
 */

3555
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3556 3557
{
	int node;
3558
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3559
	struct kmem_cache_node *n;
3560

3561
	memcpy(s, static_cache, kmem_cache->object_size);
3562

3563 3564 3565 3566 3567 3568
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3569
	for_each_kmem_cache_node(s, node, n) {
3570 3571
		struct page *p;

C
Christoph Lameter 已提交
3572 3573
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3574

L
Li Zefan 已提交
3575
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3576 3577
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3578 3579
#endif
	}
3580 3581
	list_add(&s->list, &slab_caches);
	return s;
3582 3583
}

C
Christoph Lameter 已提交
3584 3585
void __init kmem_cache_init(void)
{
3586 3587
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3588

3589 3590 3591
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3592 3593
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3594

3595 3596
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3597

3598
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3599 3600 3601 3602

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3603 3604 3605 3606
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3607

3608
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3609

3610 3611 3612 3613 3614
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3615
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3616 3617

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3618
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3619 3620 3621

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3622
#endif
C
Christoph Lameter 已提交
3623

3624
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3625
		cache_line_size(),
C
Christoph Lameter 已提交
3626 3627 3628 3629
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3630 3631 3632 3633
void __init kmem_cache_init_late(void)
{
}

3634
struct kmem_cache *
3635 3636
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3637 3638 3639
{
	struct kmem_cache *s;

3640
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3641
	if (s) {
3642 3643 3644
		int i;
		struct kmem_cache *c;

C
Christoph Lameter 已提交
3645
		s->refcount++;
3646

C
Christoph Lameter 已提交
3647 3648 3649 3650
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3651
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3652
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3653

3654 3655 3656 3657 3658 3659 3660 3661 3662
		for_each_memcg_cache_index(i) {
			c = cache_from_memcg_idx(s, i);
			if (!c)
				continue;
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3663 3664
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3665
			s = NULL;
3666
		}
3667
	}
C
Christoph Lameter 已提交
3668

3669 3670
	return s;
}
P
Pekka Enberg 已提交
3671

3672
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3673
{
3674 3675 3676 3677 3678
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3679

3680 3681 3682 3683
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3684
	memcg_propagate_slab_attrs(s);
3685 3686 3687
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3688

3689
	return err;
C
Christoph Lameter 已提交
3690 3691 3692 3693
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3694 3695
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3696
 */
3697
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3698 3699 3700
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3701 3702
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3703 3704 3705

	switch (action) {
	case CPU_UP_CANCELED:
3706
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3707
	case CPU_DEAD:
3708
	case CPU_DEAD_FROZEN:
3709
		mutex_lock(&slab_mutex);
3710 3711 3712 3713 3714
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3715
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3716 3717 3718 3719 3720 3721 3722
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3723
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3724
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3725
};
C
Christoph Lameter 已提交
3726 3727 3728

#endif

3729
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3730
{
3731
	struct kmem_cache *s;
3732
	void *ret;
3733

3734
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3735 3736
		return kmalloc_large(size, gfpflags);

3737
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3738

3739
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3740
		return s;
C
Christoph Lameter 已提交
3741

3742
	ret = slab_alloc(s, gfpflags, caller);
3743

L
Lucas De Marchi 已提交
3744
	/* Honor the call site pointer we received. */
3745
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3746 3747

	return ret;
C
Christoph Lameter 已提交
3748 3749
}

3750
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3751
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3752
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3753
{
3754
	struct kmem_cache *s;
3755
	void *ret;
3756

3757
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3758 3759 3760 3761 3762 3763 3764 3765
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3766

3767
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3768

3769
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3770
		return s;
C
Christoph Lameter 已提交
3771

3772
	ret = slab_alloc_node(s, gfpflags, node, caller);
3773

L
Lucas De Marchi 已提交
3774
	/* Honor the call site pointer we received. */
3775
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3776 3777

	return ret;
C
Christoph Lameter 已提交
3778
}
3779
#endif
C
Christoph Lameter 已提交
3780

3781
#ifdef CONFIG_SYSFS
3782 3783 3784 3785 3786 3787 3788 3789 3790
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3791
#endif
3792

3793
#ifdef CONFIG_SLUB_DEBUG
3794 3795
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3796 3797
{
	void *p;
3798
	void *addr = page_address(page);
3799 3800 3801 3802 3803 3804

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3805
	bitmap_zero(map, page->objects);
3806

3807 3808 3809 3810 3811
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3812 3813
	}

3814
	for_each_object(p, s, addr, page->objects)
3815
		if (!test_bit(slab_index(p, s, addr), map))
3816
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3817 3818 3819 3820
				return 0;
	return 1;
}

3821 3822
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3823
{
3824 3825 3826
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3827 3828
}

3829 3830
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3831 3832 3833 3834 3835 3836 3837 3838
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3839
		validate_slab_slab(s, page, map);
3840 3841 3842
		count++;
	}
	if (count != n->nr_partial)
3843 3844
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
3845 3846 3847 3848 3849

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3850
		validate_slab_slab(s, page, map);
3851 3852 3853
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
3854 3855
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
3856 3857 3858 3859 3860 3861

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3862
static long validate_slab_cache(struct kmem_cache *s)
3863 3864 3865
{
	int node;
	unsigned long count = 0;
3866
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3867
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
3868
	struct kmem_cache_node *n;
3869 3870 3871

	if (!map)
		return -ENOMEM;
3872 3873

	flush_all(s);
C
Christoph Lameter 已提交
3874
	for_each_kmem_cache_node(s, node, n)
3875 3876
		count += validate_slab_node(s, n, map);
	kfree(map);
3877 3878
	return count;
}
3879
/*
C
Christoph Lameter 已提交
3880
 * Generate lists of code addresses where slabcache objects are allocated
3881 3882 3883 3884 3885
 * and freed.
 */

struct location {
	unsigned long count;
3886
	unsigned long addr;
3887 3888 3889 3890 3891
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3892
	DECLARE_BITMAP(cpus, NR_CPUS);
3893
	nodemask_t nodes;
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3909
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3910 3911 3912 3913 3914 3915
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3916
	l = (void *)__get_free_pages(flags, order);
3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3930
				const struct track *track)
3931 3932 3933
{
	long start, end, pos;
	struct location *l;
3934
	unsigned long caddr;
3935
	unsigned long age = jiffies - track->when;
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
3967 3968
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
3969 3970
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
3971 3972 3973
			return 1;
		}

3974
		if (track->addr < caddr)
3975 3976 3977 3978 3979 3980
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
3981
	 * Not found. Insert new tracking element.
3982
	 */
3983
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3984 3985 3986 3987 3988 3989 3990 3991
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
3992 3993 3994 3995 3996 3997
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
3998 3999
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4000 4001
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4002 4003 4004 4005
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4006
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4007
		unsigned long *map)
4008
{
4009
	void *addr = page_address(page);
4010 4011
	void *p;

4012
	bitmap_zero(map, page->objects);
4013
	get_map(s, page, map);
4014

4015
	for_each_object(p, s, addr, page->objects)
4016 4017
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4018 4019 4020 4021 4022
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4023
	int len = 0;
4024
	unsigned long i;
4025
	struct loc_track t = { 0, 0, NULL };
4026
	int node;
E
Eric Dumazet 已提交
4027 4028
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4029
	struct kmem_cache_node *n;
4030

E
Eric Dumazet 已提交
4031 4032 4033
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4034
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4035
	}
4036 4037 4038
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4039
	for_each_kmem_cache_node(s, node, n) {
4040 4041 4042
		unsigned long flags;
		struct page *page;

4043
		if (!atomic_long_read(&n->nr_slabs))
4044 4045 4046 4047
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4048
			process_slab(&t, s, page, alloc, map);
4049
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4050
			process_slab(&t, s, page, alloc, map);
4051 4052 4053 4054
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4055
		struct location *l = &t.loc[i];
4056

H
Hugh Dickins 已提交
4057
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4058
			break;
4059
		len += sprintf(buf + len, "%7ld ", l->count);
4060 4061

		if (l->addr)
J
Joe Perches 已提交
4062
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4063
		else
4064
			len += sprintf(buf + len, "<not-available>");
4065 4066

		if (l->sum_time != l->min_time) {
4067
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4068 4069 4070
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4071
		} else
4072
			len += sprintf(buf + len, " age=%ld",
4073 4074 4075
				l->min_time);

		if (l->min_pid != l->max_pid)
4076
			len += sprintf(buf + len, " pid=%ld-%ld",
4077 4078
				l->min_pid, l->max_pid);
		else
4079
			len += sprintf(buf + len, " pid=%ld",
4080 4081
				l->min_pid);

R
Rusty Russell 已提交
4082 4083
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4084 4085
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4086 4087
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4088
						 to_cpumask(l->cpus));
4089 4090
		}

4091
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4092 4093
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4094 4095 4096
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4097 4098
		}

4099
		len += sprintf(buf + len, "\n");
4100 4101 4102
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4103
	kfree(map);
4104
	if (!t.count)
4105 4106
		len += sprintf(buf, "No data\n");
	return len;
4107
}
4108
#endif
4109

4110
#ifdef SLUB_RESILIENCY_TEST
4111
static void __init resiliency_test(void)
4112 4113 4114
{
	u8 *p;

4115
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4116

4117 4118 4119
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4120 4121 4122

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4123 4124
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4125 4126 4127 4128 4129 4130

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4131 4132 4133
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4134 4135 4136 4137 4138

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4139 4140 4141
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4142 4143
	validate_slab_cache(kmalloc_caches[6]);

4144
	pr_err("\nB. Corruption after free\n");
4145 4146 4147
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4148
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4149 4150 4151 4152 4153
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4154
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4155 4156 4157 4158 4159
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4160
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4161 4162 4163 4164 4165 4166 4167 4168
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4169
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4170
enum slab_stat_type {
4171 4172 4173 4174 4175
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4176 4177
};

4178
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4179 4180 4181
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4182
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4183

4184 4185
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4186 4187 4188 4189 4190 4191
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4192
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4193 4194
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4195

4196 4197
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4198

4199
		for_each_possible_cpu(cpu) {
4200 4201
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4202
			int node;
4203
			struct page *page;
4204

4205
			page = ACCESS_ONCE(c->page);
4206 4207
			if (!page)
				continue;
4208

4209 4210 4211 4212 4213 4214 4215
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4216

4217 4218 4219 4220
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4221
			if (page) {
L
Li Zefan 已提交
4222 4223 4224 4225 4226 4227 4228
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4229 4230
				total += x;
				nodes[node] += x;
4231
			}
C
Christoph Lameter 已提交
4232 4233 4234
		}
	}

4235
	get_online_mems();
4236
#ifdef CONFIG_SLUB_DEBUG
4237
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4238 4239 4240
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4241

4242 4243 4244 4245 4246
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4247
			else
4248
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4249 4250 4251 4252
			total += x;
			nodes[node] += x;
		}

4253 4254 4255
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4256
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4257

C
Christoph Lameter 已提交
4258
		for_each_kmem_cache_node(s, node, n) {
4259 4260 4261 4262
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4263
			else
4264
				x = n->nr_partial;
C
Christoph Lameter 已提交
4265 4266 4267 4268 4269 4270
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4271
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4272 4273 4274 4275
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4276
	put_online_mems();
C
Christoph Lameter 已提交
4277 4278 4279 4280
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4281
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4282 4283 4284
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4285
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4286

C
Christoph Lameter 已提交
4287
	for_each_kmem_cache_node(s, node, n)
4288
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4289
			return 1;
C
Christoph Lameter 已提交
4290

C
Christoph Lameter 已提交
4291 4292
	return 0;
}
4293
#endif
C
Christoph Lameter 已提交
4294 4295

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4296
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4297 4298 4299 4300 4301 4302 4303 4304

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4305 4306
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4307 4308 4309

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4310
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4326
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4327 4328 4329 4330 4331
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4332
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4333 4334 4335
}
SLAB_ATTR_RO(objs_per_slab);

4336 4337 4338
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4339 4340 4341
	unsigned long order;
	int err;

4342
	err = kstrtoul(buf, 10, &order);
4343 4344
	if (err)
		return err;
4345 4346 4347 4348 4349 4350 4351 4352

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4353 4354
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4355
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4356
}
4357
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4358

4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4370
	err = kstrtoul(buf, 10, &min);
4371 4372 4373
	if (err)
		return err;

4374
	set_min_partial(s, min);
4375 4376 4377 4378
	return length;
}
SLAB_ATTR(min_partial);

4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4390
	err = kstrtoul(buf, 10, &objects);
4391 4392
	if (err)
		return err;
4393
	if (objects && !kmem_cache_has_cpu_partial(s))
4394
		return -EINVAL;
4395 4396 4397 4398 4399 4400 4401

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4402 4403
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4404 4405 4406
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4407 4408 4409 4410 4411
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4412
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4413 4414 4415 4416 4417
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4418
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4419 4420 4421 4422 4423
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4424
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4425 4426 4427 4428 4429
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4430
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4431 4432 4433
}
SLAB_ATTR_RO(objects);

4434 4435 4436 4437 4438 4439
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4506 4507 4508 4509 4510 4511
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4512
#ifdef CONFIG_SLUB_DEBUG
4513 4514 4515 4516 4517 4518
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4519 4520 4521 4522 4523 4524
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4525 4526 4527 4528 4529 4530 4531 4532 4533
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4534 4535
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4536
		s->flags |= SLAB_DEBUG_FREE;
4537
	}
C
Christoph Lameter 已提交
4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4550 4551 4552 4553 4554 4555 4556 4557
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
4558
	s->flags &= ~SLAB_TRACE;
4559 4560
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4561
		s->flags |= SLAB_TRACE;
4562
	}
C
Christoph Lameter 已提交
4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4579 4580
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4581
		s->flags |= SLAB_RED_ZONE;
4582
	}
4583
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4600 4601
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4602
		s->flags |= SLAB_POISON;
4603
	}
4604
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4621 4622
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4623
		s->flags |= SLAB_STORE_USER;
4624
	}
4625
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4626 4627 4628 4629
	return length;
}
SLAB_ATTR(store_user);

4630 4631 4632 4633 4634 4635 4636 4637
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4638 4639 4640 4641 4642 4643 4644 4645
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4646 4647
}
SLAB_ATTR(validate);
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
4675 4676 4677
	if (s->refcount > 1)
		return -EINVAL;

4678 4679 4680 4681 4682 4683
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4684
#endif
4685

4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4705
#ifdef CONFIG_NUMA
4706
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4707
{
4708
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4709 4710
}

4711
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4712 4713
				const char *buf, size_t length)
{
4714 4715 4716
	unsigned long ratio;
	int err;

4717
	err = kstrtoul(buf, 10, &ratio);
4718 4719 4720
	if (err)
		return err;

4721
	if (ratio <= 100)
4722
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4723 4724 4725

	return length;
}
4726
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4727 4728
#endif

4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4741
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4742 4743 4744 4745 4746 4747 4748

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4749
#ifdef CONFIG_SMP
4750 4751
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4752
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4753
	}
4754
#endif
4755 4756 4757 4758
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4759 4760 4761 4762 4763
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4764
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4765 4766
}

4767 4768 4769 4770 4771
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4792
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4793 4794 4795 4796 4797 4798 4799
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4800
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4801
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4802 4803
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4804 4805
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4806 4807
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4808 4809
#endif

P
Pekka Enberg 已提交
4810
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4811 4812 4813 4814
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4815
	&min_partial_attr.attr,
4816
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4817
	&objects_attr.attr,
4818
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4819 4820 4821 4822 4823 4824 4825 4826
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4827
	&shrink_attr.attr,
4828
	&reserved_attr.attr,
4829
	&slabs_cpu_partial_attr.attr,
4830
#ifdef CONFIG_SLUB_DEBUG
4831 4832 4833 4834
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4835 4836 4837
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4838
	&validate_attr.attr,
4839 4840
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4841
#endif
C
Christoph Lameter 已提交
4842 4843 4844 4845
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4846
	&remote_node_defrag_ratio_attr.attr,
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4859
	&alloc_node_mismatch_attr.attr,
4860 4861 4862 4863 4864 4865 4866
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4867
	&deactivate_bypass_attr.attr,
4868
	&order_fallback_attr.attr,
4869 4870
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4871 4872
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4873 4874
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4875
#endif
4876 4877 4878 4879
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
4921 4922 4923
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
4924

4925 4926 4927 4928
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
4946
		for_each_memcg_cache_index(i) {
4947
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
4948 4949 4950 4951 4952 4953
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
4954 4955 4956
	return err;
}

4957 4958 4959 4960 4961
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
4962
	struct kmem_cache *root_cache;
4963

4964
	if (is_root_cache(s))
4965 4966
		return;

4967 4968
	root_cache = s->memcg_params->root_cache;

4969 4970 4971 4972
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
4973
	if (!root_cache->max_attr_size)
4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
4995
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
4996 4997 4998 4999 5000 5001 5002 5003
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5004
		attr->show(root_cache, buf);
5005 5006 5007 5008 5009 5010 5011 5012
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5013 5014 5015 5016 5017
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5018
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5019 5020 5021 5022 5023 5024
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5025
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5037
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5038 5039 5040
	.filter = uevent_filter,
};

5041
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5042

5043 5044 5045 5046 5047 5048 5049 5050 5051
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
		return s->memcg_params->root_cache->memcg_kset;
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5052 5053 5054
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5055 5056
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5079 5080
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5081 5082 5083
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5084

C
Christoph Lameter 已提交
5085 5086 5087 5088 5089 5090 5091 5092
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5093
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5094 5095 5096 5097 5098 5099 5100

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5101
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5102 5103 5104 5105 5106 5107 5108 5109 5110
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5111
	s->kobj.kset = cache_kset(s);
5112
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5113 5114
	if (err)
		goto out_put_kobj;
C
Christoph Lameter 已提交
5115 5116

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5117 5118
	if (err)
		goto out_del_kobj;
5119 5120 5121 5122 5123

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5124 5125
			err = -ENOMEM;
			goto out_del_kobj;
5126 5127 5128 5129
		}
	}
#endif

C
Christoph Lameter 已提交
5130 5131 5132 5133 5134
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5135 5136 5137 5138 5139 5140 5141 5142 5143
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5144 5145
}

5146
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5147
{
5148
	if (slab_state < FULL)
5149 5150 5151 5152 5153 5154
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5155 5156 5157
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5158 5159
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5160
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5161 5162 5163 5164
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5165
 * available lest we lose that information.
C
Christoph Lameter 已提交
5166 5167 5168 5169 5170 5171 5172
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5173
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5174 5175 5176 5177 5178

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5179
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5180 5181 5182
		/*
		 * If we have a leftover link then remove it.
		 */
5183 5184
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5200
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5201 5202
	int err;

5203
	mutex_lock(&slab_mutex);
5204

5205
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5206
	if (!slab_kset) {
5207
		mutex_unlock(&slab_mutex);
5208
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5209 5210 5211
		return -ENOSYS;
	}

5212
	slab_state = FULL;
5213

5214
	list_for_each_entry(s, &slab_caches, list) {
5215
		err = sysfs_slab_add(s);
5216
		if (err)
5217 5218
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5219
	}
C
Christoph Lameter 已提交
5220 5221 5222 5223 5224 5225

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5226
		if (err)
5227 5228
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5229 5230 5231
		kfree(al);
	}

5232
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5233 5234 5235 5236 5237
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5238
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5239 5240 5241 5242

/*
 * The /proc/slabinfo ABI
 */
5243
#ifdef CONFIG_SLABINFO
5244
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5245 5246
{
	unsigned long nr_slabs = 0;
5247 5248
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5249
	int node;
C
Christoph Lameter 已提交
5250
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5251

C
Christoph Lameter 已提交
5252
	for_each_kmem_cache_node(s, node, n) {
5253 5254
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5255
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5256 5257
	}

5258 5259 5260 5261 5262 5263
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5264 5265
}

5266
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5267 5268 5269
{
}

5270 5271
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5272
{
5273
	return -EIO;
5274
}
5275
#endif /* CONFIG_SLABINFO */