process.c 51.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45 46 47 48 49 50

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
51
#include <asm/machdep.h>
52
#include <asm/time.h>
53
#include <asm/runlatch.h>
54
#include <asm/syscalls.h>
55
#include <asm/switch_to.h>
56
#include <asm/tm.h>
57
#include <asm/debug.h>
58 59 60
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
61
#include <asm/code-patching.h>
62
#include <asm/exec.h>
63
#include <asm/livepatch.h>
64
#include <asm/cpu_has_feature.h>
65
#include <asm/asm-prototypes.h>
66

67 68
#include <linux/kprobes.h>
#include <linux/kdebug.h>
69

70 71 72 73 74 75 76
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

77 78
extern unsigned long _get_SP(void);

79
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80
static void check_if_tm_restore_required(struct task_struct *tsk)
81 82 83 84 85 86 87 88 89 90
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
91
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 93 94
		set_thread_flag(TIF_RESTORE_TM);
	}
}
95 96 97 98 99

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
100
#else
101
static inline bool msr_tm_active(unsigned long msr) { return false; }
102
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 104
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

105 106 107 108 109 110 111 112 113 114 115 116
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

117
unsigned long msr_check_and_set(unsigned long bits)
118
{
119 120
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
121

122
	newmsr = oldmsr | bits;
123 124

#ifdef CONFIG_VSX
125
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 127
		newmsr |= MSR_VSX;
#endif
128

129 130
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
131 132

	return newmsr;
133
}
134

135
void __msr_check_and_clear(unsigned long bits)
136 137 138 139 140 141 142 143 144 145 146 147 148 149
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
150
EXPORT_SYMBOL(__msr_check_and_clear);
151 152

#ifdef CONFIG_PPC_FPU
153 154
void __giveup_fpu(struct task_struct *tsk)
{
155 156
	unsigned long msr;

157
	save_fpu(tsk);
158 159
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
160 161
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
162
		msr &= ~MSR_VSX;
163
#endif
164
	tsk->thread.regs->msr = msr;
165 166
}

167 168 169 170 171
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
172
	__giveup_fpu(tsk);
173
	msr_check_and_clear(MSR_FP);
174 175 176
}
EXPORT_SYMBOL(giveup_fpu);

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
197
			 * the FP register state on context switch,
198 199 200 201
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
202
			giveup_fpu(tsk);
203 204 205 206
		}
		preempt_enable();
	}
}
207
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 209 210

void enable_kernel_fp(void)
{
211 212
	unsigned long cpumsr;

213 214
	WARN_ON(preemptible());

215
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
216

217 218
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
219 220 221 222 223 224 225 226 227
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
228
		__giveup_fpu(current);
229
	}
230 231
}
EXPORT_SYMBOL(enable_kernel_fp);
232

233 234
static int restore_fp(struct task_struct *tsk)
{
235
	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
236 237 238 239 240 241 242 243
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
244
#endif /* CONFIG_PPC_FPU */
245 246

#ifdef CONFIG_ALTIVEC
247 248
#define loadvec(thr) ((thr).load_vec)

249 250
static void __giveup_altivec(struct task_struct *tsk)
{
251 252
	unsigned long msr;

253
	save_altivec(tsk);
254 255
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
256 257
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
258
		msr &= ~MSR_VSX;
259
#endif
260
	tsk->thread.regs->msr = msr;
261 262
}

263 264 265 266
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

267
	msr_check_and_set(MSR_VEC);
268
	__giveup_altivec(tsk);
269
	msr_check_and_clear(MSR_VEC);
270 271 272
}
EXPORT_SYMBOL(giveup_altivec);

273 274
void enable_kernel_altivec(void)
{
275 276
	unsigned long cpumsr;

277 278
	WARN_ON(preemptible());

279
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
280

281 282
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
283 284 285 286 287 288 289 290 291
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
292
		__giveup_altivec(current);
293
	}
294 295 296 297 298 299 300 301 302 303 304 305 306
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
307
			giveup_altivec(tsk);
308 309 310 311
		}
		preempt_enable();
	}
}
312
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
313 314 315

static int restore_altivec(struct task_struct *tsk)
{
316 317
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
318 319 320 321 322 323 324 325 326 327 328
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
329 330
#endif /* CONFIG_ALTIVEC */

331
#ifdef CONFIG_VSX
332
static void __giveup_vsx(struct task_struct *tsk)
333
{
334 335 336 337 338 339 340 341 342 343
	unsigned long msr = tsk->thread.regs->msr;

	/*
	 * We should never be ssetting MSR_VSX without also setting
	 * MSR_FP and MSR_VEC
	 */
	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));

	/* __giveup_fpu will clear MSR_VSX */
	if (msr & MSR_FP)
344
		__giveup_fpu(tsk);
345
	if (msr & MSR_VEC)
346
		__giveup_altivec(tsk);
347 348 349 350 351 352 353
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
354
	__giveup_vsx(tsk);
355
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
356
}
357

358 359
void enable_kernel_vsx(void)
{
360 361
	unsigned long cpumsr;

362 363
	WARN_ON(preemptible());

364
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
365

366
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
367
		check_if_tm_restore_required(current);
368 369 370 371 372 373 374 375 376
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
377
		__giveup_vsx(current);
A
Anton Blanchard 已提交
378
	}
379 380 381 382 383 384 385 386 387 388 389 390 391 392
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
393
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
394 395 396 397 398 399 400 401 402 403 404 405

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
406 407
#endif /* CONFIG_VSX */

408
#ifdef CONFIG_SPE
409 410 411 412
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

413
	msr_check_and_set(MSR_SPE);
414
	__giveup_spe(tsk);
415
	msr_check_and_clear(MSR_SPE);
416 417
}
EXPORT_SYMBOL(giveup_spe);
418 419 420 421 422

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

423
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
424

425 426
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
427
		__giveup_spe(current);
428
	}
429 430 431 432 433 434 435 436 437
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
438
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
439
			giveup_spe(tsk);
440 441 442 443 444 445
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
483
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
484

485 486
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

A
Anton Blanchard 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

504 505 506 507
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

508 509 510 511
	/*
	 * Syscall exit makes a similar initial check before branching
	 * to restore_math. Keep them in synch.
	 */
512 513
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

553 554 555 556 557 558 559
	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

	if (usermsr & MSR_FP)
		save_fpu(tsk);

	if (usermsr & MSR_VEC)
		save_altivec(tsk);
560 561 562 563 564 565 566

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

567 568 569 570 571
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
572
		save_all(tsk);
573 574 575 576 577 578 579 580 581 582 583

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

584 585 586 587 588 589
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

590
	current->thread.trap_nr = signal_code;
591 592 593 594 595 596 597 598 599 600 601 602
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
603
void do_break (struct pt_regs *regs, unsigned long address,
604 605 606 607
		    unsigned long error_code)
{
	siginfo_t info;

608
	current->thread.trap_nr = TRAP_HWBKPT;
609 610 611 612
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

613
	if (debugger_break_match(regs))
614 615
		return;

616 617
	/* Clear the breakpoint */
	hw_breakpoint_disable();
618 619 620 621 622 623 624 625

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
626
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
627

628
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
629

630 631 632 633 634 635
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
636
	thread->debug.iac1 = thread->debug.iac2 = 0;
637
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
638
	thread->debug.iac3 = thread->debug.iac4 = 0;
639
#endif
640
	thread->debug.dac1 = thread->debug.dac2 = 0;
641
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
642
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
643
#endif
644
	thread->debug.dbcr0 = 0;
645 646 647 648
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
649
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
650 651 652 653 654
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
655
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
656
#else
657
	thread->debug.dbcr1 = 0;
658 659 660
#endif
}

661
static void prime_debug_regs(struct debug_reg *debug)
662
{
663 664 665 666 667 668 669
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

670 671
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
672
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
673 674
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
675
#endif
676 677
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
678
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
679 680
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
681
#endif
682 683
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
684
#ifdef CONFIG_BOOKE
685
	mtspr(SPRN_DBCR2, debug->dbcr2);
686 687 688 689 690 691 692
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
693
void switch_booke_debug_regs(struct debug_reg *new_debug)
694
{
695
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
696 697
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
698
}
699
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
700
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
701
#ifndef CONFIG_HAVE_HW_BREAKPOINT
702 703
static void set_debug_reg_defaults(struct thread_struct *thread)
{
704 705
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
706
	set_breakpoint(&thread->hw_brk);
707
}
708
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
709 710
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

711
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
712 713
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
714
	mtspr(SPRN_DAC1, dabr);
715 716 717
#ifdef CONFIG_PPC_47x
	isync();
#endif
718 719
	return 0;
}
720
#elif defined(CONFIG_PPC_BOOK3S)
721 722
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
723
	mtspr(SPRN_DABR, dabr);
724 725
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
726
	return 0;
727
}
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

770 771
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
772
	unsigned long dawr, dawrx, mrd;
773 774 775 776 777 778 779 780 781

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
782 783 784 785 786 787 788 789
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
790 791 792 793 794 795 796 797

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

798
void __set_breakpoint(struct arch_hw_breakpoint *brk)
799
{
800
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
801

802
	if (cpu_has_feature(CPU_FTR_DAWR))
803 804 805
		set_dawr(brk);
	else
		set_dabr(brk);
806
}
807

808 809 810 811 812 813 814
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

815 816 817
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
818

819 820 821 822 823 824 825 826 827 828 829
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
830

831
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
832 833 834 835 836 837

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

838 839 840
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
841 842 843 844 845 846 847 848 849 850 851 852 853
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
854
	 * benefit of checking for a potential TM bad thing exception.
855 856 857 858
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));

878
	giveup_all(container_of(thr, struct task_struct, thread));
879

880
	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
881 882 883 884 885 886 887 888
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

889 890 891 892 893 894 895
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
896 897
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

915
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
916 917 918 919 920 921 922 923 924 925 926 927 928

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

929 930 931 932 933 934 935 936
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

937 938 939
	if (!(thread->regs->msr & MSR_TM))
		return;

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

957
static inline void tm_recheckpoint_new_task(struct task_struct *new)
958 959 960 961 962 963 964 965 966 967 968
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
969
	 * unavailable later, we are unable to determine which set of FP regs
970 971
	 * need to be restored.
	 */
972
	if (!tm_enabled(new))
973 974
		return;

975 976
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
977
		return;
978
	}
979
	msr = new->thread.ckpt_regs.msr;
980 981 982 983 984 985 986
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	tm_recheckpoint(&new->thread, msr);

987 988 989 990 991 992
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
993 994 995 996 997 998

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

999 1000
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
1001 1002
{
	if (cpu_has_feature(CPU_FTR_TM)) {
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1013
		tm_recheckpoint_new_task(new);
1014 1015
	}
}
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1035 1036 1037 1038 1039 1040
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1041 1042 1043 1044
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1045
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1046
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1047

1048 1049 1050
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1051
#ifdef CONFIG_ALTIVEC
1052 1053 1054
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1055 1056
	restore_math(regs);

1057 1058 1059
	regs->msr |= msr_diff;
}

1060 1061
#else
#define tm_recheckpoint_new_task(new)
1062
#define __switch_to_tm(prev, new)
1063
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1064

1065 1066 1067
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1068
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1104
		if (new_thread->dscr_inherit)
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1119 1120 1121
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1122 1123 1124 1125 1126 1127
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1128 1129 1130 1131 1132
#ifdef CONFIG_PPC_BOOK3S_64
#define CP_SIZE 128
static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
#endif

1133 1134 1135 1136 1137
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1138 1139 1140
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1141

1142 1143 1144
	new_thread = &new->thread;
	old_thread = &current->thread;

1145 1146
	WARN_ON(!irqs_disabled());

1147 1148 1149 1150 1151
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1152
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1153 1154 1155 1156 1157 1158
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1159 1160
#endif /* CONFIG_PPC64 */

1161
#ifdef CONFIG_PPC_STD_MMU_64
1162
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1163 1164 1165 1166 1167 1168
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1169
#endif /* CONFIG_PPC_STD_MMU_64 */
1170

A
Anton Blanchard 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1193 1194
	__switch_to_tm(prev, new);

1195 1196 1197 1198 1199 1200 1201 1202
	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}
1203

1204 1205 1206 1207 1208 1209 1210
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1211 1212
	restore_sprs(old_thread, new_thread);

1213 1214
	last = _switch(old_thread, new_thread);

1215
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1216 1217
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1218
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1219 1220
		batch->active = 1;
	}
1221

1222
	if (current_thread_info()->task->thread.regs) {
1223
		restore_math(current_thread_info()->task->thread.regs);
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243

		/*
		 * The copy-paste buffer can only store into foreign real
		 * addresses, so unprivileged processes can not see the
		 * data or use it in any way unless they have foreign real
		 * mappings. We don't have a VAS driver that allocates those
		 * yet, so no cpabort is required.
		 */
		if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
			/*
			 * DD1 allows paste into normal system memory, so we
			 * do an unpaired copy here to clear the buffer and
			 * prevent a covert channel being set up.
			 *
			 * cpabort is not used because it is quite expensive.
			 */
			asm volatile(PPC_COPY(%0, %1)
					: : "r"(dummy_copy_buffer), "r"(0));
		}
	}
1244
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1245

1246 1247 1248
	return last;
}

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1263
			pr_cont("\n");
1264

1265 1266 1267 1268 1269 1270 1271 1272
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1273
		if (!__kernel_text_address(pc) ||
1274
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1275
			pr_cont("XXXXXXXX ");
1276 1277
		} else {
			if (regs->nip == pc)
1278
				pr_cont("<%08x> ", instr);
1279
			else
1280
				pr_cont("%08x ", instr);
1281 1282 1283 1284 1285
		}

		pc += sizeof(int);
	}

1286
	pr_cont("\n");
1287 1288
}

1289
struct regbit {
1290 1291
	unsigned long bit;
	const char *name;
1292 1293 1294
};

static struct regbit msr_bits[] = {
1295 1296 1297 1298 1299 1300 1301 1302 1303
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1304 1305 1306 1307
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1308
#ifdef CONFIG_BOOKE
1309
	{MSR_DE,	"DE"},
1310 1311 1312 1313
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1314 1315
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1316 1317 1318 1319 1320
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1321 1322 1323
	{0,		NULL}
};

1324
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1325
{
1326
	const char *s = "";
1327 1328 1329

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1330
			pr_cont("%s%s", s, bits->name);
1331
			s = sep;
1332
		}
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1353
		pr_cont(",TM[");
1354
		print_bits(val, msr_tm_bits, "");
1355
		pr_cont("]");
1356 1357 1358 1359 1360 1361 1362 1363
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1364
	pr_cont("<");
1365 1366
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1367
	pr_cont(">");
1368 1369 1370
}

#ifdef CONFIG_PPC64
1371
#define REG		"%016lx"
1372 1373 1374
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1375
#define REG		"%08lx"
1376 1377 1378 1379
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1380 1381 1382 1383
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1384 1385
	show_regs_print_info(KERN_DEFAULT);

1386 1387 1388
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1389
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1390
	printk("MSR: "REG" ", regs->msr);
1391
	print_msr_bits(regs->msr);
1392
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1393
	trap = TRAP(regs);
1394
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1395
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1396
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1397
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1398
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1399
#else
1400
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1401 1402
#endif
#ifdef CONFIG_PPC64
1403
	pr_cont("SOFTE: %ld ", regs->softe);
1404 1405
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1406
	if (MSR_TM_ACTIVE(regs->msr))
1407
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1408
#endif
1409 1410

	for (i = 0;  i < 32;  i++) {
1411
		if ((i % REGS_PER_LINE) == 0)
1412 1413
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1414
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1415 1416
			break;
	}
1417
	pr_cont("\n");
1418 1419 1420 1421 1422
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1423 1424
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1425
#endif
1426
	show_stack(current, (unsigned long *) regs->gpr[1]);
1427 1428
	if (!user_mode(regs))
		show_instructions(regs);
1429 1430 1431 1432
}

void flush_thread(void)
{
1433
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1434
	flush_ptrace_hw_breakpoint(current);
1435
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1436
	set_debug_reg_defaults(&current->thread);
1437
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1438 1439 1440 1441 1442 1443 1444 1445
}

void
release_thread(struct task_struct *t)
{
}

/*
1446 1447
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1448
 */
1449
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1450
{
1451
	flush_all_to_thread(src);
1452 1453 1454 1455 1456 1457
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1458 1459 1460
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1461
	 */
1462
	__switch_to_tm(src, src);
1463

1464
	*dst = *src;
1465 1466 1467

	clear_task_ebb(dst);

1468
	return 0;
1469 1470
}

1471 1472 1473 1474 1475 1476
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1477 1478 1479
	if (radix_enabled())
		return;

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1491 1492 1493
/*
 * Copy a thread..
 */
1494

1495 1496 1497
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1498
int copy_thread(unsigned long clone_flags, unsigned long usp,
1499
		unsigned long kthread_arg, struct task_struct *p)
1500 1501 1502
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1503 1504
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1505
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1506 1507 1508
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1509 1510 1511 1512

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1513
	if (unlikely(p->flags & PF_KTHREAD)) {
1514
		/* kernel thread */
A
Al Viro 已提交
1515
		memset(childregs, 0, sizeof(struct pt_regs));
1516
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1517 1518 1519
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1520
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1521
		clear_tsk_thread_flag(p, TIF_32BIT);
1522
		childregs->softe = 1;
1523
#endif
1524
		childregs->gpr[15] = kthread_arg;
1525
		p->thread.regs = NULL;	/* no user register state */
1526
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1527
		f = ret_from_kernel_thread;
1528
	} else {
1529
		/* user thread */
1530
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1531 1532
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1533 1534
		if (usp)
			childregs->gpr[1] = usp;
1535
		p->thread.regs = childregs;
A
Al Viro 已提交
1536
		childregs->gpr[3] = 0;  /* Result from fork() */
1537 1538
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1539
			if (!is_32bit_task())
1540 1541 1542 1543 1544
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1545 1546

		f = ret_from_fork;
1547
	}
1548
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1559
	((unsigned long *)sp)[0] = 0;
1560 1561 1562 1563
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1564
#ifdef CONFIG_PPC32
1565 1566
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1567
#endif
1568 1569 1570 1571
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1572 1573 1574 1575 1576
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1577 1578
	setup_ksp_vsid(p, sp);

1579 1580
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1581
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1582
		p->thread.dscr = mfspr(SPRN_DSCR);
1583
	}
1584 1585
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1586
#endif
1587
	kregs->nip = ppc_function_entry(f);
1588 1589 1590 1591 1592 1593
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1594
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1595
{
1596 1597 1598 1599
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1600 1601 1602 1603 1604
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1605 1606
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1607 1608
	}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1619 1620 1621 1622 1623 1624
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1625

1626 1627 1628 1629 1630 1631 1632
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1633 1634 1635
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1636
	regs->msr = MSR_USER;
1637
#else
1638
	if (!is_32bit_task()) {
1639
		unsigned long entry;
1640

1641 1642 1643
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1644

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1676 1677 1678
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1679 1680 1681 1682
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1683 1684
	}
#endif
1685 1686 1687
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1688
	current->thread.load_fp = 0;
1689
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1690
	current->thread.fp_save_area = NULL;
1691
#ifdef CONFIG_ALTIVEC
1692 1693
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1694
	current->thread.vr_save_area = NULL;
1695 1696
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
1697
	current->thread.load_vec = 0;
1698 1699 1700 1701 1702 1703 1704
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1705 1706 1707 1708
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
1709
	current->thread.load_tm = 0;
1710
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1711
}
1712
EXPORT_SYMBOL(start_thread);
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1727
		if (cpu_has_feature(CPU_FTR_SPE)) {
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1741 1742 1743 1744 1745 1746
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1747 1748 1749 1750
#else
		return -EINVAL;
#endif
	}
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1763 1764 1765 1766 1767 1768 1769 1770 1771
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1786
			val = tsk->thread.fpexc_mode;
1787
		} else
1788
			return -EINVAL;
1789 1790 1791 1792 1793 1794 1795 1796
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1876
int validate_sp(unsigned long sp, struct task_struct *p,
1877 1878
		       unsigned long nbytes)
{
A
Al Viro 已提交
1879
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1880 1881 1882 1883 1884

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1885
	return valid_irq_stack(sp, p, nbytes);
1886 1887
}

1888 1889
EXPORT_SYMBOL(validate_sp);

1890 1891 1892 1893 1894 1895 1896 1897 1898
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1899
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1900 1901 1902 1903
		return 0;

	do {
		sp = *(unsigned long *)sp;
1904
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1905 1906
			return 0;
		if (count > 0) {
1907
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1908 1909 1910 1911 1912 1913
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1914

1915
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1916 1917 1918 1919 1920 1921

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1922 1923 1924
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1925
	unsigned long rth = (unsigned long)return_to_handler;
1926
#endif
1927 1928 1929 1930 1931 1932

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1933
			sp = current_stack_pointer();
1934 1935 1936 1937 1938 1939 1940
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1941
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1942 1943 1944 1945
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1946
		ip = stack[STACK_FRAME_LR_SAVE];
1947
		if (!firstframe || ip != lr) {
1948
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1949
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1950
			if ((ip == rth) && curr_frame >= 0) {
1951
				pr_cont(" (%pS)",
1952 1953 1954 1955
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1956
			if (firstframe)
1957 1958
				pr_cont(" (unreliable)");
			pr_cont("\n");
1959 1960 1961 1962 1963 1964 1965
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1966 1967
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1968 1969 1970
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1971
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1972
			       regs->trap, (void *)regs->nip, (void *)lr);
1973 1974 1975 1976 1977 1978 1979
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1980
#ifdef CONFIG_PPC64
1981
/* Called with hard IRQs off */
1982
void notrace __ppc64_runlatch_on(void)
1983
{
1984
	struct thread_info *ti = current_thread_info();
1985 1986
	unsigned long ctrl;

1987 1988 1989
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1990

1991
	ti->local_flags |= _TLF_RUNLATCH;
1992 1993
}

1994
/* Called with hard IRQs off */
1995
void notrace __ppc64_runlatch_off(void)
1996
{
1997
	struct thread_info *ti = current_thread_info();
1998 1999
	unsigned long ctrl;

2000
	ti->local_flags &= ~_TLF_RUNLATCH;
2001

2002 2003 2004
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
2005
}
2006
#endif /* CONFIG_PPC64 */
2007

2008 2009 2010 2011 2012 2013
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
2014 2015 2016 2017 2018 2019 2020

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
2021
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2022
	else
D
Daniel Cashman 已提交
2023
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2024 2025 2026 2027 2028 2029

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
2030 2031 2032
	unsigned long base = mm->brk;
	unsigned long ret;

2033
#ifdef CONFIG_PPC_STD_MMU_64
2034 2035 2036 2037 2038
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
2039 2040
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2041 2042 2043 2044 2045 2046
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2047 2048 2049 2050 2051 2052

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2053