process.c 49.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20 21 22 23 24 25 26 27 28 29 30
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
31
#include <linux/export.h>
32 33 34
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
35
#include <linux/utsname.h>
36
#include <linux/ftrace.h>
37
#include <linux/kernel_stat.h>
38 39
#include <linux/personality.h>
#include <linux/random.h>
40
#include <linux/hw_breakpoint.h>
41
#include <linux/uaccess.h>
42
#include <linux/elf-randomize.h>
43 44 45 46 47 48

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
49
#include <asm/machdep.h>
50
#include <asm/time.h>
51
#include <asm/runlatch.h>
52
#include <asm/syscalls.h>
53
#include <asm/switch_to.h>
54
#include <asm/tm.h>
55
#include <asm/debug.h>
56 57 58
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
59
#include <asm/code-patching.h>
60
#include <asm/exec.h>
61
#include <asm/livepatch.h>
62
#include <asm/cpu_has_feature.h>
63
#include <asm/asm-prototypes.h>
64

65 66
#include <linux/kprobes.h>
#include <linux/kdebug.h>
67

68 69 70 71 72 73 74
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

75 76
extern unsigned long _get_SP(void);

77
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78
static void check_if_tm_restore_required(struct task_struct *tsk)
79 80 81 82 83 84 85 86 87 88
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
89
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
90 91 92
		set_thread_flag(TIF_RESTORE_TM);
	}
}
93 94 95 96 97

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
98
#else
99
static inline bool msr_tm_active(unsigned long msr) { return false; }
100
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
101 102
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

103 104 105 106 107 108 109 110 111 112 113 114
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

115
unsigned long msr_check_and_set(unsigned long bits)
116
{
117 118
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
119

120
	newmsr = oldmsr | bits;
121 122

#ifdef CONFIG_VSX
123
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
124 125
		newmsr |= MSR_VSX;
#endif
126

127 128
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
129 130

	return newmsr;
131
}
132

133
void __msr_check_and_clear(unsigned long bits)
134 135 136 137 138 139 140 141 142 143 144 145 146 147
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
148
EXPORT_SYMBOL(__msr_check_and_clear);
149 150

#ifdef CONFIG_PPC_FPU
151 152
void __giveup_fpu(struct task_struct *tsk)
{
153 154
	unsigned long msr;

155
	save_fpu(tsk);
156 157
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
158 159
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
160
		msr &= ~MSR_VSX;
161
#endif
162
	tsk->thread.regs->msr = msr;
163 164
}

165 166 167 168 169
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
170
	__giveup_fpu(tsk);
171
	msr_check_and_clear(MSR_FP);
172 173 174
}
EXPORT_SYMBOL(giveup_fpu);

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
195
			 * the FP register state on context switch,
196 197 198 199
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
200
			giveup_fpu(tsk);
201 202 203 204
		}
		preempt_enable();
	}
}
205
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
206 207 208

void enable_kernel_fp(void)
{
209 210
	unsigned long cpumsr;

211 212
	WARN_ON(preemptible());

213
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
214

215 216
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
217 218 219 220 221 222 223 224 225
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
226
		__giveup_fpu(current);
227
	}
228 229
}
EXPORT_SYMBOL(enable_kernel_fp);
230 231

static int restore_fp(struct task_struct *tsk) {
232
	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
233 234 235 236 237 238 239 240
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
241
#endif /* CONFIG_PPC_FPU */
242 243

#ifdef CONFIG_ALTIVEC
244 245
#define loadvec(thr) ((thr).load_vec)

246 247
static void __giveup_altivec(struct task_struct *tsk)
{
248 249
	unsigned long msr;

250
	save_altivec(tsk);
251 252
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
253 254
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
255
		msr &= ~MSR_VSX;
256
#endif
257
	tsk->thread.regs->msr = msr;
258 259
}

260 261 262 263
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

264
	msr_check_and_set(MSR_VEC);
265
	__giveup_altivec(tsk);
266
	msr_check_and_clear(MSR_VEC);
267 268 269
}
EXPORT_SYMBOL(giveup_altivec);

270 271
void enable_kernel_altivec(void)
{
272 273
	unsigned long cpumsr;

274 275
	WARN_ON(preemptible());

276
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
277

278 279
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
280 281 282 283 284 285 286 287 288
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
289
		__giveup_altivec(current);
290
	}
291 292 293 294 295 296 297 298 299 300 301 302 303
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
304
			giveup_altivec(tsk);
305 306 307 308
		}
		preempt_enable();
	}
}
309
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
310 311 312

static int restore_altivec(struct task_struct *tsk)
{
313 314
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
315 316 317 318 319 320 321 322 323 324 325
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
326 327
#endif /* CONFIG_ALTIVEC */

328
#ifdef CONFIG_VSX
329
static void __giveup_vsx(struct task_struct *tsk)
330 331 332 333 334
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
335 336 337 338 339 340 341 342
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
343
	__giveup_vsx(tsk);
344
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
345
}
346 347 348 349 350 351 352 353

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
354

355 356
void enable_kernel_vsx(void)
{
357 358
	unsigned long cpumsr;

359 360
	WARN_ON(preemptible());

361
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
362

363
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
364
		check_if_tm_restore_required(current);
365 366 367 368 369 370 371 372 373
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
374 375 376 377 378
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
379
	}
380 381 382 383 384 385 386 387 388 389 390 391 392 393
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
394
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
395 396 397 398 399 400 401 402 403 404 405 406

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
407
static inline void save_vsx(struct task_struct *tsk) { }
408 409
#endif /* CONFIG_VSX */

410
#ifdef CONFIG_SPE
411 412 413 414
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

415
	msr_check_and_set(MSR_SPE);
416
	__giveup_spe(tsk);
417
	msr_check_and_clear(MSR_SPE);
418 419
}
EXPORT_SYMBOL(giveup_spe);
420 421 422 423 424

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

425
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
426

427 428
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
429
		__giveup_spe(current);
430
	}
431 432 433 434 435 436 437 438 439
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
440
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
441
			giveup_spe(tsk);
442 443 444 445 446 447
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
485
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

508 509 510 511
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

512 513
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

553 554 555 556 557 558 559 560 561 562 563 564 565
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
566 567 568 569 570 571 572

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

573 574 575 576 577
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
578
		save_all(tsk);
579 580 581 582 583 584 585 586 587 588 589

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

590 591 592 593 594 595
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

596
	current->thread.trap_nr = signal_code;
597 598 599 600 601 602 603 604 605 606 607 608
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
609
void do_break (struct pt_regs *regs, unsigned long address,
610 611 612 613
		    unsigned long error_code)
{
	siginfo_t info;

614
	current->thread.trap_nr = TRAP_HWBKPT;
615 616 617 618
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

619
	if (debugger_break_match(regs))
620 621
		return;

622 623
	/* Clear the breakpoint */
	hw_breakpoint_disable();
624 625 626 627 628 629 630 631

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
632
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
633

634
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
635

636 637 638 639 640 641
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
642
	thread->debug.iac1 = thread->debug.iac2 = 0;
643
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
644
	thread->debug.iac3 = thread->debug.iac4 = 0;
645
#endif
646
	thread->debug.dac1 = thread->debug.dac2 = 0;
647
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
648
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
649
#endif
650
	thread->debug.dbcr0 = 0;
651 652 653 654
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
655
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
656 657 658 659 660
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
661
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
662
#else
663
	thread->debug.dbcr1 = 0;
664 665 666
#endif
}

667
static void prime_debug_regs(struct debug_reg *debug)
668
{
669 670 671 672 673 674 675
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

676 677
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
678
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
679 680
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
681
#endif
682 683
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
684
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
685 686
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
687
#endif
688 689
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
690
#ifdef CONFIG_BOOKE
691
	mtspr(SPRN_DBCR2, debug->dbcr2);
692 693 694 695 696 697 698
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
699
void switch_booke_debug_regs(struct debug_reg *new_debug)
700
{
701
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
702 703
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
704
}
705
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
706
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
707
#ifndef CONFIG_HAVE_HW_BREAKPOINT
708 709
static void set_debug_reg_defaults(struct thread_struct *thread)
{
710 711
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
712
	set_breakpoint(&thread->hw_brk);
713
}
714
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
715 716
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

717
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
718 719
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
720
	mtspr(SPRN_DAC1, dabr);
721 722 723
#ifdef CONFIG_PPC_47x
	isync();
#endif
724 725
	return 0;
}
726
#elif defined(CONFIG_PPC_BOOK3S)
727 728
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
729
	mtspr(SPRN_DABR, dabr);
730 731
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
732
	return 0;
733
}
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

776 777
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
778
	unsigned long dawr, dawrx, mrd;
779 780 781 782 783 784 785 786 787

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
788 789 790 791 792 793 794 795
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
796 797 798 799 800 801 802 803

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

804
void __set_breakpoint(struct arch_hw_breakpoint *brk)
805
{
806
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
807

808
	if (cpu_has_feature(CPU_FTR_DAWR))
809 810 811
		set_dawr(brk);
	else
		set_dabr(brk);
812
}
813

814 815 816 817 818 819 820
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

821 822 823
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
824

825 826 827 828 829 830 831 832 833 834 835
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
836

837
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
838 839 840 841 842 843

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

844 845 846
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
847 848 849 850 851 852 853 854 855 856 857 858 859
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
860
	 * benefit of checking for a potential TM bad thing exception.
861 862 863 864
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

865
	giveup_all(container_of(thr, struct task_struct, thread));
866

867
	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
868 869 870 871 872 873 874 875
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

876 877 878 879 880 881 882
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
883 884
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

902
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
903 904 905 906 907 908 909 910 911 912 913 914 915

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

916 917 918 919 920 921 922 923
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

924 925 926
	if (!(thread->regs->msr & MSR_TM))
		return;

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

944
static inline void tm_recheckpoint_new_task(struct task_struct *new)
945 946 947 948 949 950 951 952 953 954 955
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
956
	 * unavailable later, we are unable to determine which set of FP regs
957 958
	 * need to be restored.
	 */
959
	if (!tm_enabled(new))
960 961
		return;

962 963
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
964
		return;
965
	}
966
	msr = new->thread.ckpt_regs.msr;
967 968 969 970 971 972 973
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	tm_recheckpoint(&new->thread, msr);

974 975 976 977 978 979
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
980 981 982 983 984 985

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

986 987
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
988 989
{
	if (cpu_has_feature(CPU_FTR_TM)) {
990 991 992 993 994 995 996 997 998 999
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1000
		tm_recheckpoint_new_task(new);
1001 1002
	}
}
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1022 1023 1024 1025 1026 1027
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1028 1029 1030 1031
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1032
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1033
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1034

1035 1036 1037
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1038
#ifdef CONFIG_ALTIVEC
1039 1040 1041
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1042 1043
	restore_math(regs);

1044 1045 1046
	regs->msr |= msr_diff;
}

1047 1048
#else
#define tm_recheckpoint_new_task(new)
1049
#define __switch_to_tm(prev, new)
1050
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1051

1052 1053 1054
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1055
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1091
		if (new_thread->dscr_inherit)
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1106 1107 1108
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1109 1110 1111 1112 1113 1114
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1115 1116 1117 1118 1119
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1120 1121 1122
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1123

1124 1125 1126
	new_thread = &new->thread;
	old_thread = &current->thread;

1127 1128
	WARN_ON(!irqs_disabled());

1129 1130 1131 1132 1133
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1134
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1135 1136 1137 1138 1139 1140
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1141 1142
#endif /* CONFIG_PPC64 */

1143
#ifdef CONFIG_PPC_STD_MMU_64
1144
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1145 1146 1147 1148 1149 1150
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1151
#endif /* CONFIG_PPC_STD_MMU_64 */
1152

A
Anton Blanchard 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1175 1176
	__switch_to_tm(prev, new);

1177 1178 1179 1180 1181 1182
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1183

1184 1185 1186 1187 1188 1189 1190
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1191 1192
	restore_sprs(old_thread, new_thread);

1193 1194
	last = _switch(old_thread, new_thread);

1195
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1196 1197
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1198
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1199 1200
		batch->active = 1;
	}
1201 1202 1203

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);
1204
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1205

1206 1207 1208
	return last;
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1223
			pr_cont("\n");
1224

1225 1226 1227 1228 1229 1230 1231 1232
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1233
		if (!__kernel_text_address(pc) ||
1234
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1235
			pr_cont("XXXXXXXX ");
1236 1237
		} else {
			if (regs->nip == pc)
1238
				pr_cont("<%08x> ", instr);
1239
			else
1240
				pr_cont("%08x ", instr);
1241 1242 1243 1244 1245
		}

		pc += sizeof(int);
	}

1246
	pr_cont("\n");
1247 1248
}

1249
struct regbit {
1250 1251
	unsigned long bit;
	const char *name;
1252 1253 1254
};

static struct regbit msr_bits[] = {
1255 1256 1257 1258 1259 1260 1261 1262 1263
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1264 1265 1266 1267
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1268
#ifdef CONFIG_BOOKE
1269
	{MSR_DE,	"DE"},
1270 1271 1272 1273
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1274 1275
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1276 1277 1278 1279 1280
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1281 1282 1283
	{0,		NULL}
};

1284
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1285
{
1286
	const char *s = "";
1287 1288 1289

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1290
			pr_cont("%s%s", s, bits->name);
1291
			s = sep;
1292
		}
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1313
		pr_cont(",TM[");
1314
		print_bits(val, msr_tm_bits, "");
1315
		pr_cont("]");
1316 1317 1318 1319 1320 1321 1322 1323
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1324
	pr_cont("<");
1325 1326
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1327
	pr_cont(">");
1328 1329 1330
}

#ifdef CONFIG_PPC64
1331
#define REG		"%016lx"
1332 1333 1334
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1335
#define REG		"%08lx"
1336 1337 1338 1339
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1340 1341 1342 1343
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1344 1345
	show_regs_print_info(KERN_DEFAULT);

1346 1347 1348
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1349
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1350
	printk("MSR: "REG" ", regs->msr);
1351
	print_msr_bits(regs->msr);
1352
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1353
	trap = TRAP(regs);
1354
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1355
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1356
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1357
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1358
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1359
#else
1360
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1361 1362
#endif
#ifdef CONFIG_PPC64
1363
	pr_cont("SOFTE: %ld ", regs->softe);
1364 1365
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1366
	if (MSR_TM_ACTIVE(regs->msr))
1367
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1368
#endif
1369 1370

	for (i = 0;  i < 32;  i++) {
1371
		if ((i % REGS_PER_LINE) == 0)
1372 1373
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1374
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1375 1376
			break;
	}
1377
	pr_cont("\n");
1378 1379 1380 1381 1382
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1383 1384
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1385
#endif
1386
	show_stack(current, (unsigned long *) regs->gpr[1]);
1387 1388
	if (!user_mode(regs))
		show_instructions(regs);
1389 1390 1391 1392
}

void flush_thread(void)
{
1393
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1394
	flush_ptrace_hw_breakpoint(current);
1395
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1396
	set_debug_reg_defaults(&current->thread);
1397
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1398 1399 1400 1401 1402 1403 1404 1405
}

void
release_thread(struct task_struct *t)
{
}

/*
1406 1407
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1408
 */
1409
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1410
{
1411
	flush_all_to_thread(src);
1412 1413 1414 1415 1416 1417
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1418 1419 1420
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1421
	 */
1422
	__switch_to_tm(src, src);
1423

1424
	*dst = *src;
1425 1426 1427

	clear_task_ebb(dst);

1428
	return 0;
1429 1430
}

1431 1432 1433 1434 1435 1436
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1437 1438 1439
	if (radix_enabled())
		return;

1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1451 1452 1453
/*
 * Copy a thread..
 */
1454

1455 1456 1457
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1458
int copy_thread(unsigned long clone_flags, unsigned long usp,
1459
		unsigned long kthread_arg, struct task_struct *p)
1460 1461 1462
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1463 1464
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1465
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1466 1467 1468
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1469 1470 1471 1472

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1473
	if (unlikely(p->flags & PF_KTHREAD)) {
1474
		/* kernel thread */
A
Al Viro 已提交
1475
		memset(childregs, 0, sizeof(struct pt_regs));
1476
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1477 1478 1479
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1480
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1481
		clear_tsk_thread_flag(p, TIF_32BIT);
1482
		childregs->softe = 1;
1483
#endif
1484
		childregs->gpr[15] = kthread_arg;
1485
		p->thread.regs = NULL;	/* no user register state */
1486
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1487
		f = ret_from_kernel_thread;
1488
	} else {
1489
		/* user thread */
1490
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1491 1492
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1493 1494
		if (usp)
			childregs->gpr[1] = usp;
1495
		p->thread.regs = childregs;
A
Al Viro 已提交
1496
		childregs->gpr[3] = 0;  /* Result from fork() */
1497 1498
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1499
			if (!is_32bit_task())
1500 1501 1502 1503 1504
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1505 1506

		f = ret_from_fork;
1507
	}
1508
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1519
	((unsigned long *)sp)[0] = 0;
1520 1521 1522 1523
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1524
#ifdef CONFIG_PPC32
1525 1526
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1527
#endif
1528 1529 1530 1531
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1532 1533 1534 1535 1536
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1537 1538
	setup_ksp_vsid(p, sp);

1539 1540
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1541
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1542
		p->thread.dscr = mfspr(SPRN_DSCR);
1543
	}
1544 1545
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1546
#endif
1547
	kregs->nip = ppc_function_entry(f);
1548 1549 1550 1551 1552 1553
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1554
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1555
{
1556 1557 1558 1559
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1560 1561 1562 1563 1564
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1565 1566
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1567 1568
	}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1579 1580 1581 1582 1583 1584
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1585

1586 1587 1588 1589 1590 1591 1592
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1593 1594 1595
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1596
	regs->msr = MSR_USER;
1597
#else
1598
	if (!is_32bit_task()) {
1599
		unsigned long entry;
1600

1601 1602 1603
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1604

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1636 1637 1638
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1639 1640 1641 1642
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1643 1644
	}
#endif
1645 1646 1647
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1648
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1649
	current->thread.fp_save_area = NULL;
1650
#ifdef CONFIG_ALTIVEC
1651 1652
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1653
	current->thread.vr_save_area = NULL;
1654 1655 1656 1657 1658 1659 1660 1661 1662
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1663 1664 1665 1666 1667
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1668
}
1669
EXPORT_SYMBOL(start_thread);
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1684
		if (cpu_has_feature(CPU_FTR_SPE)) {
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1698 1699 1700 1701 1702 1703
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1704 1705 1706 1707
#else
		return -EINVAL;
#endif
	}
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1720 1721 1722 1723 1724 1725 1726 1727 1728
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1743
			val = tsk->thread.fpexc_mode;
1744
		} else
1745
			return -EINVAL;
1746 1747 1748 1749 1750 1751 1752 1753
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1833
int validate_sp(unsigned long sp, struct task_struct *p,
1834 1835
		       unsigned long nbytes)
{
A
Al Viro 已提交
1836
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1837 1838 1839 1840 1841

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1842
	return valid_irq_stack(sp, p, nbytes);
1843 1844
}

1845 1846
EXPORT_SYMBOL(validate_sp);

1847 1848 1849 1850 1851 1852 1853 1854 1855
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1856
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1857 1858 1859 1860
		return 0;

	do {
		sp = *(unsigned long *)sp;
1861
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1862 1863
			return 0;
		if (count > 0) {
1864
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1865 1866 1867 1868 1869 1870
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1871

1872
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1873 1874 1875 1876 1877 1878

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1879 1880 1881
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1882
	unsigned long rth = (unsigned long)return_to_handler;
1883
#endif
1884 1885 1886 1887 1888 1889

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1890
			sp = current_stack_pointer();
1891 1892 1893 1894 1895 1896 1897
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1898
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1899 1900 1901 1902
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1903
		ip = stack[STACK_FRAME_LR_SAVE];
1904
		if (!firstframe || ip != lr) {
1905
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1906
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1907
			if ((ip == rth) && curr_frame >= 0) {
1908
				pr_cont(" (%pS)",
1909 1910 1911 1912
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1913
			if (firstframe)
1914 1915
				pr_cont(" (unreliable)");
			pr_cont("\n");
1916 1917 1918 1919 1920 1921 1922
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1923 1924
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1925 1926 1927
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1928
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1929
			       regs->trap, (void *)regs->nip, (void *)lr);
1930 1931 1932 1933 1934 1935 1936
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1937
#ifdef CONFIG_PPC64
1938
/* Called with hard IRQs off */
1939
void notrace __ppc64_runlatch_on(void)
1940
{
1941
	struct thread_info *ti = current_thread_info();
1942 1943
	unsigned long ctrl;

1944 1945 1946
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1947

1948
	ti->local_flags |= _TLF_RUNLATCH;
1949 1950
}

1951
/* Called with hard IRQs off */
1952
void notrace __ppc64_runlatch_off(void)
1953
{
1954
	struct thread_info *ti = current_thread_info();
1955 1956
	unsigned long ctrl;

1957
	ti->local_flags &= ~_TLF_RUNLATCH;
1958

1959 1960 1961
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1962
}
1963
#endif /* CONFIG_PPC64 */
1964

1965 1966 1967 1968 1969 1970
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1971 1972 1973 1974 1975 1976 1977

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
1978
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1979
	else
D
Daniel Cashman 已提交
1980
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1981 1982 1983 1984 1985 1986

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1987 1988 1989
	unsigned long base = mm->brk;
	unsigned long ret;

1990
#ifdef CONFIG_PPC_STD_MMU_64
1991 1992 1993 1994 1995
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
1996 1997
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1998 1999 2000 2001 2002 2003
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2004 2005 2006 2007 2008 2009

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2010