process.c 47.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41 42 43 44 45 46

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
47
#include <asm/machdep.h>
48
#include <asm/time.h>
49
#include <asm/runlatch.h>
50
#include <asm/syscalls.h>
51
#include <asm/switch_to.h>
52
#include <asm/tm.h>
53
#include <asm/debug.h>
54 55 56
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
57
#include <asm/code-patching.h>
58 59
#include <linux/kprobes.h>
#include <linux/kdebug.h>
60

61 62 63 64 65 66 67
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

68 69
extern unsigned long _get_SP(void);

70
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71
static void check_if_tm_restore_required(struct task_struct *tsk)
72 73 74 75 76 77 78 79 80 81
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
82
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83 84 85 86
		set_thread_flag(TIF_RESTORE_TM);
	}
}
#else
87
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88 89
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

90 91 92 93 94 95 96 97 98 99 100 101 102
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

void msr_check_and_set(unsigned long bits)
103
{
104 105
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
106

107
	newmsr = oldmsr | bits;
108 109

#ifdef CONFIG_VSX
110
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111 112
		newmsr |= MSR_VSX;
#endif
113

114 115
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
116
}
117

118
void __msr_check_and_clear(unsigned long bits)
119 120 121 122 123 124 125 126 127 128 129 130 131 132
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
133
EXPORT_SYMBOL(__msr_check_and_clear);
134 135

#ifdef CONFIG_PPC_FPU
136 137 138 139 140 141 142 143 144 145
void __giveup_fpu(struct task_struct *tsk)
{
	save_fpu(tsk);
	tsk->thread.regs->msr &= ~MSR_FP;
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		tsk->thread.regs->msr &= ~MSR_VSX;
#endif
}

146 147 148 149 150
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
151
	__giveup_fpu(tsk);
152
	msr_check_and_clear(MSR_FP);
153 154 155
}
EXPORT_SYMBOL(giveup_fpu);

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
176
			 * the FP register state on context switch,
177 178 179 180
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
181
			giveup_fpu(tsk);
182 183 184 185
		}
		preempt_enable();
	}
}
186
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
187 188 189 190 191

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

192
	msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
193

194 195
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
196
		__giveup_fpu(current);
197
	}
198 199
}
EXPORT_SYMBOL(enable_kernel_fp);
200 201 202 203 204 205 206 207 208 209 210

static int restore_fp(struct task_struct *tsk) {
	if (tsk->thread.load_fp) {
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
211
#endif /* CONFIG_PPC_FPU */
212 213

#ifdef CONFIG_ALTIVEC
214 215
#define loadvec(thr) ((thr).load_vec)

216 217 218 219
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

220
	msr_check_and_set(MSR_VEC);
221
	__giveup_altivec(tsk);
222
	msr_check_and_clear(MSR_VEC);
223 224 225
}
EXPORT_SYMBOL(giveup_altivec);

226 227 228 229
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

230
	msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
231

232 233
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
234
		__giveup_altivec(current);
235
	}
236 237 238 239 240 241 242 243 244 245 246 247 248
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
249
			giveup_altivec(tsk);
250 251 252 253
		}
		preempt_enable();
	}
}
254
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269

static int restore_altivec(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
270 271
#endif /* CONFIG_ALTIVEC */

272
#ifdef CONFIG_VSX
273 274 275 276
void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

277
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
278 279 280 281 282
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
	__giveup_vsx(tsk);
283
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
284 285 286
}
EXPORT_SYMBOL(giveup_vsx);

287 288 289 290
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

291
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
292

293
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
294
		check_if_tm_restore_required(current);
295 296 297 298 299
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
300
	}
301 302 303 304 305 306 307 308 309 310 311 312 313 314
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
315
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
316 317 318 319 320 321 322 323 324 325 326 327

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
328 329
#endif /* CONFIG_VSX */

330
#ifdef CONFIG_SPE
331 332 333 334
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

335
	msr_check_and_set(MSR_SPE);
336
	__giveup_spe(tsk);
337
	msr_check_and_clear(MSR_SPE);
338 339
}
EXPORT_SYMBOL(giveup_spe);
340 341 342 343 344

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

345
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
346

347 348
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
349
		__giveup_spe(current);
350
	}
351 352 353 354 355 356 357 358 359
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
360
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
361
			giveup_spe(tsk);
362 363 364 365 366 367
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

	if (!current->thread.load_fp && !loadvec(current->thread))
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

	if (usermsr & MSR_FP)
472
		save_fpu(tsk);
473 474 475 476 477 478 479 480 481 482 483 484 485

	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);

	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

486 487 488 489 490
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
491
		save_all(tsk);
492 493 494 495 496 497 498 499 500 501 502

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

503 504 505 506 507 508
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

509
	current->thread.trap_nr = signal_code;
510 511 512 513 514 515 516 517 518 519 520 521
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
522
void do_break (struct pt_regs *regs, unsigned long address,
523 524 525 526
		    unsigned long error_code)
{
	siginfo_t info;

527
	current->thread.trap_nr = TRAP_HWBKPT;
528 529 530 531
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

532
	if (debugger_break_match(regs))
533 534
		return;

535 536
	/* Clear the breakpoint */
	hw_breakpoint_disable();
537 538 539 540 541 542 543 544

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
545
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
546

547
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
548

549 550 551 552 553 554
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
555
	thread->debug.iac1 = thread->debug.iac2 = 0;
556
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
557
	thread->debug.iac3 = thread->debug.iac4 = 0;
558
#endif
559
	thread->debug.dac1 = thread->debug.dac2 = 0;
560
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
561
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
562
#endif
563
	thread->debug.dbcr0 = 0;
564 565 566 567
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
568
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
569 570 571 572 573
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
574
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
575
#else
576
	thread->debug.dbcr1 = 0;
577 578 579
#endif
}

580
static void prime_debug_regs(struct debug_reg *debug)
581
{
582 583 584 585 586 587 588
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

589 590
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
591
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
592 593
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
594
#endif
595 596
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
597
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
598 599
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
600
#endif
601 602
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
603
#ifdef CONFIG_BOOKE
604
	mtspr(SPRN_DBCR2, debug->dbcr2);
605 606 607 608 609 610 611
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
612
void switch_booke_debug_regs(struct debug_reg *new_debug)
613
{
614
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
615 616
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
617
}
618
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
619
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
620
#ifndef CONFIG_HAVE_HW_BREAKPOINT
621 622
static void set_debug_reg_defaults(struct thread_struct *thread)
{
623 624
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
625
	set_breakpoint(&thread->hw_brk);
626
}
627
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
628 629
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

630
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
631 632
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
633
	mtspr(SPRN_DAC1, dabr);
634 635 636
#ifdef CONFIG_PPC_47x
	isync();
#endif
637 638
	return 0;
}
639
#elif defined(CONFIG_PPC_BOOK3S)
640 641
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
642
	mtspr(SPRN_DABR, dabr);
643 644
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
645
	return 0;
646
}
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

667 668
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
669
	unsigned long dawr, dawrx, mrd;
670 671 672 673 674 675 676 677 678

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
679 680 681 682 683 684 685 686
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
687 688 689 690 691 692 693 694

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

695
void __set_breakpoint(struct arch_hw_breakpoint *brk)
696
{
697
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
698

699
	if (cpu_has_feature(CPU_FTR_DAWR))
700 701 702
		set_dawr(brk);
	else
		set_dabr(brk);
703
}
704

705 706 707 708 709 710 711
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

712 713 714
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
715

716 717 718 719 720 721 722 723 724 725 726
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
727

728
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
729 730 731 732 733 734 735 736 737 738 739 740
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
741
		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
742 743 744 745 746 747 748 749 750 751
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
	 * benifit of checking for a potential TM bad thing exception.
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
809
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
810
	 * ckpt_regs.msr is already set.
811
	 */
812
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
813
		thr->ckpt_regs.msr = thr->regs->msr;
814 815 816 817 818 819 820

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

821
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
822 823 824 825 826 827 828 829 830 831 832 833 834

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

860
static inline void tm_recheckpoint_new_task(struct task_struct *new)
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

878 879
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
880
		return;
881
	}
882
	msr = new->thread.ckpt_regs.msr;
883 884 885 886 887 888 889 890 891 892 893 894 895 896
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
897
#ifdef CONFIG_ALTIVEC
898 899 900 901
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
902
#endif
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

942
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
943
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
944 945 946

	restore_math(regs);

947 948 949
	regs->msr |= msr_diff;
}

950 951 952 953
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
		u64 fscr = old_thread->fscr & ~FSCR_DSCR;

		if (new_thread->dscr_inherit) {
			dscr = new_thread->dscr;
			fscr |= FSCR_DSCR;
		}

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);

		if (old_thread->fscr != fscr)
			mtspr(SPRN_FSCR, fscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1022 1023 1024 1025 1026
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1027 1028 1029
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1030

1031 1032 1033
	new_thread = &new->thread;
	old_thread = &current->thread;

1034 1035
	WARN_ON(!irqs_disabled());

1036 1037 1038 1039 1040
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1041
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1042 1043 1044 1045 1046 1047
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1048 1049 1050
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
1051
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1052 1053 1054 1055 1056 1057 1058
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
1059

A
Anton Blanchard 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	__switch_to_tm(prev);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1084 1085 1086 1087 1088 1089
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1090 1091 1092

	tm_recheckpoint_new_task(new);

1093 1094 1095 1096 1097 1098 1099
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1100 1101
	restore_sprs(old_thread, new_thread);

1102 1103
	last = _switch(old_thread, new_thread);

P
Peter Zijlstra 已提交
1104 1105 1106
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1107
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1108 1109
		batch->active = 1;
	}
1110 1111 1112 1113

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);

P
Peter Zijlstra 已提交
1114 1115
#endif /* CONFIG_PPC_BOOK3S_64 */

1116 1117 1118
	return last;
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

1135 1136 1137 1138 1139 1140 1141 1142
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1143
		if (!__kernel_text_address(pc) ||
1144
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1145
			printk(KERN_CONT "XXXXXXXX ");
1146 1147
		} else {
			if (regs->nip == pc)
1148
				printk(KERN_CONT "<%08x> ", instr);
1149
			else
1150
				printk(KERN_CONT "%08x ", instr);
1151 1152 1153 1154 1155 1156 1157 1158
		}

		pc += sizeof(int);
	}

	printk("\n");
}

1159
struct regbit {
1160 1161
	unsigned long bit;
	const char *name;
1162 1163 1164
};

static struct regbit msr_bits[] = {
1165 1166 1167 1168 1169 1170 1171 1172 1173
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1174 1175 1176 1177
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1178
#ifdef CONFIG_BOOKE
1179
	{MSR_DE,	"DE"},
1180 1181 1182 1183
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1184 1185
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1186 1187 1188 1189 1190
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1191 1192 1193
	{0,		NULL}
};

1194
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1195
{
1196
	const char *s = "";
1197 1198 1199

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1200 1201
			printk("%s%s", s, bits->name);
			s = sep;
1202
		}
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
		printk(",TM[");
		print_bits(val, msr_tm_bits, "");
		printk("]");
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
	printk("<");
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1237 1238 1239 1240
	printk(">");
}

#ifdef CONFIG_PPC64
1241
#define REG		"%016lx"
1242 1243 1244
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1245
#define REG		"%08lx"
1246 1247 1248 1249
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1250 1251 1252 1253
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1254 1255
	show_regs_print_info(KERN_DEFAULT);

1256 1257 1258
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1259
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1260
	printk("MSR: "REG" ", regs->msr);
1261
	print_msr_bits(regs->msr);
1262
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1263
	trap = TRAP(regs);
1264
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1265
		printk("CFAR: "REG" ", regs->orig_gpr3);
1266
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1267
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1268
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1269
#else
1270 1271 1272 1273 1274 1275
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1276 1277
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1278
#endif
1279 1280

	for (i = 0;  i < 32;  i++) {
1281
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
1282
			printk("\nGPR%02d: ", i);
1283 1284
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1285 1286 1287 1288 1289 1290 1291 1292
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1293 1294
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1295
#endif
1296
	show_stack(current, (unsigned long *) regs->gpr[1]);
1297 1298
	if (!user_mode(regs))
		show_instructions(regs);
1299 1300 1301 1302 1303 1304 1305 1306
}

void exit_thread(void)
{
}

void flush_thread(void)
{
1307
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1308
	flush_ptrace_hw_breakpoint(current);
1309
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1310
	set_debug_reg_defaults(&current->thread);
1311
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1312 1313 1314 1315 1316 1317 1318 1319
}

void
release_thread(struct task_struct *t)
{
}

/*
1320 1321
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1322
 */
1323
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1324
{
1325
	flush_all_to_thread(src);
1326 1327 1328 1329 1330 1331 1332 1333 1334
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1335

1336
	*dst = *src;
1337 1338 1339

	clear_task_ebb(dst);

1340
	return 0;
1341 1342
}

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1360 1361 1362
/*
 * Copy a thread..
 */
1363

1364 1365 1366
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1367
int copy_thread(unsigned long clone_flags, unsigned long usp,
1368
		unsigned long kthread_arg, struct task_struct *p)
1369 1370 1371
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1372 1373
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1374
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1375 1376 1377 1378

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1379
	if (unlikely(p->flags & PF_KTHREAD)) {
1380
		/* kernel thread */
1381
		struct thread_info *ti = (void *)task_stack_page(p);
A
Al Viro 已提交
1382
		memset(childregs, 0, sizeof(struct pt_regs));
1383
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1384 1385 1386
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1387
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1388
		clear_tsk_thread_flag(p, TIF_32BIT);
1389
		childregs->softe = 1;
1390
#endif
1391
		childregs->gpr[15] = kthread_arg;
1392
		p->thread.regs = NULL;	/* no user register state */
1393
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1394
		f = ret_from_kernel_thread;
1395
	} else {
1396
		/* user thread */
1397
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1398 1399
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1400 1401
		if (usp)
			childregs->gpr[1] = usp;
1402
		p->thread.regs = childregs;
A
Al Viro 已提交
1403
		childregs->gpr[3] = 0;  /* Result from fork() */
1404 1405
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1406
			if (!is_32bit_task())
1407 1408 1409 1410 1411
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1412 1413

		f = ret_from_fork;
1414
	}
1415
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1426
	((unsigned long *)sp)[0] = 0;
1427 1428 1429 1430
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1431
#ifdef CONFIG_PPC32
1432 1433
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1434
#endif
1435 1436 1437 1438
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1439 1440 1441 1442 1443
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1444 1445
	setup_ksp_vsid(p, sp);

1446 1447
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1448
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1449
		p->thread.dscr = mfspr(SPRN_DSCR);
1450
	}
1451 1452
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1453
#endif
1454
	kregs->nip = ppc_function_entry(f);
1455 1456 1457 1458 1459 1460
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1461
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1462
{
1463 1464 1465 1466
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1467 1468 1469 1470 1471
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1472 1473
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1474 1475
	}

1476 1477 1478 1479 1480 1481
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1482

1483 1484 1485 1486 1487 1488 1489
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1490 1491 1492
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1493
	regs->msr = MSR_USER;
1494
#else
1495
	if (!is_32bit_task()) {
1496
		unsigned long entry;
1497

1498 1499 1500
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1501

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1533 1534 1535
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1536 1537 1538 1539
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1540 1541
	}
#endif
1542 1543 1544
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1545
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1546
	current->thread.fp_save_area = NULL;
1547
#ifdef CONFIG_ALTIVEC
1548 1549
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1550
	current->thread.vr_save_area = NULL;
1551 1552 1553 1554 1555 1556 1557 1558 1559
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1560 1561 1562 1563 1564 1565 1566
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1567
}
1568
EXPORT_SYMBOL(start_thread);
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1583
		if (cpu_has_feature(CPU_FTR_SPE)) {
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1597 1598 1599 1600 1601 1602
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1603 1604 1605 1606
#else
		return -EINVAL;
#endif
	}
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1619 1620 1621 1622 1623 1624 1625 1626 1627
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1642
			val = tsk->thread.fpexc_mode;
1643
		} else
1644
			return -EINVAL;
1645 1646 1647 1648 1649 1650 1651 1652
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1732
int validate_sp(unsigned long sp, struct task_struct *p,
1733 1734
		       unsigned long nbytes)
{
A
Al Viro 已提交
1735
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1736 1737 1738 1739 1740

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1741
	return valid_irq_stack(sp, p, nbytes);
1742 1743
}

1744 1745
EXPORT_SYMBOL(validate_sp);

1746 1747 1748 1749 1750 1751 1752 1753 1754
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1755
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1756 1757 1758 1759
		return 0;

	do {
		sp = *(unsigned long *)sp;
1760
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1761 1762
			return 0;
		if (count > 0) {
1763
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1764 1765 1766 1767 1768 1769
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1770

1771
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1772 1773 1774 1775 1776 1777

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1778 1779 1780
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1781
	unsigned long rth = (unsigned long)return_to_handler;
1782
#endif
1783 1784 1785 1786 1787 1788

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1789
			sp = current_stack_pointer();
1790 1791 1792 1793 1794 1795 1796
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1797
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1798 1799 1800 1801
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1802
		ip = stack[STACK_FRAME_LR_SAVE];
1803
		if (!firstframe || ip != lr) {
1804
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1805
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1806
			if ((ip == rth) && curr_frame >= 0) {
1807 1808 1809 1810 1811
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1822 1823
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1824 1825 1826
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1827
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1828
			       regs->trap, (void *)regs->nip, (void *)lr);
1829 1830 1831 1832 1833 1834 1835
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1836
#ifdef CONFIG_PPC64
1837
/* Called with hard IRQs off */
1838
void notrace __ppc64_runlatch_on(void)
1839
{
1840
	struct thread_info *ti = current_thread_info();
1841 1842
	unsigned long ctrl;

1843 1844 1845
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1846

1847
	ti->local_flags |= _TLF_RUNLATCH;
1848 1849
}

1850
/* Called with hard IRQs off */
1851
void notrace __ppc64_runlatch_off(void)
1852
{
1853
	struct thread_info *ti = current_thread_info();
1854 1855
	unsigned long ctrl;

1856
	ti->local_flags &= ~_TLF_RUNLATCH;
1857

1858 1859 1860
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1861
}
1862
#endif /* CONFIG_PPC64 */
1863

1864 1865 1866 1867 1868 1869
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1886 1887 1888
	unsigned long base = mm->brk;
	unsigned long ret;

1889
#ifdef CONFIG_PPC_STD_MMU_64
1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1902 1903 1904 1905 1906 1907

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1908