process.c 42.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41 42 43 44 45 46

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
47
#include <asm/machdep.h>
48
#include <asm/time.h>
49
#include <asm/runlatch.h>
50
#include <asm/syscalls.h>
51
#include <asm/switch_to.h>
52
#include <asm/tm.h>
53
#include <asm/debug.h>
54 55 56
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
57
#include <asm/code-patching.h>
58 59
#include <linux/kprobes.h>
#include <linux/kdebug.h>
60

61 62 63 64 65 66 67
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

68 69 70 71 72
extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
73
struct task_struct *last_task_used_vsx = NULL;
74 75 76
struct task_struct *last_task_used_spe = NULL;
#endif

77 78 79 80 81 82 83 84 85 86 87 88
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
void giveup_fpu_maybe_transactional(struct task_struct *tsk)
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
89
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
		set_thread_flag(TIF_RESTORE_TM);
	}

	giveup_fpu(tsk);
}

void giveup_altivec_maybe_transactional(struct task_struct *tsk)
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
107
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
108 109 110 111 112 113 114 115 116 117 118
		set_thread_flag(TIF_RESTORE_TM);
	}

	giveup_altivec(tsk);
}

#else
#define giveup_fpu_maybe_transactional(tsk)	giveup_fpu(tsk)
#define giveup_altivec_maybe_transactional(tsk)	giveup_altivec(tsk)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

119
#ifdef CONFIG_PPC_FPU
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
147
			giveup_fpu_maybe_transactional(tsk);
148 149 150 151
		}
		preempt_enable();
	}
}
152
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153
#endif /* CONFIG_PPC_FPU */
154 155 156 157 158 159 160

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161
		giveup_fpu_maybe_transactional(current);
162 163 164
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
165
	giveup_fpu_maybe_transactional(last_task_used_math);
166 167 168 169 170 171 172 173 174 175 176
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177
		giveup_altivec_maybe_transactional(current);
178
	else
179
		giveup_altivec_notask();
180
#else
181
	giveup_altivec_maybe_transactional(last_task_used_altivec);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
198
			giveup_altivec_maybe_transactional(tsk);
199 200 201 202
		}
		preempt_enable();
	}
}
203
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 205
#endif /* CONFIG_ALTIVEC */

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
#ifdef CONFIG_VSX
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
#else
	giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);

222 223
void giveup_vsx(struct task_struct *tsk)
{
224 225
	giveup_fpu_maybe_transactional(tsk);
	giveup_altivec_maybe_transactional(tsk);
226 227
	__giveup_vsx(tsk);
}
228
EXPORT_SYMBOL(giveup_vsx);
229

230 231 232 233 234 235 236 237 238 239 240 241 242
void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
243
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
244 245
#endif /* CONFIG_VSX */

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
271
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
272
			giveup_spe(tsk);
273 274 275 276 277 278
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

279
#ifndef CONFIG_SMP
280 281 282 283
/*
 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 * and the current task has some state, discard it.
 */
284
void discard_lazy_cpu_state(void)
285 286 287 288 289 290 291 292
{
	preempt_disable();
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
293 294 295 296
#ifdef CONFIG_VSX
	if (last_task_used_vsx == current)
		last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
297 298 299 300 301 302
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
	preempt_enable();
}
303
#endif /* CONFIG_SMP */
304

305 306 307 308 309 310
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

311
	current->thread.trap_nr = signal_code;
312 313 314 315 316 317 318 319 320 321 322 323
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
324
void do_break (struct pt_regs *regs, unsigned long address,
325 326 327 328
		    unsigned long error_code)
{
	siginfo_t info;

329
	current->thread.trap_nr = TRAP_HWBKPT;
330 331 332 333
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

334
	if (debugger_break_match(regs))
335 336
		return;

337 338
	/* Clear the breakpoint */
	hw_breakpoint_disable();
339 340 341 342 343 344 345 346

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
347
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
348

349
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
350

351 352 353 354 355 356
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
357
	thread->debug.iac1 = thread->debug.iac2 = 0;
358
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
359
	thread->debug.iac3 = thread->debug.iac4 = 0;
360
#endif
361
	thread->debug.dac1 = thread->debug.dac2 = 0;
362
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
363
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
364
#endif
365
	thread->debug.dbcr0 = 0;
366 367 368 369
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
370
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
371 372 373 374 375
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
376
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
377
#else
378
	thread->debug.dbcr1 = 0;
379 380 381
#endif
}

382
static void prime_debug_regs(struct debug_reg *debug)
383
{
384 385 386 387 388 389 390
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

391 392
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
393
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
394 395
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
396
#endif
397 398
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
399
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
400 401
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
402
#endif
403 404
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
405
#ifdef CONFIG_BOOKE
406
	mtspr(SPRN_DBCR2, debug->dbcr2);
407 408 409 410 411 412 413
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
414
void switch_booke_debug_regs(struct debug_reg *new_debug)
415
{
416
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
417 418
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
419
}
420
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
421
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
422
#ifndef CONFIG_HAVE_HW_BREAKPOINT
423 424
static void set_debug_reg_defaults(struct thread_struct *thread)
{
425 426
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
427
	set_breakpoint(&thread->hw_brk);
428
}
429
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
430 431
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

432
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
433 434
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
435
	mtspr(SPRN_DAC1, dabr);
436 437 438
#ifdef CONFIG_PPC_47x
	isync();
#endif
439 440
	return 0;
}
441
#elif defined(CONFIG_PPC_BOOK3S)
442 443
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
444
	mtspr(SPRN_DABR, dabr);
445 446
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
447
	return 0;
448
}
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

469 470
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
471
	unsigned long dawr, dawrx, mrd;
472 473 474 475 476 477 478 479 480

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
481 482 483 484 485 486 487 488
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
489 490 491 492 493 494 495 496

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

497
void __set_breakpoint(struct arch_hw_breakpoint *brk)
498
{
499
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
500

501
	if (cpu_has_feature(CPU_FTR_DAWR))
502 503 504
		set_dawr(brk);
	else
		set_dabr(brk);
505
}
506

507 508 509 510 511 512 513
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

514 515 516
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
517

518 519 520 521 522 523 524 525 526 527 528
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
529

530
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
531 532 533 534 535 536 537 538 539 540 541 542
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
543
		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
593
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
594
	 * ckpt_regs.msr is already set.
595
	 */
596
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
597
		thr->ckpt_regs.msr = thr->regs->msr;
598 599 600 601 602 603 604

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

605
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
606 607 608 609 610 611 612 613 614 615 616 617 618

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

644
static inline void tm_recheckpoint_new_task(struct task_struct *new)
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

662 663
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
664
		return;
665
	}
666
	msr = new->thread.ckpt_regs.msr;
667 668 669 670 671 672 673 674 675 676 677 678 679 680
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
681
#ifdef CONFIG_ALTIVEC
682 683 684 685
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
686
#endif
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

726
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
727 728 729 730 731 732 733 734 735 736 737 738 739
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
	if (msr_diff & MSR_FP) {
		fp_enable();
		load_fp_state(&current->thread.fp_state);
		regs->msr |= current->thread.fpexc_mode;
	}
	if (msr_diff & MSR_VEC) {
		vec_enable();
		load_vr_state(&current->thread.vr_state);
	}
	regs->msr |= msr_diff;
}

740 741 742 743
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
744

745 746 747 748 749
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
750 751 752
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
753

754 755
	WARN_ON(!irqs_disabled());

756
	/* Back up the TAR and DSCR across context switches.
757 758 759 760
	 * Note that the TAR is not available for use in the kernel.  (To
	 * provide this, the TAR should be backed up/restored on exception
	 * entry/exit instead, and be in pt_regs.  FIXME, this should be in
	 * pt_regs anyway (for debug).)
761 762
	 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
	 * these will change them.
763
	 */
764
	save_early_sprs(&prev->thread);
765

766 767
	__switch_to_tm(prev);

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
795 796
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
797 798
		/* VMX and FPU registers are already save here */
		__giveup_vsx(prev);
799
#endif /* CONFIG_VSX */
800 801 802 803 804 805 806 807 808 809
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
810 811 812 813 814 815 816 817 818 819
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
820 821 822 823
#ifdef CONFIG_VSX
	if (new->thread.regs && last_task_used_vsx == new)
		new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
824
#ifdef CONFIG_SPE
825 826 827 828 829 830
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
831

832 833
#endif /* CONFIG_SMP */

834
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
835
	switch_booke_debug_regs(&new->thread.debug);
836
#else
837 838 839 840 841
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
842
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
843
		__set_breakpoint(&new->thread.hw_brk);
844
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
845 846
#endif

847

848 849
	new_thread = &new->thread;
	old_thread = &current->thread;
850 851 852 853 854 855

#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
856
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
857 858 859 860 861 862
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
863 864 865
#endif /* CONFIG_PPC64 */

#ifdef CONFIG_PPC_BOOK3S_64
866
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
867 868 869 870 871 872 873
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */
874

875 876 877 878 879 880
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
881 882 883

	tm_recheckpoint_new_task(new);

884 885
	last = _switch(old_thread, new_thread);

P
Peter Zijlstra 已提交
886 887 888
#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
889
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
890 891 892 893
		batch->active = 1;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */

894 895 896
	return last;
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

913 914 915 916 917 918 919 920
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

921
		if (!__kernel_text_address(pc) ||
922
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
923
			printk(KERN_CONT "XXXXXXXX ");
924 925
		} else {
			if (regs->nip == pc)
926
				printk(KERN_CONT "<%08x> ", instr);
927
			else
928
				printk(KERN_CONT "%08x ", instr);
929 930 931 932 933 934 935 936 937 938 939 940
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
941 942 943 944 945 946 947 948 949
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
950 951 952 953
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
954
#ifdef CONFIG_BOOKE
955
	{MSR_DE,	"DE"},
956 957 958 959
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
960 961
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
962 963 964 965 966
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
984
#define REG		"%016lx"
985 986 987
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
988
#define REG		"%08lx"
989 990 991 992
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

993 994 995 996
void show_regs(struct pt_regs * regs)
{
	int i, trap;

997 998
	show_regs_print_info(KERN_DEFAULT);

999 1000 1001
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1002
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1003 1004
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
1005
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1006
	trap = TRAP(regs);
1007
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1008
		printk("CFAR: "REG" ", regs->orig_gpr3);
1009
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1010
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1011
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1012
#else
1013 1014 1015 1016 1017 1018
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1019 1020
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1021
#endif
1022 1023

	for (i = 0;  i < 32;  i++) {
1024
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
1025
			printk("\nGPR%02d: ", i);
1026 1027
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1028 1029 1030 1031 1032 1033 1034 1035
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1036 1037
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1038
#endif
1039
	show_stack(current, (unsigned long *) regs->gpr[1]);
1040 1041
	if (!user_mode(regs))
		show_instructions(regs);
1042 1043 1044 1045
}

void exit_thread(void)
{
1046
	discard_lazy_cpu_state();
1047 1048 1049 1050
}

void flush_thread(void)
{
1051
	discard_lazy_cpu_state();
1052

1053
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1054
	flush_ptrace_hw_breakpoint(current);
1055
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1056
	set_debug_reg_defaults(&current->thread);
1057
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1058 1059 1060 1061 1062 1063 1064 1065
}

void
release_thread(struct task_struct *t)
{
}

/*
1066 1067
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1068
 */
1069
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1070
{
1071 1072 1073 1074
	flush_fp_to_thread(src);
	flush_altivec_to_thread(src);
	flush_vsx_to_thread(src);
	flush_spe_to_thread(src);
1075 1076 1077 1078 1079 1080 1081 1082 1083
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1084

1085
	*dst = *src;
1086 1087 1088

	clear_task_ebb(dst);

1089
	return 0;
1090 1091
}

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1109 1110 1111
/*
 * Copy a thread..
 */
1112

1113 1114 1115
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1116
int copy_thread(unsigned long clone_flags, unsigned long usp,
1117
		unsigned long kthread_arg, struct task_struct *p)
1118 1119 1120
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1121 1122
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1123
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1124 1125 1126 1127

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1128
	if (unlikely(p->flags & PF_KTHREAD)) {
1129
		/* kernel thread */
1130
		struct thread_info *ti = (void *)task_stack_page(p);
A
Al Viro 已提交
1131
		memset(childregs, 0, sizeof(struct pt_regs));
1132
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1133 1134 1135
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1136
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1137
		clear_tsk_thread_flag(p, TIF_32BIT);
1138
		childregs->softe = 1;
1139
#endif
1140
		childregs->gpr[15] = kthread_arg;
1141
		p->thread.regs = NULL;	/* no user register state */
1142
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1143
		f = ret_from_kernel_thread;
1144
	} else {
1145
		/* user thread */
1146
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1147 1148
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1149 1150
		if (usp)
			childregs->gpr[1] = usp;
1151
		p->thread.regs = childregs;
A
Al Viro 已提交
1152
		childregs->gpr[3] = 0;  /* Result from fork() */
1153 1154
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1155
			if (!is_32bit_task())
1156 1157 1158 1159 1160
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1161 1162

		f = ret_from_fork;
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	}
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1174
	((unsigned long *)sp)[0] = 0;
1175 1176 1177 1178
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1179
#ifdef CONFIG_PPC32
1180 1181
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1182
#endif
1183 1184 1185 1186
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1187 1188 1189 1190 1191
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1192 1193
	setup_ksp_vsid(p, sp);

1194 1195
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1196 1197
		p->thread.dscr_inherit = current->thread.dscr_inherit;
		p->thread.dscr = current->thread.dscr;
1198
	}
1199 1200
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1201
#endif
1202
	kregs->nip = ppc_function_entry(f);
1203 1204 1205 1206 1207 1208
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1209
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1210
{
1211 1212 1213 1214
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1215 1216 1217 1218 1219
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1220 1221
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1222 1223
	}

1224 1225 1226 1227 1228 1229
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1230

1231 1232 1233 1234 1235 1236 1237
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1238 1239 1240
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1241
	regs->msr = MSR_USER;
1242
#else
1243
	if (!is_32bit_task()) {
1244
		unsigned long entry;
1245

1246 1247 1248
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1281 1282 1283
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1284 1285 1286 1287
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1288 1289
	}
#endif
1290
	discard_lazy_cpu_state();
1291 1292 1293
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1294
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1295
	current->thread.fp_save_area = NULL;
1296
#ifdef CONFIG_ALTIVEC
1297 1298
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1299
	current->thread.vr_save_area = NULL;
1300 1301 1302 1303 1304 1305 1306 1307 1308
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1309 1310 1311 1312 1313 1314 1315
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1316
}
1317
EXPORT_SYMBOL(start_thread);
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1332
		if (cpu_has_feature(CPU_FTR_SPE)) {
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1346 1347 1348 1349 1350 1351
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1352 1353 1354 1355
#else
		return -EINVAL;
#endif
	}
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1368 1369 1370 1371 1372 1373 1374 1375 1376
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1391
			val = tsk->thread.fpexc_mode;
1392
		} else
1393
			return -EINVAL;
1394 1395 1396 1397 1398 1399 1400 1401
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1481
int validate_sp(unsigned long sp, struct task_struct *p,
1482 1483
		       unsigned long nbytes)
{
A
Al Viro 已提交
1484
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1485 1486 1487 1488 1489

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1490
	return valid_irq_stack(sp, p, nbytes);
1491 1492
}

1493 1494
EXPORT_SYMBOL(validate_sp);

1495 1496 1497 1498 1499 1500 1501 1502 1503
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1504
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1505 1506 1507 1508
		return 0;

	do {
		sp = *(unsigned long *)sp;
1509
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1510 1511
			return 0;
		if (count > 0) {
1512
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1513 1514 1515 1516 1517 1518
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1519

1520
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1521 1522 1523 1524 1525 1526

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1527 1528 1529
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1530
	unsigned long rth = (unsigned long)return_to_handler;
1531
#endif
1532 1533 1534 1535 1536 1537

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1538
			sp = current_stack_pointer();
1539 1540 1541 1542 1543 1544 1545
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1546
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1547 1548 1549 1550
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1551
		ip = stack[STACK_FRAME_LR_SAVE];
1552
		if (!firstframe || ip != lr) {
1553
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1554
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1555
			if ((ip == rth) && curr_frame >= 0) {
1556 1557 1558 1559 1560
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1571 1572
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1573 1574 1575
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1576
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1577
			       regs->trap, (void *)regs->nip, (void *)lr);
1578 1579 1580 1581 1582 1583 1584
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1585
#ifdef CONFIG_PPC64
1586
/* Called with hard IRQs off */
1587
void notrace __ppc64_runlatch_on(void)
1588
{
1589
	struct thread_info *ti = current_thread_info();
1590 1591
	unsigned long ctrl;

1592 1593 1594
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1595

1596
	ti->local_flags |= _TLF_RUNLATCH;
1597 1598
}

1599
/* Called with hard IRQs off */
1600
void notrace __ppc64_runlatch_off(void)
1601
{
1602
	struct thread_info *ti = current_thread_info();
1603 1604
	unsigned long ctrl;

1605
	ti->local_flags &= ~_TLF_RUNLATCH;
1606

1607 1608 1609
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1610
}
1611
#endif /* CONFIG_PPC64 */
1612

1613 1614 1615 1616 1617 1618
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1635 1636 1637
	unsigned long base = mm->brk;
	unsigned long ret;

1638
#ifdef CONFIG_PPC_STD_MMU_64
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1651 1652 1653 1654 1655 1656

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1657