process.c 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
35
#include <linux/utsname.h>
36
#include <linux/ftrace.h>
37
#include <linux/kernel_stat.h>
38 39
#include <linux/personality.h>
#include <linux/random.h>
40
#include <linux/hw_breakpoint.h>
41 42 43 44 45 46 47 48

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
49
#include <asm/machdep.h>
50
#include <asm/time.h>
51
#include <asm/syscalls.h>
52 53 54
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
55 56
#include <linux/kprobes.h>
#include <linux/kdebug.h>
57 58 59 60 61 62

extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
63
struct task_struct *last_task_used_vsx = NULL;
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
struct task_struct *last_task_used_spe = NULL;
#endif

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
94
			giveup_fpu(tsk);
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
		}
		preempt_enable();
	}
}

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
		giveup_fpu(current);
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
	giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
		giveup_altivec(current);
	else
		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
#else
	giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
143
			giveup_altivec(tsk);
144 145 146 147 148 149
		}
		preempt_enable();
	}
}
#endif /* CONFIG_ALTIVEC */

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
#ifdef CONFIG_VSX
#if 0
/* not currently used, but some crazy RAID module might want to later */
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
		giveup_vsx(current);
	else
		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
#else
	giveup_vsx(last_task_used_vsx);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_vsx);
#endif

169 170 171 172 173 174 175
void giveup_vsx(struct task_struct *tsk)
{
	giveup_fpu(tsk);
	giveup_altivec(tsk);
	__giveup_vsx(tsk);
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
#endif /* CONFIG_VSX */

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
216
			giveup_spe(tsk);
217 218 219 220 221 222
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

223
#ifndef CONFIG_SMP
224 225 226 227
/*
 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 * and the current task has some state, discard it.
 */
228
void discard_lazy_cpu_state(void)
229 230 231 232 233 234 235 236
{
	preempt_disable();
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
237 238 239 240
#ifdef CONFIG_VSX
	if (last_task_used_vsx == current)
		last_task_used_vsx = NULL;
#endif /* CONFIG_VSX */
241 242 243 244 245 246
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
	preempt_enable();
}
247
#endif /* CONFIG_SMP */
248

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
void do_dabr(struct pt_regs *regs, unsigned long address,
		    unsigned long error_code)
{
	siginfo_t info;

	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	if (debugger_dabr_match(regs))
		return;

	/* Clear the DABR */
	set_dabr(0);

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
289
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
290

291 292
static DEFINE_PER_CPU(unsigned long, current_dabr);

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
	thread->iac1 = thread->iac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	thread->iac3 = thread->iac4 = 0;
#endif
	thread->dac1 = thread->dac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	thread->dvc1 = thread->dvc2 = 0;
#endif
	thread->dbcr0 = 0;
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#else
	thread->dbcr1 = 0;
#endif
}

static void prime_debug_regs(struct thread_struct *thread)
{
	mtspr(SPRN_IAC1, thread->iac1);
	mtspr(SPRN_IAC2, thread->iac2);
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	mtspr(SPRN_IAC3, thread->iac3);
	mtspr(SPRN_IAC4, thread->iac4);
#endif
	mtspr(SPRN_DAC1, thread->dac1);
	mtspr(SPRN_DAC2, thread->dac2);
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	mtspr(SPRN_DVC1, thread->dvc1);
	mtspr(SPRN_DVC2, thread->dvc2);
#endif
	mtspr(SPRN_DBCR0, thread->dbcr0);
	mtspr(SPRN_DBCR1, thread->dbcr1);
#ifdef CONFIG_BOOKE
	mtspr(SPRN_DBCR2, thread->dbcr2);
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
static void switch_booke_debug_regs(struct thread_struct *new_thread)
{
	if ((current->thread.dbcr0 & DBCR0_IDM)
		|| (new_thread->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_thread);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
	if (thread->dabr) {
		thread->dabr = 0;
		set_dabr(0);
	}
}
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

365 366
int set_dabr(unsigned long dabr)
{
367 368
	__get_cpu_var(current_dabr) = dabr;

369 370
	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr);
371

372
	/* XXX should we have a CPU_FTR_HAS_DABR ? */
373
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
374
	mtspr(SPRN_DAC1, dabr);
375 376 377
#ifdef CONFIG_PPC_47x
	isync();
#endif
378 379
#elif defined(CONFIG_PPC_BOOK3S)
	mtspr(SPRN_DABR, dabr);
380 381
#endif

382

383
	return 0;
384 385
}

386 387 388
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	unsigned long flags;
	struct task_struct *last;

#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
424 425
#ifdef CONFIG_VSX
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
426 427
		/* VMX and FPU registers are already save here */
		__giveup_vsx(prev);
428
#endif /* CONFIG_VSX */
429 430 431 432 433 434 435 436 437 438
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
439 440 441 442 443 444 445 446 447 448
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
449 450 451 452
#ifdef CONFIG_VSX
	if (new->thread.regs && last_task_used_vsx == new)
		new->thread.regs->msr |= MSR_VSX;
#endif /* CONFIG_VSX */
453
#ifdef CONFIG_SPE
454 455 456 457 458 459
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
460

461 462
#endif /* CONFIG_SMP */

463
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
464
	switch_booke_debug_regs(&new->thread);
465
#else
466 467 468 469 470
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
471 472
	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
		set_dabr(new->thread.dabr);
473
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
474 475
#endif

476

477 478
	new_thread = &new->thread;
	old_thread = &current->thread;
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
#if defined(CONFIG_PPC_BOOK3E_64)
	/* XXX Current Book3E code doesn't deal with kernel side DBCR0,
	 * we always hold the user values, so we set it now.
	 *
	 * However, we ensure the kernel MSR:DE is appropriately cleared too
	 * to avoid spurrious single step exceptions in the kernel.
	 *
	 * This will have to change to merge with the ppc32 code at some point,
	 * but I don't like much what ppc32 is doing today so there's some
	 * thinking needed there
	 */
	if ((new_thread->dbcr0 | old_thread->dbcr0) & DBCR0_IDM) {
		u32 dbcr0;

		mtmsr(mfmsr() & ~MSR_DE);
		isync();
		dbcr0 = mfspr(SPRN_DBCR0);
		dbcr0 = (dbcr0 & DBCR0_EDM) | new_thread->dbcr0;
		mtspr(SPRN_DBCR0, dbcr0);
	}
#endif /* CONFIG_PPC64_BOOK3E */

502 503 504 505 506 507 508 509 510 511 512 513 514 515
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
#endif

516
	local_irq_save(flags);
517 518

	account_system_vtime(current);
519
	account_process_vtime(current);
520 521
	calculate_steal_time();

522 523 524 525 526 527
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
528 529 530 531 532 533 534
	last = _switch(old_thread, new_thread);

	local_irq_restore(flags);

	return last;
}

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

551 552 553 554 555 556 557 558
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

559 560 561 562
		/* We use __get_user here *only* to avoid an OOPS on a
		 * bad address because the pc *should* only be a
		 * kernel address.
		 */
563 564
		if (!__kernel_text_address(pc) ||
		     __get_user(instr, (unsigned int __user *)pc)) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
			printk("XXXXXXXX ");
		} else {
			if (regs->nip == pc)
				printk("<%08x> ", instr);
			else
				printk("%08x ", instr);
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
586 587
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
588
	{MSR_ME,	"ME"},
589 590
	{MSR_CE,	"CE"},
	{MSR_DE,	"DE"},
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
610
#define REG		"%016lx"
611 612 613
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
614
#define REG		"%08lx"
615 616 617 618
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

619 620 621 622
void show_regs(struct pt_regs * regs)
{
	int i, trap;

623 624 625
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
626
	       regs, regs->trap, print_tainted(), init_utsname()->release);
627 628
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
629
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
630 631
	trap = TRAP(regs);
	if (trap == 0x300 || trap == 0x600)
632
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
633 634
		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
#else
635
		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
636
#endif
637
	printk("TASK = %p[%d] '%s' THREAD: %p",
638
	       current, task_pid_nr(current), current->comm, task_thread_info(current));
639 640

#ifdef CONFIG_SMP
641
	printk(" CPU: %d", raw_smp_processor_id());
642 643 644
#endif /* CONFIG_SMP */

	for (i = 0;  i < 32;  i++) {
645
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
646
			printk("\nGPR%02d: ", i);
647 648
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
649 650 651 652 653 654 655 656
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
657 658
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
659 660
#endif
	show_stack(current, (unsigned long *) regs->gpr[1]);
661 662
	if (!user_mode(regs))
		show_instructions(regs);
663 664 665 666
}

void exit_thread(void)
{
667
	discard_lazy_cpu_state();
668 669 670 671
}

void flush_thread(void)
{
672
	discard_lazy_cpu_state();
673

674 675 676
#ifdef CONFIG_HAVE_HW_BREAKPOINTS
	flush_ptrace_hw_breakpoint(current);
#else /* CONFIG_HAVE_HW_BREAKPOINTS */
677
	set_debug_reg_defaults(&current->thread);
678
#endif /* CONFIG_HAVE_HW_BREAKPOINTS */
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
}

void
release_thread(struct task_struct *t)
{
}

/*
 * This gets called before we allocate a new thread and copy
 * the current task into it.
 */
void prepare_to_copy(struct task_struct *tsk)
{
	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
694
	flush_vsx_to_thread(current);
695
	flush_spe_to_thread(current);
696 697 698
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	flush_ptrace_hw_breakpoint(tsk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
699 700 701 702 703
}

/*
 * Copy a thread..
 */
A
Alexey Dobriyan 已提交
704
int copy_thread(unsigned long clone_flags, unsigned long usp,
705 706
		unsigned long unused, struct task_struct *p,
		struct pt_regs *regs)
707 708 709
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
710
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
711 712 713 714 715 716 717 718 719

	CHECK_FULL_REGS(regs);
	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
	*childregs = *regs;
	if ((childregs->msr & MSR_PR) == 0) {
		/* for kernel thread, set `current' and stackptr in new task */
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
720
#ifdef CONFIG_PPC32
721
		childregs->gpr[2] = (unsigned long) p;
722
#else
A
Al Viro 已提交
723
		clear_tsk_thread_flag(p, TIF_32BIT);
724
#endif
725 726 727 728
		p->thread.regs = NULL;	/* no user register state */
	} else {
		childregs->gpr[1] = usp;
		p->thread.regs = childregs;
729 730
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
731
			if (!is_32bit_task())
732 733 734 735 736
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
	}
	childregs->gpr[3] = 0;  /* Result from fork() */
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
753 754
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
755

756
#ifdef CONFIG_PPC_STD_MMU_64
757
	if (cpu_has_feature(CPU_FTR_SLB)) {
P
Paul Mackerras 已提交
758
		unsigned long sp_vsid;
759
		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
760

P
Paul Mackerras 已提交
761 762 763 764 765 766
		if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
				<< SLB_VSID_SHIFT_1T;
		else
			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
				<< SLB_VSID_SHIFT;
767
		sp_vsid |= SLB_VSID_KERNEL | llp;
768 769
		p->thread.ksp_vsid = sp_vsid;
	}
770
#endif /* CONFIG_PPC_STD_MMU_64 */
771 772 773 774 775 776 777

	/*
	 * The PPC64 ABI makes use of a TOC to contain function 
	 * pointers.  The function (ret_from_except) is actually a pointer
	 * to the TOC entry.  The first entry is a pointer to the actual
	 * function.
 	 */
778
#ifdef CONFIG_PPC64
779 780 781 782
	kregs->nip = *((unsigned long *)ret_from_fork);
#else
	kregs->nip = (unsigned long)ret_from_fork;
#endif
783 784 785 786 787 788 789

	return 0;
}

/*
 * Set up a thread for executing a new program
 */
790
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
791
{
792 793 794 795
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

796
	set_fs(USER_DS);
797 798 799 800 801 802

	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
803 804
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
805 806
	}

807 808 809 810 811 812
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
813

814 815 816 817 818 819 820
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

821 822 823
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
824
	regs->msr = MSR_USER;
825
#else
826
	if (!is_32bit_task()) {
827
		unsigned long entry, toc;
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846

		/* start is a relocated pointer to the function descriptor for
		 * the elf _start routine.  The first entry in the function
		 * descriptor is the entry address of _start and the second
		 * entry is the TOC value we need to use.
		 */
		__get_user(entry, (unsigned long __user *)start);
		__get_user(toc, (unsigned long __user *)start+1);

		/* Check whether the e_entry function descriptor entries
		 * need to be relocated before we can use them.
		 */
		if (load_addr != 0) {
			entry += load_addr;
			toc   += load_addr;
		}
		regs->nip = entry;
		regs->gpr[2] = toc;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
847 848 849 850
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
851 852 853
	}
#endif

854
	discard_lazy_cpu_state();
855 856 857
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
858
	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
859
	current->thread.fpscr.val = 0;
860 861 862
#ifdef CONFIG_ALTIVEC
	memset(current->thread.vr, 0, sizeof(current->thread.vr));
	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
863
	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
}

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
888 889 890 891 892 893 894
		if (cpu_has_feature(CPU_FTR_SPE)) {
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
895 896 897 898
#else
		return -EINVAL;
#endif
	}
899 900 901 902 903 904 905 906 907 908 909 910

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
911 912 913 914 915 916 917 918 919
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
920 921 922 923
		if (cpu_has_feature(CPU_FTR_SPE))
			val = tsk->thread.fpexc_mode;
		else
			return -EINVAL;
924 925 926 927 928 929 930 931
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

976 977 978 979 980 981 982 983 984 985 986
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

987 988
#define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))

989 990 991 992 993 994 995 996
int sys_clone(unsigned long clone_flags, unsigned long usp,
	      int __user *parent_tidp, void __user *child_threadptr,
	      int __user *child_tidp, int p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	if (usp == 0)
		usp = regs->gpr[1];	/* stack pointer for child */
997
#ifdef CONFIG_PPC64
998
	if (is_32bit_task()) {
999 1000 1001 1002
		parent_tidp = TRUNC_PTR(parent_tidp);
		child_tidp = TRUNC_PTR(child_tidp);
	}
#endif
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
 	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
}

int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
	     unsigned long p4, unsigned long p5, unsigned long p6,
	     struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
}

int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
	      unsigned long p4, unsigned long p5, unsigned long p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
			regs, 0, NULL, NULL);
}

int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
	       unsigned long a3, unsigned long a4, unsigned long a5,
	       struct pt_regs *regs)
{
	int error;
1028
	char *filename;
1029

1030
	filename = getname((const char __user *) a0);
1031 1032 1033 1034 1035 1036
	error = PTR_ERR(filename);
	if (IS_ERR(filename))
		goto out;
	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_spe_to_thread(current);
1037 1038 1039
	error = do_execve(filename,
			  (const char __user *const __user *) a1,
			  (const char __user *const __user *) a2, regs);
1040 1041 1042 1043 1044
	putname(filename);
out:
	return error;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1069
int validate_sp(unsigned long sp, struct task_struct *p,
1070 1071
		       unsigned long nbytes)
{
A
Al Viro 已提交
1072
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1073 1074 1075 1076 1077

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1078
	return valid_irq_stack(sp, p, nbytes);
1079 1080
}

1081 1082
EXPORT_SYMBOL(validate_sp);

1083 1084 1085 1086 1087 1088 1089 1090 1091
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1092
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1093 1094 1095 1096
		return 0;

	do {
		sp = *(unsigned long *)sp;
1097
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1098 1099
			return 0;
		if (count > 0) {
1100
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1101 1102 1103 1104 1105 1106
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1107

1108
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1109 1110 1111 1112 1113 1114

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1115 1116 1117
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1118 1119
	unsigned long rth = (unsigned long)return_to_handler;
	unsigned long mrth = -1;
1120
#ifdef CONFIG_PPC64
1121 1122 1123 1124
	extern void mod_return_to_handler(void);
	rth = *(unsigned long *)rth;
	mrth = (unsigned long)mod_return_to_handler;
	mrth = *(unsigned long *)mrth;
1125 1126
#endif
#endif
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
			asm("mr %0,1" : "=r" (sp));
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1141
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1142 1143 1144 1145
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1146
		ip = stack[STACK_FRAME_LR_SAVE];
1147
		if (!firstframe || ip != lr) {
1148
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1149
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1150
			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1151 1152 1153 1154 1155
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1166 1167
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1168 1169 1170
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1171 1172
			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
			       regs->trap, (void *)regs->nip, (void *)lr);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

void dump_stack(void)
{
	show_stack(current, NULL);
}
EXPORT_SYMBOL(dump_stack);
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

#ifdef CONFIG_PPC64
void ppc64_runlatch_on(void)
{
	unsigned long ctrl;

	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
		HMT_medium();

		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);

		set_thread_flag(TIF_RUNLATCH);
	}
}

void ppc64_runlatch_off(void)
{
	unsigned long ctrl;

	if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
		HMT_medium();

		clear_thread_flag(TIF_RUNLATCH);

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
}
#endif
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247

#if THREAD_SHIFT < PAGE_SHIFT

static struct kmem_cache *thread_info_cache;

struct thread_info *alloc_thread_info(struct task_struct *tsk)
{
	struct thread_info *ti;

	ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
	if (unlikely(ti == NULL))
		return NULL;
#ifdef CONFIG_DEBUG_STACK_USAGE
	memset(ti, 0, THREAD_SIZE);
#endif
	return ti;
}

void free_thread_info(struct thread_info *ti)
{
	kmem_cache_free(thread_info_cache, ti);
}

void thread_info_cache_init(void)
{
	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
					      THREAD_SIZE, 0, NULL);
	BUG_ON(thread_info_cache == NULL);
}

#endif /* THREAD_SHIFT < PAGE_SHIFT */
1248 1249 1250 1251 1252 1253 1254

unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
	else
		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1271 1272 1273
	unsigned long base = mm->brk;
	unsigned long ret;

1274
#ifdef CONFIG_PPC_STD_MMU_64
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1287 1288 1289 1290 1291 1292

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302

unsigned long randomize_et_dyn(unsigned long base)
{
	unsigned long ret = PAGE_ALIGN(base + brk_rnd());

	if (ret < base)
		return base;

	return ret;
}
1303

1304
#ifdef CONFIG_SMP
M
Michael Neuling 已提交
1305
int arch_sd_sibling_asym_packing(void)
1306 1307 1308 1309 1310 1311 1312
{
	if (cpu_has_feature(CPU_FTR_ASYM_SMT)) {
		printk_once(KERN_INFO "Enabling Asymmetric SMT scheduling\n");
		return SD_ASYM_PACKING;
	}
	return 0;
}
1313
#endif