process.c 49.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41
#include <linux/elf-randomize.h>
42 43 44 45 46 47

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
48
#include <asm/machdep.h>
49
#include <asm/time.h>
50
#include <asm/runlatch.h>
51
#include <asm/syscalls.h>
52
#include <asm/switch_to.h>
53
#include <asm/tm.h>
54
#include <asm/debug.h>
55 56 57
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
58
#include <asm/code-patching.h>
59
#include <asm/exec.h>
60
#include <asm/livepatch.h>
61
#include <asm/cpu_has_feature.h>
62
#include <asm/asm-prototypes.h>
63

64 65
#include <linux/kprobes.h>
#include <linux/kdebug.h>
66

67 68 69 70 71 72 73
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

74 75
extern unsigned long _get_SP(void);

76
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77
static void check_if_tm_restore_required(struct task_struct *tsk)
78 79 80 81 82 83 84 85 86 87
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
88
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
89 90 91
		set_thread_flag(TIF_RESTORE_TM);
	}
}
92 93 94 95 96

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
97
#else
98
static inline bool msr_tm_active(unsigned long msr) { return false; }
99
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
100 101
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

102 103 104 105 106 107 108 109 110 111 112 113
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

114
unsigned long msr_check_and_set(unsigned long bits)
115
{
116 117
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
118

119
	newmsr = oldmsr | bits;
120 121

#ifdef CONFIG_VSX
122
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
123 124
		newmsr |= MSR_VSX;
#endif
125

126 127
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
128 129

	return newmsr;
130
}
131

132
void __msr_check_and_clear(unsigned long bits)
133 134 135 136 137 138 139 140 141 142 143 144 145 146
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
147
EXPORT_SYMBOL(__msr_check_and_clear);
148 149

#ifdef CONFIG_PPC_FPU
150 151
void __giveup_fpu(struct task_struct *tsk)
{
152 153
	unsigned long msr;

154
	save_fpu(tsk);
155 156
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
157 158
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
159
		msr &= ~MSR_VSX;
160
#endif
161
	tsk->thread.regs->msr = msr;
162 163
}

164 165 166 167 168
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
169
	__giveup_fpu(tsk);
170
	msr_check_and_clear(MSR_FP);
171 172 173
}
EXPORT_SYMBOL(giveup_fpu);

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
194
			 * the FP register state on context switch,
195 196 197 198
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
199
			giveup_fpu(tsk);
200 201 202 203
		}
		preempt_enable();
	}
}
204
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
205 206 207 208 209

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

210
	msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
211

212 213
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
214
		__giveup_fpu(current);
215
	}
216 217
}
EXPORT_SYMBOL(enable_kernel_fp);
218 219

static int restore_fp(struct task_struct *tsk) {
220
	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
221 222 223 224 225 226 227 228
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
229
#endif /* CONFIG_PPC_FPU */
230 231

#ifdef CONFIG_ALTIVEC
232 233
#define loadvec(thr) ((thr).load_vec)

234 235
static void __giveup_altivec(struct task_struct *tsk)
{
236 237
	unsigned long msr;

238
	save_altivec(tsk);
239 240
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
241 242
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
243
		msr &= ~MSR_VSX;
244
#endif
245
	tsk->thread.regs->msr = msr;
246 247
}

248 249 250 251
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

252
	msr_check_and_set(MSR_VEC);
253
	__giveup_altivec(tsk);
254
	msr_check_and_clear(MSR_VEC);
255 256 257
}
EXPORT_SYMBOL(giveup_altivec);

258 259 260 261
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

262
	msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
263

264 265
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
266
		__giveup_altivec(current);
267
	}
268 269 270 271 272 273 274 275 276 277 278 279 280
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
281
			giveup_altivec(tsk);
282 283 284 285
		}
		preempt_enable();
	}
}
286
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
287 288 289

static int restore_altivec(struct task_struct *tsk)
{
290 291
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
292 293 294 295 296 297 298 299 300 301 302
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
303 304
#endif /* CONFIG_ALTIVEC */

305
#ifdef CONFIG_VSX
306
static void __giveup_vsx(struct task_struct *tsk)
307 308 309 310 311
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
312 313 314 315 316 317 318 319
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
320
	__giveup_vsx(tsk);
321
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
322
}
323 324 325 326 327 328 329 330

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
331

332 333 334 335
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

336
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
337

338
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
339
		check_if_tm_restore_required(current);
340 341 342 343 344
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
345
	}
346 347 348 349 350 351 352 353 354 355 356 357 358 359
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
360
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
361 362 363 364 365 366 367 368 369 370 371 372

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
373
static inline void save_vsx(struct task_struct *tsk) { }
374 375
#endif /* CONFIG_VSX */

376
#ifdef CONFIG_SPE
377 378 379 380
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

381
	msr_check_and_set(MSR_SPE);
382
	__giveup_spe(tsk);
383
	msr_check_and_clear(MSR_SPE);
384 385
}
EXPORT_SYMBOL(giveup_spe);
386 387 388 389 390

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

391
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
392

393 394
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
395
		__giveup_spe(current);
396
	}
397 398 399 400 401 402 403 404 405
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
406
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
407
			giveup_spe(tsk);
408 409 410 411 412 413
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
451
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

474 475 476 477
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

478 479
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

505 506 507 508 509 510 511 512 513 514 515 516 517 518
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

519 520 521 522 523 524 525 526 527 528 529 530 531
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
532 533 534 535 536 537 538

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

539 540 541 542 543
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
544
		save_all(tsk);
545 546 547 548 549 550 551 552 553 554 555

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

556 557 558 559 560 561
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

562
	current->thread.trap_nr = signal_code;
563 564 565 566 567 568 569 570 571 572 573 574
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
575
void do_break (struct pt_regs *regs, unsigned long address,
576 577 578 579
		    unsigned long error_code)
{
	siginfo_t info;

580
	current->thread.trap_nr = TRAP_HWBKPT;
581 582 583 584
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

585
	if (debugger_break_match(regs))
586 587
		return;

588 589
	/* Clear the breakpoint */
	hw_breakpoint_disable();
590 591 592 593 594 595 596 597

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
598
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
599

600
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
601

602 603 604 605 606 607
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
608
	thread->debug.iac1 = thread->debug.iac2 = 0;
609
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
610
	thread->debug.iac3 = thread->debug.iac4 = 0;
611
#endif
612
	thread->debug.dac1 = thread->debug.dac2 = 0;
613
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
614
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
615
#endif
616
	thread->debug.dbcr0 = 0;
617 618 619 620
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
621
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
622 623 624 625 626
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
627
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
628
#else
629
	thread->debug.dbcr1 = 0;
630 631 632
#endif
}

633
static void prime_debug_regs(struct debug_reg *debug)
634
{
635 636 637 638 639 640 641
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

642 643
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
644
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
645 646
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
647
#endif
648 649
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
650
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
651 652
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
653
#endif
654 655
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
656
#ifdef CONFIG_BOOKE
657
	mtspr(SPRN_DBCR2, debug->dbcr2);
658 659 660 661 662 663 664
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
665
void switch_booke_debug_regs(struct debug_reg *new_debug)
666
{
667
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
668 669
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
670
}
671
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
672
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
673
#ifndef CONFIG_HAVE_HW_BREAKPOINT
674 675
static void set_debug_reg_defaults(struct thread_struct *thread)
{
676 677
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
678
	set_breakpoint(&thread->hw_brk);
679
}
680
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
681 682
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

683
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
684 685
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
686
	mtspr(SPRN_DAC1, dabr);
687 688 689
#ifdef CONFIG_PPC_47x
	isync();
#endif
690 691
	return 0;
}
692
#elif defined(CONFIG_PPC_BOOK3S)
693 694
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
695
	mtspr(SPRN_DABR, dabr);
696 697
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
698
	return 0;
699
}
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

720 721
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
722
	unsigned long dawr, dawrx, mrd;
723 724 725 726 727 728 729 730 731

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
732 733 734 735 736 737 738 739
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
740 741 742 743 744 745 746 747

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

748
void __set_breakpoint(struct arch_hw_breakpoint *brk)
749
{
750
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
751

752
	if (cpu_has_feature(CPU_FTR_DAWR))
753 754 755
		set_dawr(brk);
	else
		set_dabr(brk);
756
}
757

758 759 760 761 762 763 764
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

765 766 767
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
768

769 770 771 772 773 774 775 776 777 778 779
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
780

781
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
782 783 784 785 786 787 788 789 790 791 792 793
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
794
		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
795 796 797 798 799 800 801 802 803 804
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

805 806 807 808 809 810 811 812 813 814 815 816 817
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
818
	 * benefit of checking for a potential TM bad thing exception.
819 820 821 822
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
862
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
863
	 * ckpt_regs.msr is already set.
864
	 */
865
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
866
		thr->ckpt_regs.msr = thr->regs->msr;
867 868 869 870 871 872 873

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

874
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
875 876 877 878 879 880 881 882 883 884 885 886 887

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

913
static inline void tm_recheckpoint_new_task(struct task_struct *new)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

931 932
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
933
		return;
934
	}
935
	msr = new->thread.ckpt_regs.msr;
936 937 938 939 940 941 942 943 944 945 946 947 948 949
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
950
#ifdef CONFIG_ALTIVEC
951 952 953 954
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
955
#endif
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

995
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
996
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
997

998 999 1000 1001 1002 1003 1004
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
#ifdef CONFIG_ALIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1005 1006
	restore_math(regs);

1007 1008 1009
	regs->msr |= msr_diff;
}

1010 1011 1012 1013
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1014

1015 1016 1017
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1018
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
1040 1041 1042 1043 1044 1045 1046 1047

	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* Conditionally save Load Monitor registers, if enabled */
		if (t->fscr & FSCR_LM) {
			t->lmrr = mfspr(SPRN_LMRR);
			t->lmser = mfspr(SPRN_LMSER);
		}
	}
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1062
		if (new_thread->dscr_inherit)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1077 1078 1079
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1080 1081 1082
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* Conditionally restore Load Monitor registers, if enabled */
		if (new_thread->fscr & FSCR_LM) {
			if (old_thread->lmrr != new_thread->lmrr)
				mtspr(SPRN_LMRR, new_thread->lmrr);
			if (old_thread->lmser != new_thread->lmser)
				mtspr(SPRN_LMSER, new_thread->lmser);
		}
	}
1093 1094 1095
#endif
}

1096 1097 1098 1099 1100
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1101 1102 1103
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1104

1105 1106 1107
	new_thread = &new->thread;
	old_thread = &current->thread;

1108 1109
	WARN_ON(!irqs_disabled());

1110 1111 1112 1113 1114
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1115
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1116 1117 1118 1119 1120 1121
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1122 1123
#endif /* CONFIG_PPC64 */

1124
#ifdef CONFIG_PPC_STD_MMU_64
1125
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1126 1127 1128 1129 1130 1131
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1132
#endif /* CONFIG_PPC_STD_MMU_64 */
1133

A
Anton Blanchard 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	__switch_to_tm(prev);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1158 1159 1160 1161 1162 1163
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1164 1165 1166

	tm_recheckpoint_new_task(new);

1167 1168 1169 1170 1171 1172 1173
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1174 1175
	restore_sprs(old_thread, new_thread);

1176 1177
	last = _switch(old_thread, new_thread);

1178
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1179 1180
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1181
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1182 1183
		batch->active = 1;
	}
1184 1185 1186

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);
1187
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1188

1189 1190 1191
	return last;
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

1208 1209 1210 1211 1212 1213 1214 1215
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1216
		if (!__kernel_text_address(pc) ||
1217
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1218
			printk(KERN_CONT "XXXXXXXX ");
1219 1220
		} else {
			if (regs->nip == pc)
1221
				printk(KERN_CONT "<%08x> ", instr);
1222
			else
1223
				printk(KERN_CONT "%08x ", instr);
1224 1225 1226 1227 1228 1229 1230 1231
		}

		pc += sizeof(int);
	}

	printk("\n");
}

1232
struct regbit {
1233 1234
	unsigned long bit;
	const char *name;
1235 1236 1237
};

static struct regbit msr_bits[] = {
1238 1239 1240 1241 1242 1243 1244 1245 1246
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1247 1248 1249 1250
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1251
#ifdef CONFIG_BOOKE
1252
	{MSR_DE,	"DE"},
1253 1254 1255 1256
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1257 1258
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1259 1260 1261 1262 1263
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1264 1265 1266
	{0,		NULL}
};

1267
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1268
{
1269
	const char *s = "";
1270 1271 1272

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1273 1274
			printk("%s%s", s, bits->name);
			s = sep;
1275
		}
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
		printk(",TM[");
		print_bits(val, msr_tm_bits, "");
		printk("]");
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
	printk("<");
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1310 1311 1312 1313
	printk(">");
}

#ifdef CONFIG_PPC64
1314
#define REG		"%016lx"
1315 1316 1317
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1318
#define REG		"%08lx"
1319 1320 1321 1322
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1323 1324 1325 1326
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1327 1328
	show_regs_print_info(KERN_DEFAULT);

1329 1330 1331
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1332
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1333
	printk("MSR: "REG" ", regs->msr);
1334
	print_msr_bits(regs->msr);
1335
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1336
	trap = TRAP(regs);
1337
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1338
		printk("CFAR: "REG" ", regs->orig_gpr3);
1339
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1340
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1341
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1342
#else
1343 1344 1345 1346 1347 1348
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1349 1350
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1351
#endif
1352 1353

	for (i = 0;  i < 32;  i++) {
1354
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
1355
			printk("\nGPR%02d: ", i);
1356 1357
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1358 1359 1360 1361 1362 1363 1364 1365
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1366 1367
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1368
#endif
1369
	show_stack(current, (unsigned long *) regs->gpr[1]);
1370 1371
	if (!user_mode(regs))
		show_instructions(regs);
1372 1373 1374 1375
}

void flush_thread(void)
{
1376
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1377
	flush_ptrace_hw_breakpoint(current);
1378
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1379
	set_debug_reg_defaults(&current->thread);
1380
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1381 1382 1383 1384 1385 1386 1387 1388
}

void
release_thread(struct task_struct *t)
{
}

/*
1389 1390
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1391
 */
1392
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1393
{
1394
	flush_all_to_thread(src);
1395 1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1404

1405
	*dst = *src;
1406 1407 1408

	clear_task_ebb(dst);

1409
	return 0;
1410 1411
}

1412 1413 1414 1415 1416 1417
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1418 1419 1420
	if (radix_enabled())
		return;

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1432 1433 1434
/*
 * Copy a thread..
 */
1435

1436 1437 1438
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1439
int copy_thread(unsigned long clone_flags, unsigned long usp,
1440
		unsigned long kthread_arg, struct task_struct *p)
1441 1442 1443
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1444 1445
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1446
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1447 1448 1449
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1450 1451 1452 1453

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1454
	if (unlikely(p->flags & PF_KTHREAD)) {
1455
		/* kernel thread */
A
Al Viro 已提交
1456
		memset(childregs, 0, sizeof(struct pt_regs));
1457
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1458 1459 1460
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1461
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1462
		clear_tsk_thread_flag(p, TIF_32BIT);
1463
		childregs->softe = 1;
1464
#endif
1465
		childregs->gpr[15] = kthread_arg;
1466
		p->thread.regs = NULL;	/* no user register state */
1467
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1468
		f = ret_from_kernel_thread;
1469
	} else {
1470
		/* user thread */
1471
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1472 1473
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1474 1475
		if (usp)
			childregs->gpr[1] = usp;
1476
		p->thread.regs = childregs;
A
Al Viro 已提交
1477
		childregs->gpr[3] = 0;  /* Result from fork() */
1478 1479
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1480
			if (!is_32bit_task())
1481 1482 1483 1484 1485
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1486 1487

		f = ret_from_fork;
1488
	}
1489
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1500
	((unsigned long *)sp)[0] = 0;
1501 1502 1503 1504
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1505
#ifdef CONFIG_PPC32
1506 1507
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1508
#endif
1509 1510 1511 1512
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1513 1514 1515 1516 1517
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1518 1519
	setup_ksp_vsid(p, sp);

1520 1521
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1522
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1523
		p->thread.dscr = mfspr(SPRN_DSCR);
1524
	}
1525 1526
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1527
#endif
1528
	kregs->nip = ppc_function_entry(f);
1529 1530 1531 1532 1533 1534
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1535
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1536
{
1537 1538 1539 1540
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1541 1542 1543 1544 1545
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1546 1547
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1548 1549
	}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1560 1561 1562 1563 1564 1565
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1566

1567 1568 1569 1570 1571 1572 1573
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1574 1575 1576
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1577
	regs->msr = MSR_USER;
1578
#else
1579
	if (!is_32bit_task()) {
1580
		unsigned long entry;
1581

1582 1583 1584
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1585

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1617 1618 1619
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1620 1621 1622 1623
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1624 1625
	}
#endif
1626 1627 1628
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1629
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1630
	current->thread.fp_save_area = NULL;
1631
#ifdef CONFIG_ALTIVEC
1632 1633
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1634
	current->thread.vr_save_area = NULL;
1635 1636 1637 1638 1639 1640 1641 1642 1643
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1644 1645 1646 1647 1648 1649 1650
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1651
}
1652
EXPORT_SYMBOL(start_thread);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1667
		if (cpu_has_feature(CPU_FTR_SPE)) {
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1681 1682 1683 1684 1685 1686
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1687 1688 1689 1690
#else
		return -EINVAL;
#endif
	}
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1703 1704 1705 1706 1707 1708 1709 1710 1711
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1726
			val = tsk->thread.fpexc_mode;
1727
		} else
1728
			return -EINVAL;
1729 1730 1731 1732 1733 1734 1735 1736
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1816
int validate_sp(unsigned long sp, struct task_struct *p,
1817 1818
		       unsigned long nbytes)
{
A
Al Viro 已提交
1819
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1820 1821 1822 1823 1824

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1825
	return valid_irq_stack(sp, p, nbytes);
1826 1827
}

1828 1829
EXPORT_SYMBOL(validate_sp);

1830 1831 1832 1833 1834 1835 1836 1837 1838
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1839
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1840 1841 1842 1843
		return 0;

	do {
		sp = *(unsigned long *)sp;
1844
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1845 1846
			return 0;
		if (count > 0) {
1847
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1848 1849 1850 1851 1852 1853
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1854

1855
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1856 1857 1858 1859 1860 1861

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1862 1863 1864
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1865
	unsigned long rth = (unsigned long)return_to_handler;
1866
#endif
1867 1868 1869 1870 1871 1872

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1873
			sp = current_stack_pointer();
1874 1875 1876 1877 1878 1879 1880
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1881
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1882 1883 1884 1885
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1886
		ip = stack[STACK_FRAME_LR_SAVE];
1887
		if (!firstframe || ip != lr) {
1888
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1889
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1890
			if ((ip == rth) && curr_frame >= 0) {
1891 1892 1893 1894 1895
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1906 1907
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1908 1909 1910
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1911
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1912
			       regs->trap, (void *)regs->nip, (void *)lr);
1913 1914 1915 1916 1917 1918 1919
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1920
#ifdef CONFIG_PPC64
1921
/* Called with hard IRQs off */
1922
void notrace __ppc64_runlatch_on(void)
1923
{
1924
	struct thread_info *ti = current_thread_info();
1925 1926
	unsigned long ctrl;

1927 1928 1929
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1930

1931
	ti->local_flags |= _TLF_RUNLATCH;
1932 1933
}

1934
/* Called with hard IRQs off */
1935
void notrace __ppc64_runlatch_off(void)
1936
{
1937
	struct thread_info *ti = current_thread_info();
1938 1939
	unsigned long ctrl;

1940
	ti->local_flags &= ~_TLF_RUNLATCH;
1941

1942 1943 1944
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1945
}
1946
#endif /* CONFIG_PPC64 */
1947

1948 1949 1950 1951 1952 1953
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1954 1955 1956 1957 1958 1959 1960

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
1961
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1962
	else
D
Daniel Cashman 已提交
1963
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1964 1965 1966 1967 1968 1969

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1970 1971 1972
	unsigned long base = mm->brk;
	unsigned long ret;

1973
#ifdef CONFIG_PPC_STD_MMU_64
1974 1975 1976 1977 1978
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
1979 1980
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1981 1982 1983 1984 1985 1986
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1987 1988 1989 1990 1991 1992

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1993