process.c 49.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41
#include <linux/elf-randomize.h>
42 43 44 45 46 47

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
48
#include <asm/machdep.h>
49
#include <asm/time.h>
50
#include <asm/runlatch.h>
51
#include <asm/syscalls.h>
52
#include <asm/switch_to.h>
53
#include <asm/tm.h>
54
#include <asm/debug.h>
55 56 57
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
58
#include <asm/code-patching.h>
59
#include <asm/exec.h>
60
#include <asm/livepatch.h>
61
#include <asm/cpu_has_feature.h>
62
#include <asm/asm-prototypes.h>
63

64 65
#include <linux/kprobes.h>
#include <linux/kdebug.h>
66

67 68 69 70 71 72
#ifdef CONFIG_CC_STACKPROTECTOR
#include <linux/stackprotector.h>
unsigned long __stack_chk_guard __read_mostly;
EXPORT_SYMBOL(__stack_chk_guard);
#endif

73 74 75 76 77 78 79
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

80 81
extern unsigned long _get_SP(void);

82
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
83
static void check_if_tm_restore_required(struct task_struct *tsk)
84 85 86 87 88 89 90 91 92 93
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
94
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
95 96 97
		set_thread_flag(TIF_RESTORE_TM);
	}
}
98 99 100 101 102

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
103
#else
104
static inline bool msr_tm_active(unsigned long msr) { return false; }
105
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
106 107
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

108 109 110 111 112 113 114 115 116 117 118 119
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

120
unsigned long msr_check_and_set(unsigned long bits)
121
{
122 123
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
124

125
	newmsr = oldmsr | bits;
126 127

#ifdef CONFIG_VSX
128
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129 130
		newmsr |= MSR_VSX;
#endif
131

132 133
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
134 135

	return newmsr;
136
}
137

138
void __msr_check_and_clear(unsigned long bits)
139 140 141 142 143 144 145 146 147 148 149 150 151 152
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
153
EXPORT_SYMBOL(__msr_check_and_clear);
154 155

#ifdef CONFIG_PPC_FPU
156 157
void __giveup_fpu(struct task_struct *tsk)
{
158 159
	unsigned long msr;

160
	save_fpu(tsk);
161 162
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
163 164
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
165
		msr &= ~MSR_VSX;
166
#endif
167
	tsk->thread.regs->msr = msr;
168 169
}

170 171 172 173 174
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
175
	__giveup_fpu(tsk);
176
	msr_check_and_clear(MSR_FP);
177 178 179
}
EXPORT_SYMBOL(giveup_fpu);

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
200
			 * the FP register state on context switch,
201 202 203 204
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
205
			giveup_fpu(tsk);
206 207 208 209
		}
		preempt_enable();
	}
}
210
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
211 212 213

void enable_kernel_fp(void)
{
214 215
	unsigned long cpumsr;

216 217
	WARN_ON(preemptible());

218
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
219

220 221
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
222 223 224 225 226 227 228 229 230
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
231
		__giveup_fpu(current);
232
	}
233 234
}
EXPORT_SYMBOL(enable_kernel_fp);
235 236

static int restore_fp(struct task_struct *tsk) {
237
	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
238 239 240 241 242 243 244 245
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
246
#endif /* CONFIG_PPC_FPU */
247 248

#ifdef CONFIG_ALTIVEC
249 250
#define loadvec(thr) ((thr).load_vec)

251 252
static void __giveup_altivec(struct task_struct *tsk)
{
253 254
	unsigned long msr;

255
	save_altivec(tsk);
256 257
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
258 259
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
260
		msr &= ~MSR_VSX;
261
#endif
262
	tsk->thread.regs->msr = msr;
263 264
}

265 266 267 268
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

269
	msr_check_and_set(MSR_VEC);
270
	__giveup_altivec(tsk);
271
	msr_check_and_clear(MSR_VEC);
272 273 274
}
EXPORT_SYMBOL(giveup_altivec);

275 276
void enable_kernel_altivec(void)
{
277 278
	unsigned long cpumsr;

279 280
	WARN_ON(preemptible());

281
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
282

283 284
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
285 286 287 288 289 290 291 292 293
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
294
		__giveup_altivec(current);
295
	}
296 297 298 299 300 301 302 303 304 305 306 307 308
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
309
			giveup_altivec(tsk);
310 311 312 313
		}
		preempt_enable();
	}
}
314
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
315 316 317

static int restore_altivec(struct task_struct *tsk)
{
318 319
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
320 321 322 323 324 325 326 327 328 329 330
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
331 332
#endif /* CONFIG_ALTIVEC */

333
#ifdef CONFIG_VSX
334
static void __giveup_vsx(struct task_struct *tsk)
335 336 337 338 339
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
340 341 342 343 344 345 346 347
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
348
	__giveup_vsx(tsk);
349
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
350
}
351 352 353 354 355 356 357 358

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
359

360 361
void enable_kernel_vsx(void)
{
362 363
	unsigned long cpumsr;

364 365
	WARN_ON(preemptible());

366
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
367

368
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
369
		check_if_tm_restore_required(current);
370 371 372 373 374 375 376 377 378
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
379 380 381 382 383
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
384
	}
385 386 387 388 389 390 391 392 393 394 395 396 397 398
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
399
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
400 401 402 403 404 405 406 407 408 409 410 411

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
412
static inline void save_vsx(struct task_struct *tsk) { }
413 414
#endif /* CONFIG_VSX */

415
#ifdef CONFIG_SPE
416 417 418 419
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

420
	msr_check_and_set(MSR_SPE);
421
	__giveup_spe(tsk);
422
	msr_check_and_clear(MSR_SPE);
423 424
}
EXPORT_SYMBOL(giveup_spe);
425 426 427 428 429

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

430
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
431

432 433
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
434
		__giveup_spe(current);
435
	}
436 437 438 439 440 441 442 443 444
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
445
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
446
			giveup_spe(tsk);
447 448 449 450 451 452
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
490
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

513 514 515 516
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

517 518
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

544 545 546 547 548 549 550 551 552 553 554 555 556 557
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

558 559 560 561 562 563 564 565 566 567 568 569 570
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
571 572 573 574 575 576 577

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

578 579 580 581 582
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
583
		save_all(tsk);
584 585 586 587 588 589 590 591 592 593 594

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

595 596 597 598 599 600
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

601
	current->thread.trap_nr = signal_code;
602 603 604 605 606 607 608 609 610 611 612 613
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
614
void do_break (struct pt_regs *regs, unsigned long address,
615 616 617 618
		    unsigned long error_code)
{
	siginfo_t info;

619
	current->thread.trap_nr = TRAP_HWBKPT;
620 621 622 623
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

624
	if (debugger_break_match(regs))
625 626
		return;

627 628
	/* Clear the breakpoint */
	hw_breakpoint_disable();
629 630 631 632 633 634 635 636

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
637
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
638

639
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
640

641 642 643 644 645 646
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
647
	thread->debug.iac1 = thread->debug.iac2 = 0;
648
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
649
	thread->debug.iac3 = thread->debug.iac4 = 0;
650
#endif
651
	thread->debug.dac1 = thread->debug.dac2 = 0;
652
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
653
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
654
#endif
655
	thread->debug.dbcr0 = 0;
656 657 658 659
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
660
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
661 662 663 664 665
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
666
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
667
#else
668
	thread->debug.dbcr1 = 0;
669 670 671
#endif
}

672
static void prime_debug_regs(struct debug_reg *debug)
673
{
674 675 676 677 678 679 680
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

681 682
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
683
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
684 685
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
686
#endif
687 688
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
689
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
690 691
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
692
#endif
693 694
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
695
#ifdef CONFIG_BOOKE
696
	mtspr(SPRN_DBCR2, debug->dbcr2);
697 698 699 700 701 702 703
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
704
void switch_booke_debug_regs(struct debug_reg *new_debug)
705
{
706
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
707 708
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
709
}
710
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
711
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
712
#ifndef CONFIG_HAVE_HW_BREAKPOINT
713 714
static void set_debug_reg_defaults(struct thread_struct *thread)
{
715 716
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
717
	set_breakpoint(&thread->hw_brk);
718
}
719
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
720 721
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

722
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
723 724
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
725
	mtspr(SPRN_DAC1, dabr);
726 727 728
#ifdef CONFIG_PPC_47x
	isync();
#endif
729 730
	return 0;
}
731
#elif defined(CONFIG_PPC_BOOK3S)
732 733
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
734
	mtspr(SPRN_DABR, dabr);
735 736
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
737
	return 0;
738
}
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

759 760
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
761
	unsigned long dawr, dawrx, mrd;
762 763 764 765 766 767 768 769 770

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
771 772 773 774 775 776 777 778
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
779 780 781 782 783 784 785 786

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

787
void __set_breakpoint(struct arch_hw_breakpoint *brk)
788
{
789
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
790

791
	if (cpu_has_feature(CPU_FTR_DAWR))
792 793 794
		set_dawr(brk);
	else
		set_dabr(brk);
795
}
796

797 798 799 800 801 802 803
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

804 805 806
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
807

808 809 810 811 812 813 814 815 816 817 818
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
819

820
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
821 822 823 824 825 826

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

827 828 829
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
830 831 832 833 834 835 836 837 838 839 840 841 842
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
843
	 * benefit of checking for a potential TM bad thing exception.
844 845 846 847
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

848
	giveup_all(container_of(thr, struct task_struct, thread));
849

850
	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
851 852 853 854 855 856 857 858
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

859 860 861 862 863 864 865
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
866 867
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

885
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
886 887 888 889 890 891 892 893 894 895 896 897 898

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

899 900 901 902 903 904 905 906
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

907 908 909
	if (!(thread->regs->msr & MSR_TM))
		return;

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

927
static inline void tm_recheckpoint_new_task(struct task_struct *new)
928 929 930 931 932 933 934 935 936 937 938
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
939
	 * unavailable later, we are unable to determine which set of FP regs
940 941
	 * need to be restored.
	 */
942
	if (!tm_enabled(new))
943 944
		return;

945 946
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
947
		return;
948
	}
949
	msr = new->thread.ckpt_regs.msr;
950 951 952 953 954 955 956
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	tm_recheckpoint(&new->thread, msr);

957 958 959 960 961 962
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
963 964 965 966 967 968

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

969 970
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
971 972
{
	if (cpu_has_feature(CPU_FTR_TM)) {
973 974 975 976 977 978 979 980 981 982
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

983
		tm_recheckpoint_new_task(new);
984 985
	}
}
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1005 1006 1007 1008 1009 1010
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1011 1012 1013 1014
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1015
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1016
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1017

1018 1019 1020
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1021
#ifdef CONFIG_ALTIVEC
1022 1023 1024
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1025 1026
	restore_math(regs);

1027 1028 1029
	regs->msr |= msr_diff;
}

1030 1031
#else
#define tm_recheckpoint_new_task(new)
1032
#define __switch_to_tm(prev, new)
1033
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1034

1035 1036 1037
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1038
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1074
		if (new_thread->dscr_inherit)
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1089 1090 1091
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1092 1093 1094 1095 1096 1097
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1098 1099 1100 1101 1102
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1103 1104 1105
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1106

1107 1108 1109
	new_thread = &new->thread;
	old_thread = &current->thread;

1110 1111
	WARN_ON(!irqs_disabled());

1112 1113 1114 1115 1116
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1117
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1118 1119 1120 1121 1122 1123
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1124 1125
#endif /* CONFIG_PPC64 */

1126
#ifdef CONFIG_PPC_STD_MMU_64
1127
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1128 1129 1130 1131 1132 1133
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1134
#endif /* CONFIG_PPC_STD_MMU_64 */
1135

A
Anton Blanchard 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1158 1159
	__switch_to_tm(prev, new);

1160 1161 1162 1163 1164 1165
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1166

1167 1168 1169 1170 1171 1172 1173
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1174 1175
	restore_sprs(old_thread, new_thread);

1176 1177
	last = _switch(old_thread, new_thread);

1178
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1179 1180
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1181
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1182 1183
		batch->active = 1;
	}
1184 1185 1186

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);
1187
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1188

1189 1190 1191
	return last;
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1206
			pr_cont("\n");
1207

1208 1209 1210 1211 1212 1213 1214 1215
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1216
		if (!__kernel_text_address(pc) ||
1217
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1218
			pr_cont("XXXXXXXX ");
1219 1220
		} else {
			if (regs->nip == pc)
1221
				pr_cont("<%08x> ", instr);
1222
			else
1223
				pr_cont("%08x ", instr);
1224 1225 1226 1227 1228
		}

		pc += sizeof(int);
	}

1229
	pr_cont("\n");
1230 1231
}

1232
struct regbit {
1233 1234
	unsigned long bit;
	const char *name;
1235 1236 1237
};

static struct regbit msr_bits[] = {
1238 1239 1240 1241 1242 1243 1244 1245 1246
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1247 1248 1249 1250
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1251
#ifdef CONFIG_BOOKE
1252
	{MSR_DE,	"DE"},
1253 1254 1255 1256
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1257 1258
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1259 1260 1261 1262 1263
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1264 1265 1266
	{0,		NULL}
};

1267
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1268
{
1269
	const char *s = "";
1270 1271 1272

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1273
			pr_cont("%s%s", s, bits->name);
1274
			s = sep;
1275
		}
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1296
		pr_cont(",TM[");
1297
		print_bits(val, msr_tm_bits, "");
1298
		pr_cont("]");
1299 1300 1301 1302 1303 1304 1305 1306
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1307
	pr_cont("<");
1308 1309
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1310
	pr_cont(">");
1311 1312 1313
}

#ifdef CONFIG_PPC64
1314
#define REG		"%016lx"
1315 1316 1317
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1318
#define REG		"%08lx"
1319 1320 1321 1322
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1323 1324 1325 1326
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1327 1328
	show_regs_print_info(KERN_DEFAULT);

1329 1330 1331
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1332
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1333
	printk("MSR: "REG" ", regs->msr);
1334
	print_msr_bits(regs->msr);
1335
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1336
	trap = TRAP(regs);
1337
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1338
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1339
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1340
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1341
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1342
#else
1343
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1344 1345
#endif
#ifdef CONFIG_PPC64
1346
	pr_cont("SOFTE: %ld ", regs->softe);
1347 1348
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1349
	if (MSR_TM_ACTIVE(regs->msr))
1350
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1351
#endif
1352 1353

	for (i = 0;  i < 32;  i++) {
1354
		if ((i % REGS_PER_LINE) == 0)
1355 1356
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1357
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1358 1359
			break;
	}
1360
	pr_cont("\n");
1361 1362 1363 1364 1365
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1366 1367
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1368
#endif
1369
	show_stack(current, (unsigned long *) regs->gpr[1]);
1370 1371
	if (!user_mode(regs))
		show_instructions(regs);
1372 1373 1374 1375
}

void flush_thread(void)
{
1376
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1377
	flush_ptrace_hw_breakpoint(current);
1378
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1379
	set_debug_reg_defaults(&current->thread);
1380
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1381 1382 1383 1384 1385 1386 1387 1388
}

void
release_thread(struct task_struct *t)
{
}

/*
1389 1390
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1391
 */
1392
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1393
{
1394
	flush_all_to_thread(src);
1395 1396 1397 1398 1399 1400
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1401 1402 1403
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1404
	 */
1405
	__switch_to_tm(src, src);
1406

1407
	*dst = *src;
1408 1409 1410

	clear_task_ebb(dst);

1411
	return 0;
1412 1413
}

1414 1415 1416 1417 1418 1419
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1420 1421 1422
	if (radix_enabled())
		return;

1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1434 1435 1436
/*
 * Copy a thread..
 */
1437

1438 1439 1440
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1441
int copy_thread(unsigned long clone_flags, unsigned long usp,
1442
		unsigned long kthread_arg, struct task_struct *p)
1443 1444 1445
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1446 1447
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1448
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1449 1450 1451
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1452 1453 1454 1455

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1456
	if (unlikely(p->flags & PF_KTHREAD)) {
1457
		/* kernel thread */
A
Al Viro 已提交
1458
		memset(childregs, 0, sizeof(struct pt_regs));
1459
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1460 1461 1462
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1463
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1464
		clear_tsk_thread_flag(p, TIF_32BIT);
1465
		childregs->softe = 1;
1466
#endif
1467
		childregs->gpr[15] = kthread_arg;
1468
		p->thread.regs = NULL;	/* no user register state */
1469
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1470
		f = ret_from_kernel_thread;
1471
	} else {
1472
		/* user thread */
1473
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1474 1475
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1476 1477
		if (usp)
			childregs->gpr[1] = usp;
1478
		p->thread.regs = childregs;
A
Al Viro 已提交
1479
		childregs->gpr[3] = 0;  /* Result from fork() */
1480 1481
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1482
			if (!is_32bit_task())
1483 1484 1485 1486 1487
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1488 1489

		f = ret_from_fork;
1490
	}
1491
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1502
	((unsigned long *)sp)[0] = 0;
1503 1504 1505 1506
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1507
#ifdef CONFIG_PPC32
1508 1509
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1510
#endif
1511 1512 1513 1514
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1515 1516 1517 1518 1519
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1520 1521
	setup_ksp_vsid(p, sp);

1522 1523
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1524
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1525
		p->thread.dscr = mfspr(SPRN_DSCR);
1526
	}
1527 1528
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1529
#endif
1530
	kregs->nip = ppc_function_entry(f);
1531 1532 1533 1534 1535 1536
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1537
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1538
{
1539 1540 1541 1542
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1543 1544 1545 1546 1547
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1548 1549
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1550 1551
	}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1562 1563 1564 1565 1566 1567
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1568

1569 1570 1571 1572 1573 1574 1575
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1576 1577 1578
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1579
	regs->msr = MSR_USER;
1580
#else
1581
	if (!is_32bit_task()) {
1582
		unsigned long entry;
1583

1584 1585 1586
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1619 1620 1621
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1622 1623 1624 1625
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1626 1627
	}
#endif
1628 1629 1630
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1631
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1632
	current->thread.fp_save_area = NULL;
1633
#ifdef CONFIG_ALTIVEC
1634 1635
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1636
	current->thread.vr_save_area = NULL;
1637 1638 1639 1640 1641 1642 1643 1644 1645
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1646 1647 1648 1649 1650
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1651
}
1652
EXPORT_SYMBOL(start_thread);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1667
		if (cpu_has_feature(CPU_FTR_SPE)) {
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1681 1682 1683 1684 1685 1686
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1687 1688 1689 1690
#else
		return -EINVAL;
#endif
	}
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1703 1704 1705 1706 1707 1708 1709 1710 1711
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1726
			val = tsk->thread.fpexc_mode;
1727
		} else
1728
			return -EINVAL;
1729 1730 1731 1732 1733 1734 1735 1736
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1816
int validate_sp(unsigned long sp, struct task_struct *p,
1817 1818
		       unsigned long nbytes)
{
A
Al Viro 已提交
1819
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1820 1821 1822 1823 1824

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1825
	return valid_irq_stack(sp, p, nbytes);
1826 1827
}

1828 1829
EXPORT_SYMBOL(validate_sp);

1830 1831 1832 1833 1834 1835 1836 1837 1838
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1839
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1840 1841 1842 1843
		return 0;

	do {
		sp = *(unsigned long *)sp;
1844
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1845 1846
			return 0;
		if (count > 0) {
1847
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1848 1849 1850 1851 1852 1853
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1854

1855
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1856 1857 1858 1859 1860 1861

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1862 1863 1864
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1865
	unsigned long rth = (unsigned long)return_to_handler;
1866
#endif
1867 1868 1869 1870 1871 1872

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1873
			sp = current_stack_pointer();
1874 1875 1876 1877 1878 1879 1880
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1881
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1882 1883 1884 1885
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1886
		ip = stack[STACK_FRAME_LR_SAVE];
1887
		if (!firstframe || ip != lr) {
1888
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1889
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1890
			if ((ip == rth) && curr_frame >= 0) {
1891
				pr_cont(" (%pS)",
1892 1893 1894 1895
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1896
			if (firstframe)
1897 1898
				pr_cont(" (unreliable)");
			pr_cont("\n");
1899 1900 1901 1902 1903 1904 1905
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1906 1907
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1908 1909 1910
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1911
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1912
			       regs->trap, (void *)regs->nip, (void *)lr);
1913 1914 1915 1916 1917 1918 1919
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1920
#ifdef CONFIG_PPC64
1921
/* Called with hard IRQs off */
1922
void notrace __ppc64_runlatch_on(void)
1923
{
1924
	struct thread_info *ti = current_thread_info();
1925 1926
	unsigned long ctrl;

1927 1928 1929
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1930

1931
	ti->local_flags |= _TLF_RUNLATCH;
1932 1933
}

1934
/* Called with hard IRQs off */
1935
void notrace __ppc64_runlatch_off(void)
1936
{
1937
	struct thread_info *ti = current_thread_info();
1938 1939
	unsigned long ctrl;

1940
	ti->local_flags &= ~_TLF_RUNLATCH;
1941

1942 1943 1944
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1945
}
1946
#endif /* CONFIG_PPC64 */
1947

1948 1949 1950 1951 1952 1953
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1954 1955 1956 1957 1958 1959 1960

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
1961
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1962
	else
D
Daniel Cashman 已提交
1963
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1964 1965 1966 1967 1968 1969

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1970 1971 1972
	unsigned long base = mm->brk;
	unsigned long ret;

1973
#ifdef CONFIG_PPC_STD_MMU_64
1974 1975 1976 1977 1978
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
1979 1980
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1981 1982 1983 1984 1985 1986
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1987 1988 1989 1990 1991 1992

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1993