process.c 47.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
30
#include <linux/export.h>
31 32 33
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
34
#include <linux/utsname.h>
35
#include <linux/ftrace.h>
36
#include <linux/kernel_stat.h>
37 38
#include <linux/personality.h>
#include <linux/random.h>
39
#include <linux/hw_breakpoint.h>
40
#include <linux/uaccess.h>
41
#include <linux/elf-randomize.h>
42 43 44 45 46 47

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
48
#include <asm/machdep.h>
49
#include <asm/time.h>
50
#include <asm/runlatch.h>
51
#include <asm/syscalls.h>
52
#include <asm/switch_to.h>
53
#include <asm/tm.h>
54
#include <asm/debug.h>
55 56 57
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
58
#include <asm/code-patching.h>
59
#include <asm/exec.h>
60 61
#include <asm/livepatch.h>

62 63
#include <linux/kprobes.h>
#include <linux/kdebug.h>
64

65 66 67 68 69 70 71
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

72 73
extern unsigned long _get_SP(void);

74
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
75
static void check_if_tm_restore_required(struct task_struct *tsk)
76 77 78 79 80 81 82 83 84 85
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
86
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
87 88 89 90
		set_thread_flag(TIF_RESTORE_TM);
	}
}
#else
91
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
92 93
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

94 95 96 97 98 99 100 101 102 103 104 105 106
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

void msr_check_and_set(unsigned long bits)
107
{
108 109
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
110

111
	newmsr = oldmsr | bits;
112 113

#ifdef CONFIG_VSX
114
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
115 116
		newmsr |= MSR_VSX;
#endif
117

118 119
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
120
}
121

122
void __msr_check_and_clear(unsigned long bits)
123 124 125 126 127 128 129 130 131 132 133 134 135 136
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
137
EXPORT_SYMBOL(__msr_check_and_clear);
138 139

#ifdef CONFIG_PPC_FPU
140 141 142 143 144 145 146 147 148 149
void __giveup_fpu(struct task_struct *tsk)
{
	save_fpu(tsk);
	tsk->thread.regs->msr &= ~MSR_FP;
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		tsk->thread.regs->msr &= ~MSR_VSX;
#endif
}

150 151 152 153 154
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
155
	__giveup_fpu(tsk);
156
	msr_check_and_clear(MSR_FP);
157 158 159
}
EXPORT_SYMBOL(giveup_fpu);

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
180
			 * the FP register state on context switch,
181 182 183 184
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
185
			giveup_fpu(tsk);
186 187 188 189
		}
		preempt_enable();
	}
}
190
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
191 192 193 194 195

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

196
	msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
197

198 199
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
200
		__giveup_fpu(current);
201
	}
202 203
}
EXPORT_SYMBOL(enable_kernel_fp);
204 205 206 207 208 209 210 211 212 213 214

static int restore_fp(struct task_struct *tsk) {
	if (tsk->thread.load_fp) {
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
215
#endif /* CONFIG_PPC_FPU */
216 217

#ifdef CONFIG_ALTIVEC
218 219
#define loadvec(thr) ((thr).load_vec)

220 221 222 223 224 225 226 227 228 229
static void __giveup_altivec(struct task_struct *tsk)
{
	save_altivec(tsk);
	tsk->thread.regs->msr &= ~MSR_VEC;
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		tsk->thread.regs->msr &= ~MSR_VSX;
#endif
}

230 231 232 233
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

234
	msr_check_and_set(MSR_VEC);
235
	__giveup_altivec(tsk);
236
	msr_check_and_clear(MSR_VEC);
237 238 239
}
EXPORT_SYMBOL(giveup_altivec);

240 241 242 243
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

244
	msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
245

246 247
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
248
		__giveup_altivec(current);
249
	}
250 251 252 253 254 255 256 257 258 259 260 261 262
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
263
			giveup_altivec(tsk);
264 265 266 267
		}
		preempt_enable();
	}
}
268
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283

static int restore_altivec(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
284 285
#endif /* CONFIG_ALTIVEC */

286
#ifdef CONFIG_VSX
287
static void __giveup_vsx(struct task_struct *tsk)
288 289 290 291 292
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
293 294 295 296 297 298 299 300
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
301
	__giveup_vsx(tsk);
302
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
303
}
304 305 306 307 308 309 310 311

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
312

313 314 315 316
void enable_kernel_vsx(void)
{
	WARN_ON(preemptible());

317
	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
318

319
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
320
		check_if_tm_restore_required(current);
321 322 323 324 325
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
326
	}
327 328 329 330 331 332 333 334 335 336 337 338 339 340
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
341
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
342 343 344 345 346 347 348 349 350 351 352 353

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
354
static inline void save_vsx(struct task_struct *tsk) { }
355 356
#endif /* CONFIG_VSX */

357
#ifdef CONFIG_SPE
358 359 360 361
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

362
	msr_check_and_set(MSR_SPE);
363
	__giveup_spe(tsk);
364
	msr_check_and_clear(MSR_SPE);
365 366
}
EXPORT_SYMBOL(giveup_spe);
367 368 369 370 371

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

372
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
373

374 375
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
376
		__giveup_spe(current);
377
	}
378 379 380 381 382 383 384 385 386
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
387
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
388
			giveup_spe(tsk);
389 390 391 392 393 394
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

	if (!current->thread.load_fp && !loadvec(current->thread))
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

498 499 500 501 502 503 504 505 506 507 508 509 510
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
511 512 513 514 515 516 517

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

518 519 520 521 522
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
523
		save_all(tsk);
524 525 526 527 528 529 530 531 532 533 534

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

535 536 537 538 539 540
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

541
	current->thread.trap_nr = signal_code;
542 543 544 545 546 547 548 549 550 551 552 553
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
554
void do_break (struct pt_regs *regs, unsigned long address,
555 556 557 558
		    unsigned long error_code)
{
	siginfo_t info;

559
	current->thread.trap_nr = TRAP_HWBKPT;
560 561 562 563
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

564
	if (debugger_break_match(regs))
565 566
		return;

567 568
	/* Clear the breakpoint */
	hw_breakpoint_disable();
569 570 571 572 573 574 575 576

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
577
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
578

579
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
580

581 582 583 584 585 586
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
587
	thread->debug.iac1 = thread->debug.iac2 = 0;
588
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
589
	thread->debug.iac3 = thread->debug.iac4 = 0;
590
#endif
591
	thread->debug.dac1 = thread->debug.dac2 = 0;
592
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
593
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
594
#endif
595
	thread->debug.dbcr0 = 0;
596 597 598 599
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
600
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
601 602 603 604 605
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
606
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
607
#else
608
	thread->debug.dbcr1 = 0;
609 610 611
#endif
}

612
static void prime_debug_regs(struct debug_reg *debug)
613
{
614 615 616 617 618 619 620
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

621 622
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
623
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
624 625
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
626
#endif
627 628
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
629
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
630 631
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
632
#endif
633 634
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
635
#ifdef CONFIG_BOOKE
636
	mtspr(SPRN_DBCR2, debug->dbcr2);
637 638 639 640 641 642 643
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
644
void switch_booke_debug_regs(struct debug_reg *new_debug)
645
{
646
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
647 648
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
649
}
650
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
651
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
652
#ifndef CONFIG_HAVE_HW_BREAKPOINT
653 654
static void set_debug_reg_defaults(struct thread_struct *thread)
{
655 656
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
657
	set_breakpoint(&thread->hw_brk);
658
}
659
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
660 661
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

662
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
663 664
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
665
	mtspr(SPRN_DAC1, dabr);
666 667 668
#ifdef CONFIG_PPC_47x
	isync();
#endif
669 670
	return 0;
}
671
#elif defined(CONFIG_PPC_BOOK3S)
672 673
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
674
	mtspr(SPRN_DABR, dabr);
675 676
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
677
	return 0;
678
}
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

699 700
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
701
	unsigned long dawr, dawrx, mrd;
702 703 704 705 706 707 708 709 710

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
711 712 713 714 715 716 717 718
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
719 720 721 722 723 724 725 726

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

727
void __set_breakpoint(struct arch_hw_breakpoint *brk)
728
{
729
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
730

731
	if (cpu_has_feature(CPU_FTR_DAWR))
732 733 734
		set_dawr(brk);
	else
		set_dabr(brk);
735
}
736

737 738 739 740 741 742 743
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

744 745 746
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
747

748 749 750 751 752 753 754 755 756 757 758
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
759

760
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
761 762 763 764 765 766 767 768 769 770 771 772
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
	unsigned long msr_diff = 0;

	/*
	 * If FP/VSX registers have been already saved to the
	 * thread_struct, move them to the transact_fp array.
	 * We clear the TIF_RESTORE_TM bit since after the reclaim
	 * the thread will no longer be transactional.
	 */
	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
773
		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
774 775 776 777 778 779 780 781 782 783
		if (msr_diff & MSR_FP)
			memcpy(&thr->transact_fp, &thr->fp_state,
			       sizeof(struct thread_fp_state));
		if (msr_diff & MSR_VEC)
			memcpy(&thr->transact_vr, &thr->vr_state,
			       sizeof(struct thread_vr_state));
		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
	}

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
	 * benifit of checking for a potential TM bad thing exception.
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
	tm_reclaim(thr, thr->regs->msr, cause);

	/* Having done the reclaim, we now have the checkpointed
	 * FP/VSX values in the registers.  These might be valid
	 * even if we have previously called enable_kernel_fp() or
	 * flush_fp_to_thread(), so update thr->regs->msr to
	 * indicate their current validity.
	 */
	thr->regs->msr |= msr_diff;
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
	 * (current) FPRs into oldtask->thread.transact_fpr[].
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	/* Stash the original thread MSR, as giveup_fpu et al will
	 * modify it.  We hold onto it to see whether the task used
841
	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
842
	 * ckpt_regs.msr is already set.
843
	 */
844
	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
845
		thr->ckpt_regs.msr = thr->regs->msr;
846 847 848 849 850 851 852

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

853
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
854 855 856 857 858 859 860 861 862 863 864 865 866

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

892
static inline void tm_recheckpoint_new_task(struct task_struct *new)
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavoidable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!new->thread.regs)
		return;

910 911
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
912
		return;
913
	}
914
	msr = new->thread.ckpt_regs.msr;
915 916 917 918 919 920 921 922 923 924 925 926 927 928
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	/* This loads the checkpointed FP/VEC state, if used */
	tm_recheckpoint(&new->thread, msr);

	/* This loads the speculative FP/VEC state, if used */
	if (msr & MSR_FP) {
		do_load_up_transact_fpu(&new->thread);
		new->thread.regs->msr |=
			(MSR_FP | new->thread.fpexc_mode);
	}
929
#ifdef CONFIG_ALTIVEC
930 931 932 933
	if (msr & MSR_VEC) {
		do_load_up_transact_altivec(&new->thread);
		new->thread.regs->msr |= MSR_VEC;
	}
934
#endif
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	/* We may as well turn on VSX too since all the state is restored now */
	if (msr & MSR_VSX)
		new->thread.regs->msr |= MSR_VSX;

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		tm_enable();
		tm_reclaim_task(prev);
	}
}
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

974
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
975
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
976 977 978

	restore_math(regs);

979 980 981
	regs->msr |= msr_diff;
}

982 983 984 985
#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
986

987 988 989
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
990
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
		u64 fscr = old_thread->fscr & ~FSCR_DSCR;

		if (new_thread->dscr_inherit) {
			dscr = new_thread->dscr;
			fscr |= FSCR_DSCR;
		}

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);

		if (old_thread->fscr != fscr)
			mtspr(SPRN_FSCR, fscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1054 1055 1056 1057 1058
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1059 1060 1061
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1062

1063 1064 1065
	new_thread = &new->thread;
	old_thread = &current->thread;

1066 1067
	WARN_ON(!irqs_disabled());

1068 1069 1070 1071 1072
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1073
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1074 1075 1076 1077 1078 1079
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1080 1081
#endif /* CONFIG_PPC64 */

1082
#ifdef CONFIG_PPC_STD_MMU_64
1083
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1084 1085 1086 1087 1088 1089
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1090
#endif /* CONFIG_PPC_STD_MMU_64 */
1091

A
Anton Blanchard 已提交
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	__switch_to_tm(prev);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1116 1117 1118 1119 1120 1121
	/*
	 * We can't take a PMU exception inside _switch() since there is a
	 * window where the kernel stack SLB and the kernel stack are out
	 * of sync. Hard disable here.
	 */
	hard_irq_disable();
1122 1123 1124

	tm_recheckpoint_new_task(new);

1125 1126 1127 1128 1129 1130 1131
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1132 1133
	restore_sprs(old_thread, new_thread);

1134 1135
	last = _switch(old_thread, new_thread);

1136
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1137 1138
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1139
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1140 1141
		batch->active = 1;
	}
1142 1143 1144

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);
1145
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1146

1147 1148 1149
	return last;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

1166 1167 1168 1169 1170 1171 1172 1173
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1174
		if (!__kernel_text_address(pc) ||
1175
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1176
			printk(KERN_CONT "XXXXXXXX ");
1177 1178
		} else {
			if (regs->nip == pc)
1179
				printk(KERN_CONT "<%08x> ", instr);
1180
			else
1181
				printk(KERN_CONT "%08x ", instr);
1182 1183 1184 1185 1186 1187 1188 1189
		}

		pc += sizeof(int);
	}

	printk("\n");
}

1190
struct regbit {
1191 1192
	unsigned long bit;
	const char *name;
1193 1194 1195
};

static struct regbit msr_bits[] = {
1196 1197 1198 1199 1200 1201 1202 1203 1204
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1205 1206 1207 1208
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1209
#ifdef CONFIG_BOOKE
1210
	{MSR_DE,	"DE"},
1211 1212 1213 1214
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1215 1216
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1217 1218 1219 1220 1221
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1222 1223 1224
	{0,		NULL}
};

1225
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1226
{
1227
	const char *s = "";
1228 1229 1230

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1231 1232
			printk("%s%s", s, bits->name);
			s = sep;
1233
		}
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
		printk(",TM[");
		print_bits(val, msr_tm_bits, "");
		printk("]");
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
	printk("<");
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1268 1269 1270 1271
	printk(">");
}

#ifdef CONFIG_PPC64
1272
#define REG		"%016lx"
1273 1274 1275
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1276
#define REG		"%08lx"
1277 1278 1279 1280
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1281 1282 1283 1284
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1285 1286
	show_regs_print_info(KERN_DEFAULT);

1287 1288 1289
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1290
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1291
	printk("MSR: "REG" ", regs->msr);
1292
	print_msr_bits(regs->msr);
1293
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1294
	trap = TRAP(regs);
1295
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1296
		printk("CFAR: "REG" ", regs->orig_gpr3);
1297
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1298
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1299
		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1300
#else
1301 1302 1303 1304 1305 1306
		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	printk("SOFTE: %ld ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1307 1308
	if (MSR_TM_ACTIVE(regs->msr))
		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1309
#endif
1310 1311

	for (i = 0;  i < 32;  i++) {
1312
		if ((i % REGS_PER_LINE) == 0)
K
Kumar Gala 已提交
1313
			printk("\nGPR%02d: ", i);
1314 1315
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1316 1317 1318 1319 1320 1321 1322 1323
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1324 1325
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1326
#endif
1327
	show_stack(current, (unsigned long *) regs->gpr[1]);
1328 1329
	if (!user_mode(regs))
		show_instructions(regs);
1330 1331 1332 1333
}

void flush_thread(void)
{
1334
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1335
	flush_ptrace_hw_breakpoint(current);
1336
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1337
	set_debug_reg_defaults(&current->thread);
1338
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1339 1340 1341 1342 1343 1344 1345 1346
}

void
release_thread(struct task_struct *t)
{
}

/*
1347 1348
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1349
 */
1350
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1351
{
1352
	flush_all_to_thread(src);
1353 1354 1355 1356 1357 1358 1359 1360 1361
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 */
	__switch_to_tm(src);
	tm_recheckpoint_new_task(src);
1362

1363
	*dst = *src;
1364 1365 1366

	clear_task_ebb(dst);

1367
	return 0;
1368 1369
}

1370 1371 1372 1373 1374 1375
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1376 1377 1378
	if (radix_enabled())
		return;

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1390 1391 1392
/*
 * Copy a thread..
 */
1393

1394 1395 1396
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1397
int copy_thread(unsigned long clone_flags, unsigned long usp,
1398
		unsigned long kthread_arg, struct task_struct *p)
1399 1400 1401
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1402 1403
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1404
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1405 1406 1407
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1408 1409 1410 1411

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1412
	if (unlikely(p->flags & PF_KTHREAD)) {
1413
		/* kernel thread */
A
Al Viro 已提交
1414
		memset(childregs, 0, sizeof(struct pt_regs));
1415
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1416 1417 1418
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1419
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1420
		clear_tsk_thread_flag(p, TIF_32BIT);
1421
		childregs->softe = 1;
1422
#endif
1423
		childregs->gpr[15] = kthread_arg;
1424
		p->thread.regs = NULL;	/* no user register state */
1425
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1426
		f = ret_from_kernel_thread;
1427
	} else {
1428
		/* user thread */
1429
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1430 1431
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1432 1433
		if (usp)
			childregs->gpr[1] = usp;
1434
		p->thread.regs = childregs;
A
Al Viro 已提交
1435
		childregs->gpr[3] = 0;  /* Result from fork() */
1436 1437
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1438
			if (!is_32bit_task())
1439 1440 1441 1442 1443
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1444 1445

		f = ret_from_fork;
1446
	}
1447
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1458
	((unsigned long *)sp)[0] = 0;
1459 1460 1461 1462
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1463
#ifdef CONFIG_PPC32
1464 1465
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1466
#endif
1467 1468 1469 1470
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1471 1472 1473 1474 1475
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1476 1477
	setup_ksp_vsid(p, sp);

1478 1479
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1480
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1481
		p->thread.dscr = mfspr(SPRN_DSCR);
1482
	}
1483 1484
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1485
#endif
1486
	kregs->nip = ppc_function_entry(f);
1487 1488 1489 1490 1491 1492
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1493
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1494
{
1495 1496 1497 1498
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1499 1500 1501 1502 1503
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1504 1505
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1506 1507
	}

1508 1509 1510 1511 1512 1513
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1514

1515 1516 1517 1518 1519 1520 1521
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1522 1523 1524
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1525
	regs->msr = MSR_USER;
1526
#else
1527
	if (!is_32bit_task()) {
1528
		unsigned long entry;
1529

1530 1531 1532
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1565 1566 1567
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1568 1569 1570 1571
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1572 1573
	}
#endif
1574 1575 1576
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1577
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1578
	current->thread.fp_save_area = NULL;
1579
#ifdef CONFIG_ALTIVEC
1580 1581
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1582
	current->thread.vr_save_area = NULL;
1583 1584 1585 1586 1587 1588 1589 1590 1591
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1592 1593 1594 1595 1596 1597 1598
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM))
		regs->msr |= MSR_TM;
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1599
}
1600
EXPORT_SYMBOL(start_thread);
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1615
		if (cpu_has_feature(CPU_FTR_SPE)) {
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1629 1630 1631 1632 1633 1634
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1635 1636 1637 1638
#else
		return -EINVAL;
#endif
	}
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1651 1652 1653 1654 1655 1656 1657 1658 1659
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1674
			val = tsk->thread.fpexc_mode;
1675
		} else
1676
			return -EINVAL;
1677 1678 1679 1680 1681 1682 1683 1684
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1764
int validate_sp(unsigned long sp, struct task_struct *p,
1765 1766
		       unsigned long nbytes)
{
A
Al Viro 已提交
1767
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1768 1769 1770 1771 1772

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1773
	return valid_irq_stack(sp, p, nbytes);
1774 1775
}

1776 1777
EXPORT_SYMBOL(validate_sp);

1778 1779 1780 1781 1782 1783 1784 1785 1786
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1787
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1788 1789 1790 1791
		return 0;

	do {
		sp = *(unsigned long *)sp;
1792
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1793 1794
			return 0;
		if (count > 0) {
1795
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1796 1797 1798 1799 1800 1801
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1802

1803
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1804 1805 1806 1807 1808 1809

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1810 1811 1812
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1813
	unsigned long rth = (unsigned long)return_to_handler;
1814
#endif
1815 1816 1817 1818 1819 1820

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1821
			sp = current_stack_pointer();
1822 1823 1824 1825 1826 1827 1828
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1829
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1830 1831 1832 1833
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1834
		ip = stack[STACK_FRAME_LR_SAVE];
1835
		if (!firstframe || ip != lr) {
1836
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1837
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1838
			if ((ip == rth) && curr_frame >= 0) {
1839 1840 1841 1842 1843
				printk(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1854 1855
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1856 1857 1858
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1859
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1860
			       regs->trap, (void *)regs->nip, (void *)lr);
1861 1862 1863 1864 1865 1866 1867
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1868
#ifdef CONFIG_PPC64
1869
/* Called with hard IRQs off */
1870
void notrace __ppc64_runlatch_on(void)
1871
{
1872
	struct thread_info *ti = current_thread_info();
1873 1874
	unsigned long ctrl;

1875 1876 1877
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1878

1879
	ti->local_flags |= _TLF_RUNLATCH;
1880 1881
}

1882
/* Called with hard IRQs off */
1883
void notrace __ppc64_runlatch_off(void)
1884
{
1885
	struct thread_info *ti = current_thread_info();
1886 1887
	unsigned long ctrl;

1888
	ti->local_flags &= ~_TLF_RUNLATCH;
1889

1890 1891 1892
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1893
}
1894
#endif /* CONFIG_PPC64 */
1895

1896 1897 1898 1899 1900 1901
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1902 1903 1904 1905 1906 1907 1908

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
1909
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1910
	else
D
Daniel Cashman 已提交
1911
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1912 1913 1914 1915 1916 1917

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
1918 1919 1920
	unsigned long base = mm->brk;
	unsigned long ret;

1921
#ifdef CONFIG_PPC_STD_MMU_64
1922 1923 1924 1925 1926
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
1927 1928
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1929 1930 1931 1932 1933 1934
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
1935 1936 1937 1938 1939 1940

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
1941