process.c 22.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 *  arch/ppc/kernel/process.c
 *
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/config.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/smp_lock.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/init.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
39 40
#include <linux/utsname.h>
#include <linux/kprobes.h>
41 42 43 44 45 46 47 48

#include <asm/pgtable.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
49 50 51 52 53
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#include <asm/plpar_wrappers.h>
#include <asm/time.h>
#endif
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

extern unsigned long _get_SP(void);

#ifndef CONFIG_SMP
struct task_struct *last_task_used_math = NULL;
struct task_struct *last_task_used_altivec = NULL;
struct task_struct *last_task_used_spe = NULL;
#endif

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
#ifdef CONFIG_SMP
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch on SMP,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
#endif
			giveup_fpu(current);
		}
		preempt_enable();
	}
}

void enable_kernel_fp(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
		giveup_fpu(current);
	else
		giveup_fpu(NULL);	/* just enables FP for kernel */
#else
	giveup_fpu(last_task_used_math);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_fp);

int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
{
	if (!tsk->thread.regs)
		return 0;
	flush_fp_to_thread(current);

	memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));

	return 1;
}

#ifdef CONFIG_ALTIVEC
void enable_kernel_altivec(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
		giveup_altivec(current);
	else
		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
#else
	giveup_altivec(last_task_used_altivec);
#endif /* CONFIG_SMP */
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_altivec(current);
		}
		preempt_enable();
	}
}

int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
{
	flush_altivec_to_thread(current);
	memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
	return 1;
}
#endif /* CONFIG_ALTIVEC */

#ifdef CONFIG_SPE

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

#ifdef CONFIG_SMP
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
		giveup_spe(current);
	else
		giveup_spe(NULL);	/* just enable SPE for kernel - force */
#else
	giveup_spe(last_task_used_spe);
#endif /* __SMP __ */
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
#ifdef CONFIG_SMP
			BUG_ON(tsk != current);
#endif
			giveup_spe(current);
		}
		preempt_enable();
	}
}

int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
{
	flush_spe_to_thread(current);
	/* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
	memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
	return 1;
}
#endif /* CONFIG_SPE */

static void set_dabr_spr(unsigned long val)
{
	mtspr(SPRN_DABR, val);
}

int set_dabr(unsigned long dabr)
{
	int ret = 0;

#ifdef CONFIG_PPC64
	if (firmware_has_feature(FW_FEATURE_XDABR)) {
		/* We want to catch accesses from kernel and userspace */
		unsigned long flags = H_DABRX_KERNEL|H_DABRX_USER;
		ret = plpar_set_xdabr(dabr, flags);
	} else if (firmware_has_feature(FW_FEATURE_DABR)) {
		ret = plpar_set_dabr(dabr);
	} else
#endif
		set_dabr_spr(dabr);

	return ret;
}

227 228
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
229
static DEFINE_PER_CPU(unsigned long, current_dabr);
230
#endif
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	unsigned long flags;
	struct task_struct *last;

#ifdef CONFIG_SMP
	/* avoid complexity of lazy save/restore of fpu
	 * by just saving it every time we switch out if
	 * this task used the fpu during the last quantum.
	 *
	 * If it tries to use the fpu again, it'll trap and
	 * reload its fp regs.  So we don't have to do a restore
	 * every switch, just a save.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
		giveup_fpu(prev);
#ifdef CONFIG_ALTIVEC
	/*
	 * If the previous thread used altivec in the last quantum
	 * (thus changing altivec regs) then save them.
	 * We used to check the VRSAVE register but not all apps
	 * set it, so we don't rely on it now (and in fact we need
	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
	 *
	 * On SMP we always save/restore altivec regs just to avoid the
	 * complexity of changing processors.
	 *  -- Cort
	 */
	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
		giveup_altivec(prev);
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	/*
	 * If the previous thread used spe in the last quantum
	 * (thus changing spe regs) then save them.
	 *
	 * On SMP we always save/restore spe regs just to avoid the
	 * complexity of changing processors.
	 */
	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
		giveup_spe(prev);
276 277 278 279 280 281 282 283 284 285 286
#endif /* CONFIG_SPE */

#else  /* CONFIG_SMP */
#ifdef CONFIG_ALTIVEC
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_altivec -- Cort
	 */
	if (new->thread.regs && last_task_used_altivec == new)
		new->thread.regs->msr |= MSR_VEC;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
287 288 289 290 291 292
	/* Avoid the trap.  On smp this this never happens since
	 * we don't set last_task_used_spe
	 */
	if (new->thread.regs && last_task_used_spe == new)
		new->thread.regs->msr |= MSR_SPE;
#endif /* CONFIG_SPE */
293

294 295 296 297 298 299 300
#endif /* CONFIG_SMP */

#ifdef CONFIG_PPC64	/* for now */
	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
		set_dabr(new->thread.dabr);
		__get_cpu_var(current_dabr) = new->thread.dabr;
	}
301 302

	flush_tlb_pending();
303 304 305 306
#endif

	new_thread = &new->thread;
	old_thread = &current->thread;
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
#endif

322 323 324 325 326 327 328 329
	local_irq_save(flags);
	last = _switch(old_thread, new_thread);

	local_irq_restore(flags);

	return last;
}

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
static int instructions_to_print = 16;

#ifdef CONFIG_PPC64
#define BAD_PC(pc)	((REGION_ID(pc) != KERNEL_REGION_ID) && \
		         (REGION_ID(pc) != VMALLOC_REGION_ID))
#else
#define BAD_PC(pc)	((pc) < KERNELBASE)
#endif

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			printk("\n");

		if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) {
			printk("XXXXXXXX ");
		} else {
			if (regs->nip == pc)
				printk("<%08x> ", instr);
			else
				printk("%08x ", instr);
		}

		pc += sizeof(int);
	}

	printk("\n");
}

static struct regbit {
	unsigned long bit;
	const char *name;
} msr_bits[] = {
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
	{0,		NULL}
};

static void printbits(unsigned long val, struct regbit *bits)
{
	const char *sep = "";

	printk("<");
	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			printk("%s%s", sep, bits->name);
			sep = ",";
		}
	printk(">");
}

#ifdef CONFIG_PPC64
#define REG		"%016lX"
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
#define REG		"%08lX"
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

404 405 406 407
void show_regs(struct pt_regs * regs)
{
	int i, trap;

408 409 410 411 412 413 414
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
	       regs, regs->trap, print_tainted(), system_utsname.release);
	printk("MSR: "REG" ", regs->msr);
	printbits(regs->msr, msr_bits);
	printk("  CR: %08lX  XER: %08lX\n", regs->ccr, regs->xer);
415 416
	trap = TRAP(regs);
	if (trap == 0x300 || trap == 0x600)
417 418
		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
	printk("TASK = %p[%d] '%s' THREAD: %p",
419 420 421 422 423 424 425
	       current, current->pid, current->comm, current->thread_info);

#ifdef CONFIG_SMP
	printk(" CPU: %d", smp_processor_id());
#endif /* CONFIG_SMP */

	for (i = 0;  i < 32;  i++) {
426
		if ((i % REGS_PER_LINE) == 0)
427
			printk("\n" KERN_INFO "GPR%02d: ", i);
428 429
		printk(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
430 431 432 433 434 435 436 437
			break;
	}
	printk("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
438
	printk("NIP ["REG"] ", regs->nip);
439
	print_symbol("%s\n", regs->nip);
440
	printk("LR ["REG"] ", regs->link);
441 442 443
	print_symbol("%s\n", regs->link);
#endif
	show_stack(current, (unsigned long *) regs->gpr[1]);
444 445
	if (!user_mode(regs))
		show_instructions(regs);
446 447 448 449
}

void exit_thread(void)
{
450 451
	kprobe_flush_task(current);

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
#ifndef CONFIG_SMP
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
#endif /* CONFIG_SMP */
}

void flush_thread(void)
{
468 469 470 471 472 473 474 475
#ifdef CONFIG_PPC64
	struct thread_info *t = current_thread_info();

	if (t->flags & _TIF_ABI_PENDING)
		t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
#endif
	kprobe_flush_task(current);

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
#ifndef CONFIG_SMP
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
#endif /* CONFIG_SMP */

#ifdef CONFIG_PPC64	/* for now */
	if (current->thread.dabr) {
		current->thread.dabr = 0;
		set_dabr(0);
	}
#endif
}

void
release_thread(struct task_struct *t)
{
}

/*
 * This gets called before we allocate a new thread and copy
 * the current task into it.
 */
void prepare_to_copy(struct task_struct *tsk)
{
	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_spe_to_thread(current);
}

/*
 * Copy a thread..
 */
516 517 518
int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
		unsigned long unused, struct task_struct *p,
		struct pt_regs *regs)
519 520 521 522 523 524 525 526 527 528 529 530 531
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
	unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;

	CHECK_FULL_REGS(regs);
	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
	*childregs = *regs;
	if ((childregs->msr & MSR_PR) == 0) {
		/* for kernel thread, set `current' and stackptr in new task */
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
532
#ifdef CONFIG_PPC32
533
		childregs->gpr[2] = (unsigned long) p;
534 535 536
#else
		clear_ti_thread_flag(p->thread_info, TIF_32BIT);
#endif
537 538 539 540
		p->thread.regs = NULL;	/* no user register state */
	} else {
		childregs->gpr[1] = usp;
		p->thread.regs = childregs;
541 542 543 544 545 546 547 548
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
			if (!test_thread_flag(TIF_32BIT))
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	}
	childregs->gpr[3] = 0;  /* Result from fork() */
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;

566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
#ifdef CONFIG_PPC64
	if (cpu_has_feature(CPU_FTR_SLB)) {
		unsigned long sp_vsid = get_kernel_vsid(sp);

		sp_vsid <<= SLB_VSID_SHIFT;
		sp_vsid |= SLB_VSID_KERNEL;
		if (cpu_has_feature(CPU_FTR_16M_PAGE))
			sp_vsid |= SLB_VSID_L;

		p->thread.ksp_vsid = sp_vsid;
	}

	/*
	 * The PPC64 ABI makes use of a TOC to contain function 
	 * pointers.  The function (ret_from_except) is actually a pointer
	 * to the TOC entry.  The first entry is a pointer to the actual
	 * function.
 	 */
	kregs->nip = *((unsigned long *)ret_from_fork);
#else
	kregs->nip = (unsigned long)ret_from_fork;
587
	p->thread.last_syscall = -1;
588
#endif
589 590 591 592 593 594 595

	return 0;
}

/*
 * Set up a thread for executing a new program
 */
596
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
597
{
598 599 600 601
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

602
	set_fs(USER_DS);
603 604 605 606 607 608 609 610 611 612 613 614

	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
		unsigned long childregs = (unsigned long)current->thread_info +
						THREAD_SIZE;
		childregs -= sizeof(struct pt_regs);
		current->thread.regs = (struct pt_regs *)childregs;
	}

615 616 617 618 619 620
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
621 622 623 624

#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
625
	regs->msr = MSR_USER;
626
#else
S
Stephen Rothwell 已提交
627
	if (!test_thread_flag(TIF_32BIT)) {
628
		unsigned long entry, toc;
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

		/* start is a relocated pointer to the function descriptor for
		 * the elf _start routine.  The first entry in the function
		 * descriptor is the entry address of _start and the second
		 * entry is the TOC value we need to use.
		 */
		__get_user(entry, (unsigned long __user *)start);
		__get_user(toc, (unsigned long __user *)start+1);

		/* Check whether the e_entry function descriptor entries
		 * need to be relocated before we can use them.
		 */
		if (load_addr != 0) {
			entry += load_addr;
			toc   += load_addr;
		}
		regs->nip = entry;
		regs->gpr[2] = toc;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
648 649 650 651
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
652 653 654
	}
#endif

655 656 657 658 659 660 661 662 663 664 665 666 667
#ifndef CONFIG_SMP
	if (last_task_used_math == current)
		last_task_used_math = NULL;
#ifdef CONFIG_ALTIVEC
	if (last_task_used_altivec == current)
		last_task_used_altivec = NULL;
#endif
#ifdef CONFIG_SPE
	if (last_task_used_spe == current)
		last_task_used_spe = NULL;
#endif
#endif /* CONFIG_SMP */
	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
668
	current->thread.fpscr.val = 0;
669 670 671
#ifdef CONFIG_ALTIVEC
	memset(current->thread.vr, 0, sizeof(current->thread.vr));
	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
672
	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
}

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
		tsk->thread.fpexc_mode = val &
			(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
699
		return 0;
700 701 702 703
#else
		return -EINVAL;
#endif
	}
704 705 706 707 708 709 710 711 712 713 714 715

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
		val = tsk->thread.fpexc_mode;
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

734 735
#define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))

736 737 738 739 740 741 742 743
int sys_clone(unsigned long clone_flags, unsigned long usp,
	      int __user *parent_tidp, void __user *child_threadptr,
	      int __user *child_tidp, int p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	if (usp == 0)
		usp = regs->gpr[1];	/* stack pointer for child */
744 745 746 747 748 749
#ifdef CONFIG_PPC64
	if (test_thread_flag(TIF_32BIT)) {
		parent_tidp = TRUNC_PTR(parent_tidp);
		child_tidp = TRUNC_PTR(child_tidp);
	}
#endif
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
 	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
}

int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
	     unsigned long p4, unsigned long p5, unsigned long p6,
	     struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
}

int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
	      unsigned long p4, unsigned long p5, unsigned long p6,
	      struct pt_regs *regs)
{
	CHECK_FULL_REGS(regs);
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
			regs, 0, NULL, NULL);
}

int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
	       unsigned long a3, unsigned long a4, unsigned long a5,
	       struct pt_regs *regs)
{
	int error;
775
	char *filename;
776 777 778 779 780 781 782 783

	filename = getname((char __user *) a0);
	error = PTR_ERR(filename);
	if (IS_ERR(filename))
		goto out;
	flush_fp_to_thread(current);
	flush_altivec_to_thread(current);
	flush_spe_to_thread(current);
784 785
	error = do_execve(filename, (char __user * __user *) a1,
			  (char __user * __user *) a2, regs);
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
	if (error == 0) {
		task_lock(current);
		current->ptrace &= ~PT_DTRACE;
		task_unlock(current);
	}
	putname(filename);
out:
	return error;
}

static int validate_sp(unsigned long sp, struct task_struct *p,
		       unsigned long nbytes)
{
	unsigned long stack_page = (unsigned long)p->thread_info;

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

#ifdef CONFIG_IRQSTACKS
	stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

	stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;
#endif

	return 0;
}

820 821 822 823 824 825 826 827 828 829 830 831
#ifdef CONFIG_PPC64
#define MIN_STACK_FRAME	112	/* same as STACK_FRAME_OVERHEAD, in fact */
#define FRAME_LR_SAVE	2
#define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
#define REGS_MARKER	0x7265677368657265ul
#define FRAME_MARKER	12
#else
#define MIN_STACK_FRAME	16
#define FRAME_LR_SAVE	1
#define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
#define REGS_MARKER	0x72656773ul
#define FRAME_MARKER	2
832 833 834 835 836 837 838 839 840 841 842
#endif

unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
843
	if (!validate_sp(sp, p, MIN_STACK_FRAME))
844 845 846 847
		return 0;

	do {
		sp = *(unsigned long *)sp;
848
		if (!validate_sp(sp, p, MIN_STACK_FRAME))
849 850
			return 0;
		if (count > 0) {
851
			ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
852 853 854 855 856 857 858
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
EXPORT_SYMBOL(get_wchan);
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919

static int kstack_depth_to_print = 64;

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
			asm("mr %0,1" : "=r" (sp));
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
		if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
		ip = stack[FRAME_LR_SAVE];
		if (!firstframe || ip != lr) {
			printk("["REG"] ["REG"] ", sp, ip);
			print_symbol("%s", ip);
			if (firstframe)
				printk(" (unreliable)");
			printk("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
		if (validate_sp(sp, tsk, INT_FRAME_SIZE)
		    && stack[FRAME_MARKER] == REGS_MARKER) {
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			printk("--- Exception: %lx", regs->trap);
			print_symbol(" at %s\n", regs->nip);
			lr = regs->link;
			print_symbol("    LR = %s\n", lr);
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

void dump_stack(void)
{
	show_stack(current, NULL);
}
EXPORT_SYMBOL(dump_stack);