process.c 50.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
19
#include <linux/sched/debug.h>
20
#include <linux/sched/task.h>
21
#include <linux/sched/task_stack.h>
22 23 24 25 26 27 28 29 30 31 32
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
33
#include <linux/export.h>
34 35 36
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
37
#include <linux/utsname.h>
38
#include <linux/ftrace.h>
39
#include <linux/kernel_stat.h>
40 41
#include <linux/personality.h>
#include <linux/random.h>
42
#include <linux/hw_breakpoint.h>
43
#include <linux/uaccess.h>
44
#include <linux/elf-randomize.h>
45 46 47 48 49 50

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
51
#include <asm/machdep.h>
52
#include <asm/time.h>
53
#include <asm/runlatch.h>
54
#include <asm/syscalls.h>
55
#include <asm/switch_to.h>
56
#include <asm/tm.h>
57
#include <asm/debug.h>
58 59 60
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#endif
61
#include <asm/code-patching.h>
62
#include <asm/exec.h>
63
#include <asm/livepatch.h>
64
#include <asm/cpu_has_feature.h>
65
#include <asm/asm-prototypes.h>
66

67 68
#include <linux/kprobes.h>
#include <linux/kdebug.h>
69

70 71 72 73 74 75 76
/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

77 78
extern unsigned long _get_SP(void);

79
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80
static void check_if_tm_restore_required(struct task_struct *tsk)
81 82 83 84 85 86 87 88 89 90
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
91
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 93 94
		set_thread_flag(TIF_RESTORE_TM);
	}
}
95 96 97 98 99

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}
100
#else
101
static inline bool msr_tm_active(unsigned long msr) { return false; }
102
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 104
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

105 106 107 108 109 110 111 112 113 114 115 116
bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

117
unsigned long msr_check_and_set(unsigned long bits)
118
{
119 120
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;
121

122
	newmsr = oldmsr | bits;
123 124

#ifdef CONFIG_VSX
125
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 127
		newmsr |= MSR_VSX;
#endif
128

129 130
	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
131 132

	return newmsr;
133
}
134

135
void __msr_check_and_clear(unsigned long bits)
136 137 138 139 140 141 142 143 144 145 146 147 148 149
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
150
EXPORT_SYMBOL(__msr_check_and_clear);
151 152

#ifdef CONFIG_PPC_FPU
153 154
void __giveup_fpu(struct task_struct *tsk)
{
155 156
	unsigned long msr;

157
	save_fpu(tsk);
158 159
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
160 161
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
162
		msr &= ~MSR_VSX;
163
#endif
164
	tsk->thread.regs->msr = msr;
165 166
}

167 168 169 170 171
void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
172
	__giveup_fpu(tsk);
173
	msr_check_and_clear(MSR_FP);
174 175 176
}
EXPORT_SYMBOL(giveup_fpu);

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
197
			 * the FP register state on context switch,
198 199 200 201
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
202
			giveup_fpu(tsk);
203 204 205 206
		}
		preempt_enable();
	}
}
207
EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 209 210

void enable_kernel_fp(void)
{
211 212
	unsigned long cpumsr;

213 214
	WARN_ON(preemptible());

215
	cpumsr = msr_check_and_set(MSR_FP);
A
Anton Blanchard 已提交
216

217 218
	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
219 220 221 222 223 224 225 226 227
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
228
		__giveup_fpu(current);
229
	}
230 231
}
EXPORT_SYMBOL(enable_kernel_fp);
232 233

static int restore_fp(struct task_struct *tsk) {
234
	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235 236 237 238 239 240 241 242
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
243
#endif /* CONFIG_PPC_FPU */
244 245

#ifdef CONFIG_ALTIVEC
246 247
#define loadvec(thr) ((thr).load_vec)

248 249
static void __giveup_altivec(struct task_struct *tsk)
{
250 251
	unsigned long msr;

252
	save_altivec(tsk);
253 254
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
255 256
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
257
		msr &= ~MSR_VSX;
258
#endif
259
	tsk->thread.regs->msr = msr;
260 261
}

262 263 264 265
void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

266
	msr_check_and_set(MSR_VEC);
267
	__giveup_altivec(tsk);
268
	msr_check_and_clear(MSR_VEC);
269 270 271
}
EXPORT_SYMBOL(giveup_altivec);

272 273
void enable_kernel_altivec(void)
{
274 275
	unsigned long cpumsr;

276 277
	WARN_ON(preemptible());

278
	cpumsr = msr_check_and_set(MSR_VEC);
A
Anton Blanchard 已提交
279

280 281
	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
282 283 284 285 286 287 288 289 290
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
291
		__giveup_altivec(current);
292
	}
293 294 295 296 297 298 299 300 301 302 303 304 305
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
306
			giveup_altivec(tsk);
307 308 309 310
		}
		preempt_enable();
	}
}
311
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
312 313 314

static int restore_altivec(struct task_struct *tsk)
{
315 316
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317 318 319 320 321 322 323 324 325 326 327
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 329
#endif /* CONFIG_ALTIVEC */

330
#ifdef CONFIG_VSX
331
static void __giveup_vsx(struct task_struct *tsk)
332 333 334 335 336
{
	if (tsk->thread.regs->msr & MSR_FP)
		__giveup_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		__giveup_altivec(tsk);
337 338 339 340 341 342 343 344
	tsk->thread.regs->msr &= ~MSR_VSX;
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345
	__giveup_vsx(tsk);
346
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
347
}
348 349 350 351 352 353 354 355

static void save_vsx(struct task_struct *tsk)
{
	if (tsk->thread.regs->msr & MSR_FP)
		save_fpu(tsk);
	if (tsk->thread.regs->msr & MSR_VEC)
		save_altivec(tsk);
}
356

357 358
void enable_kernel_vsx(void)
{
359 360
	unsigned long cpumsr;

361 362
	WARN_ON(preemptible());

363
	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
A
Anton Blanchard 已提交
364

365
	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
366
		check_if_tm_restore_required(current);
367 368 369 370 371 372 373 374 375
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
376 377 378 379 380
		if (current->thread.regs->msr & MSR_FP)
			__giveup_fpu(current);
		if (current->thread.regs->msr & MSR_VEC)
			__giveup_altivec(current);
		__giveup_vsx(current);
A
Anton Blanchard 已提交
381
	}
382 383 384 385 386 387 388 389 390 391 392 393 394 395
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VSX) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
396
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
397 398 399 400 401 402 403 404 405 406 407 408

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
409
static inline void save_vsx(struct task_struct *tsk) { }
410 411
#endif /* CONFIG_VSX */

412
#ifdef CONFIG_SPE
413 414 415 416
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

417
	msr_check_and_set(MSR_SPE);
418
	__giveup_spe(tsk);
419
	msr_check_and_clear(MSR_SPE);
420 421
}
EXPORT_SYMBOL(giveup_spe);
422 423 424 425 426

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

427
	msr_check_and_set(MSR_SPE);
A
Anton Blanchard 已提交
428

429 430
	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
431
		__giveup_spe(current);
432
	}
433 434 435 436 437 438 439 440 441
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
442
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
443
			giveup_spe(tsk);
444 445 446 447 448 449
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

A
Anton Blanchard 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
487
	check_if_tm_restore_required(tsk);
A
Anton Blanchard 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_VSX
	if (usermsr & MSR_VSX)
		__giveup_vsx(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

510 511 512 513
void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

514 515 516 517
	/*
	 * Syscall exit makes a similar initial check before branching
	 * to restore_math. Keep them in synch.
	 */
518 519
	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558
void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

559 560 561 562 563 564 565 566 567 568 569 570 571
	/*
	 * Saving the way the register space is in hardware, save_vsx boils
	 * down to a save_fpu() and save_altivec()
	 */
	if (usermsr & MSR_VSX) {
		save_vsx(tsk);
	} else {
		if (usermsr & MSR_FP)
			save_fpu(tsk);

		if (usermsr & MSR_VEC)
			save_altivec(tsk);
	}
572 573 574 575 576 577 578

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
}

579 580 581 582 583
void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
584
		save_all(tsk);
585 586 587 588 589 590 591 592 593 594 595

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

596 597 598 599 600 601
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int signal_code, int breakpt)
{
	siginfo_t info;

602
	current->thread.trap_nr = signal_code;
603 604 605 606 607 608 609 610 611 612 613 614
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
	info.si_code = signal_code;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
615
void do_break (struct pt_regs *regs, unsigned long address,
616 617 618 619
		    unsigned long error_code)
{
	siginfo_t info;

620
	current->thread.trap_nr = TRAP_HWBKPT;
621 622 623 624
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

625
	if (debugger_break_match(regs))
626 627
		return;

628 629
	/* Clear the breakpoint */
	hw_breakpoint_disable();
630 631 632 633 634 635 636 637

	/* Deliver the signal to userspace */
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
638
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
639

640
static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
641

642 643 644 645 646 647
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
648
	thread->debug.iac1 = thread->debug.iac2 = 0;
649
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
650
	thread->debug.iac3 = thread->debug.iac4 = 0;
651
#endif
652
	thread->debug.dac1 = thread->debug.dac2 = 0;
653
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
654
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
655
#endif
656
	thread->debug.dbcr0 = 0;
657 658 659 660
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
661
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
662 663 664 665 666
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
667
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
668
#else
669
	thread->debug.dbcr1 = 0;
670 671 672
#endif
}

673
static void prime_debug_regs(struct debug_reg *debug)
674
{
675 676 677 678 679 680 681
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

682 683
	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
684
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
685 686
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
687
#endif
688 689
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
690
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
691 692
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
693
#endif
694 695
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
696
#ifdef CONFIG_BOOKE
697
	mtspr(SPRN_DBCR2, debug->dbcr2);
698 699 700 701 702 703 704
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
705
void switch_booke_debug_regs(struct debug_reg *new_debug)
706
{
707
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
708 709
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
710
}
711
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
712
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
713
#ifndef CONFIG_HAVE_HW_BREAKPOINT
714 715
static void set_debug_reg_defaults(struct thread_struct *thread)
{
716 717
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
718
	set_breakpoint(&thread->hw_brk);
719
}
720
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
721 722
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

723
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
724 725
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
726
	mtspr(SPRN_DAC1, dabr);
727 728 729
#ifdef CONFIG_PPC_47x
	isync();
#endif
730 731
	return 0;
}
732
#elif defined(CONFIG_PPC_BOOK3S)
733 734
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
735
	mtspr(SPRN_DABR, dabr);
736 737
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
738
	return 0;
739
}
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

782 783
static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
784
	unsigned long dawr, dawrx, mrd;
785 786 787 788 789 790 791 792 793

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
794 795 796 797 798 799 800 801
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);
802 803 804 805 806 807 808 809

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

810
void __set_breakpoint(struct arch_hw_breakpoint *brk)
811
{
812
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
813

814
	if (cpu_has_feature(CPU_FTR_DAWR))
815 816 817
		set_dawr(brk);
	else
		set_dabr(brk);
818
}
819

820 821 822 823 824 825 826
void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

827 828 829
#ifdef CONFIG_PPC64
DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
#endif
830

831 832 833 834 835 836 837 838 839 840 841
static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}
842

843
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
844 845 846 847 848 849

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

850 851 852
static void tm_reclaim_thread(struct thread_struct *thr,
			      struct thread_info *ti, uint8_t cause)
{
853 854 855 856 857 858 859 860 861 862 863 864 865
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
M
Michael Ellerman 已提交
866
	 * benefit of checking for a potential TM bad thing exception.
867 868 869 870
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));

890
	giveup_all(container_of(thr, struct task_struct, thread));
891

892
	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
893 894 895 896 897 898 899 900
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
}

901 902 903 904 905 906 907
static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
908 909
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

927
	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
928 929 930 931 932 933 934 935 936 937 938 939 940

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

941 942 943 944 945 946 947 948
extern void __tm_recheckpoint(struct thread_struct *thread,
			      unsigned long orig_msr);

void tm_recheckpoint(struct thread_struct *thread,
		     unsigned long orig_msr)
{
	unsigned long flags;

949 950 951
	if (!(thread->regs->msr & MSR_TM))
		return;

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread, orig_msr);

	local_irq_restore(flags);
}

969
static inline void tm_recheckpoint_new_task(struct task_struct *new)
970 971 972 973 974 975 976 977 978 979 980
{
	unsigned long msr;

	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
981
	 * unavailable later, we are unable to determine which set of FP regs
982 983
	 * need to be restored.
	 */
984
	if (!tm_enabled(new))
985 986
		return;

987 988
	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
989
		return;
990
	}
991
	msr = new->thread.ckpt_regs.msr;
992 993 994 995 996 997 998
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d "
		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
		 new->pid, new->thread.regs->msr, msr);

	tm_recheckpoint(&new->thread, msr);

999 1000 1001 1002 1003 1004
	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1005 1006 1007 1008 1009 1010

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

1011 1012
static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
1013 1014
{
	if (cpu_has_feature(CPU_FTR_TM)) {
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

1025
		tm_recheckpoint_new_task(new);
1026 1027
	}
}
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

1047 1048 1049 1050 1051 1052
	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
1053 1054 1055 1056
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

1057
	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1058
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1059

1060 1061 1062
	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
1063
#ifdef CONFIG_ALTIVEC
1064 1065 1066
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
1067 1068
	restore_math(regs);

1069 1070 1071
	regs->msr |= msr_diff;
}

1072 1073
#else
#define tm_recheckpoint_new_task(new)
1074
#define __switch_to_tm(prev, new)
1075
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1076

1077 1078 1079
static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
1080
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
1116
		if (new_thread->dscr_inherit)
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

1131 1132 1133
		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

1134 1135 1136 1137 1138 1139
		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}
#endif
}

1140 1141 1142 1143 1144
struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
P
Peter Zijlstra 已提交
1145 1146 1147
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif
1148

1149 1150 1151
	new_thread = &new->thread;
	old_thread = &current->thread;

1152 1153
	WARN_ON(!irqs_disabled());

1154 1155 1156 1157 1158
#ifdef CONFIG_PPC64
	/*
	 * Collect processor utilization data per process
	 */
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1159
		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1160 1161 1162 1163 1164 1165
		long unsigned start_tb, current_tb;
		start_tb = old_thread->start_tb;
		cu->current_tb = current_tb = mfspr(SPRN_PURR);
		old_thread->accum_tb += (current_tb - start_tb);
		new_thread->start_tb = current_tb;
	}
P
Peter Zijlstra 已提交
1166 1167
#endif /* CONFIG_PPC64 */

1168
#ifdef CONFIG_PPC_STD_MMU_64
1169
	batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1170 1171 1172 1173 1174 1175
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
1176
#endif /* CONFIG_PPC_STD_MMU_64 */
1177

A
Anton Blanchard 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

1200 1201
	__switch_to_tm(prev, new);

1202 1203 1204 1205 1206 1207 1208 1209
	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}
1210

1211 1212 1213 1214 1215 1216 1217
	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
A
Anton Blanchard 已提交
1218 1219
	restore_sprs(old_thread, new_thread);

1220 1221
	last = _switch(old_thread, new_thread);

1222
#ifdef CONFIG_PPC_STD_MMU_64
P
Peter Zijlstra 已提交
1223 1224
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1225
		batch = this_cpu_ptr(&ppc64_tlb_batch);
P
Peter Zijlstra 已提交
1226 1227
		batch->active = 1;
	}
1228 1229 1230

	if (current_thread_info()->task->thread.regs)
		restore_math(current_thread_info()->task->thread.regs);
1231
#endif /* CONFIG_PPC_STD_MMU_64 */
P
Peter Zijlstra 已提交
1232

1233 1234 1235
	return last;
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
1250
			pr_cont("\n");
1251

1252 1253 1254 1255 1256 1257 1258 1259
#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

1260
		if (!__kernel_text_address(pc) ||
1261
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1262
			pr_cont("XXXXXXXX ");
1263 1264
		} else {
			if (regs->nip == pc)
1265
				pr_cont("<%08x> ", instr);
1266
			else
1267
				pr_cont("%08x ", instr);
1268 1269 1270 1271 1272
		}

		pc += sizeof(int);
	}

1273
	pr_cont("\n");
1274 1275
}

1276
struct regbit {
1277 1278
	unsigned long bit;
	const char *name;
1279 1280 1281
};

static struct regbit msr_bits[] = {
1282 1283 1284 1285 1286 1287 1288 1289 1290
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
1291 1292 1293 1294
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
1295
#ifdef CONFIG_BOOKE
1296
	{MSR_DE,	"DE"},
1297 1298 1299 1300
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
1301 1302
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
1303 1304 1305 1306 1307
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
1308 1309 1310
	{0,		NULL}
};

1311
static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1312
{
1313
	const char *s = "";
1314 1315 1316

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
1317
			pr_cont("%s%s", s, bits->name);
1318
			s = sep;
1319
		}
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1340
		pr_cont(",TM[");
1341
		print_bits(val, msr_tm_bits, "");
1342
		pr_cont("]");
1343 1344 1345 1346 1347 1348 1349 1350
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
1351
	pr_cont("<");
1352 1353
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
1354
	pr_cont(">");
1355 1356 1357
}

#ifdef CONFIG_PPC64
1358
#define REG		"%016lx"
1359 1360 1361
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
1362
#define REG		"%08lx"
1363 1364 1365 1366
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

1367 1368 1369 1370
void show_regs(struct pt_regs * regs)
{
	int i, trap;

1371 1372
	show_regs_print_info(KERN_DEFAULT);

1373 1374 1375
	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1376
	       regs, regs->trap, print_tainted(), init_utsname()->release);
1377
	printk("MSR: "REG" ", regs->msr);
1378
	print_msr_bits(regs->msr);
1379
	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1380
	trap = TRAP(regs);
1381
	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1382
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1383
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1384
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1385
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1386
#else
1387
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1388 1389
#endif
#ifdef CONFIG_PPC64
1390
	pr_cont("SOFTE: %ld ", regs->softe);
1391 1392
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1393
	if (MSR_TM_ACTIVE(regs->msr))
1394
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1395
#endif
1396 1397

	for (i = 0;  i < 32;  i++) {
1398
		if ((i % REGS_PER_LINE) == 0)
1399 1400
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
1401
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1402 1403
			break;
	}
1404
	pr_cont("\n");
1405 1406 1407 1408 1409
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
1410 1411
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1412
#endif
1413
	show_stack(current, (unsigned long *) regs->gpr[1]);
1414 1415
	if (!user_mode(regs))
		show_instructions(regs);
1416 1417 1418 1419
}

void flush_thread(void)
{
1420
#ifdef CONFIG_HAVE_HW_BREAKPOINT
1421
	flush_ptrace_hw_breakpoint(current);
1422
#else /* CONFIG_HAVE_HW_BREAKPOINT */
1423
	set_debug_reg_defaults(&current->thread);
1424
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1425 1426 1427 1428 1429 1430 1431 1432
}

void
release_thread(struct task_struct *t)
{
}

/*
1433 1434
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
1435
 */
1436
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1437
{
1438
	flush_all_to_thread(src);
1439 1440 1441 1442 1443 1444
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
1445 1446 1447
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
1448
	 */
1449
	__switch_to_tm(src, src);
1450

1451
	*dst = *src;
1452 1453 1454

	clear_task_ebb(dst);

1455
	return 0;
1456 1457
}

1458 1459 1460 1461 1462 1463
static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_STD_MMU_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

1464 1465 1466
	if (radix_enabled())
		return;

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

1478 1479 1480
/*
 * Copy a thread..
 */
1481

1482 1483 1484
/*
 * Copy architecture-specific thread state
 */
A
Alexey Dobriyan 已提交
1485
int copy_thread(unsigned long clone_flags, unsigned long usp,
1486
		unsigned long kthread_arg, struct task_struct *p)
1487 1488 1489
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
A
Al Viro 已提交
1490 1491
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
A
Al Viro 已提交
1492
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1493 1494 1495
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);
1496 1497 1498 1499

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
1500
	if (unlikely(p->flags & PF_KTHREAD)) {
1501
		/* kernel thread */
A
Al Viro 已提交
1502
		memset(childregs, 0, sizeof(struct pt_regs));
1503
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1504 1505 1506
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
A
Al Viro 已提交
1507
#ifdef CONFIG_PPC64
A
Al Viro 已提交
1508
		clear_tsk_thread_flag(p, TIF_32BIT);
1509
		childregs->softe = 1;
1510
#endif
1511
		childregs->gpr[15] = kthread_arg;
1512
		p->thread.regs = NULL;	/* no user register state */
1513
		ti->flags |= _TIF_RESTOREALL;
A
Al Viro 已提交
1514
		f = ret_from_kernel_thread;
1515
	} else {
1516
		/* user thread */
1517
		struct pt_regs *regs = current_pt_regs();
A
Al Viro 已提交
1518 1519
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
1520 1521
		if (usp)
			childregs->gpr[1] = usp;
1522
		p->thread.regs = childregs;
A
Al Viro 已提交
1523
		childregs->gpr[3] = 0;  /* Result from fork() */
1524 1525
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
1526
			if (!is_32bit_task())
1527 1528 1529 1530 1531
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}
A
Al Viro 已提交
1532 1533

		f = ret_from_fork;
1534
	}
1535
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
1546
	((unsigned long *)sp)[0] = 0;
1547 1548 1549 1550
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
1551
#ifdef CONFIG_PPC32
1552 1553
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
1554
#endif
1555 1556 1557 1558
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

1559 1560 1561 1562 1563
	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

1564 1565
	setup_ksp_vsid(p, sp);

1566 1567
#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
1568
		p->thread.dscr_inherit = current->thread.dscr_inherit;
1569
		p->thread.dscr = mfspr(SPRN_DSCR);
1570
	}
1571 1572
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;
1573
#endif
1574
	kregs->nip = ppc_function_entry(f);
1575 1576 1577 1578 1579 1580
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
1581
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1582
{
1583 1584 1585 1586
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

1587 1588 1589 1590 1591
	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
A
Al Viro 已提交
1592 1593
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
1594 1595
	}

1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

1606 1607 1608 1609 1610 1611
	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;
1612

1613 1614 1615 1616 1617 1618 1619
	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

1620 1621 1622
#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
1623
	regs->msr = MSR_USER;
1624
#else
1625
	if (!is_32bit_task()) {
1626
		unsigned long entry;
1627

1628 1629 1630
		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
1663 1664 1665
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
S
Stephen Rothwell 已提交
1666 1667 1668 1669
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
1670 1671
	}
#endif
1672 1673 1674
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
1675
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1676
	current->thread.fp_save_area = NULL;
1677
#ifdef CONFIG_ALTIVEC
1678 1679
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1680
	current->thread.vr_save_area = NULL;
1681 1682 1683 1684 1685 1686 1687 1688 1689
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
1690 1691 1692 1693 1694
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1695
}
1696
EXPORT_SYMBOL(start_thread);
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
1711
		if (cpu_has_feature(CPU_FTR_SPE)) {
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1725 1726 1727 1728 1729 1730
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
1731 1732 1733 1734
#else
		return -EINVAL;
#endif
	}
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
1747 1748 1749 1750 1751 1752 1753 1754 1755
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1770
			val = tsk->thread.fpexc_mode;
1771
		} else
1772
			return -EINVAL;
1773 1774 1775 1776 1777 1778 1779 1780
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

1860
int validate_sp(unsigned long sp, struct task_struct *p,
1861 1862
		       unsigned long nbytes)
{
A
Al Viro 已提交
1863
	unsigned long stack_page = (unsigned long)task_stack_page(p);
1864 1865 1866 1867 1868

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

1869
	return valid_irq_stack(sp, p, nbytes);
1870 1871
}

1872 1873
EXPORT_SYMBOL(validate_sp);

1874 1875 1876 1877 1878 1879 1880 1881 1882
unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
1883
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1884 1885 1886 1887
		return 0;

	do {
		sp = *(unsigned long *)sp;
1888
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1889 1890
			return 0;
		if (count > 0) {
1891
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1892 1893 1894 1895 1896 1897
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}
1898

1899
static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1900 1901 1902 1903 1904 1905

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
1906 1907 1908
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
1909
	unsigned long rth = (unsigned long)return_to_handler;
1910
#endif
1911 1912 1913 1914 1915 1916

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
1917
			sp = current_stack_pointer();
1918 1919 1920 1921 1922 1923 1924
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
1925
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1926 1927 1928 1929
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
1930
		ip = stack[STACK_FRAME_LR_SAVE];
1931
		if (!firstframe || ip != lr) {
1932
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1933
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1934
			if ((ip == rth) && curr_frame >= 0) {
1935
				pr_cont(" (%pS)",
1936 1937 1938 1939
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
1940
			if (firstframe)
1941 1942
				pr_cont(" (unreliable)");
			pr_cont("\n");
1943 1944 1945 1946 1947 1948 1949
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
1950 1951
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1952 1953 1954
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
1955
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1956
			       regs->trap, (void *)regs->nip, (void *)lr);
1957 1958 1959 1960 1961 1962 1963
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

1964
#ifdef CONFIG_PPC64
1965
/* Called with hard IRQs off */
1966
void notrace __ppc64_runlatch_on(void)
1967
{
1968
	struct thread_info *ti = current_thread_info();
1969 1970
	unsigned long ctrl;

1971 1972 1973
	ctrl = mfspr(SPRN_CTRLF);
	ctrl |= CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1974

1975
	ti->local_flags |= _TLF_RUNLATCH;
1976 1977
}

1978
/* Called with hard IRQs off */
1979
void notrace __ppc64_runlatch_off(void)
1980
{
1981
	struct thread_info *ti = current_thread_info();
1982 1983
	unsigned long ctrl;

1984
	ti->local_flags &= ~_TLF_RUNLATCH;
1985

1986 1987 1988
	ctrl = mfspr(SPRN_CTRLF);
	ctrl &= ~CTRL_RUNLATCH;
	mtspr(SPRN_CTRLT, ctrl);
1989
}
1990
#endif /* CONFIG_PPC64 */
1991

1992 1993 1994 1995 1996 1997
unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}
1998 1999 2000 2001 2002 2003 2004

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
D
Daniel Cashman 已提交
2005
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2006
	else
D
Daniel Cashman 已提交
2007
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2008 2009 2010 2011 2012 2013

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
2014 2015 2016
	unsigned long base = mm->brk;
	unsigned long ret;

2017
#ifdef CONFIG_PPC_STD_MMU_64
2018 2019 2020 2021 2022
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
2023 2024
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2025 2026 2027 2028 2029 2030
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());
2031 2032 2033 2034 2035 2036

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}
A
Anton Blanchard 已提交
2037