hrtimer.c 44.5 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50

#include <asm/uaccess.h>

51
#ifndef CONFIG_GENERIC_TIME
52 53 54 55 56
/**
 * ktime_get - get the monotonic time in ktime_t format
 *
 * returns the time in ktime_t format
 */
57
ktime_t ktime_get(void)
58 59 60 61 62 63 64
{
	struct timespec now;

	ktime_get_ts(&now);

	return timespec_to_ktime(now);
}
65
EXPORT_SYMBOL_GPL(ktime_get);
66
#endif
67 68 69 70 71 72

/**
 * ktime_get_real - get the real (wall-) time in ktime_t format
 *
 * returns the time in ktime_t format
 */
73
ktime_t ktime_get_real(void)
74 75 76 77 78 79 80 81 82 83 84 85
{
	struct timespec now;

	getnstimeofday(&now);

	return timespec_to_ktime(now);
}

EXPORT_SYMBOL_GPL(ktime_get_real);

/*
 * The timer bases:
86 87 88 89 90 91
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
92
 */
93
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
94
{
95 96

	.clock_base =
97
	{
98 99 100
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
101
			.resolution = KTIME_LOW_RES,
102 103 104 105
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
106
			.resolution = KTIME_LOW_RES,
107 108
		},
	}
109 110
};

111
#ifndef CONFIG_GENERIC_TIME
112 113 114 115 116 117
/**
 * ktime_get_ts - get the monotonic clock in timespec format
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
118
 * in normalized timespec format in the variable pointed to by @ts.
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
 */
void ktime_get_ts(struct timespec *ts)
{
	struct timespec tomono;
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
		getnstimeofday(ts);
		tomono = wall_to_monotonic;

	} while (read_seqretry(&xtime_lock, seq));

	set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
				ts->tv_nsec + tomono.tv_nsec);
}
M
Matt Helsley 已提交
135
EXPORT_SYMBOL_GPL(ktime_get_ts);
136
#endif
137

138 139 140 141
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
142
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
143 144
{
	ktime_t xtim, tomono;
145
	struct timespec xts, tom;
146 147 148 149
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
150
		xts = current_kernel_time();
151
		tom = wall_to_monotonic;
152 153
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
154
	xtim = timespec_to_ktime(xts);
155
	tomono = timespec_to_ktime(tom);
156 157 158
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
159 160
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
179 180 181
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
182
{
183
	struct hrtimer_clock_base *base;
184 185 186 187

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
188
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
189 190 191
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
192
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
193 194 195 196 197 198 199 200
		}
		cpu_relax();
	}
}

/*
 * Switch the timer base to the current CPU when possible.
 */
201
static inline struct hrtimer_clock_base *
202 203
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
204
{
205 206
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
207 208 209 210 211 212 213 214 215 216
	int cpu, preferred_cpu = -1;

	cpu = smp_processor_id();
#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
		preferred_cpu = get_nohz_load_balancer();
		if (preferred_cpu >= 0)
			cpu = preferred_cpu;
	}
#endif
217

218 219
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
220
	new_base = &new_cpu_base->clock_base[base->index];
221 222 223 224 225 226 227 228 229 230 231

	if (base != new_base) {
		/*
		 * We are trying to schedule the timer on the local CPU.
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
232
		if (unlikely(hrtimer_callback_running(timer)))
233 234 235 236
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
237 238
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

		/* Optimized away for NOHZ=n SMP=n */
		if (cpu == preferred_cpu) {
			/* Calculate clock monotonic expiry time */
#ifdef CONFIG_HIGH_RES_TIMERS
			ktime_t expires = ktime_sub(hrtimer_get_expires(timer),
							new_base->offset);
#else
			ktime_t expires = hrtimer_get_expires(timer);
#endif

			/*
			 * Get the next event on target cpu from the
			 * clock events layer.
			 * This covers the highres=off nohz=on case as well.
			 */
			ktime_t next = clockevents_get_next_event(cpu);

			ktime_t delta = ktime_sub(expires, next);

			/*
			 * We do not migrate the timer when it is expiring
			 * before the next event on the target cpu because
			 * we cannot reprogram the target cpu hardware and
			 * we would cause it to fire late.
			 */
			if (delta.tv64 < 0) {
				cpu = smp_processor_id();
				spin_unlock(&new_base->cpu_base->lock);
				spin_lock(&base->cpu_base->lock);
				timer->base = base;
				goto again;
			}
		}
273 274 275 276 277 278 279
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

280
static inline struct hrtimer_clock_base *
281 282
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
283
	struct hrtimer_clock_base *base = timer->base;
284

285
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
286 287 288 289

	return base;
}

290
# define switch_hrtimer_base(t, b, p)	(b)
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
321 322

EXPORT_SYMBOL_GPL(ktime_add_ns);
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
347 348 349 350 351
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
352
u64 ktime_divns(const ktime_t kt, s64 div)
353
{
354
	u64 dclc;
355 356
	int sft = 0;

357
	dclc = ktime_to_ns(kt);
358 359 360 361 362 363 364 365
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
366
	return dclc;
367 368 369
}
#endif /* BITS_PER_LONG >= 64 */

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

387 388
EXPORT_SYMBOL_GPL(ktime_add_safe);

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
	ktime_t expires;

	cpu_base->expires_next.tv64 = KTIME_MAX;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
557
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
558 559 560 561 562 563 564
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
		if (expires.tv64 < cpu_base->expires_next.tv64)
			cpu_base->expires_next = expires;
	}

	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
586
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
587 588
	int res;

589
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
590

591 592 593
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
594
	 * the callback is executed in the hrtimer_interrupt context. The
595 596 597 598 599 600
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

601 602 603 604 605 606 607 608 609
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

	hrtimer_force_reprogram(base);
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
669
	on_each_cpu(retrigger_next_event, NULL, 1);
670 671
}

672 673 674 675 676 677
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
678 679 680
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

681 682 683
	retrigger_next_event(NULL);
}

684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

700

701 702 703 704 705 706 707
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
708 709
					    struct hrtimer_clock_base *base,
					    int wakeup)
710 711
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
712 713 714 715 716 717 718
		if (wakeup) {
			spin_unlock(&base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			spin_lock(&base->cpu_base->lock);
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

719
		return 1;
720
	}
721

722 723 724 725 726 727
	return 0;
}

/*
 * Switch to high resolution mode
 */
728
static int hrtimer_switch_to_hres(void)
729
{
I
Ingo Molnar 已提交
730 731
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
732 733 734
	unsigned long flags;

	if (base->hres_active)
735
		return 1;
736 737 738 739 740

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
741 742
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
743
		return 0;
744 745 746 747 748 749 750 751 752 753
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
754
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
755
	       smp_processor_id());
756
	return 1;
757 758 759 760 761 762
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
763
static inline int hrtimer_switch_to_hres(void) { return 0; }
764 765
static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
766 767
					    struct hrtimer_clock_base *base,
					    int wakeup)
768 769 770 771 772 773 774 775
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

776 777 778 779 780 781 782 783 784 785 786 787
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

788
/*
789
 * Counterpart to lock_hrtimer_base above:
790 791 792 793
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
794
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
795 796 797 798 799
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
800
 * @now:	forward past this time
801 802 803
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
804
 * Returns the number of overruns.
805
 */
D
Davide Libenzi 已提交
806
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
807
{
D
Davide Libenzi 已提交
808
	u64 orun = 1;
809
	ktime_t delta;
810

811
	delta = ktime_sub(now, hrtimer_get_expires(timer));
812 813 814 815

	if (delta.tv64 < 0)
		return 0;

816 817 818
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

819
	if (unlikely(delta.tv64 >= interval.tv64)) {
820
		s64 incr = ktime_to_ns(interval);
821 822

		orun = ktime_divns(delta, incr);
823 824
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
825 826 827 828 829 830 831
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
832
	hrtimer_add_expires(timer, interval);
833 834 835

	return orun;
}
S
Stas Sergeev 已提交
836
EXPORT_SYMBOL_GPL(hrtimer_forward);
837 838 839 840 841 842

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
843 844
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
845
 */
846 847
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
848 849 850 851
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
852
	int leftmost = 1;
853

854 855
	debug_hrtimer_activate(timer);

856 857 858 859 860 861 862 863 864 865
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
866 867
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
868
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
869
		} else {
870
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
871 872
			leftmost = 0;
		}
873 874 875
	}

	/*
876 877
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
878
	 */
879
	if (leftmost)
880 881
		base->first = &timer->node;

882 883
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
884 885 886 887 888
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
889 890

	return leftmost;
891
}
892 893 894 895 896

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
897 898 899 900 901
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
902
 */
903
static void __remove_hrtimer(struct hrtimer *timer,
904
			     struct hrtimer_clock_base *base,
905
			     unsigned long newstate, int reprogram)
906
{
907
	if (timer->state & HRTIMER_STATE_ENQUEUED) {
908 909 910 911 912 913 914 915 916 917 918 919
		/*
		 * Remove the timer from the rbtree and replace the
		 * first entry pointer if necessary.
		 */
		if (base->first == &timer->node) {
			base->first = rb_next(&timer->node);
			/* Reprogram the clock event device. if enabled */
			if (reprogram && hrtimer_hres_active())
				hrtimer_force_reprogram(base->cpu_base);
		}
		rb_erase(&timer->node, &base->active);
	}
920
	timer->state = newstate;
921 922 923 924 925 926
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
927
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
928
{
929
	if (hrtimer_is_queued(timer)) {
930 931 932 933 934 935 936 937 938 939
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
940
		debug_hrtimer_deactivate(timer);
941
		timer_stats_hrtimer_clear_start_info(timer);
942 943 944
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
945 946 947 948 949
		return 1;
	}
	return 0;
}

950 951 952
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
953
{
954
	struct hrtimer_clock_base *base, *new_base;
955
	unsigned long flags;
956
	int ret, leftmost;
957 958 959 960 961 962 963

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
964
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
965

966
	if (mode & HRTIMER_MODE_REL) {
967
		tim = ktime_add_safe(tim, new_base->get_time());
968 969 970 971 972 973 974 975
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
976
		tim = ktime_add_safe(tim, base->resolution);
977 978
#endif
	}
979

980
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
981

982 983
	timer_stats_hrtimer_set_start_info(timer);

984 985
	leftmost = enqueue_hrtimer(timer, new_base);

986 987 988
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
989 990
	 *
	 * XXX send_remote_softirq() ?
991
	 */
992
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
993
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
994 995 996 997 998

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
1016 1017 1018
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
1019
 * hrtimer_start - (re)start an hrtimer on the current CPU
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
1031
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1032
}
1033
EXPORT_SYMBOL_GPL(hrtimer_start);
1034

1035

1036 1037 1038 1039 1040 1041 1042 1043
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1044
 *    cannot be stopped
1045 1046 1047
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1048
	struct hrtimer_clock_base *base;
1049 1050 1051 1052 1053
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1054
	if (!hrtimer_callback_running(timer))
1055 1056 1057 1058 1059 1060 1061
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1062
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1079
		cpu_relax();
1080 1081
	}
}
1082
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1083 1084 1085 1086 1087 1088 1089

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1090
	struct hrtimer_clock_base *base;
1091 1092 1093 1094
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1095
	rem = hrtimer_expires_remaining(timer);
1096 1097 1098 1099
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1100
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1101

1102
#ifdef CONFIG_NO_HZ
1103 1104 1105 1106 1107 1108 1109 1110
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1111 1112
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1113 1114 1115 1116
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1117 1118
	spin_lock_irqsave(&cpu_base->lock, flags);

1119 1120 1121
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1122

1123 1124
			if (!base->first)
				continue;
1125

1126
			timer = rb_entry(base->first, struct hrtimer, node);
1127
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1128 1129 1130 1131
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1132
	}
1133 1134 1135

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1136 1137 1138 1139 1140 1141
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1142 1143
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1144
{
1145
	struct hrtimer_cpu_base *cpu_base;
1146

1147 1148
	memset(timer, 0, sizeof(struct hrtimer));

1149
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1150

1151
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1152 1153
		clock_id = CLOCK_MONOTONIC;

1154
	timer->base = &cpu_base->clock_base[clock_id];
1155
	INIT_LIST_HEAD(&timer->cb_entry);
1156
	hrtimer_init_timer_hres(timer);
1157 1158 1159 1160 1161 1162

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1163
}
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1177
EXPORT_SYMBOL_GPL(hrtimer_init);
1178 1179 1180 1181 1182 1183

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1184 1185
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1186 1187 1188
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1189
	struct hrtimer_cpu_base *cpu_base;
1190

1191 1192
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1193 1194 1195

	return 0;
}
1196
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1197

1198 1199 1200 1201 1202 1203 1204
static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1205 1206
	WARN_ON(!irqs_disabled());

1207
	debug_hrtimer_deactivate(timer);
1208 1209 1210
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1211 1212 1213 1214 1215 1216 1217 1218 1219

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
	spin_unlock(&cpu_base->lock);
	restart = fn(timer);
	spin_lock(&cpu_base->lock);
1220 1221

	/*
T
Thomas Gleixner 已提交
1222 1223 1224
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1225 1226 1227
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1228
		enqueue_hrtimer(timer, base);
1229 1230 1231 1232
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1233 1234
#ifdef CONFIG_HIGH_RES_TIMERS

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
static int force_clock_reprogram;

/*
 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
 * is hanging, which could happen with something that slows the interrupt
 * such as the tracing. Then we force the clock reprogramming for each future
 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
 * threshold that we will overwrite.
 * The next tick event will be scheduled to 3 times we currently spend on
 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
 * 1/4 of their time to process the hrtimer interrupts. This is enough to
 * let it running without serious starvation.
 */

static inline void
hrtimer_interrupt_hanging(struct clock_event_device *dev,
			ktime_t try_time)
{
	force_clock_reprogram = 1;
	dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
	printk(KERN_WARNING "hrtimer: interrupt too slow, "
		"forcing clock min delta to %lu ns\n", dev->min_delta_ns);
}
1258 1259 1260 1261 1262 1263 1264 1265 1266
/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
1267
	int nr_retries = 0;
1268
	int i;
1269 1270 1271 1272 1273 1274

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
1275 1276 1277 1278
	/* 5 retries is enough to notice a hang */
	if (!(++nr_retries % 5))
		hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		spin_lock(&cpu_base->lock);

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1312 1313
				ktime_t expires;

1314
				expires = ktime_sub(hrtimer_get_expires(timer),
1315 1316 1317 1318 1319 1320
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1321
			__run_hrtimer(timer);
1322 1323 1324 1325 1326 1327 1328 1329 1330
		}
		spin_unlock(&cpu_base->lock);
		base++;
	}

	cpu_base->expires_next = expires_next;

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
1331
		if (tick_program_event(expires_next, force_clock_reprogram))
1332 1333 1334 1335
			goto retry;
	}
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1363
	unsigned long flags;
1364

1365
	local_irq_save(flags);
1366
	__hrtimer_peek_ahead_timers();
1367 1368 1369
	local_irq_restore(flags);
}

1370 1371 1372 1373 1374
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1375 1376 1377 1378 1379
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1380

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1403 1404
}

1405
/*
1406
 * Called from hardirq context every jiffy
1407
 */
1408
void hrtimer_run_queues(void)
1409
{
1410
	struct rb_node *node;
1411 1412 1413
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1414

1415
	if (hrtimer_hres_active())
1416 1417
		return;

1418 1419
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1420

1421
		if (!base->first)
1422
			continue;
1423

1424
		if (gettime) {
1425 1426
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1427
		}
1428

1429
		spin_lock(&cpu_base->lock);
1430

1431 1432
		while ((node = base->first)) {
			struct hrtimer *timer;
1433

1434
			timer = rb_entry(node, struct hrtimer, node);
1435 1436
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1437 1438 1439 1440 1441 1442
				break;

			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1443 1444
}

1445 1446 1447
/*
 * Sleep related functions:
 */
1448
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1461
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1462 1463 1464 1465 1466
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

1467
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1468
{
1469
	hrtimer_init_sleeper(t, current);
1470

1471 1472
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1473
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1474 1475
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1476

1477 1478
		if (likely(t->task))
			schedule();
1479

1480
		hrtimer_cancel(&t->timer);
1481
		mode = HRTIMER_MODE_ABS;
1482 1483

	} while (t->task && !signal_pending(current));
1484

1485 1486
	__set_current_state(TASK_RUNNING);

1487
	return t->task == NULL;
1488 1489
}

1490 1491 1492 1493 1494
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1495
	rem = hrtimer_expires_remaining(timer);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1506
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1507
{
1508
	struct hrtimer_sleeper t;
1509
	struct timespec __user  *rmtp;
1510
	int ret = 0;
1511

1512 1513
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1514
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1515

1516
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1517
		goto out;
1518

1519
	rmtp = restart->nanosleep.rmtp;
1520
	if (rmtp) {
1521
		ret = update_rmtp(&t.timer, rmtp);
1522
		if (ret <= 0)
1523
			goto out;
1524
	}
1525 1526

	/* The other values in restart are already filled in */
1527 1528 1529 1530
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1531 1532
}

1533
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1534 1535 1536
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1537
	struct hrtimer_sleeper t;
1538
	int ret = 0;
1539 1540 1541 1542 1543
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1544

1545
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1546
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1547
	if (do_nanosleep(&t, mode))
1548
		goto out;
1549

1550
	/* Absolute timers do not update the rmtp value and restart: */
1551 1552 1553 1554
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1555

1556
	if (rmtp) {
1557
		ret = update_rmtp(&t.timer, rmtp);
1558
		if (ret <= 0)
1559
			goto out;
1560
	}
1561 1562

	restart = &current_thread_info()->restart_block;
1563
	restart->fn = hrtimer_nanosleep_restart;
1564 1565
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1566
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1567

1568 1569 1570 1571
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1572 1573
}

1574 1575
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1576
{
1577
	struct timespec tu;
1578 1579 1580 1581 1582 1583 1584

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1585
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1586 1587
}

1588 1589 1590
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1591
static void __cpuinit init_hrtimers_cpu(int cpu)
1592
{
1593
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1594 1595
	int i;

1596 1597 1598 1599 1600
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1601
	hrtimer_init_hres(cpu_base);
1602 1603 1604 1605
}

#ifdef CONFIG_HOTPLUG_CPU

1606
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1607
				struct hrtimer_clock_base *new_base)
1608 1609 1610 1611 1612 1613
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1614
		BUG_ON(hrtimer_callback_running(timer));
1615
		debug_hrtimer_deactivate(timer);
T
Thomas Gleixner 已提交
1616 1617 1618 1619 1620 1621 1622

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1623
		timer->base = new_base;
1624
		/*
T
Thomas Gleixner 已提交
1625 1626 1627 1628 1629 1630
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1631
		 */
1632
		enqueue_hrtimer(timer, new_base);
1633

T
Thomas Gleixner 已提交
1634 1635
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1636 1637 1638
	}
}

1639
static void migrate_hrtimers(int scpu)
1640
{
1641
	struct hrtimer_cpu_base *old_base, *new_base;
1642
	int i;
1643

1644 1645
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1646 1647 1648 1649

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1650 1651 1652 1653
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1654
	spin_lock(&new_base->lock);
1655
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1656

1657
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1658
		migrate_hrtimer_list(&old_base->clock_base[i],
1659
				     &new_base->clock_base[i]);
1660 1661
	}

1662
	spin_unlock(&old_base->lock);
1663
	spin_unlock(&new_base->lock);
1664

1665 1666 1667
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1668
}
1669

1670 1671
#endif /* CONFIG_HOTPLUG_CPU */

1672
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1673 1674
					unsigned long action, void *hcpu)
{
1675
	int scpu = (long)hcpu;
1676 1677 1678 1679

	switch (action) {

	case CPU_UP_PREPARE:
1680
	case CPU_UP_PREPARE_FROZEN:
1681
		init_hrtimers_cpu(scpu);
1682 1683 1684
		break;

#ifdef CONFIG_HOTPLUG_CPU
1685 1686 1687 1688
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1689
	case CPU_DEAD:
1690
	case CPU_DEAD_FROZEN:
1691
	{
1692
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1693
		migrate_hrtimers(scpu);
1694
		break;
1695
	}
1696 1697 1698 1699 1700 1701 1702 1703 1704
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1705
static struct notifier_block __cpuinitdata hrtimers_nb = {
1706 1707 1708 1709 1710 1711 1712 1713
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1714 1715 1716
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1717 1718
}

1719
/**
1720
 * schedule_hrtimeout_range - sleep until timeout
1721
 * @expires:	timeout value (ktime_t)
1722
 * @delta:	slack in expires timeout (ktime_t)
1723 1724 1725 1726 1727 1728
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1729 1730 1731 1732 1733
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1747
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1771
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1772 1773 1774

	hrtimer_init_sleeper(&t, current);

1775
	hrtimer_start_expires(&t.timer, mode);
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1818
EXPORT_SYMBOL_GPL(schedule_hrtimeout);