inode.c 170.8 KB
Newer Older
1
/*
2
 *  linux/fs/ext4/inode.c
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie
 *	(sct@redhat.com), 1993, 1998
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 *	(jj@sunsite.ms.mff.cuni.cz)
 *
22
 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 24 25 26 27
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/time.h>
28
#include <linux/jbd2.h>
29 30 31 32 33 34
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
35
#include <linux/pagevec.h>
36
#include <linux/mpage.h>
37
#include <linux/namei.h>
38 39
#include <linux/uio.h>
#include <linux/bio.h>
40
#include <linux/workqueue.h>
41
#include <linux/kernel.h>
42
#include <linux/slab.h>
43
#include <linux/ratelimit.h>
44

45
#include "ext4_jbd2.h"
46 47
#include "xattr.h"
#include "acl.h"
48
#include "ext4_extents.h"
49

50 51
#include <trace/events/ext4.h>

52 53
#define MPAGE_DA_EXTENT_TAIL 0x01

54 55 56
static inline int ext4_begin_ordered_truncate(struct inode *inode,
					      loff_t new_size)
{
57
	trace_ext4_begin_ordered_truncate(inode, new_size);
58 59 60 61 62 63 64 65 66 67 68
	/*
	 * If jinode is zero, then we never opened the file for
	 * writing, so there's no need to call
	 * jbd2_journal_begin_ordered_truncate() since there's no
	 * outstanding writes we need to flush.
	 */
	if (!EXT4_I(inode)->jinode)
		return 0;
	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
						   EXT4_I(inode)->jinode,
						   new_size);
69 70
}

71
static void ext4_invalidatepage(struct page *page, unsigned long offset);
72 73 74 75 76 77
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
				   struct buffer_head *bh_result, int create);
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
78

79 80 81
/*
 * Test whether an inode is a fast symlink.
 */
82
static int ext4_inode_is_fast_symlink(struct inode *inode)
83
{
84
	int ea_blocks = EXT4_I(inode)->i_file_acl ?
85 86 87 88 89 90 91 92 93 94 95
		(inode->i_sb->s_blocksize >> 9) : 0;

	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}

/*
 * Work out how many blocks we need to proceed with the next chunk of a
 * truncate transaction.
 */
static unsigned long blocks_for_truncate(struct inode *inode)
{
A
Aneesh Kumar K.V 已提交
96
	ext4_lblk_t needed;
97 98 99 100 101 102

	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);

	/* Give ourselves just enough room to cope with inodes in which
	 * i_blocks is corrupt: we've seen disk corruptions in the past
	 * which resulted in random data in an inode which looked enough
103
	 * like a regular file for ext4 to try to delete it.  Things
104 105 106 107 108 109 110
	 * will go a bit crazy if that happens, but at least we should
	 * try not to panic the whole kernel. */
	if (needed < 2)
		needed = 2;

	/* But we need to bound the transaction so we don't overflow the
	 * journal. */
111 112
	if (needed > EXT4_MAX_TRANS_DATA)
		needed = EXT4_MAX_TRANS_DATA;
113

114
	return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
}

/*
 * Truncate transactions can be complex and absolutely huge.  So we need to
 * be able to restart the transaction at a conventient checkpoint to make
 * sure we don't overflow the journal.
 *
 * start_transaction gets us a new handle for a truncate transaction,
 * and extend_transaction tries to extend the existing one a bit.  If
 * extend fails, we need to propagate the failure up and restart the
 * transaction in the top-level truncate loop. --sct
 */
static handle_t *start_transaction(struct inode *inode)
{
	handle_t *result;

131
	result = ext4_journal_start(inode, blocks_for_truncate(inode));
132 133 134
	if (!IS_ERR(result))
		return result;

135
	ext4_std_error(inode->i_sb, PTR_ERR(result));
136 137 138 139 140 141 142 143 144 145 146
	return result;
}

/*
 * Try to extend this transaction for the purposes of truncation.
 *
 * Returns 0 if we managed to create more room.  If we can't create more
 * room, and the transaction must be restarted we return 1.
 */
static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
{
147 148 149
	if (!ext4_handle_valid(handle))
		return 0;
	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
150
		return 0;
151
	if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
152 153 154 155 156 157 158 159 160
		return 0;
	return 1;
}

/*
 * Restart the transaction associated with *handle.  This does a commit,
 * so before we call here everything must be consistently dirtied against
 * this transaction.
 */
161
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162
				 int nblocks)
163
{
164 165 166
	int ret;

	/*
167
	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
168 169 170 171
	 * moment, get_block can be called only for blocks inside i_size since
	 * page cache has been already dropped and writes are blocked by
	 * i_mutex. So we can safely drop the i_data_sem here.
	 */
172
	BUG_ON(EXT4_JOURNAL(inode) == NULL);
173
	jbd_debug(2, "restarting handle %p\n", handle);
174 175 176
	up_write(&EXT4_I(inode)->i_data_sem);
	ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
	down_write(&EXT4_I(inode)->i_data_sem);
177
	ext4_discard_preallocations(inode);
178 179

	return ret;
180 181 182 183 184
}

/*
 * Called at the last iput() if i_nlink is zero.
 */
A
Al Viro 已提交
185
void ext4_evict_inode(struct inode *inode)
186 187
{
	handle_t *handle;
188
	int err;
189

190
	trace_ext4_evict_inode(inode);
A
Al Viro 已提交
191 192 193 194 195
	if (inode->i_nlink) {
		truncate_inode_pages(&inode->i_data, 0);
		goto no_delete;
	}

196
	if (!is_bad_inode(inode))
197
		dquot_initialize(inode);
198

199 200
	if (ext4_should_order_data(inode))
		ext4_begin_ordered_truncate(inode, 0);
201 202 203 204 205
	truncate_inode_pages(&inode->i_data, 0);

	if (is_bad_inode(inode))
		goto no_delete;

206
	handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
207
	if (IS_ERR(handle)) {
208
		ext4_std_error(inode->i_sb, PTR_ERR(handle));
209 210 211 212 213
		/*
		 * If we're going to skip the normal cleanup, we still need to
		 * make sure that the in-core orphan linked list is properly
		 * cleaned up.
		 */
214
		ext4_orphan_del(NULL, inode);
215 216 217 218
		goto no_delete;
	}

	if (IS_SYNC(inode))
219
		ext4_handle_sync(handle);
220
	inode->i_size = 0;
221 222
	err = ext4_mark_inode_dirty(handle, inode);
	if (err) {
223
		ext4_warning(inode->i_sb,
224 225 226
			     "couldn't mark inode dirty (err %d)", err);
		goto stop_handle;
	}
227
	if (inode->i_blocks)
228
		ext4_truncate(inode);
229 230 231 232 233 234 235

	/*
	 * ext4_ext_truncate() doesn't reserve any slop when it
	 * restarts journal transactions; therefore there may not be
	 * enough credits left in the handle to remove the inode from
	 * the orphan list and set the dtime field.
	 */
236
	if (!ext4_handle_has_enough_credits(handle, 3)) {
237 238 239 240
		err = ext4_journal_extend(handle, 3);
		if (err > 0)
			err = ext4_journal_restart(handle, 3);
		if (err != 0) {
241
			ext4_warning(inode->i_sb,
242 243 244
				     "couldn't extend journal (err %d)", err);
		stop_handle:
			ext4_journal_stop(handle);
245
			ext4_orphan_del(NULL, inode);
246 247 248 249
			goto no_delete;
		}
	}

250
	/*
251
	 * Kill off the orphan record which ext4_truncate created.
252
	 * AKPM: I think this can be inside the above `if'.
253
	 * Note that ext4_orphan_del() has to be able to cope with the
254
	 * deletion of a non-existent orphan - this is because we don't
255
	 * know if ext4_truncate() actually created an orphan record.
256 257
	 * (Well, we could do this if we need to, but heck - it works)
	 */
258 259
	ext4_orphan_del(handle, inode);
	EXT4_I(inode)->i_dtime	= get_seconds();
260 261 262 263 264 265 266 267

	/*
	 * One subtle ordering requirement: if anything has gone wrong
	 * (transaction abort, IO errors, whatever), then we can still
	 * do these next steps (the fs will already have been marked as
	 * having errors), but we can't free the inode if the mark_dirty
	 * fails.
	 */
268
	if (ext4_mark_inode_dirty(handle, inode))
269
		/* If that failed, just do the required in-core inode clear. */
A
Al Viro 已提交
270
		ext4_clear_inode(inode);
271
	else
272 273
		ext4_free_inode(handle, inode);
	ext4_journal_stop(handle);
274 275
	return;
no_delete:
A
Al Viro 已提交
276
	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
}

typedef struct {
	__le32	*p;
	__le32	key;
	struct buffer_head *bh;
} Indirect;

static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
{
	p->key = *(p->p = v);
	p->bh = bh;
}

/**
292
 *	ext4_block_to_path - parse the block number into array of offsets
293 294 295
 *	@inode: inode in question (we are only interested in its superblock)
 *	@i_block: block number to be parsed
 *	@offsets: array to store the offsets in
D
Dave Kleikamp 已提交
296 297
 *	@boundary: set this non-zero if the referred-to block is likely to be
 *	       followed (on disk) by an indirect block.
298
 *
299
 *	To store the locations of file's data ext4 uses a data structure common
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
 *	for UNIX filesystems - tree of pointers anchored in the inode, with
 *	data blocks at leaves and indirect blocks in intermediate nodes.
 *	This function translates the block number into path in that tree -
 *	return value is the path length and @offsets[n] is the offset of
 *	pointer to (n+1)th node in the nth one. If @block is out of range
 *	(negative or too large) warning is printed and zero returned.
 *
 *	Note: function doesn't find node addresses, so no IO is needed. All
 *	we need to know is the capacity of indirect blocks (taken from the
 *	inode->i_sb).
 */

/*
 * Portability note: the last comparison (check that we fit into triple
 * indirect block) is spelled differently, because otherwise on an
 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 * if our filesystem had 8Kb blocks. We might use long long, but that would
 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 * i_block would have to be negative in the very beginning, so we would not
 * get there at all.
 */

322
static int ext4_block_to_path(struct inode *inode,
323 324
			      ext4_lblk_t i_block,
			      ext4_lblk_t offsets[4], int *boundary)
325
{
326 327 328
	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
	const long direct_blocks = EXT4_NDIR_BLOCKS,
329 330 331 332 333
		indirect_blocks = ptrs,
		double_blocks = (1 << (ptrs_bits * 2));
	int n = 0;
	int final = 0;

334
	if (i_block < direct_blocks) {
335 336
		offsets[n++] = i_block;
		final = direct_blocks;
337
	} else if ((i_block -= direct_blocks) < indirect_blocks) {
338
		offsets[n++] = EXT4_IND_BLOCK;
339 340 341
		offsets[n++] = i_block;
		final = ptrs;
	} else if ((i_block -= indirect_blocks) < double_blocks) {
342
		offsets[n++] = EXT4_DIND_BLOCK;
343 344 345 346
		offsets[n++] = i_block >> ptrs_bits;
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
347
		offsets[n++] = EXT4_TIND_BLOCK;
348 349 350 351 352
		offsets[n++] = i_block >> (ptrs_bits * 2);
		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
		offsets[n++] = i_block & (ptrs - 1);
		final = ptrs;
	} else {
353
		ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
354 355
			     i_block + direct_blocks +
			     indirect_blocks + double_blocks, inode->i_ino);
356 357 358 359 360 361
	}
	if (boundary)
		*boundary = final - 1 - (i_block & (ptrs - 1));
	return n;
}

362 363
static int __ext4_check_blockref(const char *function, unsigned int line,
				 struct inode *inode,
364 365
				 __le32 *p, unsigned int max)
{
366
	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
367
	__le32 *bref = p;
368 369
	unsigned int blk;

370
	while (bref < p+max) {
371
		blk = le32_to_cpu(*bref++);
372 373
		if (blk &&
		    unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
374
						    blk, 1))) {
375
			es->s_last_error_block = cpu_to_le64(blk);
376 377
			ext4_error_inode(inode, function, line, blk,
					 "invalid block");
378 379 380 381
			return -EIO;
		}
	}
	return 0;
382 383 384 385
}


#define ext4_check_indirect_blockref(inode, bh)                         \
386 387
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      (__le32 *)(bh)->b_data,			\
388 389 390
			      EXT4_ADDR_PER_BLOCK((inode)->i_sb))

#define ext4_check_inode_blockref(inode)                                \
391 392
	__ext4_check_blockref(__func__, __LINE__, inode,		\
			      EXT4_I(inode)->i_data,			\
393 394
			      EXT4_NDIR_BLOCKS)

395
/**
396
 *	ext4_get_branch - read the chain of indirect blocks leading to data
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
 *	@inode: inode in question
 *	@depth: depth of the chain (1 - direct pointer, etc.)
 *	@offsets: offsets of pointers in inode/indirect blocks
 *	@chain: place to store the result
 *	@err: here we store the error value
 *
 *	Function fills the array of triples <key, p, bh> and returns %NULL
 *	if everything went OK or the pointer to the last filled triple
 *	(incomplete one) otherwise. Upon the return chain[i].key contains
 *	the number of (i+1)-th block in the chain (as it is stored in memory,
 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
 *	number (it points into struct inode for i==0 and into the bh->b_data
 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 *	block for i>0 and NULL for i==0. In other words, it holds the block
 *	numbers of the chain, addresses they were taken from (and where we can
 *	verify that chain did not change) and buffer_heads hosting these
 *	numbers.
 *
 *	Function stops when it stumbles upon zero pointer (absent block)
 *		(pointer to last triple returned, *@err == 0)
 *	or when it gets an IO error reading an indirect block
 *		(ditto, *@err == -EIO)
 *	or when it reads all @depth-1 indirect blocks successfully and finds
 *	the whole chain, all way to the data (returns %NULL, *err == 0).
421 422
 *
 *      Need to be called with
423
 *      down_read(&EXT4_I(inode)->i_data_sem)
424
 */
A
Aneesh Kumar K.V 已提交
425 426
static Indirect *ext4_get_branch(struct inode *inode, int depth,
				 ext4_lblk_t  *offsets,
427 428 429 430 431 432 433 434
				 Indirect chain[4], int *err)
{
	struct super_block *sb = inode->i_sb;
	Indirect *p = chain;
	struct buffer_head *bh;

	*err = 0;
	/* i_data is not going away, no lock needed */
435
	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
436 437 438
	if (!p->key)
		goto no_block;
	while (--depth) {
439 440
		bh = sb_getblk(sb, le32_to_cpu(p->key));
		if (unlikely(!bh))
441
			goto failure;
442

443 444 445 446 447 448 449 450 451 452 453
		if (!bh_uptodate_or_lock(bh)) {
			if (bh_submit_read(bh) < 0) {
				put_bh(bh);
				goto failure;
			}
			/* validate block references */
			if (ext4_check_indirect_blockref(inode, bh)) {
				put_bh(bh);
				goto failure;
			}
		}
454

455
		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
456 457 458 459 460 461 462 463 464 465 466 467 468
		/* Reader: end */
		if (!p->key)
			goto no_block;
	}
	return NULL;

failure:
	*err = -EIO;
no_block:
	return p;
}

/**
469
 *	ext4_find_near - find a place for allocation with sufficient locality
470 471 472
 *	@inode: owner
 *	@ind: descriptor of indirect block.
 *
473
 *	This function returns the preferred place for block allocation.
474 475 476 477 478 479 480 481 482 483 484 485 486 487
 *	It is used when heuristic for sequential allocation fails.
 *	Rules are:
 *	  + if there is a block to the left of our position - allocate near it.
 *	  + if pointer will live in indirect block - allocate near that block.
 *	  + if pointer will live in inode - allocate in the same
 *	    cylinder group.
 *
 * In the latter case we colour the starting block by the callers PID to
 * prevent it from clashing with concurrent allocations for a different inode
 * in the same block group.   The PID is used here so that functionally related
 * files will be close-by on-disk.
 *
 *	Caller must make sure that @ind is valid and will stay that way.
 */
488
static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
489
{
490
	struct ext4_inode_info *ei = EXT4_I(inode);
491
	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
492
	__le32 *p;
493
	ext4_fsblk_t bg_start;
494
	ext4_fsblk_t last_block;
495
	ext4_grpblk_t colour;
496 497
	ext4_group_t block_group;
	int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

	/* Try to find previous block */
	for (p = ind->p - 1; p >= start; p--) {
		if (*p)
			return le32_to_cpu(*p);
	}

	/* No such thing, so let's try location of indirect block */
	if (ind->bh)
		return ind->bh->b_blocknr;

	/*
	 * It is going to be referred to from the inode itself? OK, just put it
	 * into the same cylinder group then.
	 */
513 514 515 516 517 518 519
	block_group = ei->i_block_group;
	if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
		block_group &= ~(flex_size-1);
		if (S_ISREG(inode->i_mode))
			block_group++;
	}
	bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
520 521
	last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;

522 523 524 525 526 527 528
	/*
	 * If we are doing delayed allocation, we don't need take
	 * colour into account.
	 */
	if (test_opt(inode->i_sb, DELALLOC))
		return bg_start;

529 530
	if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
		colour = (current->pid % 16) *
531
			(EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
532 533
	else
		colour = (current->pid % 16) * ((last_block - bg_start) / 16);
534 535 536 537
	return bg_start + colour;
}

/**
538
 *	ext4_find_goal - find a preferred place for allocation.
539 540 541 542
 *	@inode: owner
 *	@block:  block we want
 *	@partial: pointer to the last triple within a chain
 *
543
 *	Normally this function find the preferred place for block allocation,
544
 *	returns it.
545 546
 *	Because this is only used for non-extent files, we limit the block nr
 *	to 32 bits.
547
 */
A
Aneesh Kumar K.V 已提交
548
static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
549
				   Indirect *partial)
550
{
551 552
	ext4_fsblk_t goal;

553
	/*
554
	 * XXX need to get goal block from mballoc's data structures
555 556
	 */

557 558 559
	goal = ext4_find_near(inode, partial);
	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
	return goal;
560 561 562
}

/**
T
Theodore Ts'o 已提交
563
 *	ext4_blks_to_allocate - Look up the block map and count the number
564 565 566 567 568 569 570 571 572 573
 *	of direct blocks need to be allocated for the given branch.
 *
 *	@branch: chain of indirect blocks
 *	@k: number of blocks need for indirect blocks
 *	@blks: number of data blocks to be mapped.
 *	@blocks_to_boundary:  the offset in the indirect block
 *
 *	return the total number of blocks to be allocate, including the
 *	direct and indirect blocks.
 */
574
static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
575
				 int blocks_to_boundary)
576
{
577
	unsigned int count = 0;
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600

	/*
	 * Simple case, [t,d]Indirect block(s) has not allocated yet
	 * then it's clear blocks on that path have not allocated
	 */
	if (k > 0) {
		/* right now we don't handle cross boundary allocation */
		if (blks < blocks_to_boundary + 1)
			count += blks;
		else
			count += blocks_to_boundary + 1;
		return count;
	}

	count++;
	while (count < blks && count <= blocks_to_boundary &&
		le32_to_cpu(*(branch[0].p + count)) == 0) {
		count++;
	}
	return count;
}

/**
601
 *	ext4_alloc_blocks: multiple allocate blocks needed for a branch
T
Theodore Ts'o 已提交
602 603 604 605
 *	@handle: handle for this transaction
 *	@inode: inode which needs allocated blocks
 *	@iblock: the logical block to start allocated at
 *	@goal: preferred physical block of allocation
606 607
 *	@indirect_blks: the number of blocks need to allocate for indirect
 *			blocks
T
Theodore Ts'o 已提交
608
 *	@blks: number of desired blocks
609 610
 *	@new_blocks: on return it will store the new block numbers for
 *	the indirect blocks(if needed) and the first direct block,
T
Theodore Ts'o 已提交
611 612 613 614
 *	@err: on return it will store the error code
 *
 *	This function will return the number of blocks allocated as
 *	requested by the passed-in parameters.
615
 */
616
static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
617 618 619
			     ext4_lblk_t iblock, ext4_fsblk_t goal,
			     int indirect_blks, int blks,
			     ext4_fsblk_t new_blocks[4], int *err)
620
{
621
	struct ext4_allocation_request ar;
622
	int target, i;
623
	unsigned long count = 0, blk_allocated = 0;
624
	int index = 0;
625
	ext4_fsblk_t current_block = 0;
626 627 628 629 630 631 632 633 634 635
	int ret = 0;

	/*
	 * Here we try to allocate the requested multiple blocks at once,
	 * on a best-effort basis.
	 * To build a branch, we should allocate blocks for
	 * the indirect blocks(if not allocated yet), and at least
	 * the first direct block of this branch.  That's the
	 * minimum number of blocks need to allocate(required)
	 */
636 637 638
	/* first we try to allocate the indirect blocks */
	target = indirect_blks;
	while (target > 0) {
639 640
		count = target;
		/* allocating blocks for indirect blocks and direct blocks */
641 642
		current_block = ext4_new_meta_blocks(handle, inode,
							goal, &count, err);
643 644 645
		if (*err)
			goto failed_out;

646 647 648 649 650 651 652 653
		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
			EXT4_ERROR_INODE(inode,
					 "current_block %llu + count %lu > %d!",
					 current_block, count,
					 EXT4_MAX_BLOCK_FILE_PHYS);
			*err = -EIO;
			goto failed_out;
		}
654

655 656 657 658 659 660
		target -= count;
		/* allocate blocks for indirect blocks */
		while (index < indirect_blks && count) {
			new_blocks[index++] = current_block++;
			count--;
		}
661 662 663 664 665 666 667 668 669
		if (count > 0) {
			/*
			 * save the new block number
			 * for the first direct block
			 */
			new_blocks[index] = current_block;
			printk(KERN_INFO "%s returned more blocks than "
						"requested\n", __func__);
			WARN_ON(1);
670
			break;
671
		}
672 673
	}

674 675 676 677 678
	target = blks - count ;
	blk_allocated = count;
	if (!target)
		goto allocated;
	/* Now allocate data blocks */
679 680 681 682 683 684 685 686 687 688
	memset(&ar, 0, sizeof(ar));
	ar.inode = inode;
	ar.goal = goal;
	ar.len = target;
	ar.logical = iblock;
	if (S_ISREG(inode->i_mode))
		/* enable in-core preallocation only for regular files */
		ar.flags = EXT4_MB_HINT_DATA;

	current_block = ext4_mb_new_blocks(handle, &ar, err);
689 690 691 692 693 694 695 696
	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
		EXT4_ERROR_INODE(inode,
				 "current_block %llu + ar.len %d > %d!",
				 current_block, ar.len,
				 EXT4_MAX_BLOCK_FILE_PHYS);
		*err = -EIO;
		goto failed_out;
	}
697

698 699 700 701 702 703 704 705 706
	if (*err && (target == blks)) {
		/*
		 * if the allocation failed and we didn't allocate
		 * any blocks before
		 */
		goto failed_out;
	}
	if (!*err) {
		if (target == blks) {
707 708 709 710
			/*
			 * save the new block number
			 * for the first direct block
			 */
711 712
			new_blocks[index] = current_block;
		}
713
		blk_allocated += ar.len;
714 715
	}
allocated:
716
	/* total number of blocks allocated for direct blocks */
717
	ret = blk_allocated;
718 719 720
	*err = 0;
	return ret;
failed_out:
721
	for (i = 0; i < index; i++)
722
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
723 724 725 726
	return ret;
}

/**
727
 *	ext4_alloc_branch - allocate and set up a chain of blocks.
T
Theodore Ts'o 已提交
728
 *	@handle: handle for this transaction
729 730 731
 *	@inode: owner
 *	@indirect_blks: number of allocated indirect blocks
 *	@blks: number of allocated direct blocks
T
Theodore Ts'o 已提交
732
 *	@goal: preferred place for allocation
733 734 735 736 737 738 739
 *	@offsets: offsets (in the blocks) to store the pointers to next.
 *	@branch: place to store the chain in.
 *
 *	This function allocates blocks, zeroes out all but the last one,
 *	links them into chain and (if we are synchronous) writes them to disk.
 *	In other words, it prepares a branch that can be spliced onto the
 *	inode. It stores the information about that chain in the branch[], in
740
 *	the same format as ext4_get_branch() would do. We are calling it after
741 742
 *	we had read the existing part of chain and partial points to the last
 *	triple of that (one with zero ->key). Upon the exit we have the same
743
 *	picture as after the successful ext4_get_block(), except that in one
744 745 746 747 748 749
 *	place chain is disconnected - *branch->p is still zero (we did not
 *	set the last link), but branch->key contains the number that should
 *	be placed into *branch->p to fill that gap.
 *
 *	If allocation fails we free all blocks we've allocated (and forget
 *	their buffer_heads) and return the error value the from failed
750
 *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751 752
 *	as described above and return 0.
 */
753
static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754 755 756
			     ext4_lblk_t iblock, int indirect_blks,
			     int *blks, ext4_fsblk_t goal,
			     ext4_lblk_t *offsets, Indirect *branch)
757 758 759 760 761 762
{
	int blocksize = inode->i_sb->s_blocksize;
	int i, n = 0;
	int err = 0;
	struct buffer_head *bh;
	int num;
763 764
	ext4_fsblk_t new_blocks[4];
	ext4_fsblk_t current_block;
765

766
	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
				*blks, new_blocks, &err);
	if (err)
		return err;

	branch[0].key = cpu_to_le32(new_blocks[0]);
	/*
	 * metadata blocks and data blocks are allocated.
	 */
	for (n = 1; n <= indirect_blks;  n++) {
		/*
		 * Get buffer_head for parent block, zero it out
		 * and set the pointer to new one, then send
		 * parent to disk.
		 */
		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782 783 784 785 786
		if (unlikely(!bh)) {
			err = -EIO;
			goto failed;
		}

787 788 789
		branch[n].bh = bh;
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
790
		err = ext4_journal_get_create_access(handle, bh);
791
		if (err) {
792 793
			/* Don't brelse(bh) here; it's done in
			 * ext4_journal_forget() below */
794 795 796 797 798 799 800 801
			unlock_buffer(bh);
			goto failed;
		}

		memset(bh->b_data, 0, blocksize);
		branch[n].p = (__le32 *) bh->b_data + offsets[n];
		branch[n].key = cpu_to_le32(new_blocks[n]);
		*branch[n].p = branch[n].key;
802
		if (n == indirect_blks) {
803 804 805 806 807 808
			current_block = new_blocks[n];
			/*
			 * End of chain, update the last new metablock of
			 * the chain to point to the new allocated
			 * data blocks numbers
			 */
809
			for (i = 1; i < num; i++)
810 811 812 813 814 815
				*(branch[n].p + i) = cpu_to_le32(++current_block);
		}
		BUFFER_TRACE(bh, "marking uptodate");
		set_buffer_uptodate(bh);
		unlock_buffer(bh);

816 817
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
818 819 820 821 822 823 824
		if (err)
			goto failed;
	}
	*blks = num;
	return err;
failed:
	/* Allocation failed, free what we already allocated */
825
	ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
826
	for (i = 1; i <= n ; i++) {
827
		/*
828 829 830
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
831
		 */
832 833
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
				 EXT4_FREE_BLOCKS_FORGET);
834
	}
835 836
	for (i = n+1; i < indirect_blks; i++)
		ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
837

838
	ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
839 840 841 842 843

	return err;
}

/**
844
 * ext4_splice_branch - splice the allocated branch onto inode.
T
Theodore Ts'o 已提交
845
 * @handle: handle for this transaction
846 847 848
 * @inode: owner
 * @block: (logical) number of block we are adding
 * @chain: chain of indirect blocks (with a missing link - see
849
 *	ext4_alloc_branch)
850 851 852 853 854 855 856 857
 * @where: location of missing link
 * @num:   number of indirect blocks we are adding
 * @blks:  number of direct blocks we are adding
 *
 * This function fills the missing link and does all housekeeping needed in
 * inode (->i_blocks, etc.). In case of success we end up with the full
 * chain to new block and return 0.
 */
858
static int ext4_splice_branch(handle_t *handle, struct inode *inode,
859 860
			      ext4_lblk_t block, Indirect *where, int num,
			      int blks)
861 862 863
{
	int i;
	int err = 0;
864
	ext4_fsblk_t current_block;
865 866 867 868 869 870 871 872

	/*
	 * If we're splicing into a [td]indirect block (as opposed to the
	 * inode) then we need to get write access to the [td]indirect block
	 * before the splice.
	 */
	if (where->bh) {
		BUFFER_TRACE(where->bh, "get_write_access");
873
		err = ext4_journal_get_write_access(handle, where->bh);
874 875 876 877 878 879 880 881 882 883 884 885 886 887
		if (err)
			goto err_out;
	}
	/* That's it */

	*where->p = where->key;

	/*
	 * Update the host buffer_head or inode to point to more just allocated
	 * direct blocks blocks
	 */
	if (num == 0 && blks > 1) {
		current_block = le32_to_cpu(where->key) + 1;
		for (i = 1; i < blks; i++)
888
			*(where->p + i) = cpu_to_le32(current_block++);
889 890 891 892 893 894 895 896 897 898 899
	}

	/* We are done with atomic stuff, now do the rest of housekeeping */
	/* had we spliced it onto indirect block? */
	if (where->bh) {
		/*
		 * If we spliced it onto an indirect block, we haven't
		 * altered the inode.  Note however that if it is being spliced
		 * onto an indirect block at the very end of the file (the
		 * file is growing) then we *will* alter the inode to reflect
		 * the new i_size.  But that is not done here - it is done in
900
		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
901 902
		 */
		jbd_debug(5, "splicing indirect only\n");
903 904
		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, where->bh);
905 906 907 908 909 910
		if (err)
			goto err_out;
	} else {
		/*
		 * OK, we spliced it into the inode itself on a direct block.
		 */
911
		ext4_mark_inode_dirty(handle, inode);
912 913 914 915 916 917
		jbd_debug(5, "splicing direct\n");
	}
	return err;

err_out:
	for (i = 1; i <= num; i++) {
918
		/*
919 920 921
		 * branch[i].bh is newly allocated, so there is no
		 * need to revoke the block, which is why we don't
		 * need to set EXT4_FREE_BLOCKS_METADATA.
922
		 */
923 924
		ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
				 EXT4_FREE_BLOCKS_FORGET);
925
	}
926 927
	ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
			 blks, 0);
928 929 930 931 932

	return err;
}

/*
933
 * The ext4_ind_map_blocks() function handles non-extents inodes
934
 * (i.e., using the traditional indirect/double-indirect i_blocks
935
 * scheme) for ext4_map_blocks().
936
 *
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
 * Allocation strategy is simple: if we have to allocate something, we will
 * have to go the whole way to leaf. So let's do it before attaching anything
 * to tree, set linkage between the newborn blocks, write them if sync is
 * required, recheck the path, free and repeat if check fails, otherwise
 * set the last missing link (that will protect us from any truncate-generated
 * removals - all blocks on the path are immune now) and possibly force the
 * write on the parent block.
 * That has a nice additional property: no special recovery from the failed
 * allocations is needed - we simply release blocks and do not touch anything
 * reachable from inode.
 *
 * `handle' can be NULL if create == 0.
 *
 * return > 0, # of blocks mapped or allocated.
 * return = 0, if plain lookup failed.
 * return < 0, error case.
953
 *
954 955 956 957 958
 * The ext4_ind_get_blocks() function should be called with
 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 * blocks.
959
 */
960 961
static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
			       struct ext4_map_blocks *map,
962
			       int flags)
963 964
{
	int err = -EIO;
A
Aneesh Kumar K.V 已提交
965
	ext4_lblk_t offsets[4];
966 967
	Indirect chain[4];
	Indirect *partial;
968
	ext4_fsblk_t goal;
969 970 971 972
	int indirect_blks;
	int blocks_to_boundary = 0;
	int depth;
	int count = 0;
973
	ext4_fsblk_t first_block = 0;
974

975
	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
976
	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
977
	depth = ext4_block_to_path(inode, map->m_lblk, offsets,
978
				   &blocks_to_boundary);
979 980 981 982

	if (depth == 0)
		goto out;

983
	partial = ext4_get_branch(inode, depth, offsets, chain, &err);
984 985 986 987 988 989

	/* Simplest case - block found, no allocation needed */
	if (!partial) {
		first_block = le32_to_cpu(chain[depth - 1].key);
		count++;
		/*map more blocks*/
990
		while (count < map->m_len && count <= blocks_to_boundary) {
991
			ext4_fsblk_t blk;
992 993 994 995 996 997 998 999

			blk = le32_to_cpu(*(chain[depth-1].p + count));

			if (blk == first_block + count)
				count++;
			else
				break;
		}
1000
		goto got_it;
1001 1002 1003
	}

	/* Next simple case - plain lookup or failed read of indirect block */
1004
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
1005 1006 1007
		goto cleanup;

	/*
1008
	 * Okay, we need to do block allocation.
1009
	*/
1010
	goal = ext4_find_goal(inode, map->m_lblk, partial);
1011 1012 1013 1014 1015 1016 1017 1018

	/* the number of blocks need to allocate for [d,t]indirect blocks */
	indirect_blks = (chain + depth) - partial - 1;

	/*
	 * Next look up the indirect map to count the totoal number of
	 * direct blocks to allocate for this branch.
	 */
1019
	count = ext4_blks_to_allocate(partial, indirect_blks,
1020
				      map->m_len, blocks_to_boundary);
1021
	/*
1022
	 * Block out ext4_truncate while we alter the tree
1023
	 */
1024
	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
1025 1026
				&count, goal,
				offsets + (partial - chain), partial);
1027 1028

	/*
1029
	 * The ext4_splice_branch call will free and forget any buffers
1030 1031 1032 1033 1034 1035
	 * on the new chain if there is a failure, but that risks using
	 * up transaction credits, especially for bitmaps where the
	 * credits cannot be returned.  Can we handle this somehow?  We
	 * may need to return -EAGAIN upwards in the worst case.  --sct
	 */
	if (!err)
1036
		err = ext4_splice_branch(handle, inode, map->m_lblk,
1037
					 partial, indirect_blks, count);
1038
	if (err)
1039 1040
		goto cleanup;

1041
	map->m_flags |= EXT4_MAP_NEW;
1042 1043

	ext4_update_inode_fsync_trans(handle, inode, 1);
1044
got_it:
1045 1046 1047
	map->m_flags |= EXT4_MAP_MAPPED;
	map->m_pblk = le32_to_cpu(chain[depth-1].key);
	map->m_len = count;
1048
	if (count > blocks_to_boundary)
1049
		map->m_flags |= EXT4_MAP_BOUNDARY;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	err = count;
	/* Clean up and exit */
	partial = chain + depth - 1;	/* the whole chain */
cleanup:
	while (partial > chain) {
		BUFFER_TRACE(partial->bh, "call brelse");
		brelse(partial->bh);
		partial--;
	}
out:
	return err;
}

1063 1064
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
1065
{
1066
	return &EXT4_I(inode)->i_reserved_quota;
1067
}
1068
#endif
1069

1070 1071
/*
 * Calculate the number of metadata blocks need to reserve
1072
 * to allocate a new block at @lblocks for non extent file based file
1073
 */
1074 1075
static int ext4_indirect_calc_metadata_amount(struct inode *inode,
					      sector_t lblock)
1076
{
1077
	struct ext4_inode_info *ei = EXT4_I(inode);
1078
	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1079
	int blk_bits;
1080

1081 1082
	if (lblock < EXT4_NDIR_BLOCKS)
		return 0;
1083

1084
	lblock -= EXT4_NDIR_BLOCKS;
1085

1086 1087 1088 1089 1090 1091 1092
	if (ei->i_da_metadata_calc_len &&
	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
		ei->i_da_metadata_calc_len++;
		return 0;
	}
	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
	ei->i_da_metadata_calc_len = 1;
1093
	blk_bits = order_base_2(lblock);
1094
	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1095 1096 1097 1098
}

/*
 * Calculate the number of metadata blocks need to reserve
1099
 * to allocate a block located at @lblock
1100
 */
1101
static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
1102
{
1103
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1104
		return ext4_ext_calc_metadata_amount(inode, lblock);
1105

1106
	return ext4_indirect_calc_metadata_amount(inode, lblock);
1107 1108
}

1109 1110 1111 1112
/*
 * Called with i_data_sem down, which is important since we can call
 * ext4_discard_preallocations() from here.
 */
1113 1114
void ext4_da_update_reserve_space(struct inode *inode,
					int used, int quota_claim)
1115 1116
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1117 1118 1119
	struct ext4_inode_info *ei = EXT4_I(inode);

	spin_lock(&ei->i_block_reservation_lock);
1120
	trace_ext4_da_update_reserve_space(inode, used);
1121 1122 1123 1124 1125 1126 1127 1128
	if (unlikely(used > ei->i_reserved_data_blocks)) {
		ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
			 "with only %d reserved data blocks\n",
			 __func__, inode->i_ino, used,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		used = ei->i_reserved_data_blocks;
	}
1129

1130 1131 1132
	/* Update per-inode reservations */
	ei->i_reserved_data_blocks -= used;
	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1133 1134
	percpu_counter_sub(&sbi->s_dirtyblocks_counter,
			   used + ei->i_allocated_meta_blocks);
1135
	ei->i_allocated_meta_blocks = 0;
1136

1137 1138 1139 1140 1141 1142
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1143 1144
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1145
		ei->i_reserved_meta_blocks = 0;
1146
		ei->i_da_metadata_calc_len = 0;
1147
	}
1148
	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1149

1150 1151
	/* Update quota subsystem for data blocks */
	if (quota_claim)
1152
		dquot_claim_block(inode, used);
1153
	else {
1154 1155 1156
		/*
		 * We did fallocate with an offset that is already delayed
		 * allocated. So on delayed allocated writeback we should
1157
		 * not re-claim the quota for fallocated blocks.
1158
		 */
1159
		dquot_release_reservation_block(inode, used);
1160
	}
1161 1162 1163 1164 1165 1166

	/*
	 * If we have done all the pending block allocations and if
	 * there aren't any writers on the inode, we can discard the
	 * inode's preallocations.
	 */
1167 1168
	if ((ei->i_reserved_data_blocks == 0) &&
	    (atomic_read(&inode->i_writecount) == 0))
1169
		ext4_discard_preallocations(inode);
1170 1171
}

1172
static int __check_block_validity(struct inode *inode, const char *func,
1173 1174
				unsigned int line,
				struct ext4_map_blocks *map)
1175
{
1176 1177
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
				   map->m_len)) {
1178 1179 1180 1181
		ext4_error_inode(inode, func, line, map->m_pblk,
				 "lblock %lu mapped to illegal pblock "
				 "(length %d)", (unsigned long) map->m_lblk,
				 map->m_len);
1182 1183 1184 1185 1186
		return -EIO;
	}
	return 0;
}

1187
#define check_block_validity(inode, map)	\
1188
	__check_block_validity((inode), __func__, __LINE__, (map))
1189

1190
/*
1191 1192
 * Return the number of contiguous dirty pages in a given inode
 * starting at page frame idx.
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
 */
static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
				    unsigned int max_pages)
{
	struct address_space *mapping = inode->i_mapping;
	pgoff_t	index;
	struct pagevec pvec;
	pgoff_t num = 0;
	int i, nr_pages, done = 0;

	if (max_pages == 0)
		return 0;
	pagevec_init(&pvec, 0);
	while (!done) {
		index = idx;
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
					      PAGECACHE_TAG_DIRTY,
					      (pgoff_t)PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
			struct buffer_head *bh, *head;

			lock_page(page);
			if (unlikely(page->mapping != mapping) ||
			    !PageDirty(page) ||
			    PageWriteback(page) ||
			    page->index != idx) {
				done = 1;
				unlock_page(page);
				break;
			}
1226 1227 1228 1229 1230 1231 1232 1233 1234
			if (page_has_buffers(page)) {
				bh = head = page_buffers(page);
				do {
					if (!buffer_delay(bh) &&
					    !buffer_unwritten(bh))
						done = 1;
					bh = bh->b_this_page;
				} while (!done && (bh != head));
			}
1235 1236 1237 1238 1239
			unlock_page(page);
			if (done)
				break;
			idx++;
			num++;
1240 1241
			if (num >= max_pages) {
				done = 1;
1242
				break;
1243
			}
1244 1245 1246 1247 1248 1249
		}
		pagevec_release(&pvec);
	}
	return num;
}

1250
/*
1251
 * The ext4_map_blocks() function tries to look up the requested blocks,
1252
 * and returns if the blocks are already mapped.
1253 1254 1255 1256 1257
 *
 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 * and store the allocated blocks in the result buffer head and mark it
 * mapped.
 *
1258 1259
 * If file type is extents based, it will call ext4_ext_map_blocks(),
 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
 * based files
 *
 * On success, it returns the number of blocks being mapped or allocate.
 * if create==0 and the blocks are pre-allocated and uninitialized block,
 * the result buffer head is unmapped. If the create ==1, it will make sure
 * the buffer head is mapped.
 *
 * It returns 0 if plain look up failed (blocks have not been allocated), in
 * that casem, buffer head is unmapped
 *
 * It returns the error in case of allocation failure.
 */
1272 1273
int ext4_map_blocks(handle_t *handle, struct inode *inode,
		    struct ext4_map_blocks *map, int flags)
1274 1275
{
	int retval;
1276

1277 1278 1279 1280
	map->m_flags = 0;
	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
		  (unsigned long) map->m_lblk);
1281
	/*
1282 1283
	 * Try to see if we can get the block without requesting a new
	 * file system block.
1284 1285
	 */
	down_read((&EXT4_I(inode)->i_data_sem));
1286
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1287
		retval = ext4_ext_map_blocks(handle, inode, map, 0);
1288
	} else {
1289
		retval = ext4_ind_map_blocks(handle, inode, map, 0);
1290
	}
1291
	up_read((&EXT4_I(inode)->i_data_sem));
1292

1293
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1294
		int ret = check_block_validity(inode, map);
1295 1296 1297 1298
		if (ret != 0)
			return ret;
	}

1299
	/* If it is only a block(s) look up */
1300
	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1301 1302 1303 1304 1305 1306 1307 1308 1309
		return retval;

	/*
	 * Returns if the blocks have already allocated
	 *
	 * Note that if blocks have been preallocated
	 * ext4_ext_get_block() returns th create = 0
	 * with buffer head unmapped.
	 */
1310
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1311 1312
		return retval;

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * When we call get_blocks without the create flag, the
	 * BH_Unwritten flag could have gotten set if the blocks
	 * requested were part of a uninitialized extent.  We need to
	 * clear this flag now that we are committed to convert all or
	 * part of the uninitialized extent to be an initialized
	 * extent.  This is because we need to avoid the combination
	 * of BH_Unwritten and BH_Mapped flags being simultaneously
	 * set on the buffer_head.
	 */
1323
	map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1324

1325
	/*
1326 1327 1328 1329
	 * New blocks allocate and/or writing to uninitialized extent
	 * will possibly result in updating i_data, so we take
	 * the write lock of i_data_sem, and call get_blocks()
	 * with create == 1 flag.
1330 1331
	 */
	down_write((&EXT4_I(inode)->i_data_sem));
1332 1333 1334 1335 1336 1337 1338

	/*
	 * if the caller is from delayed allocation writeout path
	 * we have already reserved fs blocks for allocation
	 * let the underlying get_block() function know to
	 * avoid double accounting
	 */
1339
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1340
		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1341 1342 1343 1344
	/*
	 * We need to check for EXT4 here because migrate
	 * could have changed the inode type in between
	 */
1345
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1346
		retval = ext4_ext_map_blocks(handle, inode, map, flags);
1347
	} else {
1348
		retval = ext4_ind_map_blocks(handle, inode, map, flags);
1349

1350
		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1351 1352 1353 1354 1355
			/*
			 * We allocated new blocks which will result in
			 * i_data's format changing.  Force the migrate
			 * to fail by clearing migrate flags
			 */
1356
			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1357
		}
1358

1359 1360 1361 1362 1363 1364 1365
		/*
		 * Update reserved blocks/metadata blocks after successful
		 * block allocation which had been deferred till now. We don't
		 * support fallocate for non extent files. So we can update
		 * reserve space here.
		 */
		if ((retval > 0) &&
1366
			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1367 1368
			ext4_da_update_reserve_space(inode, retval, 1);
	}
1369
	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1370
		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
1371

1372
	up_write((&EXT4_I(inode)->i_data_sem));
1373
	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1374
		int ret = check_block_validity(inode, map);
1375 1376 1377
		if (ret != 0)
			return ret;
	}
1378 1379 1380
	return retval;
}

1381 1382 1383
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096

1384 1385
static int _ext4_get_block(struct inode *inode, sector_t iblock,
			   struct buffer_head *bh, int flags)
1386
{
1387
	handle_t *handle = ext4_journal_current_handle();
1388
	struct ext4_map_blocks map;
J
Jan Kara 已提交
1389
	int ret = 0, started = 0;
1390
	int dio_credits;
1391

1392 1393 1394 1395
	map.m_lblk = iblock;
	map.m_len = bh->b_size >> inode->i_blkbits;

	if (flags && !handle) {
J
Jan Kara 已提交
1396
		/* Direct IO write... */
1397 1398 1399
		if (map.m_len > DIO_MAX_BLOCKS)
			map.m_len = DIO_MAX_BLOCKS;
		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1400
		handle = ext4_journal_start(inode, dio_credits);
J
Jan Kara 已提交
1401
		if (IS_ERR(handle)) {
1402
			ret = PTR_ERR(handle);
1403
			return ret;
1404
		}
J
Jan Kara 已提交
1405
		started = 1;
1406 1407
	}

1408
	ret = ext4_map_blocks(handle, inode, &map, flags);
J
Jan Kara 已提交
1409
	if (ret > 0) {
1410 1411 1412
		map_bh(bh, inode->i_sb, map.m_pblk);
		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
J
Jan Kara 已提交
1413
		ret = 0;
1414
	}
J
Jan Kara 已提交
1415 1416
	if (started)
		ext4_journal_stop(handle);
1417 1418 1419
	return ret;
}

1420 1421 1422 1423 1424 1425 1426
int ext4_get_block(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh, int create)
{
	return _ext4_get_block(inode, iblock, bh,
			       create ? EXT4_GET_BLOCKS_CREATE : 0);
}

1427 1428 1429
/*
 * `handle' can be NULL if create is zero
 */
1430
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1431
				ext4_lblk_t block, int create, int *errp)
1432
{
1433 1434
	struct ext4_map_blocks map;
	struct buffer_head *bh;
1435 1436 1437 1438
	int fatal = 0, err;

	J_ASSERT(handle != NULL || create == 0);

1439 1440 1441 1442
	map.m_lblk = block;
	map.m_len = 1;
	err = ext4_map_blocks(handle, inode, &map,
			      create ? EXT4_GET_BLOCKS_CREATE : 0);
1443

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	if (err < 0)
		*errp = err;
	if (err <= 0)
		return NULL;
	*errp = 0;

	bh = sb_getblk(inode->i_sb, map.m_pblk);
	if (!bh) {
		*errp = -EIO;
		return NULL;
1454
	}
1455 1456 1457
	if (map.m_flags & EXT4_MAP_NEW) {
		J_ASSERT(create != 0);
		J_ASSERT(handle != NULL);
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
		/*
		 * Now that we do not always journal data, we should
		 * keep in mind whether this should always journal the
		 * new buffer as metadata.  For now, regular file
		 * writes use ext4_get_block instead, so it's not a
		 * problem.
		 */
		lock_buffer(bh);
		BUFFER_TRACE(bh, "call get_create_access");
		fatal = ext4_journal_get_create_access(handle, bh);
		if (!fatal && !buffer_uptodate(bh)) {
			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
			set_buffer_uptodate(bh);
1472
		}
1473 1474 1475 1476 1477 1478 1479
		unlock_buffer(bh);
		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
		err = ext4_handle_dirty_metadata(handle, inode, bh);
		if (!fatal)
			fatal = err;
	} else {
		BUFFER_TRACE(bh, "not a new buffer");
1480
	}
1481 1482 1483 1484 1485 1486
	if (fatal) {
		*errp = fatal;
		brelse(bh);
		bh = NULL;
	}
	return bh;
1487 1488
}

1489
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
A
Aneesh Kumar K.V 已提交
1490
			       ext4_lblk_t block, int create, int *err)
1491
{
1492
	struct buffer_head *bh;
1493

1494
	bh = ext4_getblk(handle, inode, block, create, err);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	if (!bh)
		return bh;
	if (buffer_uptodate(bh))
		return bh;
	ll_rw_block(READ_META, 1, &bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;
	put_bh(bh);
	*err = -EIO;
	return NULL;
}

1508 1509 1510 1511 1512 1513 1514
static int walk_page_buffers(handle_t *handle,
			     struct buffer_head *head,
			     unsigned from,
			     unsigned to,
			     int *partial,
			     int (*fn)(handle_t *handle,
				       struct buffer_head *bh))
1515 1516 1517 1518 1519 1520 1521
{
	struct buffer_head *bh;
	unsigned block_start, block_end;
	unsigned blocksize = head->b_size;
	int err, ret = 0;
	struct buffer_head *next;

1522 1523
	for (bh = head, block_start = 0;
	     ret == 0 && (bh != head || !block_start);
1524
	     block_start = block_end, bh = next) {
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		next = bh->b_this_page;
		block_end = block_start + blocksize;
		if (block_end <= from || block_start >= to) {
			if (partial && !buffer_uptodate(bh))
				*partial = 1;
			continue;
		}
		err = (*fn)(handle, bh);
		if (!ret)
			ret = err;
	}
	return ret;
}

/*
 * To preserve ordering, it is essential that the hole instantiation and
 * the data write be encapsulated in a single transaction.  We cannot
1542
 * close off a transaction and start a new one between the ext4_get_block()
1543
 * and the commit_write().  So doing the jbd2_journal_start at the start of
1544 1545
 * prepare_write() is the right place.
 *
1546 1547
 * Also, this function can nest inside ext4_writepage() ->
 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1548 1549 1550 1551
 * has generated enough buffer credits to do the whole page.  So we won't
 * block on the journal in that case, which is good, because the caller may
 * be PF_MEMALLOC.
 *
1552
 * By accident, ext4 can be reentered when a transaction is open via
1553 1554 1555 1556 1557 1558
 * quota file writes.  If we were to commit the transaction while thus
 * reentered, there can be a deadlock - we would be holding a quota
 * lock, and the commit would never complete if another thread had a
 * transaction open and was blocking on the quota lock - a ranking
 * violation.
 *
1559
 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1560 1561 1562 1563 1564
 * will _not_ run commit under these circumstances because handle->h_ref
 * is elevated.  We'll still have enough credits for the tiny quotafile
 * write.
 */
static int do_journal_get_write_access(handle_t *handle,
1565
				       struct buffer_head *bh)
1566
{
1567 1568 1569
	int dirty = buffer_dirty(bh);
	int ret;

1570 1571
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
1572
	/*
C
Christoph Hellwig 已提交
1573
	 * __block_write_begin() could have dirtied some buffers. Clean
1574 1575
	 * the dirty bit as jbd2_journal_get_write_access() could complain
	 * otherwise about fs integrity issues. Setting of the dirty bit
C
Christoph Hellwig 已提交
1576
	 * by __block_write_begin() isn't a real problem here as we clear
1577 1578 1579 1580 1581 1582 1583 1584 1585
	 * the bit before releasing a page lock and thus writeback cannot
	 * ever write the buffer.
	 */
	if (dirty)
		clear_buffer_dirty(bh);
	ret = ext4_journal_get_write_access(handle, bh);
	if (!ret && dirty)
		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
	return ret;
1586 1587
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/*
 * Truncate blocks that were not used by write. We have to truncate the
 * pagecache as well so that corresponding buffers get properly unmapped.
 */
static void ext4_truncate_failed_write(struct inode *inode)
{
	truncate_inode_pages(inode->i_mapping, inode->i_size);
	ext4_truncate(inode);
}

1598 1599
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
		   struct buffer_head *bh_result, int create);
N
Nick Piggin 已提交
1600
static int ext4_write_begin(struct file *file, struct address_space *mapping,
1601 1602
			    loff_t pos, unsigned len, unsigned flags,
			    struct page **pagep, void **fsdata)
1603
{
1604
	struct inode *inode = mapping->host;
1605
	int ret, needed_blocks;
1606 1607
	handle_t *handle;
	int retries = 0;
1608
	struct page *page;
1609
	pgoff_t index;
1610
	unsigned from, to;
N
Nick Piggin 已提交
1611

1612
	trace_ext4_write_begin(inode, pos, len, flags);
1613 1614 1615 1616 1617
	/*
	 * Reserve one block more for addition to orphan list in case
	 * we allocate blocks but write fails for some reason
	 */
	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1618
	index = pos >> PAGE_CACHE_SHIFT;
1619 1620
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;
1621 1622

retry:
1623 1624 1625 1626
	handle = ext4_journal_start(inode, needed_blocks);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
1627
	}
1628

1629 1630 1631 1632
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;

1633
	page = grab_cache_page_write_begin(mapping, index, flags);
1634 1635 1636 1637 1638 1639 1640
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
	*pagep = page;

1641
	if (ext4_should_dioread_nolock(inode))
1642
		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1643
	else
1644
		ret = __block_write_begin(page, pos, len, ext4_get_block);
N
Nick Piggin 已提交
1645 1646

	if (!ret && ext4_should_journal_data(inode)) {
1647 1648 1649
		ret = walk_page_buffers(handle, page_buffers(page),
				from, to, NULL, do_journal_get_write_access);
	}
N
Nick Piggin 已提交
1650 1651

	if (ret) {
1652 1653
		unlock_page(page);
		page_cache_release(page);
1654
		/*
1655
		 * __block_write_begin may have instantiated a few blocks
1656 1657
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
1658 1659 1660
		 *
		 * Add inode to orphan list in case we crash before
		 * truncate finishes
1661
		 */
1662
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1663 1664 1665 1666
			ext4_orphan_add(handle, inode);

		ext4_journal_stop(handle);
		if (pos + len > inode->i_size) {
1667
			ext4_truncate_failed_write(inode);
1668
			/*
1669
			 * If truncate failed early the inode might
1670 1671 1672 1673 1674 1675 1676
			 * still be on the orphan list; we need to
			 * make sure the inode is removed from the
			 * orphan list in that case.
			 */
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);
		}
N
Nick Piggin 已提交
1677 1678
	}

1679
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1680
		goto retry;
1681
out:
1682 1683 1684
	return ret;
}

N
Nick Piggin 已提交
1685 1686
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1687 1688 1689 1690
{
	if (!buffer_mapped(bh) || buffer_freed(bh))
		return 0;
	set_buffer_uptodate(bh);
1691
	return ext4_handle_dirty_metadata(handle, NULL, bh);
1692 1693
}

1694
static int ext4_generic_write_end(struct file *file,
1695 1696 1697
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
{
	int i_size_changed = 0;
	struct inode *inode = mapping->host;
	handle_t *handle = ext4_journal_current_handle();

	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);

	/*
	 * No need to use i_size_read() here, the i_size
	 * cannot change under us because we hold i_mutex.
	 *
	 * But it's important to update i_size while still holding page lock:
	 * page writeout could otherwise come in and zero beyond i_size.
	 */
	if (pos + copied > inode->i_size) {
		i_size_write(inode, pos + copied);
		i_size_changed = 1;
	}

	if (pos + copied >  EXT4_I(inode)->i_disksize) {
		/* We need to mark inode dirty even if
		 * new_i_size is less that inode->i_size
		 * bu greater than i_disksize.(hint delalloc)
		 */
		ext4_update_i_disksize(inode, (pos + copied));
		i_size_changed = 1;
	}
	unlock_page(page);
	page_cache_release(page);

	/*
	 * Don't mark the inode dirty under page lock. First, it unnecessarily
	 * makes the holding time of page lock longer. Second, it forces lock
	 * ordering of page lock and transaction start for journaling
	 * filesystems.
	 */
	if (i_size_changed)
		ext4_mark_inode_dirty(handle, inode);

	return copied;
}

1740 1741 1742 1743
/*
 * We need to pick up the new inode size which generic_commit_write gave us
 * `file' can be NULL - eg, when called from page_symlink().
 *
1744
 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1745 1746
 * buffers are managed internally.
 */
N
Nick Piggin 已提交
1747
static int ext4_ordered_write_end(struct file *file,
1748 1749 1750
				  struct address_space *mapping,
				  loff_t pos, unsigned len, unsigned copied,
				  struct page *page, void *fsdata)
1751
{
1752
	handle_t *handle = ext4_journal_current_handle();
1753
	struct inode *inode = mapping->host;
1754 1755
	int ret = 0, ret2;

1756
	trace_ext4_ordered_write_end(inode, pos, len, copied);
1757
	ret = ext4_jbd2_file_inode(handle, inode);
1758 1759

	if (ret == 0) {
1760
		ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1761
							page, fsdata);
1762
		copied = ret2;
1763
		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1764 1765 1766 1767 1768
			/* if we have allocated more blocks and copied
			 * less. We will have blocks allocated outside
			 * inode->i_size. So truncate them
			 */
			ext4_orphan_add(handle, inode);
1769 1770
		if (ret2 < 0)
			ret = ret2;
1771
	}
1772
	ret2 = ext4_journal_stop(handle);
1773 1774
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1775

1776
	if (pos + len > inode->i_size) {
1777
		ext4_truncate_failed_write(inode);
1778
		/*
1779
		 * If truncate failed early the inode might still be
1780 1781 1782 1783 1784 1785 1786 1787
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}


N
Nick Piggin 已提交
1788
	return ret ? ret : copied;
1789 1790
}

N
Nick Piggin 已提交
1791
static int ext4_writeback_write_end(struct file *file,
1792 1793 1794
				    struct address_space *mapping,
				    loff_t pos, unsigned len, unsigned copied,
				    struct page *page, void *fsdata)
1795
{
1796
	handle_t *handle = ext4_journal_current_handle();
1797
	struct inode *inode = mapping->host;
1798 1799
	int ret = 0, ret2;

1800
	trace_ext4_writeback_write_end(inode, pos, len, copied);
1801
	ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
N
Nick Piggin 已提交
1802
							page, fsdata);
1803
	copied = ret2;
1804
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1805 1806 1807 1808 1809 1810
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1811 1812
	if (ret2 < 0)
		ret = ret2;
1813

1814
	ret2 = ext4_journal_stop(handle);
1815 1816
	if (!ret)
		ret = ret2;
N
Nick Piggin 已提交
1817

1818
	if (pos + len > inode->i_size) {
1819
		ext4_truncate_failed_write(inode);
1820
		/*
1821
		 * If truncate failed early the inode might still be
1822 1823 1824 1825 1826 1827 1828
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}

N
Nick Piggin 已提交
1829
	return ret ? ret : copied;
1830 1831
}

N
Nick Piggin 已提交
1832
static int ext4_journalled_write_end(struct file *file,
1833 1834 1835
				     struct address_space *mapping,
				     loff_t pos, unsigned len, unsigned copied,
				     struct page *page, void *fsdata)
1836
{
1837
	handle_t *handle = ext4_journal_current_handle();
N
Nick Piggin 已提交
1838
	struct inode *inode = mapping->host;
1839 1840
	int ret = 0, ret2;
	int partial = 0;
N
Nick Piggin 已提交
1841
	unsigned from, to;
1842
	loff_t new_i_size;
1843

1844
	trace_ext4_journalled_write_end(inode, pos, len, copied);
N
Nick Piggin 已提交
1845 1846 1847 1848 1849 1850 1851 1852
	from = pos & (PAGE_CACHE_SIZE - 1);
	to = from + len;

	if (copied < len) {
		if (!PageUptodate(page))
			copied = 0;
		page_zero_new_buffers(page, from+copied, to);
	}
1853 1854

	ret = walk_page_buffers(handle, page_buffers(page), from,
N
Nick Piggin 已提交
1855
				to, &partial, write_end_fn);
1856 1857
	if (!partial)
		SetPageUptodate(page);
1858 1859
	new_i_size = pos + copied;
	if (new_i_size > inode->i_size)
N
Nick Piggin 已提交
1860
		i_size_write(inode, pos+copied);
1861
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1862 1863
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		ext4_update_i_disksize(inode, new_i_size);
1864
		ret2 = ext4_mark_inode_dirty(handle, inode);
1865 1866 1867
		if (!ret)
			ret = ret2;
	}
N
Nick Piggin 已提交
1868

1869
	unlock_page(page);
1870
	page_cache_release(page);
1871
	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1872 1873 1874 1875 1876 1877
		/* if we have allocated more blocks and copied
		 * less. We will have blocks allocated outside
		 * inode->i_size. So truncate them
		 */
		ext4_orphan_add(handle, inode);

1878
	ret2 = ext4_journal_stop(handle);
1879 1880
	if (!ret)
		ret = ret2;
1881
	if (pos + len > inode->i_size) {
1882
		ext4_truncate_failed_write(inode);
1883
		/*
1884
		 * If truncate failed early the inode might still be
1885 1886 1887 1888 1889 1890
		 * on the orphan list; we need to make sure the inode
		 * is removed from the orphan list in that case.
		 */
		if (inode->i_nlink)
			ext4_orphan_del(NULL, inode);
	}
N
Nick Piggin 已提交
1891 1892

	return ret ? ret : copied;
1893
}
1894

1895 1896 1897
/*
 * Reserve a single block located at lblock
 */
1898
static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1899
{
A
Aneesh Kumar K.V 已提交
1900
	int retries = 0;
1901
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1902
	struct ext4_inode_info *ei = EXT4_I(inode);
1903
	unsigned long md_needed;
1904
	int ret;
1905 1906 1907 1908 1909 1910

	/*
	 * recalculate the amount of metadata blocks to reserve
	 * in order to allocate nrblocks
	 * worse case is one extent per block
	 */
A
Aneesh Kumar K.V 已提交
1911
repeat:
1912
	spin_lock(&ei->i_block_reservation_lock);
1913
	md_needed = ext4_calc_metadata_amount(inode, lblock);
1914
	trace_ext4_da_reserve_space(inode, md_needed);
1915
	spin_unlock(&ei->i_block_reservation_lock);
1916

1917
	/*
1918 1919 1920
	 * We will charge metadata quota at writeout time; this saves
	 * us from metadata over-estimation, though we may go over by
	 * a small amount in the end.  Here we just reserve for data.
1921
	 */
1922
	ret = dquot_reserve_block(inode, 1);
1923 1924
	if (ret)
		return ret;
1925 1926 1927 1928
	/*
	 * We do still charge estimated metadata to the sb though;
	 * we cannot afford to run out of free blocks.
	 */
1929
	if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1930
		dquot_release_reservation_block(inode, 1);
A
Aneesh Kumar K.V 已提交
1931 1932 1933 1934
		if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
			yield();
			goto repeat;
		}
1935 1936
		return -ENOSPC;
	}
1937
	spin_lock(&ei->i_block_reservation_lock);
1938
	ei->i_reserved_data_blocks++;
1939 1940
	ei->i_reserved_meta_blocks += md_needed;
	spin_unlock(&ei->i_block_reservation_lock);
1941

1942 1943 1944
	return 0;       /* success */
}

1945
static void ext4_da_release_space(struct inode *inode, int to_free)
1946 1947
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1948
	struct ext4_inode_info *ei = EXT4_I(inode);
1949

1950 1951 1952
	if (!to_free)
		return;		/* Nothing to release, exit */

1953
	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1954

L
Li Zefan 已提交
1955
	trace_ext4_da_release_space(inode, to_free);
1956
	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1957
		/*
1958 1959 1960 1961
		 * if there aren't enough reserved blocks, then the
		 * counter is messed up somewhere.  Since this
		 * function is called from invalidate page, it's
		 * harmless to return without any action.
1962
		 */
1963 1964 1965 1966 1967 1968
		ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
			 "ino %lu, to_free %d with only %d reserved "
			 "data blocks\n", inode->i_ino, to_free,
			 ei->i_reserved_data_blocks);
		WARN_ON(1);
		to_free = ei->i_reserved_data_blocks;
1969
	}
1970
	ei->i_reserved_data_blocks -= to_free;
1971

1972 1973 1974 1975 1976 1977
	if (ei->i_reserved_data_blocks == 0) {
		/*
		 * We can release all of the reserved metadata blocks
		 * only when we have written all of the delayed
		 * allocation blocks.
		 */
1978 1979
		percpu_counter_sub(&sbi->s_dirtyblocks_counter,
				   ei->i_reserved_meta_blocks);
1980
		ei->i_reserved_meta_blocks = 0;
1981
		ei->i_da_metadata_calc_len = 0;
1982
	}
1983

1984
	/* update fs dirty data blocks counter */
1985
	percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1986 1987

	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1988

1989
	dquot_release_reservation_block(inode, to_free);
1990 1991 1992
}

static void ext4_da_page_release_reservation(struct page *page,
1993
					     unsigned long offset)
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
{
	int to_release = 0;
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	head = page_buffers(page);
	bh = head;
	do {
		unsigned int next_off = curr_off + bh->b_size;

		if ((offset <= curr_off) && (buffer_delay(bh))) {
			to_release++;
			clear_buffer_delay(bh);
		}
		curr_off = next_off;
	} while ((bh = bh->b_this_page) != head);
2010
	ext4_da_release_space(page->mapping->host, to_release);
2011
}
2012

2013 2014 2015 2016 2017 2018
/*
 * Delayed allocation stuff
 */

/*
 * mpage_da_submit_io - walks through extent of pages and try to write
2019
 * them with writepage() call back
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
 *
 * @mpd->inode: inode
 * @mpd->first_page: first page of the extent
 * @mpd->next_page: page after the last page of the extent
 *
 * By the time mpage_da_submit_io() is called we expect all blocks
 * to be allocated. this may be wrong if allocation failed.
 *
 * As pages are already locked by write_cache_pages(), we can't use it
 */
2030 2031
static int mpage_da_submit_io(struct mpage_da_data *mpd,
			      struct ext4_map_blocks *map)
2032
{
2033 2034 2035 2036 2037
	struct pagevec pvec;
	unsigned long index, end;
	int ret = 0, err, nr_pages, i;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;
2038
	loff_t size = i_size_read(inode);
2039 2040
	unsigned int len, block_start;
	struct buffer_head *bh, *page_bufs = NULL;
2041
	int journal_data = ext4_should_journal_data(inode);
2042
	sector_t pblock = 0, cur_logical = 0;
2043
	struct ext4_io_submit io_submit;
2044 2045

	BUG_ON(mpd->next_page <= mpd->first_page);
2046
	memset(&io_submit, 0, sizeof(io_submit));
2047 2048 2049
	/*
	 * We need to start from the first_page to the next_page - 1
	 * to make sure we also write the mapped dirty buffer_heads.
2050
	 * If we look at mpd->b_blocknr we would only be looking
2051 2052
	 * at the currently mapped buffer_heads.
	 */
2053 2054 2055
	index = mpd->first_page;
	end = mpd->next_page - 1;

2056
	pagevec_init(&pvec, 0);
2057
	while (index <= end) {
2058
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2059 2060 2061
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
2062
			int commit_write = 0, redirty_page = 0;
2063 2064
			struct page *page = pvec.pages[i];

2065 2066 2067
			index = page->index;
			if (index > end)
				break;
2068 2069 2070 2071 2072

			if (index == size >> PAGE_CACHE_SHIFT)
				len = size & ~PAGE_CACHE_MASK;
			else
				len = PAGE_CACHE_SIZE;
2073 2074 2075 2076 2077 2078
			if (map) {
				cur_logical = index << (PAGE_CACHE_SHIFT -
							inode->i_blkbits);
				pblock = map->m_pblk + (cur_logical -
							map->m_lblk);
			}
2079 2080 2081 2082 2083
			index++;

			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));

2084
			/*
2085 2086
			 * If the page does not have buffers (for
			 * whatever reason), try to create them using
2087
			 * __block_write_begin.  If this fails,
2088
			 * redirty the page and move on.
2089
			 */
2090
			if (!page_has_buffers(page)) {
2091
				if (__block_write_begin(page, 0, len,
2092 2093 2094 2095 2096 2097 2098 2099 2100
						noalloc_get_block_write)) {
				redirty_page:
					redirty_page_for_writepage(mpd->wbc,
								   page);
					unlock_page(page);
					continue;
				}
				commit_write = 1;
			}
2101

2102 2103
			bh = page_bufs = page_buffers(page);
			block_start = 0;
2104
			do {
2105
				if (!bh)
2106
					goto redirty_page;
2107 2108 2109
				if (map && (cur_logical >= map->m_lblk) &&
				    (cur_logical <= (map->m_lblk +
						     (map->m_len - 1)))) {
2110 2111 2112 2113
					if (buffer_delay(bh)) {
						clear_buffer_delay(bh);
						bh->b_blocknr = pblock;
					}
2114 2115 2116 2117 2118 2119 2120
					if (buffer_unwritten(bh) ||
					    buffer_mapped(bh))
						BUG_ON(bh->b_blocknr != pblock);
					if (map->m_flags & EXT4_MAP_UNINIT)
						set_buffer_uninit(bh);
					clear_buffer_unwritten(bh);
				}
2121

2122 2123 2124
				/* redirty page if block allocation undone */
				if (buffer_delay(bh) || buffer_unwritten(bh))
					redirty_page = 1;
2125 2126
				bh = bh->b_this_page;
				block_start += bh->b_size;
2127 2128
				cur_logical++;
				pblock++;
2129 2130 2131 2132
			} while (bh != page_bufs);

			if (redirty_page)
				goto redirty_page;
2133 2134 2135 2136 2137

			if (commit_write)
				/* mark the buffer_heads as dirty & uptodate */
				block_commit_write(page, 0, len);

2138 2139 2140 2141 2142 2143
			/*
			 * Delalloc doesn't support data journalling,
			 * but eventually maybe we'll lift this
			 * restriction.
			 */
			if (unlikely(journal_data && PageChecked(page)))
2144
				err = __ext4_journalled_writepage(page, len);
2145
			else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
2146 2147
				err = ext4_bio_write_page(&io_submit, page,
							  len, mpd->wbc);
2148 2149 2150
			else
				err = block_write_full_page(page,
					noalloc_get_block_write, mpd->wbc);
2151 2152

			if (!err)
2153
				mpd->pages_written++;
2154 2155 2156 2157 2158 2159 2160 2161 2162
			/*
			 * In error case, we have to continue because
			 * remaining pages are still locked
			 */
			if (ret == 0)
				ret = err;
		}
		pagevec_release(&pvec);
	}
2163
	ext4_io_submit(&io_submit);
2164 2165 2166
	return ret;
}

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
					sector_t logical, long blk_cnt)
{
	int nr_pages, i;
	pgoff_t index, end;
	struct pagevec pvec;
	struct inode *inode = mpd->inode;
	struct address_space *mapping = inode->i_mapping;

	index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
	end   = (logical + blk_cnt - 1) >>
				(PAGE_CACHE_SHIFT - inode->i_blkbits);
	while (index <= end) {
		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
		if (nr_pages == 0)
			break;
		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];
2185
			if (page->index > end)
2186 2187 2188 2189 2190 2191 2192
				break;
			BUG_ON(!PageLocked(page));
			BUG_ON(PageWriteback(page));
			block_invalidatepage(page, 0);
			ClearPageUptodate(page);
			unlock_page(page);
		}
2193 2194
		index = pvec.pages[nr_pages - 1]->index + 1;
		pagevec_release(&pvec);
2195 2196 2197 2198
	}
	return;
}

2199 2200 2201
static void ext4_print_free_blocks(struct inode *inode)
{
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
	printk(KERN_CRIT "Total free blocks count %lld\n",
	       ext4_count_free_blocks(inode->i_sb));
	printk(KERN_CRIT "Free/Dirty block details\n");
	printk(KERN_CRIT "free_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
	printk(KERN_CRIT "dirty_blocks=%lld\n",
	       (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
	printk(KERN_CRIT "Block reservation details\n");
	printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_data_blocks);
	printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
	       EXT4_I(inode)->i_reserved_meta_blocks);
2214 2215 2216
	return;
}

2217
/*
2218 2219
 * mpage_da_map_and_submit - go through given space, map them
 *       if necessary, and then submit them for I/O
2220
 *
2221
 * @mpd - bh describing space
2222 2223 2224 2225
 *
 * The function skips space we know is already mapped to disk blocks.
 *
 */
2226
static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
2227
{
2228
	int err, blks, get_blocks_flags;
2229
	struct ext4_map_blocks map, *mapp = NULL;
2230 2231 2232 2233
	sector_t next = mpd->b_blocknr;
	unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
	loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
	handle_t *handle = NULL;
2234 2235

	/*
2236 2237
	 * If the blocks are mapped already, or we couldn't accumulate
	 * any blocks, then proceed immediately to the submission stage.
2238
	 */
2239 2240 2241 2242 2243
	if ((mpd->b_size == 0) ||
	    ((mpd->b_state  & (1 << BH_Mapped)) &&
	     !(mpd->b_state & (1 << BH_Delay)) &&
	     !(mpd->b_state & (1 << BH_Unwritten))))
		goto submit_io;
2244 2245 2246 2247

	handle = ext4_journal_current_handle();
	BUG_ON(!handle);

2248
	/*
2249
	 * Call ext4_map_blocks() to allocate any delayed allocation
2250 2251 2252 2253 2254 2255 2256 2257
	 * blocks, or to convert an uninitialized extent to be
	 * initialized (in the case where we have written into
	 * one or more preallocated blocks).
	 *
	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
	 * indicate that we are on the delayed allocation path.  This
	 * affects functions in many different parts of the allocation
	 * call path.  This flag exists primarily because we don't
2258
	 * want to change *many* call functions, so ext4_map_blocks()
2259
	 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2260 2261 2262 2263 2264
	 * inode's allocation semaphore is taken.
	 *
	 * If the blocks in questions were delalloc blocks, set
	 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
	 * variables are updated after the blocks have been allocated.
2265
	 */
2266 2267
	map.m_lblk = next;
	map.m_len = max_blocks;
2268
	get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2269 2270
	if (ext4_should_dioread_nolock(mpd->inode))
		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2271
	if (mpd->b_state & (1 << BH_Delay))
2272 2273
		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;

2274
	blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2275
	if (blks < 0) {
2276 2277
		struct super_block *sb = mpd->inode->i_sb;

2278
		err = blks;
2279
		/*
2280 2281 2282 2283
		 * If get block returns EAGAIN or ENOSPC and there
		 * appears to be free blocks we will call
		 * ext4_writepage() for all of the pages which will
		 * just redirty the pages.
2284 2285
		 */
		if (err == -EAGAIN)
2286
			goto submit_io;
2287 2288

		if (err == -ENOSPC &&
2289
		    ext4_count_free_blocks(sb)) {
2290
			mpd->retval = err;
2291
			goto submit_io;
2292 2293
		}

2294
		/*
2295 2296 2297 2298 2299
		 * get block failure will cause us to loop in
		 * writepages, because a_ops->writepage won't be able
		 * to make progress. The page will be redirtied by
		 * writepage and writepages will again try to write
		 * the same.
2300
		 */
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
		if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
			ext4_msg(sb, KERN_CRIT,
				 "delayed block allocation failed for inode %lu "
				 "at logical offset %llu with max blocks %zd "
				 "with error %d", mpd->inode->i_ino,
				 (unsigned long long) next,
				 mpd->b_size >> mpd->inode->i_blkbits, err);
			ext4_msg(sb, KERN_CRIT,
				"This should not happen!! Data will be lost\n");
			if (err == -ENOSPC)
				ext4_print_free_blocks(mpd->inode);
A
Aneesh Kumar K.V 已提交
2312
		}
2313
		/* invalidate all the pages */
2314
		ext4_da_block_invalidatepages(mpd, next,
2315
				mpd->b_size >> mpd->inode->i_blkbits);
2316
		return;
2317
	}
2318 2319
	BUG_ON(blks == 0);

2320
	mapp = &map;
2321 2322 2323
	if (map.m_flags & EXT4_MAP_NEW) {
		struct block_device *bdev = mpd->inode->i_sb->s_bdev;
		int i;
2324

2325 2326 2327
		for (i = 0; i < map.m_len; i++)
			unmap_underlying_metadata(bdev, map.m_pblk + i);
	}
2328

2329 2330 2331
	if (ext4_should_order_data(mpd->inode)) {
		err = ext4_jbd2_file_inode(handle, mpd->inode);
		if (err)
2332 2333
			/* This only happens if the journal is aborted */
			return;
2334 2335 2336
	}

	/*
2337
	 * Update on-disk size along with block allocation.
2338 2339 2340 2341 2342 2343
	 */
	disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
	if (disksize > i_size_read(mpd->inode))
		disksize = i_size_read(mpd->inode);
	if (disksize > EXT4_I(mpd->inode)->i_disksize) {
		ext4_update_i_disksize(mpd->inode, disksize);
2344 2345 2346 2347 2348
		err = ext4_mark_inode_dirty(handle, mpd->inode);
		if (err)
			ext4_error(mpd->inode->i_sb,
				   "Failed to mark inode %lu dirty",
				   mpd->inode->i_ino);
2349 2350
	}

2351
submit_io:
2352
	mpage_da_submit_io(mpd, mapp);
2353
	mpd->io_done = 1;
2354 2355
}

2356 2357
#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
		(1 << BH_Delay) | (1 << BH_Unwritten))
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

/*
 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
 *
 * @mpd->lbh - extent of blocks
 * @logical - logical number of the block in the file
 * @bh - bh of the block (used to access block's state)
 *
 * the function is used to collect contig. blocks in same state
 */
static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2369 2370
				   sector_t logical, size_t b_size,
				   unsigned long b_state)
2371 2372
{
	sector_t next;
2373
	int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2374

2375 2376 2377 2378
	/*
	 * XXX Don't go larger than mballoc is willing to allocate
	 * This is a stopgap solution.  We eventually need to fold
	 * mpage_da_submit_io() into this function and then call
2379
	 * ext4_map_blocks() multiple times in a loop
2380 2381 2382 2383
	 */
	if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
		goto flush_it;

2384
	/* check if thereserved journal credits might overflow */
2385
	if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
		if (nrblocks >= EXT4_MAX_TRANS_DATA) {
			/*
			 * With non-extent format we are limited by the journal
			 * credit available.  Total credit needed to insert
			 * nrblocks contiguous blocks is dependent on the
			 * nrblocks.  So limit nrblocks.
			 */
			goto flush_it;
		} else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
				EXT4_MAX_TRANS_DATA) {
			/*
			 * Adding the new buffer_head would make it cross the
			 * allowed limit for which we have journal credit
			 * reserved. So limit the new bh->b_size
			 */
			b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
						mpd->inode->i_blkbits;
			/* we will do mpage_da_submit_io in the next loop */
		}
	}
2406 2407 2408
	/*
	 * First block in the extent
	 */
2409 2410 2411 2412
	if (mpd->b_size == 0) {
		mpd->b_blocknr = logical;
		mpd->b_size = b_size;
		mpd->b_state = b_state & BH_FLAGS;
2413 2414 2415
		return;
	}

2416
	next = mpd->b_blocknr + nrblocks;
2417 2418 2419
	/*
	 * Can we merge the block to our big extent?
	 */
2420 2421
	if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
		mpd->b_size += b_size;
2422 2423 2424
		return;
	}

2425
flush_it:
2426 2427 2428 2429
	/*
	 * We couldn't merge the block to our extent, so we
	 * need to flush current  extent and start new one
	 */
2430
	mpage_da_map_and_submit(mpd);
2431
	return;
2432 2433
}

2434
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2435
{
2436
	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2437 2438
}

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
/*
 * __mpage_da_writepage - finds extent of pages and blocks
 *
 * @page: page to consider
 * @wbc: not used, we just follow rules
 * @data: context
 *
 * The function finds extents of pages and scan them for all blocks.
 */
static int __mpage_da_writepage(struct page *page,
2449 2450
				struct writeback_control *wbc,
				struct mpage_da_data *mpd)
2451 2452
{
	struct inode *inode = mpd->inode;
2453
	struct buffer_head *bh, *head;
2454 2455 2456 2457 2458 2459 2460 2461
	sector_t logical;

	/*
	 * Can we merge this page to current extent?
	 */
	if (mpd->next_page != page->index) {
		/*
		 * Nope, we can't. So, we map non-allocated blocks
2462
		 * and start IO on them
2463 2464
		 */
		if (mpd->next_page != mpd->first_page) {
2465
			mpage_da_map_and_submit(mpd);
2466 2467 2468 2469 2470 2471
			/*
			 * skip rest of the page in the page_vec
			 */
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return MPAGE_DA_EXTENT_TAIL;
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
		}

		/*
		 * Start next extent of pages ...
		 */
		mpd->first_page = page->index;

		/*
		 * ... and blocks
		 */
2482 2483 2484
		mpd->b_size = 0;
		mpd->b_state = 0;
		mpd->b_blocknr = 0;
2485 2486 2487 2488 2489 2490 2491
	}

	mpd->next_page = page->index + 1;
	logical = (sector_t) page->index <<
		  (PAGE_CACHE_SHIFT - inode->i_blkbits);

	if (!page_has_buffers(page)) {
2492 2493
		mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
				       (1 << BH_Dirty) | (1 << BH_Uptodate));
2494 2495
		if (mpd->io_done)
			return MPAGE_DA_EXTENT_TAIL;
2496 2497 2498 2499 2500 2501 2502 2503
	} else {
		/*
		 * Page with regular buffer heads, just add all dirty ones
		 */
		head = page_buffers(page);
		bh = head;
		do {
			BUG_ON(buffer_locked(bh));
2504 2505 2506 2507
			/*
			 * We need to try to allocate
			 * unmapped blocks in the same page.
			 * Otherwise we won't make progress
2508
			 * with the page in ext4_writepage
2509
			 */
2510
			if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2511 2512 2513
				mpage_add_bh_to_extent(mpd, logical,
						       bh->b_size,
						       bh->b_state);
2514 2515
				if (mpd->io_done)
					return MPAGE_DA_EXTENT_TAIL;
2516 2517 2518 2519 2520 2521 2522 2523 2524
			} else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
				/*
				 * mapped dirty buffer. We need to update
				 * the b_state because we look at
				 * b_state in mpage_da_map_blocks. We don't
				 * update b_size because if we find an
				 * unmapped buffer_head later we need to
				 * use the b_state flag of that buffer_head.
				 */
2525 2526
				if (mpd->b_size == 0)
					mpd->b_state = bh->b_state & BH_FLAGS;
2527
			}
2528 2529 2530 2531 2532 2533 2534 2535
			logical++;
		} while ((bh = bh->b_this_page) != head);
	}

	return 0;
}

/*
2536 2537 2538
 * This is a special get_blocks_t callback which is used by
 * ext4_da_write_begin().  It will either return mapped block or
 * reserve space for a single block.
2539 2540 2541 2542 2543 2544 2545
 *
 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
 * We also have b_blocknr = -1 and b_bdev initialized properly
 *
 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
 * initialized properly.
2546 2547
 */
static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2548
				  struct buffer_head *bh, int create)
2549
{
2550
	struct ext4_map_blocks map;
2551
	int ret = 0;
2552 2553 2554 2555
	sector_t invalid_block = ~((sector_t) 0xffff);

	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
		invalid_block = ~0;
2556 2557

	BUG_ON(create == 0);
2558 2559 2560 2561
	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);

	map.m_lblk = iblock;
	map.m_len = 1;
2562 2563 2564 2565 2566 2567

	/*
	 * first, we need to know whether the block is allocated already
	 * preallocated blocks are unmapped but should treated
	 * the same as allocated blocks.
	 */
2568 2569 2570 2571 2572 2573
	ret = ext4_map_blocks(NULL, inode, &map, 0);
	if (ret < 0)
		return ret;
	if (ret == 0) {
		if (buffer_delay(bh))
			return 0; /* Not sure this could or should happen */
2574
		/*
C
Christoph Hellwig 已提交
2575
		 * XXX: __block_write_begin() unmaps passed block, is it OK?
2576
		 */
2577
		ret = ext4_da_reserve_space(inode, iblock);
2578 2579 2580 2581
		if (ret)
			/* not enough space to reserve */
			return ret;

2582 2583 2584 2585
		map_bh(bh, inode->i_sb, invalid_block);
		set_buffer_new(bh);
		set_buffer_delay(bh);
		return 0;
2586 2587
	}

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
	map_bh(bh, inode->i_sb, map.m_pblk);
	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;

	if (buffer_unwritten(bh)) {
		/* A delayed write to unwritten bh should be marked
		 * new and mapped.  Mapped ensures that we don't do
		 * get_block multiple times when we write to the same
		 * offset and new ensures that we do proper zero out
		 * for partial write.
		 */
		set_buffer_new(bh);
		set_buffer_mapped(bh);
	}
	return 0;
2602
}
2603

2604 2605 2606
/*
 * This function is used as a standard get_block_t calback function
 * when there is no desire to allocate any blocks.  It is used as a
C
Christoph Hellwig 已提交
2607
 * callback function for block_write_begin() and block_write_full_page().
2608
 * These functions should only try to map a single block at a time.
2609 2610 2611 2612 2613
 *
 * Since this function doesn't do block allocations even if the caller
 * requests it by passing in create=1, it is critically important that
 * any caller checks to make sure that any buffer heads are returned
 * by this function are either all already mapped or marked for
2614 2615 2616
 * delayed allocation before calling  block_write_full_page().  Otherwise,
 * b_blocknr could be left unitialized, and the page write functions will
 * be taken by surprise.
2617 2618
 */
static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2619 2620
				   struct buffer_head *bh_result, int create)
{
2621
	BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2622
	return _ext4_get_block(inode, iblock, bh_result, 0);
2623 2624
}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
	get_bh(bh);
	return 0;
}

static int bput_one(handle_t *handle, struct buffer_head *bh)
{
	put_bh(bh);
	return 0;
}

static int __ext4_journalled_writepage(struct page *page,
				       unsigned int len)
{
	struct address_space *mapping = page->mapping;
	struct inode *inode = mapping->host;
	struct buffer_head *page_bufs;
	handle_t *handle = NULL;
	int ret = 0;
	int err;

2647
	ClearPageChecked(page);
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	page_bufs = page_buffers(page);
	BUG_ON(!page_bufs);
	walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
	/* As soon as we unlock the page, it can go away, but we have
	 * references to buffers so we are safe */
	unlock_page(page);

	handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}

	ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				do_journal_get_write_access);

	err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
				write_end_fn);
	if (ret == 0)
		ret = err;
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;

	walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2673
	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2674 2675 2676 2677
out:
	return ret;
}

2678 2679 2680
static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);

2681
/*
2682 2683 2684 2685 2686 2687 2688 2689 2690
 * Note that we don't need to start a transaction unless we're journaling data
 * because we should have holes filled from ext4_page_mkwrite(). We even don't
 * need to file the inode to the transaction's list in ordered mode because if
 * we are writing back data added by write(), the inode is already there and if
 * we are writing back data modified via mmap(), noone guarantees in which
 * transaction the data will hit the disk. In case we are journaling data, we
 * cannot start transaction directly because transaction start ranks above page
 * lock so we have to do some magic.
 *
2691 2692 2693 2694 2695
 * This function can get called via...
 *   - ext4_da_writepages after taking page lock (have journal handle)
 *   - journal_submit_inode_data_buffers (no journal handle)
 *   - shrink_page_list via pdflush (no journal handle)
 *   - grab_page_cache when doing write_begin (have journal handle)
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
 *
 * We don't do any block allocation in this function. If we have page with
 * multiple blocks we need to write those buffer_heads that are mapped. This
 * is important for mmaped based write. So if we do with blocksize 1K
 * truncate(f, 1024);
 * a = mmap(f, 0, 4096);
 * a[0] = 'a';
 * truncate(f, 4096);
 * we have in the page first buffer_head mapped via page_mkwrite call back
 * but other bufer_heads would be unmapped but dirty(dirty done via the
 * do_wp_page). So writepage should write the first block. If we modify
 * the mmap area beyond 1024 we will again get a page_fault and the
 * page_mkwrite callback will do the block allocation and mark the
 * buffer_heads mapped.
 *
 * We redirty the page if we have any buffer_heads that is either delay or
 * unwritten in the page.
 *
 * We can get recursively called as show below.
 *
 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
 *		ext4_writepage()
 *
 * But since we don't do any block allocation we should not deadlock.
 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2721
 */
2722
static int ext4_writepage(struct page *page,
2723
			  struct writeback_control *wbc)
2724
{
T
Theodore Ts'o 已提交
2725
	int ret = 0, commit_write = 0;
2726
	loff_t size;
2727
	unsigned int len;
2728
	struct buffer_head *page_bufs = NULL;
2729 2730
	struct inode *inode = page->mapping->host;

2731
	trace_ext4_writepage(inode, page);
2732 2733 2734 2735 2736
	size = i_size_read(inode);
	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;
2737

T
Theodore Ts'o 已提交
2738 2739
	/*
	 * If the page does not have buffers (for whatever reason),
2740
	 * try to create them using __block_write_begin.  If this
T
Theodore Ts'o 已提交
2741 2742
	 * fails, redirty the page and move on.
	 */
2743
	if (!page_has_buffers(page)) {
2744
		if (__block_write_begin(page, 0, len,
T
Theodore Ts'o 已提交
2745 2746
					noalloc_get_block_write)) {
		redirty_page:
2747 2748 2749 2750
			redirty_page_for_writepage(wbc, page);
			unlock_page(page);
			return 0;
		}
T
Theodore Ts'o 已提交
2751 2752 2753 2754 2755
		commit_write = 1;
	}
	page_bufs = page_buffers(page);
	if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
			      ext4_bh_delay_or_unwritten)) {
2756
		/*
2757 2758 2759 2760
		 * We don't want to do block allocation, so redirty
		 * the page and return.  We may reach here when we do
		 * a journal commit via journal_submit_inode_data_buffers.
		 * We can also reach here via shrink_page_list
2761
		 */
T
Theodore Ts'o 已提交
2762 2763 2764
		goto redirty_page;
	}
	if (commit_write)
2765
		/* now mark the buffer_heads as dirty and uptodate */
2766
		block_commit_write(page, 0, len);
2767

2768
	if (PageChecked(page) && ext4_should_journal_data(inode))
2769 2770 2771 2772
		/*
		 * It's mmapped pagecache.  Add buffers and journal it.  There
		 * doesn't seem much point in redirtying the page here.
		 */
2773
		return __ext4_journalled_writepage(page, len);
2774

T
Theodore Ts'o 已提交
2775
	if (buffer_uninit(page_bufs)) {
2776 2777 2778 2779
		ext4_set_bh_endio(page_bufs, inode);
		ret = block_write_full_page_endio(page, noalloc_get_block_write,
					    wbc, ext4_end_io_buffer_write);
	} else
2780 2781
		ret = block_write_full_page(page, noalloc_get_block_write,
					    wbc);
2782 2783 2784 2785

	return ret;
}

2786
/*
2787 2788 2789 2790 2791
 * This is called via ext4_da_writepages() to
 * calulate the total number of credits to reserve to fit
 * a single extent allocation into a single transaction,
 * ext4_da_writpeages() will loop calling this before
 * the block allocation.
2792
 */
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803

static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
	int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	/*
	 * With non-extent format the journal credit needed to
	 * insert nrblocks contiguous block is dependent on
	 * number of contiguous block. So we will limit
	 * number of contiguous block to a sane value
	 */
2804
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2805 2806 2807 2808 2809
	    (max_blocks > EXT4_MAX_TRANS_DATA))
		max_blocks = EXT4_MAX_TRANS_DATA;

	return ext4_chunk_trans_blocks(inode, max_blocks);
}
2810

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
/*
 * write_cache_pages_da - walk the list of dirty pages of the given
 * address space and call the callback function (which usually writes
 * the pages).
 *
 * This is a forked version of write_cache_pages().  Differences:
 *	Range cyclic is ignored.
 *	no_nrwrite_index_update is always presumed true
 */
static int write_cache_pages_da(struct address_space *mapping,
				struct writeback_control *wbc,
2822 2823
				struct mpage_da_data *mpd,
				pgoff_t *done_index)
2824 2825 2826 2827
{
	int ret = 0;
	int done = 0;
	struct pagevec pvec;
2828
	unsigned nr_pages;
2829 2830 2831
	pgoff_t index;
	pgoff_t end;		/* Inclusive */
	long nr_to_write = wbc->nr_to_write;
2832
	int tag;
2833 2834 2835 2836 2837

	pagevec_init(&pvec, 0);
	index = wbc->range_start >> PAGE_CACHE_SHIFT;
	end = wbc->range_end >> PAGE_CACHE_SHIFT;

2838 2839 2840 2841 2842
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag = PAGECACHE_TAG_TOWRITE;
	else
		tag = PAGECACHE_TAG_DIRTY;

2843
	*done_index = index;
2844 2845 2846
	while (!done && (index <= end)) {
		int i;

2847
		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
		if (nr_pages == 0)
			break;

		for (i = 0; i < nr_pages; i++) {
			struct page *page = pvec.pages[i];

			/*
			 * At this point, the page may be truncated or
			 * invalidated (changing page->mapping to NULL), or
			 * even swizzled back from swapper_space to tmpfs file
			 * mapping. However, page->index will not change
			 * because we have a reference on the page.
			 */
			if (page->index > end) {
				done = 1;
				break;
			}

2867 2868
			*done_index = page->index + 1;

2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
			lock_page(page);

			/*
			 * Page truncated or invalidated. We can freely skip it
			 * then, even for data integrity operations: the page
			 * has disappeared concurrently, so there could be no
			 * real expectation of this data interity operation
			 * even if there is now a new, dirty page at the same
			 * pagecache address.
			 */
			if (unlikely(page->mapping != mapping)) {
continue_unlock:
				unlock_page(page);
				continue;
			}

			if (!PageDirty(page)) {
				/* someone wrote it for us */
				goto continue_unlock;
			}

			if (PageWriteback(page)) {
				if (wbc->sync_mode != WB_SYNC_NONE)
					wait_on_page_writeback(page);
				else
					goto continue_unlock;
			}

			BUG_ON(PageWriteback(page));
			if (!clear_page_dirty_for_io(page))
				goto continue_unlock;

			ret = __mpage_da_writepage(page, wbc, mpd);
			if (unlikely(ret)) {
				if (ret == AOP_WRITEPAGE_ACTIVATE) {
					unlock_page(page);
					ret = 0;
				} else {
					done = 1;
					break;
				}
			}

			if (nr_to_write > 0) {
				nr_to_write--;
				if (nr_to_write == 0 &&
				    wbc->sync_mode == WB_SYNC_NONE) {
					/*
					 * We stop writing back only if we are
					 * not doing integrity sync. In case of
					 * integrity sync we have to keep going
					 * because someone may be concurrently
					 * dirtying pages, and we might have
					 * synced a lot of newly appeared dirty
					 * pages, but have not synced all of the
					 * old dirty pages.
					 */
					done = 1;
					break;
				}
			}
		}
		pagevec_release(&pvec);
		cond_resched();
	}
	return ret;
}


2938
static int ext4_da_writepages(struct address_space *mapping,
2939
			      struct writeback_control *wbc)
2940
{
2941 2942
	pgoff_t	index;
	int range_whole = 0;
2943
	handle_t *handle = NULL;
2944
	struct mpage_da_data mpd;
2945
	struct inode *inode = mapping->host;
2946 2947
	int pages_written = 0;
	long pages_skipped;
2948
	unsigned int max_pages;
2949
	int range_cyclic, cycled = 1, io_done = 0;
2950 2951
	int needed_blocks, ret = 0;
	long desired_nr_to_write, nr_to_writebump = 0;
2952
	loff_t range_start = wbc->range_start;
2953
	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2954
	pgoff_t done_index = 0;
2955
	pgoff_t end;
2956

2957
	trace_ext4_da_writepages(inode, wbc);
2958

2959 2960 2961 2962 2963
	/*
	 * No pages to write? This is mainly a kludge to avoid starting
	 * a transaction for special inodes like journal inode on last iput()
	 * because that could violate lock ordering on umount
	 */
2964
	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2965
		return 0;
2966 2967 2968 2969 2970

	/*
	 * If the filesystem has aborted, it is read-only, so return
	 * right away instead of dumping stack traces later on that
	 * will obscure the real source of the problem.  We test
2971
	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2972 2973 2974 2975 2976
	 * the latter could be true if the filesystem is mounted
	 * read-only, and in that case, ext4_da_writepages should
	 * *never* be called, so if that ever happens, we would want
	 * the stack trace.
	 */
2977
	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2978 2979
		return -EROFS;

2980 2981
	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
		range_whole = 1;
2982

2983 2984
	range_cyclic = wbc->range_cyclic;
	if (wbc->range_cyclic) {
2985
		index = mapping->writeback_index;
2986 2987 2988 2989 2990
		if (index)
			cycled = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = LLONG_MAX;
		wbc->range_cyclic = 0;
2991 2992
		end = -1;
	} else {
2993
		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2994 2995
		end = wbc->range_end >> PAGE_CACHE_SHIFT;
	}
2996

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
	/*
	 * This works around two forms of stupidity.  The first is in
	 * the writeback code, which caps the maximum number of pages
	 * written to be 1024 pages.  This is wrong on multiple
	 * levels; different architectues have a different page size,
	 * which changes the maximum amount of data which gets
	 * written.  Secondly, 4 megabytes is way too small.  XFS
	 * forces this value to be 16 megabytes by multiplying
	 * nr_to_write parameter by four, and then relies on its
	 * allocator to allocate larger extents to make them
	 * contiguous.  Unfortunately this brings us to the second
	 * stupidity, which is that ext4's mballoc code only allocates
	 * at most 2048 blocks.  So we force contiguous writes up to
	 * the number of dirty blocks in the inode, or
	 * sbi->max_writeback_mb_bump whichever is smaller.
	 */
	max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
3014 3015 3016 3017 3018 3019
	if (!range_cyclic && range_whole) {
		if (wbc->nr_to_write == LONG_MAX)
			desired_nr_to_write = wbc->nr_to_write;
		else
			desired_nr_to_write = wbc->nr_to_write * 8;
	} else
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
		desired_nr_to_write = ext4_num_dirty_pages(inode, index,
							   max_pages);
	if (desired_nr_to_write > max_pages)
		desired_nr_to_write = max_pages;

	if (wbc->nr_to_write < desired_nr_to_write) {
		nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
		wbc->nr_to_write = desired_nr_to_write;
	}

3030 3031 3032
	mpd.wbc = wbc;
	mpd.inode = mapping->host;

3033 3034
	pages_skipped = wbc->pages_skipped;

3035
retry:
3036 3037 3038
	if (wbc->sync_mode == WB_SYNC_ALL)
		tag_pages_for_writeback(mapping, index, end);

3039
	while (!ret && wbc->nr_to_write > 0) {
3040 3041 3042 3043 3044 3045 3046 3047

		/*
		 * we  insert one extent at a time. So we need
		 * credit needed for single extent allocation.
		 * journalled mode is currently not supported
		 * by delalloc
		 */
		BUG_ON(ext4_should_journal_data(inode));
3048
		needed_blocks = ext4_da_writepages_trans_blocks(inode);
3049

3050 3051 3052 3053
		/* start a new transaction*/
		handle = ext4_journal_start(inode, needed_blocks);
		if (IS_ERR(handle)) {
			ret = PTR_ERR(handle);
3054
			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3055
			       "%ld pages, ino %lu; err %d", __func__,
3056
				wbc->nr_to_write, inode->i_ino, ret);
3057 3058
			goto out_writepages;
		}
3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

		/*
		 * Now call __mpage_da_writepage to find the next
		 * contiguous region of logical blocks that need
		 * blocks to be allocated by ext4.  We don't actually
		 * submit the blocks for I/O here, even though
		 * write_cache_pages thinks it will, and will set the
		 * pages as clean for write before calling
		 * __mpage_da_writepage().
		 */
		mpd.b_size = 0;
		mpd.b_state = 0;
		mpd.b_blocknr = 0;
		mpd.first_page = 0;
		mpd.next_page = 0;
		mpd.io_done = 0;
		mpd.pages_written = 0;
		mpd.retval = 0;
3077
		ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
3078
		/*
3079
		 * If we have a contiguous extent of pages and we
3080 3081 3082 3083
		 * haven't done the I/O yet, map the blocks and submit
		 * them for I/O.
		 */
		if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3084
			mpage_da_map_and_submit(&mpd);
3085 3086
			ret = MPAGE_DA_EXTENT_TAIL;
		}
3087
		trace_ext4_da_write_pages(inode, &mpd);
3088
		wbc->nr_to_write -= mpd.pages_written;
3089

3090
		ext4_journal_stop(handle);
3091

3092
		if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3093 3094 3095 3096
			/* commit the transaction which would
			 * free blocks released in the transaction
			 * and try again
			 */
3097
			jbd2_journal_force_commit_nested(sbi->s_journal);
3098 3099 3100
			wbc->pages_skipped = pages_skipped;
			ret = 0;
		} else if (ret == MPAGE_DA_EXTENT_TAIL) {
3101 3102 3103 3104
			/*
			 * got one extent now try with
			 * rest of the pages
			 */
3105 3106
			pages_written += mpd.pages_written;
			wbc->pages_skipped = pages_skipped;
3107
			ret = 0;
3108
			io_done = 1;
3109
		} else if (wbc->nr_to_write)
3110 3111 3112 3113 3114 3115
			/*
			 * There is no more writeout needed
			 * or we requested for a noblocking writeout
			 * and we found the device congested
			 */
			break;
3116
	}
3117 3118 3119 3120 3121 3122 3123
	if (!io_done && !cycled) {
		cycled = 1;
		index = 0;
		wbc->range_start = index << PAGE_CACHE_SHIFT;
		wbc->range_end  = mapping->writeback_index - 1;
		goto retry;
	}
3124
	if (pages_skipped != wbc->pages_skipped)
3125 3126
		ext4_msg(inode->i_sb, KERN_CRIT,
			 "This should not happen leaving %s "
3127
			 "with nr_to_write = %ld ret = %d",
3128
			 __func__, wbc->nr_to_write, ret);
3129 3130

	/* Update index */
3131
	wbc->range_cyclic = range_cyclic;
3132 3133 3134 3135 3136
	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
		/*
		 * set the writeback_index so that range_cyclic
		 * mode will write it back later
		 */
3137
		mapping->writeback_index = done_index;
3138

3139
out_writepages:
3140
	wbc->nr_to_write -= nr_to_writebump;
3141
	wbc->range_start = range_start;
3142
	trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3143
	return ret;
3144 3145
}

3146 3147 3148 3149 3150 3151 3152 3153 3154
#define FALL_BACK_TO_NONDELALLOC 1
static int ext4_nonda_switch(struct super_block *sb)
{
	s64 free_blocks, dirty_blocks;
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/*
	 * switch to non delalloc mode if we are running low
	 * on free block. The free block accounting via percpu
3155
	 * counters can get slightly wrong with percpu_counter_batch getting
3156 3157 3158 3159 3160 3161 3162 3163 3164
	 * accumulated on each CPU without updating global counters
	 * Delalloc need an accurate free block accounting. So switch
	 * to non delalloc when we are near to error range.
	 */
	free_blocks  = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
	dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
	if (2 * free_blocks < 3 * dirty_blocks ||
		free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
		/*
3165 3166
		 * free block count is less than 150% of dirty blocks
		 * or free blocks is less than watermark
3167 3168 3169
		 */
		return 1;
	}
3170 3171 3172 3173 3174 3175 3176
	/*
	 * Even if we don't switch but are nearing capacity,
	 * start pushing delalloc when 1/2 of free blocks are dirty.
	 */
	if (free_blocks < 2 * dirty_blocks)
		writeback_inodes_sb_if_idle(sb);

3177 3178 3179
	return 0;
}

3180
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3181 3182
			       loff_t pos, unsigned len, unsigned flags,
			       struct page **pagep, void **fsdata)
3183
{
3184
	int ret, retries = 0;
3185 3186 3187 3188 3189 3190
	struct page *page;
	pgoff_t index;
	struct inode *inode = mapping->host;
	handle_t *handle;

	index = pos >> PAGE_CACHE_SHIFT;
3191 3192 3193 3194 3195 3196 3197

	if (ext4_nonda_switch(inode->i_sb)) {
		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
		return ext4_write_begin(file, mapping, pos,
					len, flags, pagep, fsdata);
	}
	*fsdata = (void *)0;
3198
	trace_ext4_da_write_begin(inode, pos, len, flags);
3199
retry:
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
	/*
	 * With delayed allocation, we don't log the i_disksize update
	 * if there is delayed block allocation. But we still need
	 * to journalling the i_disksize update if writes to the end
	 * of file which has an already mapped buffer.
	 */
	handle = ext4_journal_start(inode, 1);
	if (IS_ERR(handle)) {
		ret = PTR_ERR(handle);
		goto out;
	}
3211 3212 3213
	/* We cannot recurse into the filesystem as the transaction is already
	 * started */
	flags |= AOP_FLAG_NOFS;
3214

3215
	page = grab_cache_page_write_begin(mapping, index, flags);
3216 3217 3218 3219 3220
	if (!page) {
		ext4_journal_stop(handle);
		ret = -ENOMEM;
		goto out;
	}
3221 3222
	*pagep = page;

3223
	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3224 3225 3226 3227
	if (ret < 0) {
		unlock_page(page);
		ext4_journal_stop(handle);
		page_cache_release(page);
3228 3229 3230 3231 3232 3233
		/*
		 * block_write_begin may have instantiated a few blocks
		 * outside i_size.  Trim these off again. Don't need
		 * i_size_read because we hold i_mutex.
		 */
		if (pos + len > inode->i_size)
3234
			ext4_truncate_failed_write(inode);
3235 3236
	}

3237 3238
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3239 3240 3241 3242
out:
	return ret;
}

3243 3244 3245 3246 3247
/*
 * Check if we should update i_disksize
 * when write to the end of file but not require block allocation
 */
static int ext4_da_should_update_i_disksize(struct page *page,
3248
					    unsigned long offset)
3249 3250 3251 3252 3253 3254 3255 3256 3257
{
	struct buffer_head *bh;
	struct inode *inode = page->mapping->host;
	unsigned int idx;
	int i;

	bh = page_buffers(page);
	idx = offset >> inode->i_blkbits;

3258
	for (i = 0; i < idx; i++)
3259 3260
		bh = bh->b_this_page;

3261
	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3262 3263 3264 3265
		return 0;
	return 1;
}

3266
static int ext4_da_write_end(struct file *file,
3267 3268 3269
			     struct address_space *mapping,
			     loff_t pos, unsigned len, unsigned copied,
			     struct page *page, void *fsdata)
3270 3271 3272 3273 3274
{
	struct inode *inode = mapping->host;
	int ret = 0, ret2;
	handle_t *handle = ext4_journal_current_handle();
	loff_t new_i_size;
3275
	unsigned long start, end;
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	int write_mode = (int)(unsigned long)fsdata;

	if (write_mode == FALL_BACK_TO_NONDELALLOC) {
		if (ext4_should_order_data(inode)) {
			return ext4_ordered_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else if (ext4_should_writeback_data(inode)) {
			return ext4_writeback_write_end(file, mapping, pos,
					len, copied, page, fsdata);
		} else {
			BUG();
		}
	}
3289

3290
	trace_ext4_da_write_end(inode, pos, len, copied);
3291
	start = pos & (PAGE_CACHE_SIZE - 1);
3292
	end = start + copied - 1;
3293 3294 3295 3296 3297 3298 3299 3300

	/*
	 * generic_write_end() will run mark_inode_dirty() if i_size
	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
	 * into that.
	 */

	new_i_size = pos + copied;
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
	if (new_i_size > EXT4_I(inode)->i_disksize) {
		if (ext4_da_should_update_i_disksize(page, end)) {
			down_write(&EXT4_I(inode)->i_data_sem);
			if (new_i_size > EXT4_I(inode)->i_disksize) {
				/*
				 * Updating i_disksize when extending file
				 * without needing block allocation
				 */
				if (ext4_should_order_data(inode))
					ret = ext4_jbd2_file_inode(handle,
								   inode);
3312

3313 3314 3315
				EXT4_I(inode)->i_disksize = new_i_size;
			}
			up_write(&EXT4_I(inode)->i_data_sem);
3316 3317 3318 3319 3320
			/* We need to mark inode dirty even if
			 * new_i_size is less that inode->i_size
			 * bu greater than i_disksize.(hint delalloc)
			 */
			ext4_mark_inode_dirty(handle, inode);
3321
		}
3322
	}
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	ret2 = generic_write_end(file, mapping, pos, len, copied,
							page, fsdata);
	copied = ret2;
	if (ret2 < 0)
		ret = ret2;
	ret2 = ext4_journal_stop(handle);
	if (!ret)
		ret = ret2;

	return ret ? ret : copied;
}

static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
{
	/*
	 * Drop reserved blocks
	 */
	BUG_ON(!PageLocked(page));
	if (!page_has_buffers(page))
		goto out;

3344
	ext4_da_page_release_reservation(page, offset);
3345 3346 3347 3348 3349 3350 3351

out:
	ext4_invalidatepage(page, offset);

	return;
}

3352 3353 3354 3355 3356
/*
 * Force all delayed allocation blocks to be allocated for a given inode.
 */
int ext4_alloc_da_blocks(struct inode *inode)
{
3357 3358
	trace_ext4_alloc_da_blocks(inode);

3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	if (!EXT4_I(inode)->i_reserved_data_blocks &&
	    !EXT4_I(inode)->i_reserved_meta_blocks)
		return 0;

	/*
	 * We do something simple for now.  The filemap_flush() will
	 * also start triggering a write of the data blocks, which is
	 * not strictly speaking necessary (and for users of
	 * laptop_mode, not even desirable).  However, to do otherwise
	 * would require replicating code paths in:
3369
	 *
3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
	 * ext4_da_writepages() ->
	 *    write_cache_pages() ---> (via passed in callback function)
	 *        __mpage_da_writepage() -->
	 *           mpage_add_bh_to_extent()
	 *           mpage_da_map_blocks()
	 *
	 * The problem is that write_cache_pages(), located in
	 * mm/page-writeback.c, marks pages clean in preparation for
	 * doing I/O, which is not desirable if we're not planning on
	 * doing I/O at all.
	 *
	 * We could call write_cache_pages(), and then redirty all of
	 * the pages by calling redirty_page_for_writeback() but that
	 * would be ugly in the extreme.  So instead we would need to
	 * replicate parts of the code in the above functions,
	 * simplifying them becuase we wouldn't actually intend to
	 * write out the pages, but rather only collect contiguous
	 * logical block extents, call the multi-block allocator, and
	 * then update the buffer heads with the block allocations.
3389
	 *
3390 3391 3392 3393 3394 3395
	 * For now, though, we'll cheat by calling filemap_flush(),
	 * which will map the blocks, and start the I/O, but not
	 * actually wait for the I/O to complete.
	 */
	return filemap_flush(inode->i_mapping);
}
3396

3397 3398 3399 3400 3401
/*
 * bmap() is special.  It gets used by applications such as lilo and by
 * the swapper to find the on-disk block of a specific piece of data.
 *
 * Naturally, this is dangerous if the block concerned is still in the
3402
 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3403 3404 3405 3406 3407 3408 3409 3410
 * filesystem and enables swap, then they may get a nasty shock when the
 * data getting swapped to that swapfile suddenly gets overwritten by
 * the original zero's written out previously to the journal and
 * awaiting writeback in the kernel's buffer cache.
 *
 * So, if we see any bmap calls here on a modified, data-journaled file,
 * take extra steps to flush any blocks which might be in the cache.
 */
3411
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3412 3413 3414 3415 3416
{
	struct inode *inode = mapping->host;
	journal_t *journal;
	int err;

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
			test_opt(inode->i_sb, DELALLOC)) {
		/*
		 * With delalloc we want to sync the file
		 * so that we can make sure we allocate
		 * blocks for file
		 */
		filemap_write_and_wait(mapping);
	}

3427 3428
	if (EXT4_JOURNAL(inode) &&
	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
		/*
		 * This is a REALLY heavyweight approach, but the use of
		 * bmap on dirty files is expected to be extremely rare:
		 * only if we run lilo or swapon on a freshly made file
		 * do we expect this to happen.
		 *
		 * (bmap requires CAP_SYS_RAWIO so this does not
		 * represent an unprivileged user DOS attack --- we'd be
		 * in trouble if mortal users could trigger this path at
		 * will.)
		 *
3440
		 * NB. EXT4_STATE_JDATA is not set on files other than
3441 3442 3443 3444 3445 3446
		 * regular files.  If somebody wants to bmap a directory
		 * or symlink and gets confused because the buffer
		 * hasn't yet been flushed to disk, they deserve
		 * everything they get.
		 */

3447
		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3448
		journal = EXT4_JOURNAL(inode);
3449 3450 3451
		jbd2_journal_lock_updates(journal);
		err = jbd2_journal_flush(journal);
		jbd2_journal_unlock_updates(journal);
3452 3453 3454 3455 3456

		if (err)
			return 0;
	}

3457
	return generic_block_bmap(mapping, block, ext4_get_block);
3458 3459
}

3460
static int ext4_readpage(struct file *file, struct page *page)
3461
{
3462
	return mpage_readpage(page, ext4_get_block);
3463 3464 3465
}

static int
3466
ext4_readpages(struct file *file, struct address_space *mapping,
3467 3468
		struct list_head *pages, unsigned nr_pages)
{
3469
	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3470 3471
}

3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
{
	struct buffer_head *head, *bh;
	unsigned int curr_off = 0;

	if (!page_has_buffers(page))
		return;
	head = bh = page_buffers(page);
	do {
		if (offset <= curr_off && test_clear_buffer_uninit(bh)
					&& bh->b_private) {
			ext4_free_io_end(bh->b_private);
			bh->b_private = NULL;
			bh->b_end_io = NULL;
		}
		curr_off = curr_off + bh->b_size;
		bh = bh->b_this_page;
	} while (bh != head);
}

3492
static void ext4_invalidatepage(struct page *page, unsigned long offset)
3493
{
3494
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3495

3496 3497 3498 3499 3500
	/*
	 * free any io_end structure allocated for buffers to be discarded
	 */
	if (ext4_should_dioread_nolock(page->mapping->host))
		ext4_invalidatepage_free_endio(page, offset);
3501 3502 3503 3504 3505 3506
	/*
	 * If it's a full truncate we just forget about the pending dirtying
	 */
	if (offset == 0)
		ClearPageChecked(page);

3507 3508 3509 3510
	if (journal)
		jbd2_journal_invalidatepage(journal, page, offset);
	else
		block_invalidatepage(page, offset);
3511 3512
}

3513
static int ext4_releasepage(struct page *page, gfp_t wait)
3514
{
3515
	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3516 3517 3518 3519

	WARN_ON(PageChecked(page));
	if (!page_has_buffers(page))
		return 0;
3520 3521 3522 3523
	if (journal)
		return jbd2_journal_try_to_free_buffers(journal, page, wait);
	else
		return try_to_free_buffers(page);
3524 3525 3526
}

/*
3527 3528
 * O_DIRECT for ext3 (or indirect map) based files
 *
3529 3530 3531 3532 3533
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 * If the O_DIRECT write is intantiating holes inside i_size and the machine
J
Jan Kara 已提交
3534 3535
 * crashes then stale disk data _may_ be exposed inside the file. But current
 * VFS code falls back into buffered path in that case so we are safe.
3536
 */
3537
static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3538 3539
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
3540 3541 3542
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
3543
	struct ext4_inode_info *ei = EXT4_I(inode);
J
Jan Kara 已提交
3544
	handle_t *handle;
3545 3546 3547
	ssize_t ret;
	int orphan = 0;
	size_t count = iov_length(iov, nr_segs);
3548
	int retries = 0;
3549 3550 3551 3552 3553

	if (rw == WRITE) {
		loff_t final_size = offset + count;

		if (final_size > inode->i_size) {
J
Jan Kara 已提交
3554 3555 3556 3557 3558 3559
			/* Credits for sb + inode write */
			handle = ext4_journal_start(inode, 2);
			if (IS_ERR(handle)) {
				ret = PTR_ERR(handle);
				goto out;
			}
3560
			ret = ext4_orphan_add(handle, inode);
J
Jan Kara 已提交
3561 3562 3563 3564
			if (ret) {
				ext4_journal_stop(handle);
				goto out;
			}
3565 3566
			orphan = 1;
			ei->i_disksize = inode->i_size;
J
Jan Kara 已提交
3567
			ext4_journal_stop(handle);
3568 3569 3570
		}
	}

3571
retry:
3572
	if (rw == READ && ext4_should_dioread_nolock(inode))
3573
		ret = __blockdev_direct_IO(rw, iocb, inode,
3574 3575
				 inode->i_sb->s_bdev, iov,
				 offset, nr_segs,
3576 3577
				 ext4_get_block, NULL, NULL, 0);
	else {
3578 3579
		ret = blockdev_direct_IO(rw, iocb, inode,
				 inode->i_sb->s_bdev, iov,
3580
				 offset, nr_segs,
3581
				 ext4_get_block, NULL);
3582 3583 3584 3585 3586 3587 3588 3589 3590

		if (unlikely((rw & WRITE) && ret < 0)) {
			loff_t isize = i_size_read(inode);
			loff_t end = offset + iov_length(iov, nr_segs);

			if (end > isize)
				vmtruncate(inode, isize);
		}
	}
3591 3592
	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
		goto retry;
3593

J
Jan Kara 已提交
3594
	if (orphan) {
3595 3596
		int err;

J
Jan Kara 已提交
3597 3598 3599 3600 3601 3602 3603
		/* Credits for sb + inode write */
		handle = ext4_journal_start(inode, 2);
		if (IS_ERR(handle)) {
			/* This is really bad luck. We've written the data
			 * but cannot extend i_size. Bail out and pretend
			 * the write failed... */
			ret = PTR_ERR(handle);
3604 3605 3606
			if (inode->i_nlink)
				ext4_orphan_del(NULL, inode);

J
Jan Kara 已提交
3607 3608 3609
			goto out;
		}
		if (inode->i_nlink)
3610
			ext4_orphan_del(handle, inode);
J
Jan Kara 已提交
3611
		if (ret > 0) {
3612 3613 3614 3615 3616 3617 3618 3619
			loff_t end = offset + ret;
			if (end > inode->i_size) {
				ei->i_disksize = end;
				i_size_write(inode, end);
				/*
				 * We're going to return a positive `ret'
				 * here due to non-zero-length I/O, so there's
				 * no way of reporting error returns from
3620
				 * ext4_mark_inode_dirty() to userspace.  So
3621 3622
				 * ignore it.
				 */
3623
				ext4_mark_inode_dirty(handle, inode);
3624 3625
			}
		}
3626
		err = ext4_journal_stop(handle);
3627 3628 3629 3630 3631 3632 3633
		if (ret == 0)
			ret = err;
	}
out:
	return ret;
}

3634 3635 3636 3637 3638
/*
 * ext4_get_block used when preparing for a DIO write or buffer write.
 * We allocate an uinitialized extent if blocks haven't been allocated.
 * The extent will be converted to initialized after the IO is complete.
 */
3639
static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3640 3641
		   struct buffer_head *bh_result, int create)
{
3642
	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3643
		   inode->i_ino, create);
3644 3645
	return _ext4_get_block(inode, iblock, bh_result,
			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3646 3647 3648
}

static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3649 3650
			    ssize_t size, void *private, int ret,
			    bool is_async)
3651 3652 3653
{
        ext4_io_end_t *io_end = iocb->private;
	struct workqueue_struct *wq;
3654 3655
	unsigned long flags;
	struct ext4_inode_info *ei;
3656

3657 3658
	/* if not async direct IO or dio with 0 bytes write, just return */
	if (!io_end || !size)
3659
		goto out;
3660

3661 3662 3663 3664 3665 3666
	ext_debug("ext4_end_io_dio(): io_end 0x%p"
		  "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
 		  iocb->private, io_end->inode->i_ino, iocb, offset,
		  size);

	/* if not aio dio with unwritten extents, just free io and return */
3667
	if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
3668 3669
		ext4_free_io_end(io_end);
		iocb->private = NULL;
3670 3671 3672 3673
out:
		if (is_async)
			aio_complete(iocb, ret, 0);
		return;
3674 3675
	}

3676 3677
	io_end->offset = offset;
	io_end->size = size;
3678 3679 3680 3681
	if (is_async) {
		io_end->iocb = iocb;
		io_end->result = ret;
	}
3682 3683
	wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;

3684
	/* Add the io_end to per-inode completed aio dio list*/
3685 3686 3687 3688
	ei = EXT4_I(io_end->inode);
	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &ei->i_completed_io_list);
	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3689 3690 3691

	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
3692 3693
	iocb->private = NULL;
}
3694

3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
{
	ext4_io_end_t *io_end = bh->b_private;
	struct workqueue_struct *wq;
	struct inode *inode;
	unsigned long flags;

	if (!test_clear_buffer_uninit(bh) || !io_end)
		goto out;

	if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
		printk("sb umounted, discard end_io request for inode %lu\n",
			io_end->inode->i_ino);
		ext4_free_io_end(io_end);
		goto out;
	}

3712
	io_end->flag = EXT4_IO_END_UNWRITTEN;
3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739
	inode = io_end->inode;

	/* Add the io_end to per-inode completed io list*/
	spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
	list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
	spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);

	wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
	/* queue the work to convert unwritten extents to written */
	queue_work(wq, &io_end->work);
out:
	bh->b_private = NULL;
	bh->b_end_io = NULL;
	clear_buffer_uninit(bh);
	end_buffer_async_write(bh, uptodate);
}

static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
{
	ext4_io_end_t *io_end;
	struct page *page = bh->b_page;
	loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
	size_t size = bh->b_size;

retry:
	io_end = ext4_init_io_end(inode, GFP_ATOMIC);
	if (!io_end) {
3740
		pr_warning_ratelimited("%s: allocation fail\n", __func__);
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
		schedule();
		goto retry;
	}
	io_end->offset = offset;
	io_end->size = size;
	/*
	 * We need to hold a reference to the page to make sure it
	 * doesn't get evicted before ext4_end_io_work() has a chance
	 * to convert the extent from written to unwritten.
	 */
	io_end->page = page;
	get_page(io_end->page);

	bh->b_private = io_end;
	bh->b_end_io = ext4_end_io_buffer_write;
	return 0;
}

3759 3760 3761 3762 3763 3764 3765 3766 3767
/*
 * For ext4 extent files, ext4 will do direct-io write to holes,
 * preallocated extents, and those write extend the file, no need to
 * fall back to buffered IO.
 *
 * For holes, we fallocate those blocks, mark them as unintialized
 * If those blocks were preallocated, we mark sure they are splited, but
 * still keep the range to write as unintialized.
 *
3768 3769 3770 3771
 * The unwrritten extents will be converted to written when DIO is completed.
 * For async direct IO, since the IO may still pending when return, we
 * set up an end_io call back function, which will do the convertion
 * when async direct IO completed.
3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
 *
 * If the O_DIRECT write will extend the file then add this inode to the
 * orphan list.  So recovery will truncate it back to the original size
 * if the machine crashes during the write.
 *
 */
static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;
	ssize_t ret;
	size_t count = iov_length(iov, nr_segs);

	loff_t final_size = offset + count;
	if (rw == WRITE && final_size <= inode->i_size) {
		/*
3790 3791 3792
 		 * We could direct write to holes and fallocate.
		 *
 		 * Allocated blocks to fill the hole are marked as uninitialized
3793 3794
 		 * to prevent paralel buffered read to expose the stale data
 		 * before DIO complete the data IO.
3795 3796
		 *
 		 * As to previously fallocated extents, ext4 get_block
3797 3798 3799
 		 * will just simply mark the buffer mapped but still
 		 * keep the extents uninitialized.
 		 *
3800 3801 3802 3803 3804 3805 3806 3807
		 * for non AIO case, we will convert those unwritten extents
		 * to written after return back from blockdev_direct_IO.
		 *
		 * for async DIO, the conversion needs to be defered when
		 * the IO is completed. The ext4 end_io callback function
		 * will be called to take care of the conversion work.
		 * Here for async case, we allocate an io_end structure to
		 * hook to the iocb.
3808
 		 */
3809 3810 3811
		iocb->private = NULL;
		EXT4_I(inode)->cur_aio_dio = NULL;
		if (!is_sync_kiocb(iocb)) {
3812
			iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3813 3814 3815 3816
			if (!iocb->private)
				return -ENOMEM;
			/*
			 * we save the io structure for current async
3817
			 * direct IO, so that later ext4_map_blocks()
3818 3819 3820 3821 3822 3823 3824
			 * could flag the io structure whether there
			 * is a unwritten extents needs to be converted
			 * when IO is completed.
			 */
			EXT4_I(inode)->cur_aio_dio = iocb->private;
		}

3825 3826 3827
		ret = blockdev_direct_IO(rw, iocb, inode,
					 inode->i_sb->s_bdev, iov,
					 offset, nr_segs,
3828
					 ext4_get_block_write,
3829
					 ext4_end_io_dio);
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848
		if (iocb->private)
			EXT4_I(inode)->cur_aio_dio = NULL;
		/*
		 * The io_end structure takes a reference to the inode,
		 * that structure needs to be destroyed and the
		 * reference to the inode need to be dropped, when IO is
		 * complete, even with 0 byte write, or failed.
		 *
		 * In the successful AIO DIO case, the io_end structure will be
		 * desctroyed and the reference to the inode will be dropped
		 * after the end_io call back function is called.
		 *
		 * In the case there is 0 byte write, or error case, since
		 * VFS direct IO won't invoke the end_io call back function,
		 * we need to free the end_io structure here.
		 */
		if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
			ext4_free_io_end(iocb->private);
			iocb->private = NULL;
3849 3850
		} else if (ret > 0 && ext4_test_inode_state(inode,
						EXT4_STATE_DIO_UNWRITTEN)) {
3851
			int err;
3852 3853 3854 3855
			/*
			 * for non AIO case, since the IO is already
			 * completed, we could do the convertion right here
			 */
3856 3857 3858 3859
			err = ext4_convert_unwritten_extents(inode,
							     offset, ret);
			if (err < 0)
				ret = err;
3860
			ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3861
		}
3862 3863
		return ret;
	}
3864 3865

	/* for write the the end of file case, we fall back to old way */
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
			      const struct iovec *iov, loff_t offset,
			      unsigned long nr_segs)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file->f_mapping->host;

3876
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3877 3878 3879 3880 3881
		return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);

	return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
}

3882
/*
3883
 * Pages can be marked dirty completely asynchronously from ext4's journalling
3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
 * much here because ->set_page_dirty is called under VFS locks.  The page is
 * not necessarily locked.
 *
 * We cannot just dirty the page and leave attached buffers clean, because the
 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
 * or jbddirty because all the journalling code will explode.
 *
 * So what we do is to mark the page "pending dirty" and next time writepage
 * is called, propagate that into the buffers appropriately.
 */
3895
static int ext4_journalled_set_page_dirty(struct page *page)
3896 3897 3898 3899 3900
{
	SetPageChecked(page);
	return __set_page_dirty_nobuffers(page);
}

3901
static const struct address_space_operations ext4_ordered_aops = {
3902 3903
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3904
	.writepage		= ext4_writepage,
3905 3906 3907 3908 3909 3910 3911 3912 3913
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_ordered_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3914
	.error_remove_page	= generic_error_remove_page,
3915 3916
};

3917
static const struct address_space_operations ext4_writeback_aops = {
3918 3919
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3920
	.writepage		= ext4_writepage,
3921 3922 3923 3924 3925 3926 3927 3928 3929
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_writeback_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3930
	.error_remove_page	= generic_error_remove_page,
3931 3932
};

3933
static const struct address_space_operations ext4_journalled_aops = {
3934 3935
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3936
	.writepage		= ext4_writepage,
3937 3938 3939 3940 3941 3942 3943 3944
	.sync_page		= block_sync_page,
	.write_begin		= ext4_write_begin,
	.write_end		= ext4_journalled_write_end,
	.set_page_dirty		= ext4_journalled_set_page_dirty,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_invalidatepage,
	.releasepage		= ext4_releasepage,
	.is_partially_uptodate  = block_is_partially_uptodate,
3945
	.error_remove_page	= generic_error_remove_page,
3946 3947
};

3948
static const struct address_space_operations ext4_da_aops = {
3949 3950
	.readpage		= ext4_readpage,
	.readpages		= ext4_readpages,
3951
	.writepage		= ext4_writepage,
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
	.writepages		= ext4_da_writepages,
	.sync_page		= block_sync_page,
	.write_begin		= ext4_da_write_begin,
	.write_end		= ext4_da_write_end,
	.bmap			= ext4_bmap,
	.invalidatepage		= ext4_da_invalidatepage,
	.releasepage		= ext4_releasepage,
	.direct_IO		= ext4_direct_IO,
	.migratepage		= buffer_migrate_page,
	.is_partially_uptodate  = block_is_partially_uptodate,
3962
	.error_remove_page	= generic_error_remove_page,
3963 3964
};

3965
void ext4_set_aops(struct inode *inode)
3966
{
3967 3968 3969 3970
	if (ext4_should_order_data(inode) &&
		test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
	else if (ext4_should_order_data(inode))
3971
		inode->i_mapping->a_ops = &ext4_ordered_aops;
3972 3973 3974
	else if (ext4_should_writeback_data(inode) &&
		 test_opt(inode->i_sb, DELALLOC))
		inode->i_mapping->a_ops = &ext4_da_aops;
3975 3976
	else if (ext4_should_writeback_data(inode))
		inode->i_mapping->a_ops = &ext4_writeback_aops;
3977
	else
3978
		inode->i_mapping->a_ops = &ext4_journalled_aops;
3979 3980 3981
}

/*
3982
 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3983 3984 3985 3986
 * up to the end of the block which corresponds to `from'.
 * This required during truncate. We need to physically zero the tail end
 * of that block so it doesn't yield old data if the file is later grown.
 */
3987
int ext4_block_truncate_page(handle_t *handle,
3988 3989
		struct address_space *mapping, loff_t from)
{
3990
	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3991
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
A
Aneesh Kumar K.V 已提交
3992 3993
	unsigned blocksize, length, pos;
	ext4_lblk_t iblock;
3994 3995
	struct inode *inode = mapping->host;
	struct buffer_head *bh;
3996
	struct page *page;
3997 3998
	int err = 0;

3999 4000
	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
				   mapping_gfp_mask(mapping) & ~__GFP_FS);
4001 4002 4003
	if (!page)
		return -EINVAL;

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027
	blocksize = inode->i_sb->s_blocksize;
	length = blocksize - (offset & (blocksize - 1));
	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);

	if (!page_has_buffers(page))
		create_empty_buffers(page, blocksize, 0);

	/* Find the buffer that contains "offset" */
	bh = page_buffers(page);
	pos = blocksize;
	while (offset >= pos) {
		bh = bh->b_this_page;
		iblock++;
		pos += blocksize;
	}

	err = 0;
	if (buffer_freed(bh)) {
		BUFFER_TRACE(bh, "freed: skip");
		goto unlock;
	}

	if (!buffer_mapped(bh)) {
		BUFFER_TRACE(bh, "unmapped");
4028
		ext4_get_block(inode, iblock, bh, 0);
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048
		/* unmapped? It's a hole - nothing to do */
		if (!buffer_mapped(bh)) {
			BUFFER_TRACE(bh, "still unmapped");
			goto unlock;
		}
	}

	/* Ok, it's mapped. Make sure it's up-to-date */
	if (PageUptodate(page))
		set_buffer_uptodate(bh);

	if (!buffer_uptodate(bh)) {
		err = -EIO;
		ll_rw_block(READ, 1, &bh);
		wait_on_buffer(bh);
		/* Uhhuh. Read error. Complain and punt. */
		if (!buffer_uptodate(bh))
			goto unlock;
	}

4049
	if (ext4_should_journal_data(inode)) {
4050
		BUFFER_TRACE(bh, "get write access");
4051
		err = ext4_journal_get_write_access(handle, bh);
4052 4053 4054 4055
		if (err)
			goto unlock;
	}

4056
	zero_user(page, offset, length);
4057 4058 4059 4060

	BUFFER_TRACE(bh, "zeroed end of block");

	err = 0;
4061
	if (ext4_should_journal_data(inode)) {
4062
		err = ext4_handle_dirty_metadata(handle, inode, bh);
4063
	} else {
4064
		if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
4065
			err = ext4_jbd2_file_inode(handle, inode);
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
		mark_buffer_dirty(bh);
	}

unlock:
	unlock_page(page);
	page_cache_release(page);
	return err;
}

/*
 * Probably it should be a library function... search for first non-zero word
 * or memcmp with zero_page, whatever is better for particular architecture.
 * Linus?
 */
static inline int all_zeroes(__le32 *p, __le32 *q)
{
	while (p < q)
		if (*p++)
			return 0;
	return 1;
}

/**
4089
 *	ext4_find_shared - find the indirect blocks for partial truncation.
4090 4091
 *	@inode:	  inode in question
 *	@depth:	  depth of the affected branch
4092
 *	@offsets: offsets of pointers in that branch (see ext4_block_to_path)
4093 4094 4095
 *	@chain:	  place to store the pointers to partial indirect blocks
 *	@top:	  place to the (detached) top of branch
 *
4096
 *	This is a helper function used by ext4_truncate().
4097 4098 4099 4100 4101 4102 4103
 *
 *	When we do truncate() we may have to clean the ends of several
 *	indirect blocks but leave the blocks themselves alive. Block is
 *	partially truncated if some data below the new i_size is refered
 *	from it (and it is on the path to the first completely truncated
 *	data block, indeed).  We have to free the top of that path along
 *	with everything to the right of the path. Since no allocation
4104
 *	past the truncation point is possible until ext4_truncate()
4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
 *	finishes, we may safely do the latter, but top of branch may
 *	require special attention - pageout below the truncation point
 *	might try to populate it.
 *
 *	We atomically detach the top of branch from the tree, store the
 *	block number of its root in *@top, pointers to buffer_heads of
 *	partially truncated blocks - in @chain[].bh and pointers to
 *	their last elements that should not be removed - in
 *	@chain[].p. Return value is the pointer to last filled element
 *	of @chain.
 *
 *	The work left to caller to do the actual freeing of subtrees:
 *		a) free the subtree starting from *@top
 *		b) free the subtrees whose roots are stored in
 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
 *		c) free the subtrees growing from the inode past the @chain[0].
 *			(no partially truncated stuff there).  */

4123
static Indirect *ext4_find_shared(struct inode *inode, int depth,
4124 4125
				  ext4_lblk_t offsets[4], Indirect chain[4],
				  __le32 *top)
4126 4127 4128 4129 4130
{
	Indirect *partial, *p;
	int k, err;

	*top = 0;
4131
	/* Make k index the deepest non-null offset + 1 */
4132 4133
	for (k = depth; k > 1 && !offsets[k-1]; k--)
		;
4134
	partial = ext4_get_branch(inode, k, offsets, chain, &err);
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
	/* Writer: pointers */
	if (!partial)
		partial = chain + k-1;
	/*
	 * If the branch acquired continuation since we've looked at it -
	 * fine, it should all survive and (new) top doesn't belong to us.
	 */
	if (!partial->key && *partial->p)
		/* Writer: end */
		goto no_top;
4145
	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
		;
	/*
	 * OK, we've found the last block that must survive. The rest of our
	 * branch should be detached before unlocking. However, if that rest
	 * of branch is all ours and does not grow immediately from the inode
	 * it's easier to cheat and just decrement partial->p.
	 */
	if (p == chain + k - 1 && p > chain) {
		p->p--;
	} else {
		*top = *p->p;
4157
		/* Nope, don't do this in ext4.  Must leave the tree intact */
4158 4159 4160 4161 4162 4163
#if 0
		*p->p = 0;
#endif
	}
	/* Writer: end */

4164
	while (partial > p) {
4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
		brelse(partial->bh);
		partial--;
	}
no_top:
	return partial;
}

/*
 * Zero a number of block pointers in either an inode or an indirect block.
 * If we restart the transaction we must again get write access to the
 * indirect block for further modification.
 *
 * We release `count' blocks on disk, but (last - first) may be greater
 * than `count' because there can be holes in there.
 */
4180 4181 4182 4183 4184
static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
			     struct buffer_head *bh,
			     ext4_fsblk_t block_to_free,
			     unsigned long count, __le32 *first,
			     __le32 *last)
4185 4186
{
	__le32 *p;
4187
	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4188 4189 4190

	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
		flags |= EXT4_FREE_BLOCKS_METADATA;
4191

4192 4193
	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
				   count)) {
4194 4195 4196
		EXT4_ERROR_INODE(inode, "attempt to clear invalid "
				 "blocks %llu len %lu",
				 (unsigned long long) block_to_free, count);
4197 4198 4199
		return 1;
	}

4200 4201
	if (try_to_extend_transaction(handle, inode)) {
		if (bh) {
4202 4203
			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
			ext4_handle_dirty_metadata(handle, inode, bh);
4204
		}
4205
		ext4_mark_inode_dirty(handle, inode);
4206 4207
		ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4208 4209
		if (bh) {
			BUFFER_TRACE(bh, "retaking write access");
4210
			ext4_journal_get_write_access(handle, bh);
4211 4212 4213
		}
	}

4214 4215
	for (p = first; p < last; p++)
		*p = 0;
4216

4217
	ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4218
	return 0;
4219 4220 4221
}

/**
4222
 * ext4_free_data - free a list of data blocks
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
 * @handle:	handle for this transaction
 * @inode:	inode we are dealing with
 * @this_bh:	indirect buffer_head which contains *@first and *@last
 * @first:	array of block numbers
 * @last:	points immediately past the end of array
 *
 * We are freeing all blocks refered from that array (numbers are stored as
 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 *
 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 * blocks are contiguous then releasing them at one time will only affect one
 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 * actually use a lot of journal space.
 *
 * @this_bh will be %NULL if @first and @last point into the inode's direct
 * block pointers.
 */
4240
static void ext4_free_data(handle_t *handle, struct inode *inode,
4241 4242 4243
			   struct buffer_head *this_bh,
			   __le32 *first, __le32 *last)
{
4244
	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
4245 4246 4247 4248
	unsigned long count = 0;	    /* Number of blocks in the run */
	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
					       corresponding to
					       block_to_free */
4249
	ext4_fsblk_t nr;		    /* Current block # */
4250 4251 4252 4253 4254 4255
	__le32 *p;			    /* Pointer into inode/ind
					       for current block */
	int err;

	if (this_bh) {				/* For indirect block */
		BUFFER_TRACE(this_bh, "get_write_access");
4256
		err = ext4_journal_get_write_access(handle, this_bh);
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
		/* Important: if we can't update the indirect pointers
		 * to the blocks, we can't free them. */
		if (err)
			return;
	}

	for (p = first; p < last; p++) {
		nr = le32_to_cpu(*p);
		if (nr) {
			/* accumulate blocks to free if they're contiguous */
			if (count == 0) {
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			} else if (nr == block_to_free + count) {
				count++;
			} else {
4274 4275 4276 4277
				if (ext4_clear_blocks(handle, inode, this_bh,
						      block_to_free, count,
						      block_to_free_p, p))
					break;
4278 4279 4280 4281 4282 4283 4284 4285
				block_to_free = nr;
				block_to_free_p = p;
				count = 1;
			}
		}
	}

	if (count > 0)
4286
		ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4287 4288 4289
				  count, block_to_free_p, p);

	if (this_bh) {
4290
		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4291 4292 4293 4294 4295 4296 4297

		/*
		 * The buffer head should have an attached journal head at this
		 * point. However, if the data is corrupted and an indirect
		 * block pointed to itself, it would have been detached when
		 * the block was cleared. Check for this instead of OOPSing.
		 */
4298
		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4299
			ext4_handle_dirty_metadata(handle, inode, this_bh);
4300
		else
4301 4302 4303 4304
			EXT4_ERROR_INODE(inode,
					 "circular indirect block detected at "
					 "block %llu",
				(unsigned long long) this_bh->b_blocknr);
4305 4306 4307 4308
	}
}

/**
4309
 *	ext4_free_branches - free an array of branches
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320
 *	@handle: JBD handle for this transaction
 *	@inode:	inode we are dealing with
 *	@parent_bh: the buffer_head which contains *@first and *@last
 *	@first:	array of block numbers
 *	@last:	pointer immediately past the end of array
 *	@depth:	depth of the branches to free
 *
 *	We are freeing all blocks refered from these branches (numbers are
 *	stored as little-endian 32-bit) and updating @inode->i_blocks
 *	appropriately.
 */
4321
static void ext4_free_branches(handle_t *handle, struct inode *inode,
4322 4323 4324
			       struct buffer_head *parent_bh,
			       __le32 *first, __le32 *last, int depth)
{
4325
	ext4_fsblk_t nr;
4326 4327
	__le32 *p;

4328
	if (ext4_handle_is_aborted(handle))
4329 4330 4331 4332
		return;

	if (depth--) {
		struct buffer_head *bh;
4333
		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4334 4335 4336 4337 4338 4339
		p = last;
		while (--p >= first) {
			nr = le32_to_cpu(*p);
			if (!nr)
				continue;		/* A hole */

4340 4341
			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
						   nr, 1)) {
4342 4343 4344 4345
				EXT4_ERROR_INODE(inode,
						 "invalid indirect mapped "
						 "block %lu (level %d)",
						 (unsigned long) nr, depth);
4346 4347 4348
				break;
			}

4349 4350 4351 4352 4353 4354 4355 4356
			/* Go read the buffer for the next level down */
			bh = sb_bread(inode->i_sb, nr);

			/*
			 * A read failure? Report error and clear slot
			 * (should be rare).
			 */
			if (!bh) {
4357 4358
				EXT4_ERROR_INODE_BLOCK(inode, nr,
						       "Read failure");
4359 4360 4361 4362 4363
				continue;
			}

			/* This zaps the entire block.  Bottom up. */
			BUFFER_TRACE(bh, "free child branches");
4364
			ext4_free_branches(handle, inode, bh,
4365 4366 4367
					(__le32 *) bh->b_data,
					(__le32 *) bh->b_data + addr_per_block,
					depth);
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384

			/*
			 * Everything below this this pointer has been
			 * released.  Now let this top-of-subtree go.
			 *
			 * We want the freeing of this indirect block to be
			 * atomic in the journal with the updating of the
			 * bitmap block which owns it.  So make some room in
			 * the journal.
			 *
			 * We zero the parent pointer *after* freeing its
			 * pointee in the bitmaps, so if extend_transaction()
			 * for some reason fails to put the bitmap changes and
			 * the release into the same transaction, recovery
			 * will merely complain about releasing a free block,
			 * rather than leaking blocks.
			 */
4385
			if (ext4_handle_is_aborted(handle))
4386 4387
				return;
			if (try_to_extend_transaction(handle, inode)) {
4388
				ext4_mark_inode_dirty(handle, inode);
4389 4390
				ext4_truncate_restart_trans(handle, inode,
					    blocks_for_truncate(inode));
4391 4392
			}

4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
			/*
			 * The forget flag here is critical because if
			 * we are journaling (and not doing data
			 * journaling), we have to make sure a revoke
			 * record is written to prevent the journal
			 * replay from overwriting the (former)
			 * indirect block if it gets reallocated as a
			 * data block.  This must happen in the same
			 * transaction where the data blocks are
			 * actually freed.
			 */
4404
			ext4_free_blocks(handle, inode, 0, nr, 1,
4405 4406
					 EXT4_FREE_BLOCKS_METADATA|
					 EXT4_FREE_BLOCKS_FORGET);
4407 4408 4409 4410 4411 4412 4413

			if (parent_bh) {
				/*
				 * The block which we have just freed is
				 * pointed to by an indirect block: journal it
				 */
				BUFFER_TRACE(parent_bh, "get_write_access");
4414
				if (!ext4_journal_get_write_access(handle,
4415 4416 4417
								   parent_bh)){
					*p = 0;
					BUFFER_TRACE(parent_bh,
4418 4419 4420 4421
					"call ext4_handle_dirty_metadata");
					ext4_handle_dirty_metadata(handle,
								   inode,
								   parent_bh);
4422 4423 4424 4425 4426 4427
				}
			}
		}
	} else {
		/* We have reached the bottom of the tree. */
		BUFFER_TRACE(parent_bh, "free data blocks");
4428
		ext4_free_data(handle, inode, parent_bh, first, last);
4429 4430 4431
	}
}

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
int ext4_can_truncate(struct inode *inode)
{
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return 0;
	if (S_ISREG(inode->i_mode))
		return 1;
	if (S_ISDIR(inode->i_mode))
		return 1;
	if (S_ISLNK(inode->i_mode))
		return !ext4_inode_is_fast_symlink(inode);
	return 0;
}

4445
/*
4446
 * ext4_truncate()
4447
 *
4448 4449
 * We block out ext4_get_block() block instantiations across the entire
 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
 * simultaneously on behalf of the same inode.
 *
 * As we work through the truncate and commmit bits of it to the journal there
 * is one core, guiding principle: the file's tree must always be consistent on
 * disk.  We must be able to restart the truncate after a crash.
 *
 * The file's tree may be transiently inconsistent in memory (although it
 * probably isn't), but whenever we close off and commit a journal transaction,
 * the contents of (the filesystem + the journal) must be consistent and
 * restartable.  It's pretty simple, really: bottom up, right to left (although
 * left-to-right works OK too).
 *
 * Note that at recovery time, journal replay occurs *before* the restart of
 * truncate against the orphan inode list.
 *
 * The committed inode has the new, desired i_size (which is the same as
4466
 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4467
 * that this inode's truncate did not complete and it will again call
4468 4469
 * ext4_truncate() to have another go.  So there will be instantiated blocks
 * to the right of the truncation point in a crashed ext4 filesystem.  But
4470
 * that's fine - as long as they are linked from the inode, the post-crash
4471
 * ext4_truncate() run will find them and release them.
4472
 */
4473
void ext4_truncate(struct inode *inode)
4474 4475
{
	handle_t *handle;
4476
	struct ext4_inode_info *ei = EXT4_I(inode);
4477
	__le32 *i_data = ei->i_data;
4478
	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4479
	struct address_space *mapping = inode->i_mapping;
A
Aneesh Kumar K.V 已提交
4480
	ext4_lblk_t offsets[4];
4481 4482 4483 4484
	Indirect chain[4];
	Indirect *partial;
	__le32 nr = 0;
	int n;
A
Aneesh Kumar K.V 已提交
4485
	ext4_lblk_t last_block;
4486 4487
	unsigned blocksize = inode->i_sb->s_blocksize;

4488
	if (!ext4_can_truncate(inode))
4489 4490
		return;

4491
	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4492

4493
	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4494
		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4495

4496
	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4497
		ext4_ext_truncate(inode);
A
Aneesh Kumar K.V 已提交
4498 4499
		return;
	}
A
Alex Tomas 已提交
4500

4501
	handle = start_transaction(inode);
4502
	if (IS_ERR(handle))
4503 4504 4505
		return;		/* AKPM: return what? */

	last_block = (inode->i_size + blocksize-1)
4506
					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4507

4508 4509 4510
	if (inode->i_size & (blocksize - 1))
		if (ext4_block_truncate_page(handle, mapping, inode->i_size))
			goto out_stop;
4511

4512
	n = ext4_block_to_path(inode, last_block, offsets, NULL);
4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
	if (n == 0)
		goto out_stop;	/* error */

	/*
	 * OK.  This truncate is going to happen.  We add the inode to the
	 * orphan list, so that if this truncate spans multiple transactions,
	 * and we crash, we will resume the truncate when the filesystem
	 * recovers.  It also marks the inode dirty, to catch the new size.
	 *
	 * Implication: the file must always be in a sane, consistent
	 * truncatable state while each transaction commits.
	 */
4525
	if (ext4_orphan_add(handle, inode))
4526 4527
		goto out_stop;

4528 4529 4530 4531 4532
	/*
	 * From here we block out all ext4_get_block() callers who want to
	 * modify the block allocation tree.
	 */
	down_write(&ei->i_data_sem);
4533

4534
	ext4_discard_preallocations(inode);
4535

4536 4537 4538 4539 4540
	/*
	 * The orphan list entry will now protect us from any crash which
	 * occurs before the truncate completes, so it is now safe to propagate
	 * the new, shorter inode size (held for now in i_size) into the
	 * on-disk inode. We do this via i_disksize, which is the value which
4541
	 * ext4 *really* writes onto the disk inode.
4542 4543 4544 4545
	 */
	ei->i_disksize = inode->i_size;

	if (n == 1) {		/* direct blocks */
4546 4547
		ext4_free_data(handle, inode, NULL, i_data+offsets[0],
			       i_data + EXT4_NDIR_BLOCKS);
4548 4549 4550
		goto do_indirects;
	}

4551
	partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4552 4553 4554 4555
	/* Kill the top of shared branch (not detached) */
	if (nr) {
		if (partial == chain) {
			/* Shared branch grows from the inode */
4556
			ext4_free_branches(handle, inode, NULL,
4557 4558 4559 4560 4561 4562 4563 4564 4565
					   &nr, &nr+1, (chain+n-1) - partial);
			*partial->p = 0;
			/*
			 * We mark the inode dirty prior to restart,
			 * and prior to stop.  No need for it here.
			 */
		} else {
			/* Shared branch grows from an indirect block */
			BUFFER_TRACE(partial->bh, "get_write_access");
4566
			ext4_free_branches(handle, inode, partial->bh,
4567 4568 4569 4570 4571 4572
					partial->p,
					partial->p+1, (chain+n-1) - partial);
		}
	}
	/* Clear the ends of indirect blocks on the shared branch */
	while (partial > chain) {
4573
		ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4574 4575 4576
				   (__le32*)partial->bh->b_data+addr_per_block,
				   (chain+n-1) - partial);
		BUFFER_TRACE(partial->bh, "call brelse");
4577
		brelse(partial->bh);
4578 4579 4580 4581 4582 4583
		partial--;
	}
do_indirects:
	/* Kill the remaining (whole) subtrees */
	switch (offsets[0]) {
	default:
4584
		nr = i_data[EXT4_IND_BLOCK];
4585
		if (nr) {
4586 4587
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
			i_data[EXT4_IND_BLOCK] = 0;
4588
		}
4589 4590
	case EXT4_IND_BLOCK:
		nr = i_data[EXT4_DIND_BLOCK];
4591
		if (nr) {
4592 4593
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
			i_data[EXT4_DIND_BLOCK] = 0;
4594
		}
4595 4596
	case EXT4_DIND_BLOCK:
		nr = i_data[EXT4_TIND_BLOCK];
4597
		if (nr) {
4598 4599
			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
			i_data[EXT4_TIND_BLOCK] = 0;
4600
		}
4601
	case EXT4_TIND_BLOCK:
4602 4603 4604
		;
	}

4605
	up_write(&ei->i_data_sem);
K
Kalpak Shah 已提交
4606
	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4607
	ext4_mark_inode_dirty(handle, inode);
4608 4609 4610 4611 4612 4613

	/*
	 * In a multi-transaction truncate, we only make the final transaction
	 * synchronous
	 */
	if (IS_SYNC(inode))
4614
		ext4_handle_sync(handle);
4615 4616 4617 4618 4619
out_stop:
	/*
	 * If this was a simple ftruncate(), and the file will remain alive
	 * then we need to clear up the orphan record which we created above.
	 * However, if this was a real unlink then we were called by
4620
	 * ext4_delete_inode(), and we allow that function to clean up the
4621 4622 4623
	 * orphan info for us.
	 */
	if (inode->i_nlink)
4624
		ext4_orphan_del(handle, inode);
4625

4626
	ext4_journal_stop(handle);
4627 4628 4629
}

/*
4630
 * ext4_get_inode_loc returns with an extra refcount against the inode's
4631 4632 4633 4634
 * underlying buffer_head on success. If 'in_mem' is true, we have all
 * data in memory that is needed to recreate the on-disk version of this
 * inode.
 */
4635 4636
static int __ext4_get_inode_loc(struct inode *inode,
				struct ext4_iloc *iloc, int in_mem)
4637
{
4638 4639 4640 4641 4642 4643
	struct ext4_group_desc	*gdp;
	struct buffer_head	*bh;
	struct super_block	*sb = inode->i_sb;
	ext4_fsblk_t		block;
	int			inodes_per_block, inode_offset;

A
Aneesh Kumar K.V 已提交
4644
	iloc->bh = NULL;
4645 4646
	if (!ext4_valid_inum(sb, inode->i_ino))
		return -EIO;
4647

4648 4649 4650
	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
	if (!gdp)
4651 4652
		return -EIO;

4653 4654 4655 4656 4657 4658 4659 4660 4661 4662
	/*
	 * Figure out the offset within the block group inode table
	 */
	inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
	inode_offset = ((inode->i_ino - 1) %
			EXT4_INODES_PER_GROUP(sb));
	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);

	bh = sb_getblk(sb, block);
4663
	if (!bh) {
4664 4665
		EXT4_ERROR_INODE_BLOCK(inode, block,
				       "unable to read itable block");
4666 4667 4668 4669
		return -EIO;
	}
	if (!buffer_uptodate(bh)) {
		lock_buffer(bh);
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679

		/*
		 * If the buffer has the write error flag, we have failed
		 * to write out another inode in the same block.  In this
		 * case, we don't have to read the block because we may
		 * read the old inode data successfully.
		 */
		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
			set_buffer_uptodate(bh);

4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692
		if (buffer_uptodate(bh)) {
			/* someone brought it uptodate while we waited */
			unlock_buffer(bh);
			goto has_buffer;
		}

		/*
		 * If we have all information of the inode in memory and this
		 * is the only valid inode in the block, we need not read the
		 * block.
		 */
		if (in_mem) {
			struct buffer_head *bitmap_bh;
4693
			int i, start;
4694

4695
			start = inode_offset & ~(inodes_per_block - 1);
4696

4697 4698
			/* Is the inode bitmap in cache? */
			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
			if (!bitmap_bh)
				goto make_io;

			/*
			 * If the inode bitmap isn't in cache then the
			 * optimisation may end up performing two reads instead
			 * of one, so skip it.
			 */
			if (!buffer_uptodate(bitmap_bh)) {
				brelse(bitmap_bh);
				goto make_io;
			}
4711
			for (i = start; i < start + inodes_per_block; i++) {
4712 4713
				if (i == inode_offset)
					continue;
4714
				if (ext4_test_bit(i, bitmap_bh->b_data))
4715 4716 4717
					break;
			}
			brelse(bitmap_bh);
4718
			if (i == start + inodes_per_block) {
4719 4720 4721 4722 4723 4724 4725 4726 4727
				/* all other inodes are free, so skip I/O */
				memset(bh->b_data, 0, bh->b_size);
				set_buffer_uptodate(bh);
				unlock_buffer(bh);
				goto has_buffer;
			}
		}

make_io:
4728 4729 4730 4731 4732 4733 4734 4735 4736
		/*
		 * If we need to do any I/O, try to pre-readahead extra
		 * blocks from the inode table.
		 */
		if (EXT4_SB(sb)->s_inode_readahead_blks) {
			ext4_fsblk_t b, end, table;
			unsigned num;

			table = ext4_inode_table(sb, gdp);
T
Theodore Ts'o 已提交
4737
			/* s_inode_readahead_blks is always a power of 2 */
4738 4739 4740 4741 4742 4743 4744
			b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
			if (table > b)
				b = table;
			end = b + EXT4_SB(sb)->s_inode_readahead_blks;
			num = EXT4_INODES_PER_GROUP(sb);
			if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				       EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4745
				num -= ext4_itable_unused_count(sb, gdp);
4746 4747 4748 4749 4750 4751 4752
			table += num / inodes_per_block;
			if (end > table)
				end = table;
			while (b <= end)
				sb_breadahead(sb, b++);
		}

4753 4754 4755 4756 4757 4758 4759 4760 4761 4762
		/*
		 * There are other valid inodes in the buffer, this inode
		 * has in-inode xattrs, or we don't have this inode in memory.
		 * Read the block from disk.
		 */
		get_bh(bh);
		bh->b_end_io = end_buffer_read_sync;
		submit_bh(READ_META, bh);
		wait_on_buffer(bh);
		if (!buffer_uptodate(bh)) {
4763 4764
			EXT4_ERROR_INODE_BLOCK(inode, block,
					       "unable to read itable block");
4765 4766 4767 4768 4769 4770 4771 4772 4773
			brelse(bh);
			return -EIO;
		}
	}
has_buffer:
	iloc->bh = bh;
	return 0;
}

4774
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4775 4776
{
	/* We have all inode data except xattrs in memory here. */
4777
	return __ext4_get_inode_loc(inode, iloc,
4778
		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4779 4780
}

4781
void ext4_set_inode_flags(struct inode *inode)
4782
{
4783
	unsigned int flags = EXT4_I(inode)->i_flags;
4784 4785

	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4786
	if (flags & EXT4_SYNC_FL)
4787
		inode->i_flags |= S_SYNC;
4788
	if (flags & EXT4_APPEND_FL)
4789
		inode->i_flags |= S_APPEND;
4790
	if (flags & EXT4_IMMUTABLE_FL)
4791
		inode->i_flags |= S_IMMUTABLE;
4792
	if (flags & EXT4_NOATIME_FL)
4793
		inode->i_flags |= S_NOATIME;
4794
	if (flags & EXT4_DIRSYNC_FL)
4795 4796 4797
		inode->i_flags |= S_DIRSYNC;
}

4798 4799 4800
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
	unsigned int vfs_fl;
	unsigned long old_fl, new_fl;

	do {
		vfs_fl = ei->vfs_inode.i_flags;
		old_fl = ei->i_flags;
		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
				EXT4_DIRSYNC_FL);
		if (vfs_fl & S_SYNC)
			new_fl |= EXT4_SYNC_FL;
		if (vfs_fl & S_APPEND)
			new_fl |= EXT4_APPEND_FL;
		if (vfs_fl & S_IMMUTABLE)
			new_fl |= EXT4_IMMUTABLE_FL;
		if (vfs_fl & S_NOATIME)
			new_fl |= EXT4_NOATIME_FL;
		if (vfs_fl & S_DIRSYNC)
			new_fl |= EXT4_DIRSYNC_FL;
	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4821
}
4822

4823
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4824
				  struct ext4_inode_info *ei)
4825 4826
{
	blkcnt_t i_blocks ;
A
Aneesh Kumar K.V 已提交
4827 4828
	struct inode *inode = &(ei->vfs_inode);
	struct super_block *sb = inode->i_sb;
4829 4830 4831 4832 4833 4834

	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
		/* we are using combined 48 bit field */
		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
					le32_to_cpu(raw_inode->i_blocks_lo);
4835
		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
A
Aneesh Kumar K.V 已提交
4836 4837 4838 4839 4840
			/* i_blocks represent file system block size */
			return i_blocks  << (inode->i_blkbits - 9);
		} else {
			return i_blocks;
		}
4841 4842 4843 4844
	} else {
		return le32_to_cpu(raw_inode->i_blocks_lo);
	}
}
4845

4846
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4847
{
4848 4849
	struct ext4_iloc iloc;
	struct ext4_inode *raw_inode;
4850 4851
	struct ext4_inode_info *ei;
	struct inode *inode;
4852
	journal_t *journal = EXT4_SB(sb)->s_journal;
4853
	long ret;
4854 4855
	int block;

4856 4857 4858 4859 4860 4861 4862
	inode = iget_locked(sb, ino);
	if (!inode)
		return ERR_PTR(-ENOMEM);
	if (!(inode->i_state & I_NEW))
		return inode;

	ei = EXT4_I(inode);
4863
	iloc.bh = 0;
4864

4865 4866
	ret = __ext4_get_inode_loc(inode, &iloc, 0);
	if (ret < 0)
4867
		goto bad_inode;
4868
	raw_inode = ext4_raw_inode(&iloc);
4869 4870 4871
	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4872
	if (!(test_opt(inode->i_sb, NO_UID32))) {
4873 4874 4875 4876 4877
		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
	}
	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);

4878
	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4879 4880 4881 4882 4883 4884 4885 4886 4887
	ei->i_dir_start_lookup = 0;
	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
	/* We now have enough fields to check if the inode was active or not.
	 * This is needed because nfsd might try to access dead inodes
	 * the test is that same one that e2fsck uses
	 * NeilBrown 1999oct15
	 */
	if (inode->i_nlink == 0) {
		if (inode->i_mode == 0 ||
4888
		    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4889
			/* this inode is deleted */
4890
			ret = -ESTALE;
4891 4892 4893 4894 4895 4896 4897 4898
			goto bad_inode;
		}
		/* The only unlinked inodes we let through here have
		 * valid i_mode and are being read by the orphan
		 * recovery code: that's fine, we're about to complete
		 * the process of deleting those. */
	}
	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4899
	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4900
	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4901
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
B
Badari Pulavarty 已提交
4902 4903
		ei->i_file_acl |=
			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4904
	inode->i_size = ext4_isize(raw_inode);
4905
	ei->i_disksize = inode->i_size;
4906 4907 4908
#ifdef CONFIG_QUOTA
	ei->i_reserved_quota = 0;
#endif
4909 4910
	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
	ei->i_block_group = iloc.block_group;
4911
	ei->i_last_alloc_group = ~0;
4912 4913 4914 4915
	/*
	 * NOTE! The in-memory inode i_data array is in little-endian order
	 * even on big-endian machines: we do NOT byteswap the block numbers!
	 */
4916
	for (block = 0; block < EXT4_N_BLOCKS; block++)
4917 4918 4919
		ei->i_data[block] = raw_inode->i_block[block];
	INIT_LIST_HEAD(&ei->i_orphan);

4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
	/*
	 * Set transaction id's of transactions that have to be committed
	 * to finish f[data]sync. We set them to currently running transaction
	 * as we cannot be sure that the inode or some of its metadata isn't
	 * part of the transaction - the inode could have been reclaimed and
	 * now it is reread from disk.
	 */
	if (journal) {
		transaction_t *transaction;
		tid_t tid;

4931
		read_lock(&journal->j_state_lock);
4932 4933 4934 4935 4936 4937 4938 4939
		if (journal->j_running_transaction)
			transaction = journal->j_running_transaction;
		else
			transaction = journal->j_committing_transaction;
		if (transaction)
			tid = transaction->t_tid;
		else
			tid = journal->j_commit_sequence;
4940
		read_unlock(&journal->j_state_lock);
4941 4942 4943 4944
		ei->i_sync_tid = tid;
		ei->i_datasync_tid = tid;
	}

4945
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4946
		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4947
		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4948
		    EXT4_INODE_SIZE(inode->i_sb)) {
4949
			ret = -EIO;
4950
			goto bad_inode;
4951
		}
4952 4953
		if (ei->i_extra_isize == 0) {
			/* The extra space is currently unused. Use it. */
4954 4955
			ei->i_extra_isize = sizeof(struct ext4_inode) -
					    EXT4_GOOD_OLD_INODE_SIZE;
4956 4957
		} else {
			__le32 *magic = (void *)raw_inode +
4958
					EXT4_GOOD_OLD_INODE_SIZE +
4959
					ei->i_extra_isize;
4960
			if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4961
				ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4962 4963 4964 4965
		}
	} else
		ei->i_extra_isize = 0;

K
Kalpak Shah 已提交
4966 4967 4968 4969 4970
	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);

4971 4972 4973 4974 4975 4976 4977
	inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			inode->i_version |=
			(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
	}

4978
	ret = 0;
4979
	if (ei->i_file_acl &&
4980
	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4981 4982
		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
				 ei->i_file_acl);
4983 4984
		ret = -EIO;
		goto bad_inode;
4985
	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4986 4987 4988 4989 4990
		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
		    (S_ISLNK(inode->i_mode) &&
		     !ext4_inode_is_fast_symlink(inode)))
			/* Validate extent which is part of inode */
			ret = ext4_ext_check_inode(inode);
4991
	} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4992 4993
		   (S_ISLNK(inode->i_mode) &&
		    !ext4_inode_is_fast_symlink(inode))) {
4994
		/* Validate block references which are part of inode */
4995 4996
		ret = ext4_check_inode_blockref(inode);
	}
4997
	if (ret)
4998
		goto bad_inode;
4999

5000
	if (S_ISREG(inode->i_mode)) {
5001 5002 5003
		inode->i_op = &ext4_file_inode_operations;
		inode->i_fop = &ext4_file_operations;
		ext4_set_aops(inode);
5004
	} else if (S_ISDIR(inode->i_mode)) {
5005 5006
		inode->i_op = &ext4_dir_inode_operations;
		inode->i_fop = &ext4_dir_operations;
5007
	} else if (S_ISLNK(inode->i_mode)) {
5008
		if (ext4_inode_is_fast_symlink(inode)) {
5009
			inode->i_op = &ext4_fast_symlink_inode_operations;
5010 5011 5012
			nd_terminate_link(ei->i_data, inode->i_size,
				sizeof(ei->i_data) - 1);
		} else {
5013 5014
			inode->i_op = &ext4_symlink_inode_operations;
			ext4_set_aops(inode);
5015
		}
5016 5017
	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5018
		inode->i_op = &ext4_special_inode_operations;
5019 5020 5021 5022 5023 5024
		if (raw_inode->i_block[0])
			init_special_inode(inode, inode->i_mode,
			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
		else
			init_special_inode(inode, inode->i_mode,
			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5025 5026
	} else {
		ret = -EIO;
5027
		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5028
		goto bad_inode;
5029
	}
5030
	brelse(iloc.bh);
5031
	ext4_set_inode_flags(inode);
5032 5033
	unlock_new_inode(inode);
	return inode;
5034 5035

bad_inode:
5036
	brelse(iloc.bh);
5037 5038
	iget_failed(inode);
	return ERR_PTR(ret);
5039 5040
}

5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
static int ext4_inode_blocks_set(handle_t *handle,
				struct ext4_inode *raw_inode,
				struct ext4_inode_info *ei)
{
	struct inode *inode = &(ei->vfs_inode);
	u64 i_blocks = inode->i_blocks;
	struct super_block *sb = inode->i_sb;

	if (i_blocks <= ~0U) {
		/*
		 * i_blocks can be represnted in a 32 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5054
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5055
		raw_inode->i_blocks_high = 0;
5056
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5057 5058 5059 5060 5061 5062
		return 0;
	}
	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
		return -EFBIG;

	if (i_blocks <= 0xffffffffffffULL) {
5063 5064 5065 5066
		/*
		 * i_blocks can be represented in a 48 bit variable
		 * as multiple of 512 bytes
		 */
A
Aneesh Kumar K.V 已提交
5067
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5068
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5069
		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5070
	} else {
5071
		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
A
Aneesh Kumar K.V 已提交
5072 5073 5074 5075
		/* i_block is stored in file system block size */
		i_blocks = i_blocks >> (inode->i_blkbits - 9);
		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5076
	}
5077
	return 0;
5078 5079
}

5080 5081 5082 5083 5084 5085 5086
/*
 * Post the struct inode info into an on-disk inode location in the
 * buffer-cache.  This gobbles the caller's reference to the
 * buffer_head in the inode location struct.
 *
 * The caller must have write access to iloc->bh.
 */
5087
static int ext4_do_update_inode(handle_t *handle,
5088
				struct inode *inode,
5089
				struct ext4_iloc *iloc)
5090
{
5091 5092
	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
	struct ext4_inode_info *ei = EXT4_I(inode);
5093 5094 5095 5096 5097
	struct buffer_head *bh = iloc->bh;
	int err = 0, rc, block;

	/* For fields not not tracking in the in-memory inode,
	 * initialise them to zero for new inodes. */
5098
	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5099
		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5100

5101
	ext4_get_inode_flags(ei);
5102
	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5103
	if (!(test_opt(inode->i_sb, NO_UID32))) {
5104 5105 5106 5107 5108 5109
		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
/*
 * Fix up interoperability with old kernels. Otherwise, old inodes get
 * re-used with the upper 16 bits of the uid/gid intact
 */
5110
		if (!ei->i_dtime) {
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127
			raw_inode->i_uid_high =
				cpu_to_le16(high_16_bits(inode->i_uid));
			raw_inode->i_gid_high =
				cpu_to_le16(high_16_bits(inode->i_gid));
		} else {
			raw_inode->i_uid_high = 0;
			raw_inode->i_gid_high = 0;
		}
	} else {
		raw_inode->i_uid_low =
			cpu_to_le16(fs_high2lowuid(inode->i_uid));
		raw_inode->i_gid_low =
			cpu_to_le16(fs_high2lowgid(inode->i_gid));
		raw_inode->i_uid_high = 0;
		raw_inode->i_gid_high = 0;
	}
	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
K
Kalpak Shah 已提交
5128 5129 5130 5131 5132 5133

	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);

5134 5135
	if (ext4_inode_blocks_set(handle, raw_inode, ei))
		goto out_brelse;
5136
	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5137
	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5138 5139
	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
	    cpu_to_le32(EXT4_OS_HURD))
B
Badari Pulavarty 已提交
5140 5141
		raw_inode->i_file_acl_high =
			cpu_to_le16(ei->i_file_acl >> 32);
5142
	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
	ext4_isize_set(raw_inode, ei->i_disksize);
	if (ei->i_disksize > 0x7fffffffULL) {
		struct super_block *sb = inode->i_sb;
		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
				EXT4_SB(sb)->s_es->s_rev_level ==
				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
			/* If this is the first large file
			 * created, add a flag to the superblock.
			 */
			err = ext4_journal_get_write_access(handle,
					EXT4_SB(sb)->s_sbh);
			if (err)
				goto out_brelse;
			ext4_update_dynamic_rev(sb);
			EXT4_SET_RO_COMPAT_FEATURE(sb,
5159
					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5160
			sb->s_dirt = 1;
5161
			ext4_handle_sync(handle);
5162
			err = ext4_handle_dirty_metadata(handle, NULL,
5163
					EXT4_SB(sb)->s_sbh);
5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177
		}
	}
	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
		if (old_valid_dev(inode->i_rdev)) {
			raw_inode->i_block[0] =
				cpu_to_le32(old_encode_dev(inode->i_rdev));
			raw_inode->i_block[1] = 0;
		} else {
			raw_inode->i_block[0] = 0;
			raw_inode->i_block[1] =
				cpu_to_le32(new_encode_dev(inode->i_rdev));
			raw_inode->i_block[2] = 0;
		}
5178 5179 5180
	} else
		for (block = 0; block < EXT4_N_BLOCKS; block++)
			raw_inode->i_block[block] = ei->i_data[block];
5181

5182 5183 5184 5185 5186
	raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
	if (ei->i_extra_isize) {
		if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
			raw_inode->i_version_hi =
			cpu_to_le32(inode->i_version >> 32);
5187
		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5188 5189
	}

5190
	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5191
	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5192 5193
	if (!err)
		err = rc;
5194
	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5195

5196
	ext4_update_inode_fsync_trans(handle, inode, 0);
5197
out_brelse:
5198
	brelse(bh);
5199
	ext4_std_error(inode->i_sb, err);
5200 5201 5202 5203
	return err;
}

/*
5204
 * ext4_write_inode()
5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220
 *
 * We are called from a few places:
 *
 * - Within generic_file_write() for O_SYNC files.
 *   Here, there will be no transaction running. We wait for any running
 *   trasnaction to commit.
 *
 * - Within sys_sync(), kupdate and such.
 *   We wait on commit, if tol to.
 *
 * - Within prune_icache() (PF_MEMALLOC == true)
 *   Here we simply return.  We can't afford to block kswapd on the
 *   journal commit.
 *
 * In all cases it is actually safe for us to return without doing anything,
 * because the inode has been copied into a raw inode buffer in
5221
 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237
 * knfsd.
 *
 * Note that we are absolutely dependent upon all inode dirtiers doing the
 * right thing: they *must* call mark_inode_dirty() after dirtying info in
 * which we are interested.
 *
 * It would be a bug for them to not do this.  The code:
 *
 *	mark_inode_dirty(inode)
 *	stuff();
 *	inode->i_size = expr;
 *
 * is in error because a kswapd-driven write_inode() could occur while
 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
 * will no longer be on the superblock's dirty inode list.
 */
5238
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5239
{
5240 5241
	int err;

5242 5243 5244
	if (current->flags & PF_MEMALLOC)
		return 0;

5245 5246 5247 5248 5249 5250
	if (EXT4_SB(inode->i_sb)->s_journal) {
		if (ext4_journal_current_handle()) {
			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
			dump_stack();
			return -EIO;
		}
5251

5252
		if (wbc->sync_mode != WB_SYNC_ALL)
5253 5254 5255 5256 5257
			return 0;

		err = ext4_force_commit(inode->i_sb);
	} else {
		struct ext4_iloc iloc;
5258

5259
		err = __ext4_get_inode_loc(inode, &iloc, 0);
5260 5261
		if (err)
			return err;
5262
		if (wbc->sync_mode == WB_SYNC_ALL)
5263 5264
			sync_dirty_buffer(iloc.bh);
		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5265 5266
			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
					 "IO error syncing inode");
5267 5268
			err = -EIO;
		}
5269
		brelse(iloc.bh);
5270 5271
	}
	return err;
5272 5273 5274
}

/*
5275
 * ext4_setattr()
5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288
 *
 * Called from notify_change.
 *
 * We want to trap VFS attempts to truncate the file as soon as
 * possible.  In particular, we want to make sure that when the VFS
 * shrinks i_size, we put the inode on the orphan list and modify
 * i_disksize immediately, so that during the subsequent flushing of
 * dirty pages and freeing of disk blocks, we can guarantee that any
 * commit will leave the blocks being flushed in an unused state on
 * disk.  (On recovery, the inode will get truncated and the blocks will
 * be freed, so we have a strong guarantee that no future commit will
 * leave these blocks visible to the user.)
 *
5289 5290 5291 5292 5293 5294 5295 5296
 * Another thing we have to assure is that if we are in ordered mode
 * and inode is still attached to the committing transaction, we must
 * we start writeout of all the dirty pages which are being truncated.
 * This way we are sure that all the data written in the previous
 * transaction are already on disk (truncate waits for pages under
 * writeback).
 *
 * Called with inode->i_mutex down.
5297
 */
5298
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5299 5300 5301
{
	struct inode *inode = dentry->d_inode;
	int error, rc = 0;
5302
	int orphan = 0;
5303 5304 5305 5306 5307 5308
	const unsigned int ia_valid = attr->ia_valid;

	error = inode_change_ok(inode, attr);
	if (error)
		return error;

5309
	if (is_quota_modification(inode, attr))
5310
		dquot_initialize(inode);
5311 5312 5313 5314 5315 5316
	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
		handle_t *handle;

		/* (user+group)*(old+new) structure, inode write (sb,
		 * inode block, ? - but truncate inode update has it) */
D
Dmitry Monakhov 已提交
5317
		handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5318
					EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5319 5320 5321 5322
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5323
		error = dquot_transfer(inode, attr);
5324
		if (error) {
5325
			ext4_journal_stop(handle);
5326 5327 5328 5329 5330 5331 5332 5333
			return error;
		}
		/* Update corresponding info in inode so that everything is in
		 * one transaction */
		if (attr->ia_valid & ATTR_UID)
			inode->i_uid = attr->ia_uid;
		if (attr->ia_valid & ATTR_GID)
			inode->i_gid = attr->ia_gid;
5334 5335
		error = ext4_mark_inode_dirty(handle, inode);
		ext4_journal_stop(handle);
5336 5337
	}

5338
	if (attr->ia_valid & ATTR_SIZE) {
5339
		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5340 5341
			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);

5342 5343
			if (attr->ia_size > sbi->s_bitmap_maxbytes)
				return -EFBIG;
5344 5345 5346
		}
	}

5347
	if (S_ISREG(inode->i_mode) &&
5348 5349
	    attr->ia_valid & ATTR_SIZE &&
	    (attr->ia_size < inode->i_size ||
5350
	     (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5351 5352
		handle_t *handle;

5353
		handle = ext4_journal_start(inode, 3);
5354 5355 5356 5357
		if (IS_ERR(handle)) {
			error = PTR_ERR(handle);
			goto err_out;
		}
5358 5359 5360 5361
		if (ext4_handle_valid(handle)) {
			error = ext4_orphan_add(handle, inode);
			orphan = 1;
		}
5362 5363
		EXT4_I(inode)->i_disksize = attr->ia_size;
		rc = ext4_mark_inode_dirty(handle, inode);
5364 5365
		if (!error)
			error = rc;
5366
		ext4_journal_stop(handle);
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378

		if (ext4_should_order_data(inode)) {
			error = ext4_begin_ordered_truncate(inode,
							    attr->ia_size);
			if (error) {
				/* Do as much error cleanup as possible */
				handle = ext4_journal_start(inode, 3);
				if (IS_ERR(handle)) {
					ext4_orphan_del(NULL, inode);
					goto err_out;
				}
				ext4_orphan_del(handle, inode);
5379
				orphan = 0;
5380 5381 5382 5383
				ext4_journal_stop(handle);
				goto err_out;
			}
		}
5384
		/* ext4_truncate will clear the flag */
5385
		if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5386
			ext4_truncate(inode);
5387 5388
	}

C
Christoph Hellwig 已提交
5389 5390 5391
	if ((attr->ia_valid & ATTR_SIZE) &&
	    attr->ia_size != i_size_read(inode))
		rc = vmtruncate(inode, attr->ia_size);
5392

C
Christoph Hellwig 已提交
5393 5394 5395 5396 5397 5398 5399 5400 5401
	if (!rc) {
		setattr_copy(inode, attr);
		mark_inode_dirty(inode);
	}

	/*
	 * If the call to ext4_truncate failed to get a transaction handle at
	 * all, we need to clean up the in-core orphan list manually.
	 */
5402
	if (orphan && inode->i_nlink)
5403
		ext4_orphan_del(NULL, inode);
5404 5405

	if (!rc && (ia_valid & ATTR_MODE))
5406
		rc = ext4_acl_chmod(inode);
5407 5408

err_out:
5409
	ext4_std_error(inode->i_sb, error);
5410 5411 5412 5413 5414
	if (!error)
		error = rc;
	return error;
}

5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
		 struct kstat *stat)
{
	struct inode *inode;
	unsigned long delalloc_blocks;

	inode = dentry->d_inode;
	generic_fillattr(inode, stat);

	/*
	 * We can't update i_blocks if the block allocation is delayed
	 * otherwise in the case of system crash before the real block
	 * allocation is done, we will have i_blocks inconsistent with
	 * on-disk file blocks.
	 * We always keep i_blocks updated together with real
	 * allocation. But to not confuse with user, stat
	 * will return the blocks that include the delayed allocation
	 * blocks for this file.
	 */
	delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;

	stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
	return 0;
}
5439

5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
				      int chunk)
{
	int indirects;

	/* if nrblocks are contiguous */
	if (chunk) {
		/*
		 * With N contiguous data blocks, it need at most
		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
		 * 2 dindirect blocks
		 * 1 tindirect block
		 */
		indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
		return indirects + 3;
	}
	/*
	 * if nrblocks are not contiguous, worse case, each block touch
	 * a indirect block, and each indirect block touch a double indirect
	 * block, plus a triple indirect block
	 */
	indirects = nrblocks * 2 + 1;
	return indirects;
}

static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
{
5467
	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5468 5469
		return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
	return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5470
}
5471

5472
/*
5473 5474 5475
 * Account for index blocks, block groups bitmaps and block group
 * descriptor blocks if modify datablocks and index blocks
 * worse case, the indexs blocks spread over different block groups
5476
 *
5477
 * If datablocks are discontiguous, they are possible to spread over
5478
 * different block groups too. If they are contiuguous, with flexbg,
5479
 * they could still across block group boundary.
5480
 *
5481 5482
 * Also account for superblock, inode, quota and xattr blocks
 */
5483
static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5484
{
5485 5486
	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
	int gdpblocks;
5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512
	int idxblocks;
	int ret = 0;

	/*
	 * How many index blocks need to touch to modify nrblocks?
	 * The "Chunk" flag indicating whether the nrblocks is
	 * physically contiguous on disk
	 *
	 * For Direct IO and fallocate, they calls get_block to allocate
	 * one single extent at a time, so they could set the "Chunk" flag
	 */
	idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);

	ret = idxblocks;

	/*
	 * Now let's see how many group bitmaps and group descriptors need
	 * to account
	 */
	groups = idxblocks;
	if (chunk)
		groups += 1;
	else
		groups += nrblocks;

	gdpblocks = groups;
5513 5514
	if (groups > ngroups)
		groups = ngroups;
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528
	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;

	/* bitmaps and block group descriptor blocks */
	ret += groups + gdpblocks;

	/* Blocks for super block, inode, quota and xattr blocks */
	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);

	return ret;
}

/*
 * Calulate the total number of credits to reserve to fit
5529 5530
 * the modification of a single pages into a single transaction,
 * which may include multiple chunks of block allocations.
5531
 *
5532
 * This could be called via ext4_write_begin()
5533
 *
5534
 * We need to consider the worse case, when
5535
 * one new block per extent.
5536
 */
A
Alex Tomas 已提交
5537
int ext4_writepage_trans_blocks(struct inode *inode)
5538
{
5539
	int bpp = ext4_journal_blocks_per_page(inode);
5540 5541
	int ret;

5542
	ret = ext4_meta_trans_blocks(inode, bpp, 0);
A
Alex Tomas 已提交
5543

5544
	/* Account for data blocks for journalled mode */
5545
	if (ext4_should_journal_data(inode))
5546
		ret += bpp;
5547 5548
	return ret;
}
5549 5550 5551 5552 5553

/*
 * Calculate the journal credits for a chunk of data modification.
 *
 * This is called from DIO, fallocate or whoever calling
5554
 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5555 5556 5557 5558 5559 5560 5561 5562 5563
 *
 * journal buffers for data blocks are not included here, as DIO
 * and fallocate do no need to journal data buffers.
 */
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
	return ext4_meta_trans_blocks(inode, nrblocks, 1);
}

5564
/*
5565
 * The caller must have previously called ext4_reserve_inode_write().
5566 5567
 * Give this, we know that the caller already has write access to iloc->bh.
 */
5568
int ext4_mark_iloc_dirty(handle_t *handle,
5569
			 struct inode *inode, struct ext4_iloc *iloc)
5570 5571 5572
{
	int err = 0;

5573 5574 5575
	if (test_opt(inode->i_sb, I_VERSION))
		inode_inc_iversion(inode);

5576 5577 5578
	/* the do_update_inode consumes one bh->b_count */
	get_bh(iloc->bh);

5579
	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5580
	err = ext4_do_update_inode(handle, inode, iloc);
5581 5582 5583 5584 5585 5586 5587 5588 5589 5590
	put_bh(iloc->bh);
	return err;
}

/*
 * On success, We end up with an outstanding reference count against
 * iloc->bh.  This _must_ be cleaned up later.
 */

int
5591 5592
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
			 struct ext4_iloc *iloc)
5593
{
5594 5595 5596 5597 5598 5599 5600 5601 5602
	int err;

	err = ext4_get_inode_loc(inode, iloc);
	if (!err) {
		BUFFER_TRACE(iloc->bh, "get_write_access");
		err = ext4_journal_get_write_access(handle, iloc->bh);
		if (err) {
			brelse(iloc->bh);
			iloc->bh = NULL;
5603 5604
		}
	}
5605
	ext4_std_error(inode->i_sb, err);
5606 5607 5608
	return err;
}

5609 5610 5611 5612
/*
 * Expand an inode by new_extra_isize bytes.
 * Returns 0 on success or negative error number on failure.
 */
A
Aneesh Kumar K.V 已提交
5613 5614 5615 5616
static int ext4_expand_extra_isize(struct inode *inode,
				   unsigned int new_extra_isize,
				   struct ext4_iloc iloc,
				   handle_t *handle)
5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628
{
	struct ext4_inode *raw_inode;
	struct ext4_xattr_ibody_header *header;

	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
		return 0;

	raw_inode = ext4_raw_inode(&iloc);

	header = IHDR(inode, raw_inode);

	/* No extended attributes present */
5629 5630
	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
			new_extra_isize);
		EXT4_I(inode)->i_extra_isize = new_extra_isize;
		return 0;
	}

	/* try to expand with EAs present */
	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
					  raw_inode, handle);
}

5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662
/*
 * What we do here is to mark the in-core inode as clean with respect to inode
 * dirtiness (it may still be data-dirty).
 * This means that the in-core inode may be reaped by prune_icache
 * without having to perform any I/O.  This is a very good thing,
 * because *any* task may call prune_icache - even ones which
 * have a transaction open against a different journal.
 *
 * Is this cheating?  Not really.  Sure, we haven't written the
 * inode out, but prune_icache isn't a user-visible syncing function.
 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
 * we start and wait on commits.
 *
 * Is this efficient/effective?  Well, we're being nice to the system
 * by cleaning up our inodes proactively so they can be reaped
 * without I/O.  But we are potentially leaving up to five seconds'
 * worth of inodes floating about which prune_icache wants us to
 * write out.  One way to fix that would be to get prune_icache()
 * to do a write_super() to free up some memory.  It has the desired
 * effect.
 */
5663
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5664
{
5665
	struct ext4_iloc iloc;
5666 5667 5668
	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
	static unsigned int mnt_count;
	int err, ret;
5669 5670

	might_sleep();
5671
	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5672
	err = ext4_reserve_inode_write(handle, inode, &iloc);
5673 5674
	if (ext4_handle_valid(handle) &&
	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5675
	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688
		/*
		 * We need extra buffer credits since we may write into EA block
		 * with this same handle. If journal_extend fails, then it will
		 * only result in a minor loss of functionality for that inode.
		 * If this is felt to be critical, then e2fsck should be run to
		 * force a large enough s_min_extra_isize.
		 */
		if ((jbd2_journal_extend(handle,
			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
			ret = ext4_expand_extra_isize(inode,
						      sbi->s_want_extra_isize,
						      iloc, handle);
			if (ret) {
5689 5690
				ext4_set_inode_state(inode,
						     EXT4_STATE_NO_EXPAND);
A
Aneesh Kumar K.V 已提交
5691 5692
				if (mnt_count !=
					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5693
					ext4_warning(inode->i_sb,
5694 5695 5696
					"Unable to expand inode %lu. Delete"
					" some EAs or run e2fsck.",
					inode->i_ino);
A
Aneesh Kumar K.V 已提交
5697 5698
					mnt_count =
					  le16_to_cpu(sbi->s_es->s_mnt_count);
5699 5700 5701 5702
				}
			}
		}
	}
5703
	if (!err)
5704
		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5705 5706 5707 5708
	return err;
}

/*
5709
 * ext4_dirty_inode() is called from __mark_inode_dirty()
5710 5711 5712 5713 5714
 *
 * We're really interested in the case where a file is being extended.
 * i_size has been changed by generic_commit_write() and we thus need
 * to include the updated inode in the current transaction.
 *
5715
 * Also, dquot_alloc_block() will always dirty the inode when blocks
5716 5717 5718 5719 5720 5721
 * are allocated to the file.
 *
 * If the inode is marked synchronous, we don't honour that here - doing
 * so would cause a commit on atime updates, which we don't bother doing.
 * We handle synchronous inodes at the highest possible level.
 */
5722
void ext4_dirty_inode(struct inode *inode)
5723 5724 5725
{
	handle_t *handle;

5726
	handle = ext4_journal_start(inode, 2);
5727 5728
	if (IS_ERR(handle))
		goto out;
5729 5730 5731

	ext4_mark_inode_dirty(handle, inode);

5732
	ext4_journal_stop(handle);
5733 5734 5735 5736 5737 5738 5739 5740
out:
	return;
}

#if 0
/*
 * Bind an inode's backing buffer_head into this transaction, to prevent
 * it from being flushed to disk early.  Unlike
5741
 * ext4_reserve_inode_write, this leaves behind no bh reference and
5742 5743 5744
 * returns no iloc structure, so the caller needs to repeat the iloc
 * lookup to mark the inode dirty later.
 */
5745
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5746
{
5747
	struct ext4_iloc iloc;
5748 5749 5750

	int err = 0;
	if (handle) {
5751
		err = ext4_get_inode_loc(inode, &iloc);
5752 5753
		if (!err) {
			BUFFER_TRACE(iloc.bh, "get_write_access");
5754
			err = jbd2_journal_get_write_access(handle, iloc.bh);
5755
			if (!err)
5756
				err = ext4_handle_dirty_metadata(handle,
5757
								 NULL,
5758
								 iloc.bh);
5759 5760 5761
			brelse(iloc.bh);
		}
	}
5762
	ext4_std_error(inode->i_sb, err);
5763 5764 5765 5766
	return err;
}
#endif

5767
int ext4_change_inode_journal_flag(struct inode *inode, int val)
5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
{
	journal_t *journal;
	handle_t *handle;
	int err;

	/*
	 * We have to be very careful here: changing a data block's
	 * journaling status dynamically is dangerous.  If we write a
	 * data block to the journal, change the status and then delete
	 * that block, we risk forgetting to revoke the old log record
	 * from the journal and so a subsequent replay can corrupt data.
	 * So, first we make sure that the journal is empty and that
	 * nobody is changing anything.
	 */

5783
	journal = EXT4_JOURNAL(inode);
5784 5785
	if (!journal)
		return 0;
5786
	if (is_journal_aborted(journal))
5787 5788
		return -EROFS;

5789 5790
	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
5791 5792 5793 5794 5795 5796 5797 5798 5799 5800

	/*
	 * OK, there are no updates running now, and all cached data is
	 * synced to disk.  We are now in a completely consistent state
	 * which doesn't have anything in the journal, and we know that
	 * no filesystem updates are running, so it is safe to modify
	 * the inode's in-core data-journaling state flag now.
	 */

	if (val)
5801
		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5802
	else
5803
		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5804
	ext4_set_aops(inode);
5805

5806
	jbd2_journal_unlock_updates(journal);
5807 5808 5809

	/* Finally we can mark the inode as dirty. */

5810
	handle = ext4_journal_start(inode, 1);
5811 5812 5813
	if (IS_ERR(handle))
		return PTR_ERR(handle);

5814
	err = ext4_mark_inode_dirty(handle, inode);
5815
	ext4_handle_sync(handle);
5816 5817
	ext4_journal_stop(handle);
	ext4_std_error(inode->i_sb, err);
5818 5819 5820

	return err;
}
5821 5822 5823 5824 5825 5826

static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
	return !buffer_mapped(bh);
}

5827
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5828
{
5829
	struct page *page = vmf->page;
5830 5831 5832
	loff_t size;
	unsigned long len;
	int ret = -EINVAL;
5833
	void *fsdata;
5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857
	struct file *file = vma->vm_file;
	struct inode *inode = file->f_path.dentry->d_inode;
	struct address_space *mapping = inode->i_mapping;

	/*
	 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
	 * get i_mutex because we are already holding mmap_sem.
	 */
	down_read(&inode->i_alloc_sem);
	size = i_size_read(inode);
	if (page->mapping != mapping || size <= page_offset(page)
	    || !PageUptodate(page)) {
		/* page got truncated from under us? */
		goto out_unlock;
	}
	ret = 0;
	if (PageMappedToDisk(page))
		goto out_unlock;

	if (page->index == size >> PAGE_CACHE_SHIFT)
		len = size & ~PAGE_CACHE_MASK;
	else
		len = PAGE_CACHE_SIZE;

5858 5859 5860 5861 5862 5863 5864
	lock_page(page);
	/*
	 * return if we have all the buffers mapped. This avoid
	 * the need to call write_begin/write_end which does a
	 * journal_start/journal_stop which can block and take
	 * long time
	 */
5865 5866
	if (page_has_buffers(page)) {
		if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5867 5868
					ext4_bh_unmapped)) {
			unlock_page(page);
5869
			goto out_unlock;
5870
		}
5871
	}
5872
	unlock_page(page);
5873 5874 5875 5876 5877 5878 5879 5880
	/*
	 * OK, we need to fill the hole... Do write_begin write_end
	 * to do block allocation/reservation.We are not holding
	 * inode.i__mutex here. That allow * parallel write_begin,
	 * write_end call. lock_page prevent this from happening
	 * on the same page though
	 */
	ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5881
			len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5882 5883 5884
	if (ret < 0)
		goto out_unlock;
	ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5885
			len, len, page, fsdata);
5886 5887 5888 5889
	if (ret < 0)
		goto out_unlock;
	ret = 0;
out_unlock:
5890 5891
	if (ret)
		ret = VM_FAULT_SIGBUS;
5892 5893 5894
	up_read(&inode->i_alloc_sem);
	return ret;
}