hrtimer.c 44.0 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34 35 36 37 38 39
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46 47
#include <linux/sched.h>
#include <linux/timer.h>
48 49 50 51 52

#include <asm/uaccess.h>

/*
 * The timer bases:
53 54 55 56 57 58
 *
 * Note: If we want to add new timer bases, we have to skip the two
 * clock ids captured by the cpu-timers. We do this by holding empty
 * entries rather than doing math adjustment of the clock ids.
 * This ensures that we capture erroneous accesses to these clock ids
 * rather than moving them into the range of valid clock id's.
59
 */
60
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
61
{
62 63

	.clock_base =
64
	{
65 66 67
		{
			.index = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
68
			.resolution = KTIME_LOW_RES,
69 70 71 72
		},
		{
			.index = CLOCK_MONOTONIC,
			.get_time = &ktime_get,
73
			.resolution = KTIME_LOW_RES,
74 75
		},
	}
76 77
};

78 79 80 81
/*
 * Get the coarse grained time at the softirq based on xtime and
 * wall_to_monotonic.
 */
82
static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
83 84
{
	ktime_t xtim, tomono;
85
	struct timespec xts, tom;
86 87 88 89
	unsigned long seq;

	do {
		seq = read_seqbegin(&xtime_lock);
90
		xts = current_kernel_time();
91
		tom = wall_to_monotonic;
92 93
	} while (read_seqretry(&xtime_lock, seq));

J
john stultz 已提交
94
	xtim = timespec_to_ktime(xts);
95
	tomono = timespec_to_ktime(tom);
96 97 98
	base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
	base->clock_base[CLOCK_MONOTONIC].softirq_time =
		ktime_add(xtim, tomono);
99 100
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
 * possible to set timer->base = NULL and drop the lock: the timer remains
 * locked.
 */
119 120 121
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
122
{
123
	struct hrtimer_clock_base *base;
124 125 126 127

	for (;;) {
		base = timer->base;
		if (likely(base != NULL)) {
128
			spin_lock_irqsave(&base->cpu_base->lock, *flags);
129 130 131
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
132
			spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
133 134 135 136 137
		}
		cpu_relax();
	}
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

/*
 * Get the preferred target CPU for NOHZ
 */
static int hrtimer_get_target(int this_cpu, int pinned)
{
#ifdef CONFIG_NO_HZ
	if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
		int preferred_cpu = get_nohz_load_balancer();

		if (preferred_cpu >= 0)
			return preferred_cpu;
	}
#endif
	return this_cpu;
}

/*
 * With HIGHRES=y we do not migrate the timer when it is expiring
 * before the next event on the target cpu because we cannot reprogram
 * the target cpu hardware and we would cause it to fire late.
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	ktime_t expires;

	if (!new_base->cpu_base->hres_active)
		return 0;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
#else
	return 0;
#endif
}

178 179 180
/*
 * Switch the timer base to the current CPU when possible.
 */
181
static inline struct hrtimer_clock_base *
182 183
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
184
{
185 186
	struct hrtimer_clock_base *new_base;
	struct hrtimer_cpu_base *new_cpu_base;
187 188
	int this_cpu = smp_processor_id();
	int cpu = hrtimer_get_target(this_cpu, pinned);
189

190 191
again:
	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
192
	new_base = &new_cpu_base->clock_base[base->index];
193 194 195

	if (base != new_base) {
		/*
196
		 * We are trying to move timer to new_base.
197 198 199 200 201 202 203
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
204
		if (unlikely(hrtimer_callback_running(timer)))
205 206 207 208
			return base;

		/* See the comment in lock_timer_base() */
		timer->base = NULL;
209 210
		spin_unlock(&base->cpu_base->lock);
		spin_lock(&new_base->cpu_base->lock);
211

212 213 214 215 216 217
		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
			cpu = this_cpu;
			spin_unlock(&new_base->cpu_base->lock);
			spin_lock(&base->cpu_base->lock);
			timer->base = base;
			goto again;
218
		}
219 220 221 222 223 224 225
		timer->base = new_base;
	}
	return new_base;
}

#else /* CONFIG_SMP */

226
static inline struct hrtimer_clock_base *
227 228
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
229
	struct hrtimer_clock_base *base = timer->base;
230

231
	spin_lock_irqsave(&base->cpu_base->lock, *flags);
232 233 234 235

	return base;
}

236
# define switch_hrtimer_base(t, b, p)	(b)
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
# ifndef CONFIG_KTIME_SCALAR
/**
 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 * @kt:		addend
 * @nsec:	the scalar nsec value to add
 *
 * Returns the sum of kt and nsec in ktime_t format
 */
ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_add(kt, tmp);
}
267 268

EXPORT_SYMBOL_GPL(ktime_add_ns);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

/**
 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 * @kt:		minuend
 * @nsec:	the scalar nsec value to subtract
 *
 * Returns the subtraction of @nsec from @kt in ktime_t format
 */
ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
{
	ktime_t tmp;

	if (likely(nsec < NSEC_PER_SEC)) {
		tmp.tv64 = nsec;
	} else {
		unsigned long rem = do_div(nsec, NSEC_PER_SEC);

		tmp = ktime_set((long)nsec, rem);
	}

	return ktime_sub(kt, tmp);
}

EXPORT_SYMBOL_GPL(ktime_sub_ns);
293 294 295 296 297
# endif /* !CONFIG_KTIME_SCALAR */

/*
 * Divide a ktime value by a nanosecond value
 */
D
Davide Libenzi 已提交
298
u64 ktime_divns(const ktime_t kt, s64 div)
299
{
300
	u64 dclc;
301 302
	int sft = 0;

303
	dclc = ktime_to_ns(kt);
304 305 306 307 308 309 310 311
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
	dclc >>= sft;
	do_div(dclc, (unsigned long) div);

D
Davide Libenzi 已提交
312
	return dclc;
313 314 315
}
#endif /* BITS_PER_LONG >= 64 */

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
	ktime_t res = ktime_add(lhs, rhs);

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

333 334
EXPORT_SYMBOL_GPL(ktime_add_safe);

335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

/*
 * fixup_init is called when:
 * - an active object is initialized
 */
static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
 * - an unknown object is activated (might be a statically initialized object)
 */
static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
{
	switch (state) {

	case ODEBUG_STATE_NOTAVAILABLE:
		WARN_ON_ONCE(1);
		return 0;

	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
		return 0;
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
		return 1;
	default:
		return 0;
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
static int hrtimer_hres_enabled __read_mostly  = 1;

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
	if (!strcmp(str, "off"))
		hrtimer_hres_enabled = 0;
	else if (!strcmp(str, "on"))
		hrtimer_hres_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Is the high resolution mode active ?
 */
static inline int hrtimer_hres_active(void)
{
	return __get_cpu_var(hrtimer_bases).hres_active;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
489 490
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
491 492 493
{
	int i;
	struct hrtimer_clock_base *base = cpu_base->clock_base;
494
	ktime_t expires, expires_next;
495

496
	expires_next.tv64 = KTIME_MAX;
497 498 499 500 501 502 503

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
		struct hrtimer *timer;

		if (!base->first)
			continue;
		timer = rb_entry(base->first, struct hrtimer, node);
504
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
505 506 507 508 509 510 511
		/*
		 * clock_was_set() has changed base->offset so the
		 * result might be negative. Fix it up to prevent a
		 * false positive in clockevents_program_event()
		 */
		if (expires.tv64 < 0)
			expires.tv64 = 0;
512 513
		if (expires.tv64 < expires_next.tv64)
			expires_next = expires;
514 515
	}

516 517 518 519 520
	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
		return;

	cpu_base->expires_next.tv64 = expires_next.tv64;

521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
	if (cpu_base->expires_next.tv64 != KTIME_MAX)
		tick_program_event(cpu_base->expires_next, 1);
}

/*
 * Shared reprogramming for clock_realtime and clock_monotonic
 *
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
static int hrtimer_reprogram(struct hrtimer *timer,
			     struct hrtimer_clock_base *base)
{
	ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
538
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
539 540
	int res;

541
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
542

543 544 545
	/*
	 * When the callback is running, we do not reprogram the clock event
	 * device. The timer callback is either running on a different CPU or
546
	 * the callback is executed in the hrtimer_interrupt context. The
547 548 549 550 551 552
	 * reprogramming is handled either by the softirq, which called the
	 * callback or at the end of the hrtimer_interrupt.
	 */
	if (hrtimer_callback_running(timer))
		return 0;

553 554 555 556 557 558 559 560 561
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
	 * expiry time which is less than base->offset. Nothing wrong
	 * about that, just avoid to call into the tick code, which
	 * has now objections against negative expiry values.
	 */
	if (expires.tv64 < 0)
		return -ETIME;

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	if (expires.tv64 >= expires_next->tv64)
		return 0;

	/*
	 * Clockevents returns -ETIME, when the event was in the past.
	 */
	res = tick_program_event(expires, 0);
	if (!IS_ERR_VALUE(res))
		*expires_next = expires;
	return res;
}


/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
	struct hrtimer_cpu_base *base;
	struct timespec realtime_offset;
	unsigned long seq;

	if (!hrtimer_hres_active())
		return;

	do {
		seq = read_seqbegin(&xtime_lock);
		set_normalized_timespec(&realtime_offset,
					-wall_to_monotonic.tv_sec,
					-wall_to_monotonic.tv_nsec);
	} while (read_seqretry(&xtime_lock, seq));

	base = &__get_cpu_var(hrtimer_bases);

	/* Adjust CLOCK_REALTIME offset */
	spin_lock(&base->lock);
	base->clock_base[CLOCK_REALTIME].offset =
		timespec_to_ktime(realtime_offset);

603
	hrtimer_force_reprogram(base, 0);
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	spin_unlock(&base->lock);
}

/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
	/* Retrigger the CPU local events everywhere */
621
	on_each_cpu(retrigger_next_event, NULL, 1);
622 623
}

624 625 626 627 628 629
/*
 * During resume we might have to reprogram the high resolution timer
 * interrupt (on the local CPU):
 */
void hres_timers_resume(void)
{
630 631 632
	WARN_ONCE(!irqs_disabled(),
		  KERN_INFO "hres_timers_resume() called with IRQs enabled!");

633 634 635
	retrigger_next_event(NULL);
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
/*
 * Initialize the high resolution related parts of cpu_base
 */
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
{
	base->expires_next.tv64 = KTIME_MAX;
	base->hres_active = 0;
}

/*
 * Initialize the high resolution related parts of a hrtimer
 */
static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}

652

653 654 655 656 657 658 659
/*
 * When High resolution timers are active, try to reprogram. Note, that in case
 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 */
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
660 661
					    struct hrtimer_clock_base *base,
					    int wakeup)
662 663
{
	if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
664 665 666 667 668 669 670
		if (wakeup) {
			spin_unlock(&base->cpu_base->lock);
			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
			spin_lock(&base->cpu_base->lock);
		} else
			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);

671
		return 1;
672
	}
673

674 675 676 677 678 679
	return 0;
}

/*
 * Switch to high resolution mode
 */
680
static int hrtimer_switch_to_hres(void)
681
{
I
Ingo Molnar 已提交
682 683
	int cpu = smp_processor_id();
	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
684 685 686
	unsigned long flags;

	if (base->hres_active)
687
		return 1;
688 689 690 691 692

	local_irq_save(flags);

	if (tick_init_highres()) {
		local_irq_restore(flags);
I
Ingo Molnar 已提交
693 694
		printk(KERN_WARNING "Could not switch to high resolution "
				    "mode on CPU %d\n", cpu);
695
		return 0;
696 697 698 699 700 701 702 703 704 705
	}
	base->hres_active = 1;
	base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
	base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;

	tick_setup_sched_timer();

	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
	local_irq_restore(flags);
706
	printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
707
	       smp_processor_id());
708
	return 1;
709 710 711 712 713 714
}

#else

static inline int hrtimer_hres_active(void) { return 0; }
static inline int hrtimer_is_hres_enabled(void) { return 0; }
715
static inline int hrtimer_switch_to_hres(void) { return 0; }
716 717
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
718
static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
719 720
					    struct hrtimer_clock_base *base,
					    int wakeup)
721 722 723 724 725 726 727 728
{
	return 0;
}
static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }

#endif /* CONFIG_HIGH_RES_TIMERS */

729 730 731 732 733 734 735 736 737 738 739 740
#ifdef CONFIG_TIMER_STATS
void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
{
	if (timer->start_site)
		return;

	timer->start_site = addr;
	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
	timer->start_pid = current->pid;
}
#endif

741
/*
742
 * Counterpart to lock_hrtimer_base above:
743 744 745 746
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
747
	spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
748 749 750 751 752
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
753
 * @now:	forward past this time
754 755 756
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
757
 * Returns the number of overruns.
758
 */
D
Davide Libenzi 已提交
759
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
760
{
D
Davide Libenzi 已提交
761
	u64 orun = 1;
762
	ktime_t delta;
763

764
	delta = ktime_sub(now, hrtimer_get_expires(timer));
765 766 767 768

	if (delta.tv64 < 0)
		return 0;

769 770 771
	if (interval.tv64 < timer->base->resolution.tv64)
		interval.tv64 = timer->base->resolution.tv64;

772
	if (unlikely(delta.tv64 >= interval.tv64)) {
773
		s64 incr = ktime_to_ns(interval);
774 775

		orun = ktime_divns(delta, incr);
776 777
		hrtimer_add_expires_ns(timer, incr * orun);
		if (hrtimer_get_expires_tv64(timer) > now.tv64)
778 779 780 781 782 783 784
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
785
	hrtimer_add_expires(timer, interval);
786 787 788

	return orun;
}
S
Stas Sergeev 已提交
789
EXPORT_SYMBOL_GPL(hrtimer_forward);
790 791 792 793 794 795

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
796 797
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
798
 */
799 800
static int enqueue_hrtimer(struct hrtimer *timer,
			   struct hrtimer_clock_base *base)
801 802 803 804
{
	struct rb_node **link = &base->active.rb_node;
	struct rb_node *parent = NULL;
	struct hrtimer *entry;
I
Ingo Molnar 已提交
805
	int leftmost = 1;
806

807 808
	debug_hrtimer_activate(timer);

809 810 811 812 813 814 815 816 817 818
	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct hrtimer, node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same expiry time stay together.
		 */
819 820
		if (hrtimer_get_expires_tv64(timer) <
				hrtimer_get_expires_tv64(entry)) {
821
			link = &(*link)->rb_left;
I
Ingo Molnar 已提交
822
		} else {
823
			link = &(*link)->rb_right;
I
Ingo Molnar 已提交
824 825
			leftmost = 0;
		}
826 827 828
	}

	/*
829 830
	 * Insert the timer to the rbtree and check whether it
	 * replaces the first pending timer
831
	 */
832
	if (leftmost)
833 834
		base->first = &timer->node;

835 836
	rb_link_node(&timer->node, parent, link);
	rb_insert_color(&timer->node, &base->active);
837 838 839 840 841
	/*
	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
	 * state of a possibly running callback.
	 */
	timer->state |= HRTIMER_STATE_ENQUEUED;
842 843

	return leftmost;
844
}
845 846 847 848 849

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
850 851 852 853 854
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
855
 */
856
static void __remove_hrtimer(struct hrtimer *timer,
857
			     struct hrtimer_clock_base *base,
858
			     unsigned long newstate, int reprogram)
859
{
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
		goto out;

	/*
	 * Remove the timer from the rbtree and replace the first
	 * entry pointer if necessary.
	 */
	if (base->first == &timer->node) {
		base->first = rb_next(&timer->node);
#ifdef CONFIG_HIGH_RES_TIMERS
		/* Reprogram the clock event device. if enabled */
		if (reprogram && hrtimer_hres_active()) {
			ktime_t expires;

			expires = ktime_sub(hrtimer_get_expires(timer),
					    base->offset);
			if (base->cpu_base->expires_next.tv64 == expires.tv64)
				hrtimer_force_reprogram(base->cpu_base, 1);
878
		}
879
#endif
880
	}
881 882
	rb_erase(&timer->node, &base->active);
out:
883
	timer->state = newstate;
884 885 886 887 888 889
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
890
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
891
{
892
	if (hrtimer_is_queued(timer)) {
893 894 895 896 897 898 899 900 901 902
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
903
		debug_hrtimer_deactivate(timer);
904
		timer_stats_hrtimer_clear_start_info(timer);
905 906 907
		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
		__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
				 reprogram);
908 909 910 911 912
		return 1;
	}
	return 0;
}

913 914 915
int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode,
		int wakeup)
916
{
917
	struct hrtimer_clock_base *base, *new_base;
918
	unsigned long flags;
919
	int ret, leftmost;
920 921 922 923 924 925 926

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
	ret = remove_hrtimer(timer, base);

	/* Switch the timer base, if necessary: */
927
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
928

929
	if (mode & HRTIMER_MODE_REL) {
930
		tim = ktime_add_safe(tim, new_base->get_time());
931 932 933 934 935 936 937 938
		/*
		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
		 * to signal that they simply return xtime in
		 * do_gettimeoffset(). In this case we want to round up by
		 * resolution when starting a relative timer, to avoid short
		 * timeouts. This will go away with the GTOD framework.
		 */
#ifdef CONFIG_TIME_LOW_RES
939
		tim = ktime_add_safe(tim, base->resolution);
940 941
#endif
	}
942

943
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
944

945 946
	timer_stats_hrtimer_set_start_info(timer);

947 948
	leftmost = enqueue_hrtimer(timer, new_base);

949 950 951
	/*
	 * Only allow reprogramming if the new base is on this CPU.
	 * (it might still be on another CPU if the timer was pending)
952 953
	 *
	 * XXX send_remote_softirq() ?
954
	 */
955
	if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
956
		hrtimer_enqueue_reprogram(timer, new_base, wakeup);
957 958 959 960 961

	unlock_hrtimer_base(timer, &flags);

	return ret;
}
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978

/**
 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
		unsigned long delta_ns, const enum hrtimer_mode mode)
{
	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
}
979 980 981
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

/**
T
Thomas Gleixner 已提交
982
 * hrtimer_start - (re)start an hrtimer on the current CPU
983 984 985 986 987 988 989 990 991 992 993
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @mode:	expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 *
 * Returns:
 *  0 on success
 *  1 when the timer was active
 */
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
994
	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
995
}
996
EXPORT_SYMBOL_GPL(hrtimer_start);
997

998

999 1000 1001 1002 1003 1004 1005 1006
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 * -1 when the timer is currently excuting the callback function and
1007
 *    cannot be stopped
1008 1009 1010
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
1011
	struct hrtimer_clock_base *base;
1012 1013 1014 1015 1016
	unsigned long flags;
	int ret = -1;

	base = lock_hrtimer_base(timer, &flags);

1017
	if (!hrtimer_callback_running(timer))
1018 1019 1020 1021 1022 1023 1024
		ret = remove_hrtimer(timer, base);

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1025
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1042
		cpu_relax();
1043 1044
	}
}
1045
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1046 1047 1048 1049 1050 1051 1052

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
 */
ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
{
1053
	struct hrtimer_clock_base *base;
1054 1055 1056 1057
	unsigned long flags;
	ktime_t rem;

	base = lock_hrtimer_base(timer, &flags);
1058
	rem = hrtimer_expires_remaining(timer);
1059 1060 1061 1062
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1063
EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1064

1065
#ifdef CONFIG_NO_HZ
1066 1067 1068 1069 1070 1071 1072 1073
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 * is pending.
 */
ktime_t hrtimer_get_next_event(void)
{
1074 1075
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base = cpu_base->clock_base;
1076 1077 1078 1079
	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
	unsigned long flags;
	int i;

1080 1081
	spin_lock_irqsave(&cpu_base->lock, flags);

1082 1083 1084
	if (!hrtimer_hres_active()) {
		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
			struct hrtimer *timer;
1085

1086 1087
			if (!base->first)
				continue;
1088

1089
			timer = rb_entry(base->first, struct hrtimer, node);
1090
			delta.tv64 = hrtimer_get_expires_tv64(timer);
1091 1092 1093 1094
			delta = ktime_sub(delta, base->get_time());
			if (delta.tv64 < mindelta.tv64)
				mindelta.tv64 = delta.tv64;
		}
1095
	}
1096 1097 1098

	spin_unlock_irqrestore(&cpu_base->lock, flags);

1099 1100 1101 1102 1103 1104
	if (mindelta.tv64 < 0)
		mindelta.tv64 = 0;
	return mindelta;
}
#endif

1105 1106
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1107
{
1108
	struct hrtimer_cpu_base *cpu_base;
1109

1110 1111
	memset(timer, 0, sizeof(struct hrtimer));

1112
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1113

1114
	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1115 1116
		clock_id = CLOCK_MONOTONIC;

1117
	timer->base = &cpu_base->clock_base[clock_id];
1118
	hrtimer_init_timer_hres(timer);
1119 1120 1121 1122 1123 1124

#ifdef CONFIG_TIMER_STATS
	timer->start_site = NULL;
	timer->start_pid = -1;
	memset(timer->start_comm, 0, TASK_COMM_LEN);
#endif
1125
}
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
 * @mode:	timer mode abs/rel
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	__hrtimer_init(timer, clock_id, mode);
}
1139
EXPORT_SYMBOL_GPL(hrtimer_init);
1140 1141 1142 1143 1144 1145

/**
 * hrtimer_get_res - get the timer resolution for a clock
 * @which_clock: which clock to query
 * @tp:		 pointer to timespec variable to store the resolution
 *
1146 1147
 * Store the resolution of the clock selected by @which_clock in the
 * variable pointed to by @tp.
1148 1149 1150
 */
int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
{
1151
	struct hrtimer_cpu_base *cpu_base;
1152

1153 1154
	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
	*tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1155 1156 1157

	return 0;
}
1158
EXPORT_SYMBOL_GPL(hrtimer_get_res);
1159

1160 1161 1162 1163 1164 1165 1166
static void __run_hrtimer(struct hrtimer *timer)
{
	struct hrtimer_clock_base *base = timer->base;
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1167 1168
	WARN_ON(!irqs_disabled());

1169
	debug_hrtimer_deactivate(timer);
1170 1171 1172
	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
	timer_stats_account_hrtimer(timer);
	fn = timer->function;
1173 1174 1175 1176 1177 1178 1179 1180 1181

	/*
	 * Because we run timers from hardirq context, there is no chance
	 * they get migrated to another cpu, therefore its safe to unlock
	 * the timer base.
	 */
	spin_unlock(&cpu_base->lock);
	restart = fn(timer);
	spin_lock(&cpu_base->lock);
1182 1183

	/*
T
Thomas Gleixner 已提交
1184 1185 1186
	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
	 * we do not reprogramm the event hardware. Happens either in
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1187 1188 1189
	 */
	if (restart != HRTIMER_NORESTART) {
		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1190
		enqueue_hrtimer(timer, base);
1191 1192 1193 1194
	}
	timer->state &= ~HRTIMER_STATE_CALLBACK;
}

1195 1196
#ifdef CONFIG_HIGH_RES_TIMERS

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
static int force_clock_reprogram;

/*
 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
 * is hanging, which could happen with something that slows the interrupt
 * such as the tracing. Then we force the clock reprogramming for each future
 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
 * threshold that we will overwrite.
 * The next tick event will be scheduled to 3 times we currently spend on
 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
 * 1/4 of their time to process the hrtimer interrupts. This is enough to
 * let it running without serious starvation.
 */

static inline void
hrtimer_interrupt_hanging(struct clock_event_device *dev,
			ktime_t try_time)
{
	force_clock_reprogram = 1;
	dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
	printk(KERN_WARNING "hrtimer: interrupt too slow, "
		"forcing clock min delta to %lu ns\n", dev->min_delta_ns);
}
1220 1221 1222 1223 1224 1225 1226 1227 1228
/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	ktime_t expires_next, now;
1229
	int nr_retries = 0;
1230
	int i;
1231 1232 1233 1234 1235 1236

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
	dev->next_event.tv64 = KTIME_MAX;

 retry:
1237 1238 1239 1240
	/* 5 retries is enough to notice a hang */
	if (!(++nr_retries % 5))
		hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));

1241 1242 1243 1244
	now = ktime_get();

	expires_next.tv64 = KTIME_MAX;

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	spin_lock(&cpu_base->lock);
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
	cpu_base->expires_next.tv64 = KTIME_MAX;

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
	base = cpu_base->clock_base;

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
		ktime_t basenow;
		struct rb_node *node;

		basenow = ktime_add(now, base->offset);

		while ((node = base->first)) {
			struct hrtimer *timer;

			timer = rb_entry(node, struct hrtimer, node);

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */

			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1282 1283
				ktime_t expires;

1284
				expires = ktime_sub(hrtimer_get_expires(timer),
1285 1286 1287 1288 1289 1290
						    base->offset);
				if (expires.tv64 < expires_next.tv64)
					expires_next = expires;
				break;
			}

1291
			__run_hrtimer(timer);
1292 1293 1294 1295
		}
		base++;
	}

1296 1297 1298 1299
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1300
	cpu_base->expires_next = expires_next;
1301
	spin_unlock(&cpu_base->lock);
1302 1303 1304

	/* Reprogramming necessary ? */
	if (expires_next.tv64 != KTIME_MAX) {
1305
		if (tick_program_event(expires_next, force_clock_reprogram))
1306 1307 1308 1309
			goto retry;
	}
}

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/*
 * local version of hrtimer_peek_ahead_timers() called with interrupts
 * disabled.
 */
static void __hrtimer_peek_ahead_timers(void)
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

	td = &__get_cpu_var(tick_cpu_device);
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
/**
 * hrtimer_peek_ahead_timers -- run soft-expired timers now
 *
 * hrtimer_peek_ahead_timers will peek at the timer queue of
 * the current cpu and check if there are any timers for which
 * the soft expires time has passed. If any such timers exist,
 * they are run immediately and then removed from the timer queue.
 *
 */
void hrtimer_peek_ahead_timers(void)
{
1337
	unsigned long flags;
1338

1339
	local_irq_save(flags);
1340
	__hrtimer_peek_ahead_timers();
1341 1342 1343
	local_irq_restore(flags);
}

1344 1345 1346 1347 1348
static void run_hrtimer_softirq(struct softirq_action *h)
{
	hrtimer_peek_ahead_timers();
}

1349 1350 1351 1352 1353
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/*
 * Called from timer softirq every jiffy, expire hrtimers:
 *
 * For HRT its the fall back code to run the softirq in the timer
 * softirq context in case the hrtimer initialization failed or has
 * not been done yet.
 */
void hrtimer_run_pending(void)
{
	if (hrtimer_hres_active())
		return;
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	/*
	 * This _is_ ugly: We have to check in the softirq context,
	 * whether we can switch to highres and / or nohz mode. The
	 * clocksource switch happens in the timer interrupt with
	 * xtime_lock held. Notification from there only sets the
	 * check bit in the tick_oneshot code, otherwise we might
	 * deadlock vs. xtime_lock.
	 */
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
		hrtimer_switch_to_hres();
1377 1378
}

1379
/*
1380
 * Called from hardirq context every jiffy
1381
 */
1382
void hrtimer_run_queues(void)
1383
{
1384
	struct rb_node *node;
1385 1386 1387
	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
	struct hrtimer_clock_base *base;
	int index, gettime = 1;
1388

1389
	if (hrtimer_hres_active())
1390 1391
		return;

1392 1393
	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
		base = &cpu_base->clock_base[index];
1394

1395
		if (!base->first)
1396
			continue;
1397

1398
		if (gettime) {
1399 1400
			hrtimer_get_softirq_time(cpu_base);
			gettime = 0;
1401
		}
1402

1403
		spin_lock(&cpu_base->lock);
1404

1405 1406
		while ((node = base->first)) {
			struct hrtimer *timer;
1407

1408
			timer = rb_entry(node, struct hrtimer, node);
1409 1410
			if (base->softirq_time.tv64 <=
					hrtimer_get_expires_tv64(timer))
1411 1412 1413 1414 1415 1416
				break;

			__run_hrtimer(timer);
		}
		spin_unlock(&cpu_base->lock);
	}
1417 1418
}

1419 1420 1421
/*
 * Sleep related functions:
 */
1422
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1435
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1436 1437 1438 1439 1440
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}

1441
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1442
{
1443
	hrtimer_init_sleeper(t, current);
1444

1445 1446
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1447
		hrtimer_start_expires(&t->timer, mode);
P
Peter Zijlstra 已提交
1448 1449
		if (!hrtimer_active(&t->timer))
			t->task = NULL;
1450

1451 1452
		if (likely(t->task))
			schedule();
1453

1454
		hrtimer_cancel(&t->timer);
1455
		mode = HRTIMER_MODE_ABS;
1456 1457

	} while (t->task && !signal_pending(current));
1458

1459 1460
	__set_current_state(TASK_RUNNING);

1461
	return t->task == NULL;
1462 1463
}

1464 1465 1466 1467 1468
static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
{
	struct timespec rmt;
	ktime_t rem;

1469
	rem = hrtimer_expires_remaining(timer);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	if (rem.tv64 <= 0)
		return 0;
	rmt = ktime_to_timespec(rem);

	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
		return -EFAULT;

	return 1;
}

1480
long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1481
{
1482
	struct hrtimer_sleeper t;
1483
	struct timespec __user  *rmtp;
1484
	int ret = 0;
1485

1486 1487
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
				HRTIMER_MODE_ABS);
1488
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1489

1490
	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1491
		goto out;
1492

1493
	rmtp = restart->nanosleep.rmtp;
1494
	if (rmtp) {
1495
		ret = update_rmtp(&t.timer, rmtp);
1496
		if (ret <= 0)
1497
			goto out;
1498
	}
1499 1500

	/* The other values in restart are already filled in */
1501 1502 1503 1504
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1505 1506
}

1507
long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1508 1509 1510
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
	struct restart_block *restart;
1511
	struct hrtimer_sleeper t;
1512
	int ret = 0;
1513 1514 1515 1516 1517
	unsigned long slack;

	slack = current->timer_slack_ns;
	if (rt_task(current))
		slack = 0;
1518

1519
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1520
	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1521
	if (do_nanosleep(&t, mode))
1522
		goto out;
1523

1524
	/* Absolute timers do not update the rmtp value and restart: */
1525 1526 1527 1528
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1529

1530
	if (rmtp) {
1531
		ret = update_rmtp(&t.timer, rmtp);
1532
		if (ret <= 0)
1533
			goto out;
1534
	}
1535 1536

	restart = &current_thread_info()->restart_block;
1537
	restart->fn = hrtimer_nanosleep_restart;
1538 1539
	restart->nanosleep.index = t.timer.base->index;
	restart->nanosleep.rmtp = rmtp;
1540
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1541

1542 1543 1544 1545
	ret = -ERESTART_RESTARTBLOCK;
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1546 1547
}

1548 1549
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1550
{
1551
	struct timespec tu;
1552 1553 1554 1555 1556 1557 1558

	if (copy_from_user(&tu, rqtp, sizeof(tu)))
		return -EFAULT;

	if (!timespec_valid(&tu))
		return -EINVAL;

1559
	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1560 1561
}

1562 1563 1564
/*
 * Functions related to boot-time initialization:
 */
R
Randy Dunlap 已提交
1565
static void __cpuinit init_hrtimers_cpu(int cpu)
1566
{
1567
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1568 1569
	int i;

1570 1571 1572 1573 1574
	spin_lock_init(&cpu_base->lock);

	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
		cpu_base->clock_base[i].cpu_base = cpu_base;

1575
	hrtimer_init_hres(cpu_base);
1576 1577 1578 1579
}

#ifdef CONFIG_HOTPLUG_CPU

1580
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1581
				struct hrtimer_clock_base *new_base)
1582 1583 1584 1585 1586 1587
{
	struct hrtimer *timer;
	struct rb_node *node;

	while ((node = rb_first(&old_base->active))) {
		timer = rb_entry(node, struct hrtimer, node);
1588
		BUG_ON(hrtimer_callback_running(timer));
1589
		debug_hrtimer_deactivate(timer);
T
Thomas Gleixner 已提交
1590 1591 1592 1593 1594 1595 1596

		/*
		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1597
		timer->base = new_base;
1598
		/*
T
Thomas Gleixner 已提交
1599 1600 1601 1602 1603 1604
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1605
		 */
1606
		enqueue_hrtimer(timer, new_base);
1607

T
Thomas Gleixner 已提交
1608 1609
		/* Clear the migration state bit */
		timer->state &= ~HRTIMER_STATE_MIGRATE;
1610 1611 1612
	}
}

1613
static void migrate_hrtimers(int scpu)
1614
{
1615
	struct hrtimer_cpu_base *old_base, *new_base;
1616
	int i;
1617

1618 1619
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1620 1621 1622 1623

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
	new_base = &__get_cpu_var(hrtimer_bases);
1624 1625 1626 1627
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1628
	spin_lock(&new_base->lock);
1629
	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1630

1631
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1632
		migrate_hrtimer_list(&old_base->clock_base[i],
1633
				     &new_base->clock_base[i]);
1634 1635
	}

1636
	spin_unlock(&old_base->lock);
1637
	spin_unlock(&new_base->lock);
1638

1639 1640 1641
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1642
}
1643

1644 1645
#endif /* CONFIG_HOTPLUG_CPU */

1646
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1647 1648
					unsigned long action, void *hcpu)
{
1649
	int scpu = (long)hcpu;
1650 1651 1652 1653

	switch (action) {

	case CPU_UP_PREPARE:
1654
	case CPU_UP_PREPARE_FROZEN:
1655
		init_hrtimers_cpu(scpu);
1656 1657 1658
		break;

#ifdef CONFIG_HOTPLUG_CPU
1659 1660 1661 1662
	case CPU_DYING:
	case CPU_DYING_FROZEN:
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
		break;
1663
	case CPU_DEAD:
1664
	case CPU_DEAD_FROZEN:
1665
	{
1666
		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1667
		migrate_hrtimers(scpu);
1668
		break;
1669
	}
1670 1671 1672 1673 1674 1675 1676 1677 1678
#endif

	default:
		break;
	}

	return NOTIFY_OK;
}

1679
static struct notifier_block __cpuinitdata hrtimers_nb = {
1680 1681 1682 1683 1684 1685 1686 1687
	.notifier_call = hrtimer_cpu_notify,
};

void __init hrtimers_init(void)
{
	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
			  (void *)(long)smp_processor_id());
	register_cpu_notifier(&hrtimers_nb);
1688 1689 1690
#ifdef CONFIG_HIGH_RES_TIMERS
	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
1691 1692
}

1693
/**
1694
 * schedule_hrtimeout_range - sleep until timeout
1695
 * @expires:	timeout value (ktime_t)
1696
 * @delta:	slack in expires timeout (ktime_t)
1697 1698 1699 1700 1701 1702
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
1703 1704 1705 1706 1707
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
1721
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
			       const enum hrtimer_mode mode)
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
	if (expires && !expires->tv64) {
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
	 * A NULL parameter means "inifinte"
	 */
	if (!expires) {
		schedule();
		__set_current_state(TASK_RUNNING);
		return -EINTR;
	}

	hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1745
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1746 1747 1748

	hrtimer_init_sleeper(&t, current);

1749
	hrtimer_start_expires(&t.timer, mode);
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	if (!hrtimer_active(&t.timer))
		t.task = NULL;

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
 * pass before the routine returns.
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
 * delivered to the current task.
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
 * Returns 0 when the timer has expired otherwise -EINTR
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1792
EXPORT_SYMBOL_GPL(schedule_hrtimeout);