tick-sched.c 27.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 *  linux/kernel/time/tick-sched.c
 *
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
 *
 *  No idle tick implementation for low and high resolution timers
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
P
Pavel Machek 已提交
12
 *  Distribute under GPLv2.
13 14 15 16 17 18 19 20 21
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
22
#include <linux/module.h>
23
#include <linux/irq_work.h>
24

25 26
#include <asm/irq_regs.h>

27 28 29 30 31
#include "tick-internal.h"

/*
 * Per cpu nohz control structure
 */
32
DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
33 34

/*
35
 * The time, when the last jiffy update happened. Protected by jiffies_lock.
36 37 38
 */
static ktime_t last_jiffies_update;

39 40 41 42 43
struct tick_sched *tick_get_tick_sched(int cpu)
{
	return &per_cpu(tick_cpu_sched, cpu);
}

44 45 46 47 48 49 50 51
/*
 * Must be called with interrupts disabled !
 */
static void tick_do_update_jiffies64(ktime_t now)
{
	unsigned long ticks = 0;
	ktime_t delta;

52
	/*
53
	 * Do a quick check without holding jiffies_lock:
54 55 56 57 58
	 */
	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 < tick_period.tv64)
		return;

59 60
	/* Reevalute with jiffies_lock held */
	write_seqlock(&jiffies_lock);
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

	delta = ktime_sub(now, last_jiffies_update);
	if (delta.tv64 >= tick_period.tv64) {

		delta = ktime_sub(delta, tick_period);
		last_jiffies_update = ktime_add(last_jiffies_update,
						tick_period);

		/* Slow path for long timeouts */
		if (unlikely(delta.tv64 >= tick_period.tv64)) {
			s64 incr = ktime_to_ns(tick_period);

			ticks = ktime_divns(delta, incr);

			last_jiffies_update = ktime_add_ns(last_jiffies_update,
							   incr * ticks);
		}
		do_timer(++ticks);
79 80 81

		/* Keep the tick_next_period variable up to date */
		tick_next_period = ktime_add(last_jiffies_update, tick_period);
82
	}
83
	write_sequnlock(&jiffies_lock);
84 85 86 87 88 89 90 91 92
}

/*
 * Initialize and return retrieve the jiffies update.
 */
static ktime_t tick_init_jiffy_update(void)
{
	ktime_t period;

93
	write_seqlock(&jiffies_lock);
94 95 96 97
	/* Did we start the jiffies update yet ? */
	if (last_jiffies_update.tv64 == 0)
		last_jiffies_update = tick_next_period;
	period = last_jiffies_update;
98
	write_sequnlock(&jiffies_lock);
99 100 101
	return period;
}

102 103 104 105 106

static void tick_sched_do_timer(ktime_t now)
{
	int cpu = smp_processor_id();

107
#ifdef CONFIG_NO_HZ_COMMON
108 109 110 111 112
	/*
	 * Check if the do_timer duty was dropped. We don't care about
	 * concurrency: This happens only when the cpu in charge went
	 * into a long sleep. If two cpus happen to assign themself to
	 * this duty, then the jiffies update is still serialized by
113
	 * jiffies_lock.
114
	 */
115
	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
116
	    && !tick_nohz_full_cpu(cpu))
117 118 119 120 121 122 123 124
		tick_do_timer_cpu = cpu;
#endif

	/* Check, if the jiffies need an update */
	if (tick_do_timer_cpu == cpu)
		tick_do_update_jiffies64(now);
}

125 126
static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
{
127
#ifdef CONFIG_NO_HZ_COMMON
128 129 130 131 132 133 134 135 136 137 138 139 140
	/*
	 * When we are idle and the tick is stopped, we have to touch
	 * the watchdog as we might not schedule for a really long
	 * time. This happens on complete idle SMP systems while
	 * waiting on the login prompt. We also increment the "start of
	 * idle" jiffy stamp so the idle accounting adjustment we do
	 * when we go busy again does not account too much ticks.
	 */
	if (ts->tick_stopped) {
		touch_softlockup_watchdog();
		if (is_idle_task(current))
			ts->idle_jiffies++;
	}
141
#endif
142 143 144 145
	update_process_times(user_mode(regs));
	profile_tick(CPU_PROFILING);
}

146 147 148
#ifdef CONFIG_NO_HZ_FULL
static cpumask_var_t nohz_full_mask;
bool have_nohz_full_mask;
149

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
/*
 * Re-evaluate the need for the tick on the current CPU
 * and restart it if necessary.
 */
static void tick_nohz_full_check(void)
{
	/*
	 * STUB for now, will be filled with the full tick stop/restart
	 * infrastructure patches
	 */
}

static void nohz_full_kick_work_func(struct irq_work *work)
{
	tick_nohz_full_check();
}

static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
	.func = nohz_full_kick_work_func,
};

/*
 * Kick the current CPU if it's full dynticks in order to force it to
 * re-evaluate its dependency on the tick and restart it if necessary.
 */
void tick_nohz_full_kick(void)
{
	if (tick_nohz_full_cpu(smp_processor_id()))
		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
}

static void nohz_full_kick_ipi(void *info)
{
	tick_nohz_full_check();
}

/*
 * Kick all full dynticks CPUs in order to force these to re-evaluate
 * their dependency on the tick and restart it if necessary.
 */
void tick_nohz_full_kick_all(void)
{
	if (!have_nohz_full_mask)
		return;

	preempt_disable();
	smp_call_function_many(nohz_full_mask,
			       nohz_full_kick_ipi, NULL, false);
	preempt_enable();
}

201
int tick_nohz_full_cpu(int cpu)
202
{
203
	if (!have_nohz_full_mask)
204 205
		return 0;

206
	return cpumask_test_cpu(cpu, nohz_full_mask);
207 208 209
}

/* Parse the boot-time nohz CPU list from the kernel parameters. */
210
static int __init tick_nohz_full_setup(char *str)
211
{
212 213
	int cpu;

214
	alloc_bootmem_cpumask_var(&nohz_full_mask);
215
	if (cpulist_parse(str, nohz_full_mask) < 0) {
216
		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
217 218 219 220 221 222 223 224 225 226
		return 1;
	}

	cpu = smp_processor_id();
	if (cpumask_test_cpu(cpu, nohz_full_mask)) {
		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
		cpumask_clear_cpu(cpu, nohz_full_mask);
	}
	have_nohz_full_mask = true;

227 228
	return 1;
}
229
__setup("nohz_full=", tick_nohz_full_setup);
230

231 232 233 234 235 236 237 238 239 240 241 242
static int __cpuinit tick_nohz_cpu_down_callback(struct notifier_block *nfb,
						 unsigned long action,
						 void *hcpu)
{
	unsigned int cpu = (unsigned long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
		/*
		 * If we handle the timekeeping duty for full dynticks CPUs,
		 * we can't safely shutdown that CPU.
		 */
243
		if (have_nohz_full_mask && tick_do_timer_cpu == cpu)
244 245 246 247 248 249
			return -EINVAL;
		break;
	}
	return NOTIFY_OK;
}

250 251 252 253 254
/*
 * Worst case string length in chunks of CPU range seems 2 steps
 * separations: 0,2,4,6,...
 * This is NR_CPUS + sizeof('\0')
 */
255
static char __initdata nohz_full_buf[NR_CPUS + 1];
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static int tick_nohz_init_all(void)
{
	int err = -1;

#ifdef CONFIG_NO_HZ_FULL_ALL
	if (!alloc_cpumask_var(&nohz_full_mask, GFP_KERNEL)) {
		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
		return err;
	}
	err = 0;
	cpumask_setall(nohz_full_mask);
	cpumask_clear_cpu(smp_processor_id(), nohz_full_mask);
	have_nohz_full_mask = true;
#endif
	return err;
}

274
void __init tick_nohz_init(void)
275
{
276 277
	int cpu;

278 279 280 281
	if (!have_nohz_full_mask) {
		if (tick_nohz_init_all() < 0)
			return;
	}
282 283 284 285 286 287 288 289 290 291 292

	cpu_notifier(tick_nohz_cpu_down_callback, 0);

	/* Make sure full dynticks CPU are also RCU nocbs */
	for_each_cpu(cpu, nohz_full_mask) {
		if (!rcu_is_nocb_cpu(cpu)) {
			pr_warning("NO_HZ: CPU %d is not RCU nocb: "
				   "cleared from nohz_full range", cpu);
			cpumask_clear_cpu(cpu, nohz_full_mask);
		}
	}
293

294 295
	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), nohz_full_mask);
	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
296 297
}
#else
298
#define have_nohz_full_mask (0)
299 300
#endif

301 302 303
/*
 * NOHZ - aka dynamic tick functionality
 */
304
#ifdef CONFIG_NO_HZ_COMMON
305 306 307
/*
 * NO HZ enabled ?
 */
308
int tick_nohz_enabled __read_mostly  = 1;
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

/*
 * Enable / Disable tickless mode
 */
static int __init setup_tick_nohz(char *str)
{
	if (!strcmp(str, "off"))
		tick_nohz_enabled = 0;
	else if (!strcmp(str, "on"))
		tick_nohz_enabled = 1;
	else
		return 0;
	return 1;
}

__setup("nohz=", setup_tick_nohz);

/**
 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 *
 * Called from interrupt entry when the CPU was idle
 *
 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 * value. We do this unconditionally on any cpu, as we don't know whether the
 * cpu, which has the update task assigned is in a long sleep.
 */
336
static void tick_nohz_update_jiffies(ktime_t now)
337 338 339 340 341
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	unsigned long flags;

342
	ts->idle_waketime = now;
343 344 345 346

	local_irq_save(flags);
	tick_do_update_jiffies64(now);
	local_irq_restore(flags);
347 348

	touch_softlockup_watchdog();
349 350
}

351 352 353
/*
 * Updates the per cpu time idle statistics counters
 */
354
static void
355
update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
356
{
357
	ktime_t delta;
358

359 360
	if (ts->idle_active) {
		delta = ktime_sub(now, ts->idle_entrytime);
361
		if (nr_iowait_cpu(cpu) > 0)
362
			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
363 364
		else
			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
365
		ts->idle_entrytime = now;
366
	}
367

368
	if (last_update_time)
369 370
		*last_update_time = ktime_to_us(now);

371 372 373 374 375 376
}

static void tick_nohz_stop_idle(int cpu, ktime_t now)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

377
	update_ts_time_stats(cpu, ts, now, NULL);
378
	ts->idle_active = 0;
379

380
	sched_clock_idle_wakeup_event(0);
381 382
}

383
static ktime_t tick_nohz_start_idle(int cpu, struct tick_sched *ts)
384
{
385
	ktime_t now = ktime_get();
386

387 388
	ts->idle_entrytime = now;
	ts->idle_active = 1;
389
	sched_clock_idle_sleep_event();
390 391 392
	return now;
}

393 394 395
/**
 * get_cpu_idle_time_us - get the total idle time of a cpu
 * @cpu: CPU number to query
396 397
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
398 399
 *
 * Return the cummulative idle time (since boot) for a given
400
 * CPU, in microseconds.
401 402 403 404 405 406
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
407 408 409
u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
410
	ktime_t now, idle;
411

412 413 414
	if (!tick_nohz_enabled)
		return -1;

415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		idle = ts->idle_sleeptime;
	} else {
		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);

			idle = ktime_add(ts->idle_sleeptime, delta);
		} else {
			idle = ts->idle_sleeptime;
		}
	}

	return ktime_to_us(idle);
430

431
}
432
EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
433

434
/**
435 436
 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 * @cpu: CPU number to query
437 438
 * @last_update_time: variable to store update time in. Do not update
 * counters if NULL.
439 440 441 442 443 444 445 446 447 448 449 450
 *
 * Return the cummulative iowait time (since boot) for a given
 * CPU, in microseconds.
 *
 * This time is measured via accounting rather than sampling,
 * and is as accurate as ktime_get() is.
 *
 * This function returns -1 if NOHZ is not enabled.
 */
u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
451
	ktime_t now, iowait;
452 453 454 455

	if (!tick_nohz_enabled)
		return -1;

456 457 458 459 460 461 462
	now = ktime_get();
	if (last_update_time) {
		update_ts_time_stats(cpu, ts, now, last_update_time);
		iowait = ts->iowait_sleeptime;
	} else {
		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
463

464 465 466 467 468
			iowait = ktime_add(ts->iowait_sleeptime, delta);
		} else {
			iowait = ts->iowait_sleeptime;
		}
	}
469

470
	return ktime_to_us(iowait);
471 472 473
}
EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);

474 475
static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
					 ktime_t now, int cpu)
476
{
477
	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
478
	ktime_t last_update, expires, ret = { .tv64 = 0 };
479
	unsigned long rcu_delta_jiffies;
480
	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
481
	u64 time_delta;
482 483 484

	/* Read jiffies and the time when jiffies were updated last */
	do {
485
		seq = read_seqbegin(&jiffies_lock);
486 487
		last_update = last_jiffies_update;
		last_jiffies = jiffies;
T
Thomas Gleixner 已提交
488
		time_delta = timekeeping_max_deferment();
489
	} while (read_seqretry(&jiffies_lock, seq));
490

491
	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
492
	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
493
		next_jiffies = last_jiffies + 1;
I
Ingo Molnar 已提交
494
		delta_jiffies = 1;
495 496 497 498
	} else {
		/* Get the next timer wheel timer */
		next_jiffies = get_next_timer_interrupt(last_jiffies);
		delta_jiffies = next_jiffies - last_jiffies;
499 500 501 502
		if (rcu_delta_jiffies < delta_jiffies) {
			next_jiffies = last_jiffies + rcu_delta_jiffies;
			delta_jiffies = rcu_delta_jiffies;
		}
503
	}
504 505 506 507
	/*
	 * Do not stop the tick, if we are only one off
	 * or if the cpu is required for rcu
	 */
I
Ingo Molnar 已提交
508
	if (!ts->tick_stopped && delta_jiffies == 1)
509 510 511 512 513
		goto out;

	/* Schedule the tick, if we are at least one jiffie off */
	if ((long)delta_jiffies >= 1) {

514 515 516 517 518 519
		/*
		 * If this cpu is the one which updates jiffies, then
		 * give up the assignment and let it be taken by the
		 * cpu which runs the tick timer next, which might be
		 * this cpu as well. If we don't drop this here the
		 * jiffies might be stale and do_timer() never
T
Thomas Gleixner 已提交
520 521 522 523 524 525
		 * invoked. Keep track of the fact that it was the one
		 * which had the do_timer() duty last. If this cpu is
		 * the one which had the do_timer() duty last, we
		 * limit the sleep time to the timekeeping
		 * max_deferement value which we retrieved
		 * above. Otherwise we can sleep as long as we want.
526
		 */
T
Thomas Gleixner 已提交
527
		if (cpu == tick_do_timer_cpu) {
528
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
T
Thomas Gleixner 已提交
529 530 531 532 533 534 535 536
			ts->do_timer_last = 1;
		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
			time_delta = KTIME_MAX;
			ts->do_timer_last = 0;
		} else if (!ts->do_timer_last) {
			time_delta = KTIME_MAX;
		}

537
		/*
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
		 * calculate the expiry time for the next timer wheel
		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
		 * that there is no timer pending or at least extremely
		 * far into the future (12 days for HZ=1000). In this
		 * case we set the expiry to the end of time.
		 */
		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
			/*
			 * Calculate the time delta for the next timer event.
			 * If the time delta exceeds the maximum time delta
			 * permitted by the current clocksource then adjust
			 * the time delta accordingly to ensure the
			 * clocksource does not wrap.
			 */
			time_delta = min_t(u64, time_delta,
					   tick_period.tv64 * delta_jiffies);
		}
555

T
Thomas Gleixner 已提交
556 557 558 559
		if (time_delta < KTIME_MAX)
			expires = ktime_add_ns(last_update, time_delta);
		else
			expires.tv64 = KTIME_MAX;
560 561 562 563 564

		/* Skip reprogram of event if its not changed */
		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
			goto out;

565 566
		ret = expires;

567 568 569 570 571 572 573 574
		/*
		 * nohz_stop_sched_tick can be called several times before
		 * the nohz_restart_sched_tick is called. This happens when
		 * interrupts arrive which do not cause a reschedule. In the
		 * first call we save the current tick time, so we can restart
		 * the scheduler tick in nohz_restart_sched_tick.
		 */
		if (!ts->tick_stopped) {
575
			nohz_balance_enter_idle(cpu);
576
			calc_load_enter_idle();
577

578
			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
579 580
			ts->tick_stopped = 1;
		}
581

582
		/*
583 584
		 * If the expiration time == KTIME_MAX, then
		 * in this case we simply stop the tick timer.
585
		 */
586
		 if (unlikely(expires.tv64 == KTIME_MAX)) {
587 588 589 590 591
			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
				hrtimer_cancel(&ts->sched_timer);
			goto out;
		}

592 593
		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
			hrtimer_start(&ts->sched_timer, expires,
594
				      HRTIMER_MODE_ABS_PINNED);
595 596 597
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				goto out;
P
Pavel Machek 已提交
598
		} else if (!tick_program_event(expires, 0))
599 600 601 602 603 604 605 606 607 608 609 610
				goto out;
		/*
		 * We are past the event already. So we crossed a
		 * jiffie boundary. Update jiffies and raise the
		 * softirq.
		 */
		tick_do_update_jiffies64(ktime_get());
	}
	raise_softirq_irqoff(TIMER_SOFTIRQ);
out:
	ts->next_jiffies = next_jiffies;
	ts->last_jiffies = last_jiffies;
611
	ts->sleep_length = ktime_sub(dev->next_event, now);
612 613

	return ret;
614 615
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
{
	/*
	 * If this cpu is offline and it is the one which updates
	 * jiffies, then give up the assignment and let it be taken by
	 * the cpu which runs the tick timer next. If we don't drop
	 * this here the jiffies might be stale and do_timer() never
	 * invoked.
	 */
	if (unlikely(!cpu_online(cpu))) {
		if (cpu == tick_do_timer_cpu)
			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
	}

	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
		return false;

	if (need_resched())
		return false;

	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
		static int ratelimit;

639 640
		if (ratelimit < 10 &&
		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
641 642 643 644 645 646 647
			printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n",
			       (unsigned int) local_softirq_pending());
			ratelimit++;
		}
		return false;
	}

648
	if (have_nohz_full_mask) {
649 650 651 652 653 654 655 656 657 658 659 660 661 662
		/*
		 * Keep the tick alive to guarantee timekeeping progression
		 * if there are full dynticks CPUs around
		 */
		if (tick_do_timer_cpu == cpu)
			return false;
		/*
		 * Boot safety: make sure the timekeeping duty has been
		 * assigned before entering dyntick-idle mode,
		 */
		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
			return false;
	}

663 664 665
	return true;
}

666 667
static void __tick_nohz_idle_enter(struct tick_sched *ts)
{
668
	ktime_t now, expires;
669
	int cpu = smp_processor_id();
670

671
	now = tick_nohz_start_idle(cpu, ts);
672

673 674 675 676
	if (can_stop_idle_tick(cpu, ts)) {
		int was_stopped = ts->tick_stopped;

		ts->idle_calls++;
677 678 679 680 681 682

		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
		if (expires.tv64 > 0LL) {
			ts->idle_sleeps++;
			ts->idle_expires = expires;
		}
683 684 685 686

		if (!was_stopped && ts->tick_stopped)
			ts->idle_jiffies = ts->last_jiffies;
	}
687 688 689 690 691 692 693
}

/**
 * tick_nohz_idle_enter - stop the idle tick from the idle task
 *
 * When the next event is more than a tick into the future, stop the idle tick
 * Called when we start the idle loop.
694
 *
695
 * The arch is responsible of calling:
696 697 698 699
 *
 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 *  to sleep.
 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
700
 */
701
void tick_nohz_idle_enter(void)
702 703 704
{
	struct tick_sched *ts;

705 706
	WARN_ON_ONCE(irqs_disabled());

707 708 709 710 711 712 713 714
	/*
 	 * Update the idle state in the scheduler domain hierarchy
 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 	 * State will be updated to busy during the first busy tick after
 	 * exiting idle.
 	 */
	set_cpu_sd_state_idle();

715 716
	local_irq_disable();

717 718 719 720 721 722 723
	ts = &__get_cpu_var(tick_cpu_sched);
	/*
	 * set ts->inidle unconditionally. even if the system did not
	 * switch to nohz mode the cpu frequency governers rely on the
	 * update of the idle time accounting in tick_nohz_start_idle().
	 */
	ts->inidle = 1;
724
	__tick_nohz_idle_enter(ts);
725 726

	local_irq_enable();
727
}
728
EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744

/**
 * tick_nohz_irq_exit - update next tick event from interrupt exit
 *
 * When an interrupt fires while we are idle and it doesn't cause
 * a reschedule, it may still add, modify or delete a timer, enqueue
 * an RCU callback, etc...
 * So we need to re-calculate and reprogram the next tick event.
 */
void tick_nohz_irq_exit(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!ts->inidle)
		return;

745 746
	/* Cancel the timer because CPU already waken up from the C-states*/
	menu_hrtimer_cancel();
747
	__tick_nohz_idle_enter(ts);
748 749
}

750 751 752 753 754 755 756 757 758 759 760 761
/**
 * tick_nohz_get_sleep_length - return the length of the current sleep
 *
 * Called from power state control code with interrupts disabled
 */
ktime_t tick_nohz_get_sleep_length(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	return ts->sleep_length;
}

762 763 764
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{
	hrtimer_cancel(&ts->sched_timer);
765
	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
766 767 768 769 770 771

	while (1) {
		/* Forward the time to expire in the future */
		hrtimer_forward(&ts->sched_timer, now, tick_period);

		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
772
			hrtimer_start_expires(&ts->sched_timer,
773
					      HRTIMER_MODE_ABS_PINNED);
774 775 776 777
			/* Check, if the timer was already in the past */
			if (hrtimer_active(&ts->sched_timer))
				break;
		} else {
778 779
			if (!tick_program_event(
				hrtimer_get_expires(&ts->sched_timer), 0))
780 781
				break;
		}
782
		/* Reread time and update jiffies */
783
		now = ktime_get();
784
		tick_do_update_jiffies64(now);
785 786 787
	}
}

788
static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
789 790 791
{
	/* Update jiffies first */
	tick_do_update_jiffies64(now);
792
	update_cpu_load_nohz();
793

794
	calc_load_exit_idle();
795 796 797 798 799 800 801 802 803 804 805 806
	touch_softlockup_watchdog();
	/*
	 * Cancel the scheduled timer and restore the tick
	 */
	ts->tick_stopped  = 0;
	ts->idle_exittime = now;

	tick_nohz_restart(ts, now);
}

static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
{
807
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
808
	unsigned long ticks;
809 810 811

	if (vtime_accounting_enabled())
		return;
812 813 814 815 816 817 818 819 820
	/*
	 * We stopped the tick in idle. Update process times would miss the
	 * time we slept as update_process_times does only a 1 tick
	 * accounting. Enforce that this is accounted to idle !
	 */
	ticks = jiffies - ts->idle_jiffies;
	/*
	 * We might be one off. Do not randomly account a huge number of ticks!
	 */
821 822 823
	if (ticks && ticks < LONG_MAX)
		account_idle_ticks(ticks);
#endif
824 825
}

826
/**
827
 * tick_nohz_idle_exit - restart the idle tick from the idle task
828 829
 *
 * Restart the idle tick when the CPU is woken up from idle
830 831
 * This also exit the RCU extended quiescent state. The CPU
 * can use RCU again after this function is called.
832
 */
833
void tick_nohz_idle_exit(void)
834 835 836
{
	int cpu = smp_processor_id();
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
837
	ktime_t now;
838

839
	local_irq_disable();
840

841 842 843 844
	WARN_ON_ONCE(!ts->inidle);

	ts->inidle = 0;

845 846
	/* Cancel the timer because CPU already waken up from the C-states*/
	menu_hrtimer_cancel();
847
	if (ts->idle_active || ts->tick_stopped)
848 849 850 851
		now = ktime_get();

	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
852

853
	if (ts->tick_stopped) {
854
		tick_nohz_restart_sched_tick(ts, now);
855
		tick_nohz_account_idle_ticks(ts);
856
	}
857 858 859

	local_irq_enable();
}
860
EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
861 862 863 864

static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{
	hrtimer_forward(&ts->sched_timer, now, tick_period);
865
	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
866 867 868 869 870 871 872 873 874 875 876 877 878
}

/*
 * The nohz low res interrupt handler
 */
static void tick_nohz_handler(struct clock_event_device *dev)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();

	dev->next_event.tv64 = KTIME_MAX;

879
	tick_sched_do_timer(now);
880
	tick_sched_handle(ts, regs);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

	while (tick_nohz_reprogram(ts, now)) {
		now = ktime_get();
		tick_do_update_jiffies64(now);
	}
}

/**
 * tick_nohz_switch_to_nohz - switch to nohz mode
 */
static void tick_nohz_switch_to_nohz(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t next;

	if (!tick_nohz_enabled)
		return;

	local_irq_disable();
	if (tick_switch_to_oneshot(tick_nohz_handler)) {
		local_irq_enable();
		return;
	}

	ts->nohz_mode = NOHZ_MODE_LOWRES;

	/*
	 * Recycle the hrtimer in ts, so we can share the
	 * hrtimer_forward with the highres code.
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	/* Get the next period */
	next = tick_init_jiffy_update();

	for (;;) {
916
		hrtimer_set_expires(&ts->sched_timer, next);
917 918 919 920 921 922 923
		if (!tick_program_event(next, 0))
			break;
		next = ktime_add(next, tick_period);
	}
	local_irq_enable();
}

924 925 926 927 928 929 930 931 932 933 934
/*
 * When NOHZ is enabled and the tick is stopped, we need to kick the
 * tick timer from irq_enter() so that the jiffies update is kept
 * alive during long running softirqs. That's ugly as hell, but
 * correctness is key even if we need to fix the offending softirq in
 * the first place.
 *
 * Note, this is different to tick_nohz_restart. We just kick the
 * timer and do not touch the other magic bits which need to be done
 * when idle is left.
 */
935
static void tick_nohz_kick_tick(int cpu, ktime_t now)
936
{
937 938 939
#if 0
	/* Switch back to 2.6.27 behaviour */

940
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
941
	ktime_t delta;
942

943 944 945 946
	/*
	 * Do not touch the tick device, when the next expiry is either
	 * already reached or less/equal than the tick period.
	 */
947
	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
948 949 950 951
	if (delta.tv64 <= tick_period.tv64)
		return;

	tick_nohz_restart(ts, now);
952
#endif
953 954
}

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
static inline void tick_check_nohz(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
	ktime_t now;

	if (!ts->idle_active && !ts->tick_stopped)
		return;
	now = ktime_get();
	if (ts->idle_active)
		tick_nohz_stop_idle(cpu, now);
	if (ts->tick_stopped) {
		tick_nohz_update_jiffies(now);
		tick_nohz_kick_tick(cpu, now);
	}
}

971 972 973
#else

static inline void tick_nohz_switch_to_nohz(void) { }
974
static inline void tick_check_nohz(int cpu) { }
975

976
#endif /* CONFIG_NO_HZ_COMMON */
977

978 979 980 981 982
/*
 * Called from irq_enter to notify about the possible interruption of idle()
 */
void tick_check_idle(int cpu)
{
983
	tick_check_oneshot_broadcast(cpu);
984
	tick_check_nohz(cpu);
985 986
}

987 988 989 990 991
/*
 * High resolution timer specific code
 */
#ifdef CONFIG_HIGH_RES_TIMERS
/*
P
Pavel Machek 已提交
992
 * We rearm the timer until we get disabled by the idle code.
993
 * Called with interrupts disabled.
994 995 996 997 998 999 1000
 */
static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
{
	struct tick_sched *ts =
		container_of(timer, struct tick_sched, sched_timer);
	struct pt_regs *regs = get_irq_regs();
	ktime_t now = ktime_get();
1001

1002
	tick_sched_do_timer(now);
1003 1004 1005 1006 1007

	/*
	 * Do not call, when we are not in irq context and have
	 * no valid regs pointer
	 */
1008 1009
	if (regs)
		tick_sched_handle(ts, regs);
1010 1011 1012 1013 1014 1015

	hrtimer_forward(timer, now, tick_period);

	return HRTIMER_RESTART;
}

M
Mike Galbraith 已提交
1016 1017
static int sched_skew_tick;

1018 1019 1020 1021 1022 1023 1024 1025
static int __init skew_tick(char *str)
{
	get_option(&str, &sched_skew_tick);

	return 0;
}
early_param("skew_tick", skew_tick);

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
/**
 * tick_setup_sched_timer - setup the tick emulation timer
 */
void tick_setup_sched_timer(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
	ktime_t now = ktime_get();

	/*
	 * Emulate tick processing via per-CPU hrtimers:
	 */
	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	ts->sched_timer.function = tick_sched_timer;

1040
	/* Get the next period (per cpu) */
1041
	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1042

1043
	/* Offset the tick to avert jiffies_lock contention. */
M
Mike Galbraith 已提交
1044 1045 1046 1047 1048 1049 1050
	if (sched_skew_tick) {
		u64 offset = ktime_to_ns(tick_period) >> 1;
		do_div(offset, num_possible_cpus());
		offset *= smp_processor_id();
		hrtimer_add_expires_ns(&ts->sched_timer, offset);
	}

1051 1052
	for (;;) {
		hrtimer_forward(&ts->sched_timer, now, tick_period);
1053 1054
		hrtimer_start_expires(&ts->sched_timer,
				      HRTIMER_MODE_ABS_PINNED);
1055 1056 1057 1058 1059 1060
		/* Check, if the timer was already in the past */
		if (hrtimer_active(&ts->sched_timer))
			break;
		now = ktime_get();
	}

1061
#ifdef CONFIG_NO_HZ_COMMON
1062
	if (tick_nohz_enabled)
1063 1064 1065
		ts->nohz_mode = NOHZ_MODE_HIGHRES;
#endif
}
1066
#endif /* HIGH_RES_TIMERS */
1067

1068
#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1069 1070 1071 1072
void tick_cancel_sched_timer(int cpu)
{
	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);

1073
# ifdef CONFIG_HIGH_RES_TIMERS
1074 1075
	if (ts->sched_timer.base)
		hrtimer_cancel(&ts->sched_timer);
1076
# endif
1077

1078 1079
	ts->nohz_mode = NOHZ_MODE_INACTIVE;
}
1080
#endif
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

/**
 * Async notification about clocksource changes
 */
void tick_clock_notify(void)
{
	int cpu;

	for_each_possible_cpu(cpu)
		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
}

/*
 * Async notification about clock event changes
 */
void tick_oneshot_notify(void)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	set_bit(0, &ts->check_clocks);
}

/**
 * Check, if a change happened, which makes oneshot possible.
 *
 * Called cyclic from the hrtimer softirq (driven by the timer
 * softirq) allow_nohz signals, that we can switch into low-res nohz
 * mode, because high resolution timers are disabled (either compile
 * or runtime).
 */
int tick_check_oneshot_change(int allow_nohz)
{
	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);

	if (!test_and_clear_bit(0, &ts->check_clocks))
		return 0;

	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
		return 0;

1121
	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1122 1123 1124 1125 1126 1127 1128 1129
		return 0;

	if (!allow_nohz)
		return 1;

	tick_nohz_switch_to_nohz();
	return 0;
}