intel_pstate.c 46.0 KB
Newer Older
1
/*
2
 * intel_pstate.c: Native P state management for Intel processors
3 4 5 6 7 8 9 10 11 12
 *
 * (C) Copyright 2012 Intel Corporation
 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; version 2
 * of the License.
 */

J
Joe Perches 已提交
13 14
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/module.h>
#include <linux/ktime.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
30
#include <linux/acpi.h>
31
#include <linux/vmalloc.h>
32 33 34 35 36
#include <trace/events/power.h>

#include <asm/div64.h>
#include <asm/msr.h>
#include <asm/cpu_device_id.h>
37
#include <asm/cpufeature.h>
38

39 40 41 42
#define ATOM_RATIOS		0x66a
#define ATOM_VIDS		0x66b
#define ATOM_TURBO_RATIOS	0x66c
#define ATOM_TURBO_VIDS		0x66d
43

44 45 46 47
#ifdef CONFIG_ACPI
#include <acpi/processor.h>
#endif

48
#define FRAC_BITS 8
49 50
#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
#define fp_toint(X) ((X) >> FRAC_BITS)
51

52 53 54
#define EXT_BITS 6
#define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)

55 56 57 58 59
static inline int32_t mul_fp(int32_t x, int32_t y)
{
	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
}

60
static inline int32_t div_fp(s64 x, s64 y)
61
{
62
	return div64_s64((int64_t)x << FRAC_BITS, y);
63 64
}

65 66 67 68 69 70 71 72 73 74 75
static inline int ceiling_fp(int32_t x)
{
	int mask, ret;

	ret = fp_toint(x);
	mask = (1 << FRAC_BITS) - 1;
	if (x & mask)
		ret += 1;
	return ret;
}

76 77 78 79 80 81 82 83 84 85
static inline u64 mul_ext_fp(u64 x, u64 y)
{
	return (x * y) >> EXT_FRAC_BITS;
}

static inline u64 div_ext_fp(u64 x, u64 y)
{
	return div64_u64(x << EXT_FRAC_BITS, y);
}

86 87
/**
 * struct sample -	Store performance sample
88
 * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
89 90
 *			performance during last sample period
 * @busy_scaled:	Scaled busy value which is used to calculate next
91
 *			P state. This can be different than core_avg_perf
92 93 94 95 96 97 98 99 100 101 102 103 104
 *			to account for cpu idle period
 * @aperf:		Difference of actual performance frequency clock count
 *			read from APERF MSR between last and current sample
 * @mperf:		Difference of maximum performance frequency clock count
 *			read from MPERF MSR between last and current sample
 * @tsc:		Difference of time stamp counter between last and
 *			current sample
 * @freq:		Effective frequency calculated from APERF/MPERF
 * @time:		Current time from scheduler
 *
 * This structure is used in the cpudata structure to store performance sample
 * data for choosing next P State.
 */
105
struct sample {
106
	int32_t core_avg_perf;
107
	int32_t busy_scaled;
108 109
	u64 aperf;
	u64 mperf;
110
	u64 tsc;
111
	int freq;
112
	u64 time;
113 114
};

115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * struct pstate_data - Store P state data
 * @current_pstate:	Current requested P state
 * @min_pstate:		Min P state possible for this platform
 * @max_pstate:		Max P state possible for this platform
 * @max_pstate_physical:This is physical Max P state for a processor
 *			This can be higher than the max_pstate which can
 *			be limited by platform thermal design power limits
 * @scaling:		Scaling factor to  convert frequency to cpufreq
 *			frequency units
 * @turbo_pstate:	Max Turbo P state possible for this platform
 *
 * Stores the per cpu model P state limits and current P state.
 */
129 130 131 132
struct pstate_data {
	int	current_pstate;
	int	min_pstate;
	int	max_pstate;
133
	int	max_pstate_physical;
134
	int	scaling;
135 136 137
	int	turbo_pstate;
};

138 139 140 141 142 143 144 145 146 147 148 149 150
/**
 * struct vid_data -	Stores voltage information data
 * @min:		VID data for this platform corresponding to
 *			the lowest P state
 * @max:		VID data corresponding to the highest P State.
 * @turbo:		VID data for turbo P state
 * @ratio:		Ratio of (vid max - vid min) /
 *			(max P state - Min P State)
 *
 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
 * This data is used in Atom platforms, where in addition to target P state,
 * the voltage data needs to be specified to select next P State.
 */
151
struct vid_data {
152 153 154
	int min;
	int max;
	int turbo;
155 156 157
	int32_t ratio;
};

158 159 160 161 162 163 164 165 166 167 168 169
/**
 * struct _pid -	Stores PID data
 * @setpoint:		Target set point for busyness or performance
 * @integral:		Storage for accumulated error values
 * @p_gain:		PID proportional gain
 * @i_gain:		PID integral gain
 * @d_gain:		PID derivative gain
 * @deadband:		PID deadband
 * @last_err:		Last error storage for integral part of PID calculation
 *
 * Stores PID coefficients and last error for PID controller.
 */
170 171 172 173 174 175 176
struct _pid {
	int setpoint;
	int32_t integral;
	int32_t p_gain;
	int32_t i_gain;
	int32_t d_gain;
	int deadband;
177
	int32_t last_err;
178 179
};

180 181 182 183
/**
 * struct cpudata -	Per CPU instance data storage
 * @cpu:		CPU number for this instance data
 * @update_util:	CPUFreq utility callback information
184
 * @update_util_set:	CPUFreq utility callback is set
185 186 187 188 189 190 191 192 193 194
 * @pstate:		Stores P state limits for this CPU
 * @vid:		Stores VID limits for this CPU
 * @pid:		Stores PID parameters for this CPU
 * @last_sample_time:	Last Sample time
 * @prev_aperf:		Last APERF value read from APERF MSR
 * @prev_mperf:		Last MPERF value read from MPERF MSR
 * @prev_tsc:		Last timestamp counter (TSC) value
 * @prev_cummulative_iowait: IO Wait time difference from last and
 *			current sample
 * @sample:		Storage for storing last Sample data
195 196
 * @acpi_perf_data:	Stores ACPI perf information read from _PSS
 * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
197 198 199
 *
 * This structure stores per CPU instance data for all CPUs.
 */
200 201 202
struct cpudata {
	int cpu;

203
	struct update_util_data update_util;
204
	bool   update_util_set;
205 206

	struct pstate_data pstate;
207
	struct vid_data vid;
208 209
	struct _pid pid;

210
	u64	last_sample_time;
211 212
	u64	prev_aperf;
	u64	prev_mperf;
213
	u64	prev_tsc;
214
	u64	prev_cummulative_iowait;
215
	struct sample sample;
216 217 218 219
#ifdef CONFIG_ACPI
	struct acpi_processor_performance acpi_perf_data;
	bool valid_pss_table;
#endif
220 221 222
};

static struct cpudata **all_cpu_data;
223 224 225 226 227 228 229 230 231 232 233 234 235

/**
 * struct pid_adjust_policy - Stores static PID configuration data
 * @sample_rate_ms:	PID calculation sample rate in ms
 * @sample_rate_ns:	Sample rate calculation in ns
 * @deadband:		PID deadband
 * @setpoint:		PID Setpoint
 * @p_gain_pct:		PID proportional gain
 * @i_gain_pct:		PID integral gain
 * @d_gain_pct:		PID derivative gain
 *
 * Stores per CPU model static PID configuration data.
 */
236 237
struct pstate_adjust_policy {
	int sample_rate_ms;
238
	s64 sample_rate_ns;
239 240 241 242 243 244 245
	int deadband;
	int setpoint;
	int p_gain_pct;
	int d_gain_pct;
	int i_gain_pct;
};

246 247 248 249 250 251 252 253 254 255 256 257 258 259
/**
 * struct pstate_funcs - Per CPU model specific callbacks
 * @get_max:		Callback to get maximum non turbo effective P state
 * @get_max_physical:	Callback to get maximum non turbo physical P state
 * @get_min:		Callback to get minimum P state
 * @get_turbo:		Callback to get turbo P state
 * @get_scaling:	Callback to get frequency scaling factor
 * @get_val:		Callback to convert P state to actual MSR write value
 * @get_vid:		Callback to get VID data for Atom platforms
 * @get_target_pstate:	Callback to a function to calculate next P state to use
 *
 * Core and Atom CPU models have different way to get P State limits. This
 * structure is used to store those callbacks.
 */
260 261
struct pstate_funcs {
	int (*get_max)(void);
262
	int (*get_max_physical)(void);
263 264
	int (*get_min)(void);
	int (*get_turbo)(void);
265
	int (*get_scaling)(void);
266
	u64 (*get_val)(struct cpudata*, int pstate);
267
	void (*get_vid)(struct cpudata *);
268
	int32_t (*get_target_pstate)(struct cpudata *);
269 270
};

271 272 273 274 275
/**
 * struct cpu_defaults- Per CPU model default config data
 * @pid_policy:	PID config data
 * @funcs:		Callback function data
 */
276 277 278
struct cpu_defaults {
	struct pstate_adjust_policy pid_policy;
	struct pstate_funcs funcs;
279 280
};

281
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
282
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
283

284 285
static struct pstate_adjust_policy pid_params;
static struct pstate_funcs pstate_funcs;
D
Dirk Brandewie 已提交
286
static int hwp_active;
287

288 289 290
#ifdef CONFIG_ACPI
static bool acpi_ppc;
#endif
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

/**
 * struct perf_limits - Store user and policy limits
 * @no_turbo:		User requested turbo state from intel_pstate sysfs
 * @turbo_disabled:	Platform turbo status either from msr
 *			MSR_IA32_MISC_ENABLE or when maximum available pstate
 *			matches the maximum turbo pstate
 * @max_perf_pct:	Effective maximum performance limit in percentage, this
 *			is minimum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @min_perf_pct:	Effective minimum performance limit in percentage, this
 *			is maximum of either limits enforced by cpufreq policy
 *			or limits from user set limits via intel_pstate sysfs
 * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
 *			This value is used to limit max pstate
 * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
 *			This value is used to limit min pstate
 * @max_policy_pct:	The maximum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @max_sysfs_pct:	The maximum performance in percentage enforced by
 *			intel pstate sysfs interface
 * @min_policy_pct:	The minimum performance in percentage enforced by
 *			cpufreq setpolicy interface
 * @min_sysfs_pct:	The minimum performance in percentage enforced by
 *			intel pstate sysfs interface
 *
 * Storage for user and policy defined limits.
 */
319 320
struct perf_limits {
	int no_turbo;
321
	int turbo_disabled;
322 323 324 325
	int max_perf_pct;
	int min_perf_pct;
	int32_t max_perf;
	int32_t min_perf;
326 327
	int max_policy_pct;
	int max_sysfs_pct;
328 329
	int min_policy_pct;
	int min_sysfs_pct;
330 331
};

332 333 334 335 336 337 338 339 340 341 342 343 344 345
static struct perf_limits performance_limits = {
	.no_turbo = 0,
	.turbo_disabled = 0,
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 100,
	.min_perf = int_tofp(1),
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
};

static struct perf_limits powersave_limits = {
346
	.no_turbo = 0,
347
	.turbo_disabled = 0,
348 349 350 351
	.max_perf_pct = 100,
	.max_perf = int_tofp(1),
	.min_perf_pct = 0,
	.min_perf = 0,
352 353
	.max_policy_pct = 100,
	.max_sysfs_pct = 100,
354 355
	.min_policy_pct = 0,
	.min_sysfs_pct = 0,
356 357
};

358 359 360 361 362 363
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
static struct perf_limits *limits = &performance_limits;
#else
static struct perf_limits *limits = &powersave_limits;
#endif

364
#ifdef CONFIG_ACPI
365 366 367 368 369 370 371 372 373 374

static bool intel_pstate_get_ppc_enable_status(void)
{
	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
		return true;

	return acpi_ppc;
}

375 376 377 378 379 380
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;
	int ret;
	int i;

381 382 383
	if (hwp_active)
		return;

384
	if (!intel_pstate_get_ppc_enable_status())
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
		return;

	cpu = all_cpu_data[policy->cpu];

	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
						  policy->cpu);
	if (ret)
		return;

	/*
	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
	 * guarantee that the states returned by it map to the states in our
	 * list directly.
	 */
	if (cpu->acpi_perf_data.control_register.space_id !=
						ACPI_ADR_SPACE_FIXED_HARDWARE)
		goto err;

	/*
	 * If there is only one entry _PSS, simply ignore _PSS and continue as
	 * usual without taking _PSS into account
	 */
	if (cpu->acpi_perf_data.state_count < 2)
		goto err;

	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
			 (u32) cpu->acpi_perf_data.states[i].power,
			 (u32) cpu->acpi_perf_data.states[i].control);
	}

	/*
	 * The _PSS table doesn't contain whole turbo frequency range.
	 * This just contains +1 MHZ above the max non turbo frequency,
	 * with control value corresponding to max turbo ratio. But
	 * when cpufreq set policy is called, it will call with this
	 * max frequency, which will cause a reduced performance as
	 * this driver uses real max turbo frequency as the max
	 * frequency. So correct this frequency in _PSS table to
427
	 * correct max turbo frequency based on the turbo state.
428 429
	 * Also need to convert to MHz as _PSS freq is in MHz.
	 */
430
	if (!limits->turbo_disabled)
431 432 433
		cpu->acpi_perf_data.states[0].core_frequency =
					policy->cpuinfo.max_freq / 1000;
	cpu->valid_pss_table = true;
434
	pr_debug("_PPC limits will be enforced\n");
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

	return;

 err:
	cpu->valid_pss_table = false;
	acpi_processor_unregister_performance(policy->cpu);
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
	struct cpudata *cpu;

	cpu = all_cpu_data[policy->cpu];
	if (!cpu->valid_pss_table)
		return;

	acpi_processor_unregister_performance(policy->cpu);
}

#else
static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
{
}

static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
{
}
#endif

464
static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
465
			     int deadband, int integral) {
466 467
	pid->setpoint = int_tofp(setpoint);
	pid->deadband  = int_tofp(deadband);
468
	pid->integral  = int_tofp(integral);
469
	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
470 471 472 473
}

static inline void pid_p_gain_set(struct _pid *pid, int percent)
{
474
	pid->p_gain = div_fp(percent, 100);
475 476 477 478
}

static inline void pid_i_gain_set(struct _pid *pid, int percent)
{
479
	pid->i_gain = div_fp(percent, 100);
480 481 482 483
}

static inline void pid_d_gain_set(struct _pid *pid, int percent)
{
484
	pid->d_gain = div_fp(percent, 100);
485 486
}

487
static signed int pid_calc(struct _pid *pid, int32_t busy)
488
{
489
	signed int result;
490 491 492
	int32_t pterm, dterm, fp_error;
	int32_t integral_limit;

493
	fp_error = pid->setpoint - busy;
494

495
	if (abs(fp_error) <= pid->deadband)
496 497 498 499 500 501
		return 0;

	pterm = mul_fp(pid->p_gain, fp_error);

	pid->integral += fp_error;

502 503 504 505 506 507 508 509
	/*
	 * We limit the integral here so that it will never
	 * get higher than 30.  This prevents it from becoming
	 * too large an input over long periods of time and allows
	 * it to get factored out sooner.
	 *
	 * The value of 30 was chosen through experimentation.
	 */
510 511 512 513 514 515
	integral_limit = int_tofp(30);
	if (pid->integral > integral_limit)
		pid->integral = integral_limit;
	if (pid->integral < -integral_limit)
		pid->integral = -integral_limit;

516 517
	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
	pid->last_err = fp_error;
518 519

	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
520
	result = result + (1 << (FRAC_BITS-1));
521 522 523 524 525
	return (signed int)fp_toint(result);
}

static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
{
526 527 528
	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
529

530
	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
531 532 533 534 535
}

static inline void intel_pstate_reset_all_pid(void)
{
	unsigned int cpu;
536

537 538 539 540 541 542
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu])
			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
	}
}

543 544 545 546 547 548 549
static inline void update_turbo_state(void)
{
	u64 misc_en;
	struct cpudata *cpu;

	cpu = all_cpu_data[0];
	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
550
	limits->turbo_disabled =
551 552 553 554
		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
}

555
static void intel_pstate_hwp_set(const struct cpumask *cpumask)
D
Dirk Brandewie 已提交
556
{
557 558 559 560 561 562 563
	int min, hw_min, max, hw_max, cpu, range, adj_range;
	u64 value, cap;

	rdmsrl(MSR_HWP_CAPABILITIES, cap);
	hw_min = HWP_LOWEST_PERF(cap);
	hw_max = HWP_HIGHEST_PERF(cap);
	range = hw_max - hw_min;
D
Dirk Brandewie 已提交
564

565
	for_each_cpu(cpu, cpumask) {
D
Dirk Brandewie 已提交
566
		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
567
		adj_range = limits->min_perf_pct * range / 100;
568
		min = hw_min + adj_range;
D
Dirk Brandewie 已提交
569 570 571
		value &= ~HWP_MIN_PERF(~0L);
		value |= HWP_MIN_PERF(min);

572
		adj_range = limits->max_perf_pct * range / 100;
573
		max = hw_min + adj_range;
574
		if (limits->no_turbo) {
575 576 577
			hw_max = HWP_GUARANTEED_PERF(cap);
			if (hw_max < max)
				max = hw_max;
D
Dirk Brandewie 已提交
578 579 580 581 582 583
		}

		value &= ~HWP_MAX_PERF(~0L);
		value |= HWP_MAX_PERF(max);
		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
	}
584
}
D
Dirk Brandewie 已提交
585

586 587 588 589 590 591 592 593
static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
{
	if (hwp_active)
		intel_pstate_hwp_set(policy->cpus);

	return 0;
}

594 595 596 597
static void intel_pstate_hwp_set_online_cpus(void)
{
	get_online_cpus();
	intel_pstate_hwp_set(cpu_online_mask);
D
Dirk Brandewie 已提交
598 599 600
	put_online_cpus();
}

601 602 603 604 605 606 607
/************************** debugfs begin ************************/
static int pid_param_set(void *data, u64 val)
{
	*(u32 *)data = val;
	intel_pstate_reset_all_pid();
	return 0;
}
608

609 610 611 612 613
static int pid_param_get(void *data, u64 *val)
{
	*val = *(u32 *)data;
	return 0;
}
614
DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
615 616 617 618 619 620 621

struct pid_param {
	char *name;
	void *value;
};

static struct pid_param pid_files[] = {
622 623 624 625 626 627
	{"sample_rate_ms", &pid_params.sample_rate_ms},
	{"d_gain_pct", &pid_params.d_gain_pct},
	{"i_gain_pct", &pid_params.i_gain_pct},
	{"deadband", &pid_params.deadband},
	{"setpoint", &pid_params.setpoint},
	{"p_gain_pct", &pid_params.p_gain_pct},
628 629 630
	{NULL, NULL}
};

631
static void __init intel_pstate_debug_expose_params(void)
632
{
633
	struct dentry *debugfs_parent;
634 635
	int i = 0;

D
Dirk Brandewie 已提交
636 637
	if (hwp_active)
		return;
638 639 640 641 642
	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
	if (IS_ERR_OR_NULL(debugfs_parent))
		return;
	while (pid_files[i].name) {
		debugfs_create_file(pid_files[i].name, 0660,
643 644
				    debugfs_parent, pid_files[i].value,
				    &fops_pid_param);
645 646 647 648 649 650 651 652 653 654 655
		i++;
	}
}

/************************** debugfs end ************************/

/************************** sysfs begin ************************/
#define show_one(file_name, object)					\
	static ssize_t show_##file_name					\
	(struct kobject *kobj, struct attribute *attr, char *buf)	\
	{								\
656
		return sprintf(buf, "%u\n", limits->object);		\
657 658
	}

659 660 661 662 663 664 665 666 667 668 669
static ssize_t show_turbo_pct(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total, no_turbo, turbo_pct;
	uint32_t turbo_fp;

	cpu = all_cpu_data[0];

	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
670
	turbo_fp = div_fp(no_turbo, total);
671 672 673 674
	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
	return sprintf(buf, "%u\n", turbo_pct);
}

675 676 677 678 679 680 681 682 683 684 685
static ssize_t show_num_pstates(struct kobject *kobj,
				struct attribute *attr, char *buf)
{
	struct cpudata *cpu;
	int total;

	cpu = all_cpu_data[0];
	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
	return sprintf(buf, "%u\n", total);
}

686 687 688 689 690 691
static ssize_t show_no_turbo(struct kobject *kobj,
			     struct attribute *attr, char *buf)
{
	ssize_t ret;

	update_turbo_state();
692 693
	if (limits->turbo_disabled)
		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
694
	else
695
		ret = sprintf(buf, "%u\n", limits->no_turbo);
696 697 698 699

	return ret;
}

700
static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
701
			      const char *buf, size_t count)
702 703 704
{
	unsigned int input;
	int ret;
705

706 707 708
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
709 710

	update_turbo_state();
711
	if (limits->turbo_disabled) {
J
Joe Perches 已提交
712
		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
713
		return -EPERM;
714
	}
D
Dirk Brandewie 已提交
715

716
	limits->no_turbo = clamp_t(int, input, 0, 1);
717

D
Dirk Brandewie 已提交
718
	if (hwp_active)
719
		intel_pstate_hwp_set_online_cpus();
D
Dirk Brandewie 已提交
720

721 722 723 724
	return count;
}

static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
725
				  const char *buf, size_t count)
726 727 728
{
	unsigned int input;
	int ret;
729

730 731 732 733
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;

734 735 736 737 738 739 740
	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
	limits->max_perf_pct = max(limits->min_perf_pct,
				   limits->max_perf_pct);
741
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
742

D
Dirk Brandewie 已提交
743
	if (hwp_active)
744
		intel_pstate_hwp_set_online_cpus();
745 746 747 748
	return count;
}

static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
749
				  const char *buf, size_t count)
750 751 752
{
	unsigned int input;
	int ret;
753

754 755 756
	ret = sscanf(buf, "%u", &input);
	if (ret != 1)
		return -EINVAL;
757

758 759 760 761 762 763 764
	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->min_perf_pct = min(limits->max_perf_pct,
				   limits->min_perf_pct);
765
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
766

D
Dirk Brandewie 已提交
767
	if (hwp_active)
768
		intel_pstate_hwp_set_online_cpus();
769 770 771 772 773 774 775 776 777
	return count;
}

show_one(max_perf_pct, max_perf_pct);
show_one(min_perf_pct, min_perf_pct);

define_one_global_rw(no_turbo);
define_one_global_rw(max_perf_pct);
define_one_global_rw(min_perf_pct);
778
define_one_global_ro(turbo_pct);
779
define_one_global_ro(num_pstates);
780 781 782 783 784

static struct attribute *intel_pstate_attributes[] = {
	&no_turbo.attr,
	&max_perf_pct.attr,
	&min_perf_pct.attr,
785
	&turbo_pct.attr,
786
	&num_pstates.attr,
787 788 789 790 791 792 793
	NULL
};

static struct attribute_group intel_pstate_attr_group = {
	.attrs = intel_pstate_attributes,
};

794
static void __init intel_pstate_sysfs_expose_params(void)
795
{
796
	struct kobject *intel_pstate_kobject;
797 798 799 800 801
	int rc;

	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
						&cpu_subsys.dev_root->kobj);
	BUG_ON(!intel_pstate_kobject);
802
	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
803 804 805
	BUG_ON(rc);
}
/************************** sysfs end ************************/
D
Dirk Brandewie 已提交
806

807
static void intel_pstate_hwp_enable(struct cpudata *cpudata)
D
Dirk Brandewie 已提交
808
{
809 810 811
	/* First disable HWP notification interrupt as we don't process them */
	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);

812
	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
D
Dirk Brandewie 已提交
813 814
}

815
static int atom_get_min_pstate(void)
816 817
{
	u64 value;
818

819
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
820
	return (value >> 8) & 0x7F;
821 822
}

823
static int atom_get_max_pstate(void)
824 825
{
	u64 value;
826

827
	rdmsrl(ATOM_RATIOS, value);
D
Dirk Brandewie 已提交
828
	return (value >> 16) & 0x7F;
829
}
830

831
static int atom_get_turbo_pstate(void)
832 833
{
	u64 value;
834

835
	rdmsrl(ATOM_TURBO_RATIOS, value);
D
Dirk Brandewie 已提交
836
	return value & 0x7F;
837 838
}

839
static u64 atom_get_val(struct cpudata *cpudata, int pstate)
840 841 842 843 844
{
	u64 val;
	int32_t vid_fp;
	u32 vid;

845
	val = (u64)pstate << 8;
846
	if (limits->no_turbo && !limits->turbo_disabled)
847 848 849 850 851 852 853
		val |= (u64)1 << 32;

	vid_fp = cpudata->vid.min + mul_fp(
		int_tofp(pstate - cpudata->pstate.min_pstate),
		cpudata->vid.ratio);

	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
854
	vid = ceiling_fp(vid_fp);
855

856 857 858
	if (pstate > cpudata->pstate.max_pstate)
		vid = cpudata->vid.turbo;

859
	return val | vid;
860 861
}

862
static int silvermont_get_scaling(void)
863 864 865
{
	u64 value;
	int i;
866 867 868
	/* Defined in Table 35-6 from SDM (Sept 2015) */
	static int silvermont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000};
869 870

	rdmsrl(MSR_FSB_FREQ, value);
871 872
	i = value & 0x7;
	WARN_ON(i > 4);
873

874 875
	return silvermont_freq_table[i];
}
876

877 878 879 880 881 882 883 884 885 886 887 888 889 890
static int airmont_get_scaling(void)
{
	u64 value;
	int i;
	/* Defined in Table 35-10 from SDM (Sept 2015) */
	static int airmont_freq_table[] = {
		83300, 100000, 133300, 116700, 80000,
		93300, 90000, 88900, 87500};

	rdmsrl(MSR_FSB_FREQ, value);
	i = value & 0xF;
	WARN_ON(i > 8);

	return airmont_freq_table[i];
891 892
}

893
static void atom_get_vid(struct cpudata *cpudata)
894 895 896
{
	u64 value;

897
	rdmsrl(ATOM_VIDS, value);
D
Dirk Brandewie 已提交
898 899
	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
900 901 902 903
	cpudata->vid.ratio = div_fp(
		cpudata->vid.max - cpudata->vid.min,
		int_tofp(cpudata->pstate.max_pstate -
			cpudata->pstate.min_pstate));
904

905
	rdmsrl(ATOM_TURBO_VIDS, value);
906
	cpudata->vid.turbo = value & 0x7f;
907 908
}

909
static int core_get_min_pstate(void)
910 911
{
	u64 value;
912

913
	rdmsrl(MSR_PLATFORM_INFO, value);
914 915 916
	return (value >> 40) & 0xFF;
}

917
static int core_get_max_pstate_physical(void)
918 919
{
	u64 value;
920

921
	rdmsrl(MSR_PLATFORM_INFO, value);
922 923 924
	return (value >> 8) & 0xFF;
}

925
static int core_get_max_pstate(void)
926
{
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
	u64 tar;
	u64 plat_info;
	int max_pstate;
	int err;

	rdmsrl(MSR_PLATFORM_INFO, plat_info);
	max_pstate = (plat_info >> 8) & 0xFF;

	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
	if (!err) {
		/* Do some sanity checking for safety */
		if (plat_info & 0x600000000) {
			u64 tdp_ctrl;
			u64 tdp_ratio;
			int tdp_msr;

			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
			if (err)
				goto skip_tar;

			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
			if (err)
				goto skip_tar;

952 953 954 955 956
			/* For level 1 and 2, bits[23:16] contain the ratio */
			if (tdp_ctrl)
				tdp_ratio >>= 16;

			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
957 958 959 960 961 962 963 964
			if (tdp_ratio - 1 == tar) {
				max_pstate = tar;
				pr_debug("max_pstate=TAC %x\n", max_pstate);
			} else {
				goto skip_tar;
			}
		}
	}
965

966 967
skip_tar:
	return max_pstate;
968 969
}

970
static int core_get_turbo_pstate(void)
971 972 973
{
	u64 value;
	int nont, ret;
974

975
	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
976
	nont = core_get_max_pstate();
977
	ret = (value) & 255;
978 979 980 981 982
	if (ret <= nont)
		ret = nont;
	return ret;
}

983 984 985 986 987
static inline int core_get_scaling(void)
{
	return 100000;
}

988
static u64 core_get_val(struct cpudata *cpudata, int pstate)
989 990 991
{
	u64 val;

992
	val = (u64)pstate << 8;
993
	if (limits->no_turbo && !limits->turbo_disabled)
994 995
		val |= (u64)1 << 32;

996
	return val;
997 998
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static int knl_get_turbo_pstate(void)
{
	u64 value;
	int nont, ret;

	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
	nont = core_get_max_pstate();
	ret = (((value) >> 8) & 0xFF);
	if (ret <= nont)
		ret = nont;
	return ret;
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
static struct cpu_defaults core_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1023
		.get_max_physical = core_get_max_pstate_physical,
1024 1025
		.get_min = core_get_min_pstate,
		.get_turbo = core_get_turbo_pstate,
1026
		.get_scaling = core_get_scaling,
1027
		.get_val = core_get_val,
1028
		.get_target_pstate = get_target_pstate_use_performance,
1029 1030 1031
	},
};

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static struct cpu_defaults silvermont_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 60,
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1046
		.get_val = atom_get_val,
1047 1048
		.get_scaling = silvermont_get_scaling,
		.get_vid = atom_get_vid,
1049
		.get_target_pstate = get_target_pstate_use_cpu_load,
1050 1051 1052 1053
	},
};

static struct cpu_defaults airmont_params = {
1054 1055 1056
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
1057
		.setpoint = 60,
1058 1059 1060 1061 1062
		.p_gain_pct = 14,
		.d_gain_pct = 0,
		.i_gain_pct = 4,
	},
	.funcs = {
1063 1064 1065 1066
		.get_max = atom_get_max_pstate,
		.get_max_physical = atom_get_max_pstate,
		.get_min = atom_get_min_pstate,
		.get_turbo = atom_get_turbo_pstate,
1067
		.get_val = atom_get_val,
1068
		.get_scaling = airmont_get_scaling,
1069
		.get_vid = atom_get_vid,
1070
		.get_target_pstate = get_target_pstate_use_cpu_load,
1071 1072 1073
	},
};

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static struct cpu_defaults knl_params = {
	.pid_policy = {
		.sample_rate_ms = 10,
		.deadband = 0,
		.setpoint = 97,
		.p_gain_pct = 20,
		.d_gain_pct = 0,
		.i_gain_pct = 0,
	},
	.funcs = {
		.get_max = core_get_max_pstate,
1085
		.get_max_physical = core_get_max_pstate_physical,
1086 1087
		.get_min = core_get_min_pstate,
		.get_turbo = knl_get_turbo_pstate,
1088
		.get_scaling = core_get_scaling,
1089
		.get_val = core_get_val,
1090
		.get_target_pstate = get_target_pstate_use_performance,
1091 1092 1093
	},
};

1094 1095 1096
static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
{
	int max_perf = cpu->pstate.turbo_pstate;
1097
	int max_perf_adj;
1098
	int min_perf;
1099

1100
	if (limits->no_turbo || limits->turbo_disabled)
1101 1102
		max_perf = cpu->pstate.max_pstate;

1103 1104 1105 1106 1107
	/*
	 * performance can be limited by user through sysfs, by cpufreq
	 * policy, or by cpu specific default values determined through
	 * experimentation.
	 */
1108
	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1109 1110
	*max = clamp_t(int, max_perf_adj,
			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1111

1112
	min_perf = fp_toint(max_perf * limits->min_perf);
1113
	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1114 1115
}

1116
static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1117
{
1118
	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1119
	cpu->pstate.current_pstate = pstate;
1120
}
1121

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
static void intel_pstate_set_min_pstate(struct cpudata *cpu)
{
	int pstate = cpu->pstate.min_pstate;

	intel_pstate_record_pstate(cpu, pstate);
	/*
	 * Generally, there is no guarantee that this code will always run on
	 * the CPU being updated, so force the register update to run on the
	 * right CPU.
	 */
	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
		      pstate_funcs.get_val(cpu, pstate));
1134 1135 1136 1137
}

static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
{
1138 1139
	cpu->pstate.min_pstate = pstate_funcs.get_min();
	cpu->pstate.max_pstate = pstate_funcs.get_max();
1140
	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1141
	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1142
	cpu->pstate.scaling = pstate_funcs.get_scaling();
1143

1144 1145
	if (pstate_funcs.get_vid)
		pstate_funcs.get_vid(cpu);
1146 1147

	intel_pstate_set_min_pstate(cpu);
1148 1149
}

1150
static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1151
{
1152
	struct sample *sample = &cpu->sample;
1153

1154
	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1155 1156
}

1157
static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1158 1159
{
	u64 aperf, mperf;
1160
	unsigned long flags;
1161
	u64 tsc;
1162

1163
	local_irq_save(flags);
1164 1165
	rdmsrl(MSR_IA32_APERF, aperf);
	rdmsrl(MSR_IA32_MPERF, mperf);
1166
	tsc = rdtsc();
1167
	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1168
		local_irq_restore(flags);
1169
		return false;
1170
	}
1171
	local_irq_restore(flags);
1172

1173
	cpu->last_sample_time = cpu->sample.time;
1174
	cpu->sample.time = time;
1175 1176
	cpu->sample.aperf = aperf;
	cpu->sample.mperf = mperf;
1177
	cpu->sample.tsc =  tsc;
1178 1179
	cpu->sample.aperf -= cpu->prev_aperf;
	cpu->sample.mperf -= cpu->prev_mperf;
1180
	cpu->sample.tsc -= cpu->prev_tsc;
1181

1182 1183
	cpu->prev_aperf = aperf;
	cpu->prev_mperf = mperf;
1184
	cpu->prev_tsc = tsc;
1185 1186 1187 1188 1189 1190 1191 1192
	/*
	 * First time this function is invoked in a given cycle, all of the
	 * previous sample data fields are equal to zero or stale and they must
	 * be populated with meaningful numbers for things to work, so assume
	 * that sample.time will always be reset before setting the utilization
	 * update hook and make the caller skip the sample then.
	 */
	return !!cpu->last_sample_time;
1193 1194
}

1195 1196
static inline int32_t get_avg_frequency(struct cpudata *cpu)
{
1197 1198
	return mul_ext_fp(cpu->sample.core_avg_perf,
			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1199 1200
}

1201 1202
static inline int32_t get_avg_pstate(struct cpudata *cpu)
{
1203 1204
	return mul_ext_fp(cpu->pstate.max_pstate_physical,
			  cpu->sample.core_avg_perf);
1205 1206
}

1207 1208 1209
static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
{
	struct sample *sample = &cpu->sample;
1210 1211 1212
	u64 cummulative_iowait, delta_iowait_us;
	u64 delta_iowait_mperf;
	u64 mperf, now;
1213 1214
	int32_t cpu_load;

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);

	/*
	 * Convert iowait time into number of IO cycles spent at max_freq.
	 * IO is considered as busy only for the cpu_load algorithm. For
	 * performance this is not needed since we always try to reach the
	 * maximum P-State, so we are already boosting the IOs.
	 */
	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
		cpu->pstate.max_pstate, MSEC_PER_SEC);

	mperf = cpu->sample.mperf + delta_iowait_mperf;
	cpu->prev_cummulative_iowait = cummulative_iowait;

1230 1231 1232 1233 1234 1235
	/*
	 * The load can be estimated as the ratio of the mperf counter
	 * running at a constant frequency during active periods
	 * (C0) and the time stamp counter running at the same frequency
	 * also during C-states.
	 */
1236
	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1237 1238
	cpu->sample.busy_scaled = cpu_load;

1239
	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1240 1241
}

1242
static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1243
{
1244
	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1245
	u64 duration_ns;
1246

1247
	/*
1248 1249 1250 1251
	 * perf_scaled is the average performance during the last sampling
	 * period scaled by the ratio of the maximum P-state to the P-state
	 * requested last time (in percent).  That measures the system's
	 * response to the previous P-state selection.
1252
	 */
1253 1254
	max_pstate = cpu->pstate.max_pstate_physical;
	current_pstate = cpu->pstate.current_pstate;
1255
	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1256
			       div_fp(100 * max_pstate, current_pstate));
1257

1258
	/*
1259 1260 1261
	 * Since our utilization update callback will not run unless we are
	 * in C0, check if the actual elapsed time is significantly greater (3x)
	 * than our sample interval.  If it is, then we were idle for a long
1262
	 * enough period of time to adjust our performance metric.
1263
	 */
1264
	duration_ns = cpu->sample.time - cpu->last_sample_time;
1265
	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1266
		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1267
		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1268 1269 1270
	} else {
		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
		if (sample_ratio < int_tofp(1))
1271
			perf_scaled = 0;
1272 1273
	}

1274 1275
	cpu->sample.busy_scaled = perf_scaled;
	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1276 1277
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
{
	int max_perf, min_perf;

	update_turbo_state();

	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
	pstate = clamp_t(int, pstate, min_perf, max_perf);
	if (pstate == cpu->pstate.current_pstate)
		return;

	intel_pstate_record_pstate(cpu, pstate);
	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
}

1293 1294
static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
{
1295
	int from, target_pstate;
1296 1297 1298
	struct sample *sample;

	from = cpu->pstate.current_pstate;
1299

1300
	target_pstate = pstate_funcs.get_target_pstate(cpu);
1301

1302
	intel_pstate_update_pstate(cpu, target_pstate);
1303 1304

	sample = &cpu->sample;
1305
	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1306
		fp_toint(sample->busy_scaled),
1307 1308 1309 1310 1311
		from,
		cpu->pstate.current_pstate,
		sample->mperf,
		sample->aperf,
		sample->tsc,
1312
		get_avg_frequency(cpu));
1313 1314
}

1315 1316
static void intel_pstate_update_util(struct update_util_data *data, u64 time,
				     unsigned long util, unsigned long max)
1317
{
1318 1319
	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
	u64 delta_ns = time - cpu->sample.time;
1320

1321
	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1322 1323
		bool sample_taken = intel_pstate_sample(cpu, time);

1324
		if (sample_taken) {
1325
			intel_pstate_calc_avg_perf(cpu);
1326 1327 1328
			if (!hwp_active)
				intel_pstate_adjust_busy_pstate(cpu);
		}
1329
	}
1330 1331 1332
}

#define ICPU(model, policy) \
1333 1334
	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
			(unsigned long)&policy }
1335 1336

static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1337 1338
	ICPU(0x2a, core_params),
	ICPU(0x2d, core_params),
1339
	ICPU(0x37, silvermont_params),
1340 1341
	ICPU(0x3a, core_params),
	ICPU(0x3c, core_params),
1342
	ICPU(0x3d, core_params),
1343 1344 1345 1346
	ICPU(0x3e, core_params),
	ICPU(0x3f, core_params),
	ICPU(0x45, core_params),
	ICPU(0x46, core_params),
1347
	ICPU(0x47, core_params),
1348
	ICPU(0x4c, airmont_params),
1349
	ICPU(0x4e, core_params),
1350
	ICPU(0x4f, core_params),
1351
	ICPU(0x5e, core_params),
1352
	ICPU(0x56, core_params),
1353
	ICPU(0x57, knl_params),
1354 1355 1356 1357
	{}
};
MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);

D
Dirk Brandewie 已提交
1358 1359 1360 1361 1362
static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
	ICPU(0x56, core_params),
	{}
};

1363 1364 1365 1366
static int intel_pstate_init_cpu(unsigned int cpunum)
{
	struct cpudata *cpu;

1367 1368 1369
	if (!all_cpu_data[cpunum])
		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
					       GFP_KERNEL);
1370 1371 1372 1373 1374 1375
	if (!all_cpu_data[cpunum])
		return -ENOMEM;

	cpu = all_cpu_data[cpunum];

	cpu->cpu = cpunum;
1376

1377
	if (hwp_active) {
1378
		intel_pstate_hwp_enable(cpu);
1379 1380 1381
		pid_params.sample_rate_ms = 50;
		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
	}
1382

1383
	intel_pstate_get_cpu_pstates(cpu);
1384

1385 1386
	intel_pstate_busy_pid_reset(cpu);

J
Joe Perches 已提交
1387
	pr_debug("controlling: cpu %d\n", cpunum);
1388 1389 1390 1391 1392 1393

	return 0;
}

static unsigned int intel_pstate_get(unsigned int cpu_num)
{
1394
	struct cpudata *cpu = all_cpu_data[cpu_num];
1395

1396
	return cpu ? get_avg_frequency(cpu) : 0;
1397 1398
}

1399
static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1400
{
1401 1402
	struct cpudata *cpu = all_cpu_data[cpu_num];

1403 1404 1405
	if (cpu->update_util_set)
		return;

1406 1407
	/* Prevent intel_pstate_update_util() from using stale data. */
	cpu->sample.time = 0;
1408 1409
	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
				     intel_pstate_update_util);
1410
	cpu->update_util_set = true;
1411 1412 1413 1414
}

static void intel_pstate_clear_update_util_hook(unsigned int cpu)
{
1415 1416 1417 1418 1419
	struct cpudata *cpu_data = all_cpu_data[cpu];

	if (!cpu_data->update_util_set)
		return;

1420
	cpufreq_remove_update_util_hook(cpu);
1421
	cpu_data->update_util_set = false;
1422 1423 1424
	synchronize_sched();
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
static void intel_pstate_set_performance_limits(struct perf_limits *limits)
{
	limits->no_turbo = 0;
	limits->turbo_disabled = 0;
	limits->max_perf_pct = 100;
	limits->max_perf = int_tofp(1);
	limits->min_perf_pct = 100;
	limits->min_perf = int_tofp(1);
	limits->max_policy_pct = 100;
	limits->max_sysfs_pct = 100;
	limits->min_policy_pct = 0;
	limits->min_sysfs_pct = 0;
}

1439 1440
static int intel_pstate_set_policy(struct cpufreq_policy *policy)
{
1441 1442
	struct cpudata *cpu;

1443 1444 1445
	if (!policy->cpuinfo.max_freq)
		return -ENODEV;

1446 1447 1448
	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
		 policy->cpuinfo.max_freq, policy->max);

1449
	cpu = all_cpu_data[0];
1450 1451 1452 1453 1454
	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
	    policy->max < policy->cpuinfo.max_freq &&
	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
		pr_debug("policy->max > max non turbo frequency\n");
		policy->max = policy->cpuinfo.max_freq;
1455 1456
	}

1457
	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1458
		limits = &performance_limits;
1459
		if (policy->max >= policy->cpuinfo.max_freq) {
J
Joe Perches 已提交
1460
			pr_debug("set performance\n");
1461 1462 1463 1464
			intel_pstate_set_performance_limits(limits);
			goto out;
		}
	} else {
J
Joe Perches 已提交
1465
		pr_debug("set powersave\n");
1466
		limits = &powersave_limits;
1467
	}
D
Dirk Brandewie 已提交
1468

1469 1470
	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1471 1472
	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
					      policy->cpuinfo.max_freq);
1473
	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1474 1475

	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1476 1477 1478 1479 1480 1481 1482 1483
	limits->min_perf_pct = max(limits->min_policy_pct,
				   limits->min_sysfs_pct);
	limits->min_perf_pct = min(limits->max_policy_pct,
				   limits->min_perf_pct);
	limits->max_perf_pct = min(limits->max_policy_pct,
				   limits->max_sysfs_pct);
	limits->max_perf_pct = max(limits->min_policy_pct,
				   limits->max_perf_pct);
1484 1485

	/* Make sure min_perf_pct <= max_perf_pct */
1486
	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1487

1488 1489
	limits->min_perf = div_fp(limits->min_perf_pct, 100);
	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1490
	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1491

1492 1493 1494
 out:
	intel_pstate_set_update_util_hook(policy->cpu);

1495
	intel_pstate_hwp_set_policy(policy);
D
Dirk Brandewie 已提交
1496

1497 1498 1499 1500 1501
	return 0;
}

static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
{
1502
	cpufreq_verify_within_cpu_limits(policy);
1503

1504
	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1505
	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1506 1507 1508 1509 1510
		return -EINVAL;

	return 0;
}

1511
static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1512
{
1513 1514
	int cpu_num = policy->cpu;
	struct cpudata *cpu = all_cpu_data[cpu_num];
1515

J
Joe Perches 已提交
1516
	pr_debug("CPU %d exiting\n", cpu_num);
1517

1518
	intel_pstate_clear_update_util_hook(cpu_num);
1519

D
Dirk Brandewie 已提交
1520 1521 1522
	if (hwp_active)
		return;

1523
	intel_pstate_set_min_pstate(cpu);
1524 1525
}

1526
static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1527 1528
{
	struct cpudata *cpu;
1529
	int rc;
1530 1531 1532 1533 1534 1535 1536

	rc = intel_pstate_init_cpu(policy->cpu);
	if (rc)
		return rc;

	cpu = all_cpu_data[policy->cpu];

1537
	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1538 1539 1540 1541
		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
	else
		policy->policy = CPUFREQ_POLICY_POWERSAVE;

1542 1543
	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1544 1545

	/* cpuinfo and default policy values */
1546
	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1547 1548 1549 1550 1551
	update_turbo_state();
	policy->cpuinfo.max_freq = limits->turbo_disabled ?
			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
	policy->cpuinfo.max_freq *= cpu->pstate.scaling;

1552
	intel_pstate_init_acpi_perf_limits(policy);
1553 1554 1555 1556 1557 1558
	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
	cpumask_set_cpu(policy->cpu, policy->cpus);

	return 0;
}

1559 1560 1561 1562 1563 1564 1565
static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
{
	intel_pstate_exit_perf_limits(policy);

	return 0;
}

1566 1567 1568 1569
static struct cpufreq_driver intel_pstate_driver = {
	.flags		= CPUFREQ_CONST_LOOPS,
	.verify		= intel_pstate_verify_policy,
	.setpolicy	= intel_pstate_set_policy,
1570
	.resume		= intel_pstate_hwp_set_policy,
1571 1572
	.get		= intel_pstate_get,
	.init		= intel_pstate_cpu_init,
1573
	.exit		= intel_pstate_cpu_exit,
1574
	.stop_cpu	= intel_pstate_stop_cpu,
1575 1576 1577
	.name		= "intel_pstate",
};

1578
static int __initdata no_load;
D
Dirk Brandewie 已提交
1579
static int __initdata no_hwp;
1580
static int __initdata hwp_only;
1581
static unsigned int force_load;
1582

1583 1584
static int intel_pstate_msrs_not_valid(void)
{
1585
	if (!pstate_funcs.get_max() ||
1586 1587
	    !pstate_funcs.get_min() ||
	    !pstate_funcs.get_turbo())
1588 1589 1590 1591
		return -ENODEV;

	return 0;
}
1592

1593
static void copy_pid_params(struct pstate_adjust_policy *policy)
1594 1595
{
	pid_params.sample_rate_ms = policy->sample_rate_ms;
1596
	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1597 1598 1599 1600 1601 1602 1603
	pid_params.p_gain_pct = policy->p_gain_pct;
	pid_params.i_gain_pct = policy->i_gain_pct;
	pid_params.d_gain_pct = policy->d_gain_pct;
	pid_params.deadband = policy->deadband;
	pid_params.setpoint = policy->setpoint;
}

1604
static void copy_cpu_funcs(struct pstate_funcs *funcs)
1605 1606
{
	pstate_funcs.get_max   = funcs->get_max;
1607
	pstate_funcs.get_max_physical = funcs->get_max_physical;
1608 1609
	pstate_funcs.get_min   = funcs->get_min;
	pstate_funcs.get_turbo = funcs->get_turbo;
1610
	pstate_funcs.get_scaling = funcs->get_scaling;
1611
	pstate_funcs.get_val   = funcs->get_val;
1612
	pstate_funcs.get_vid   = funcs->get_vid;
1613 1614
	pstate_funcs.get_target_pstate = funcs->get_target_pstate;

1615 1616
}

1617
#ifdef CONFIG_ACPI
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

static bool intel_pstate_no_acpi_pss(void)
{
	int i;

	for_each_possible_cpu(i) {
		acpi_status status;
		union acpi_object *pss;
		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;

		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
		if (ACPI_FAILURE(status))
			continue;

		pss = buffer.pointer;
		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
			kfree(pss);
			return false;
		}

		kfree(pss);
	}

	return true;
}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static bool intel_pstate_has_acpi_ppc(void)
{
	int i;

	for_each_possible_cpu(i) {
		struct acpi_processor *pr = per_cpu(processors, i);

		if (!pr)
			continue;
		if (acpi_has_method(pr->handle, "_PPC"))
			return true;
	}
	return false;
}

enum {
	PSS,
	PPC,
};

1668 1669 1670 1671
struct hw_vendor_info {
	u16  valid;
	char oem_id[ACPI_OEM_ID_SIZE];
	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1672
	int  oem_pwr_table;
1673 1674 1675 1676
};

/* Hardware vendor-specific info that has its own power management modes */
static struct hw_vendor_info vendor_info[] = {
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	{1, "HP    ", "ProLiant", PSS},
	{1, "ORACLE", "X4-2    ", PPC},
	{1, "ORACLE", "X4-2L   ", PPC},
	{1, "ORACLE", "X4-2B   ", PPC},
	{1, "ORACLE", "X3-2    ", PPC},
	{1, "ORACLE", "X3-2L   ", PPC},
	{1, "ORACLE", "X3-2B   ", PPC},
	{1, "ORACLE", "X4470M2 ", PPC},
	{1, "ORACLE", "X4270M3 ", PPC},
	{1, "ORACLE", "X4270M2 ", PPC},
	{1, "ORACLE", "X4170M2 ", PPC},
1688 1689 1690 1691
	{1, "ORACLE", "X4170 M3", PPC},
	{1, "ORACLE", "X4275 M3", PPC},
	{1, "ORACLE", "X6-2    ", PPC},
	{1, "ORACLE", "Sudbury ", PPC},
1692 1693 1694 1695 1696 1697 1698
	{0, "", ""},
};

static bool intel_pstate_platform_pwr_mgmt_exists(void)
{
	struct acpi_table_header hdr;
	struct hw_vendor_info *v_info;
D
Dirk Brandewie 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707
	const struct x86_cpu_id *id;
	u64 misc_pwr;

	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
	if (id) {
		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
		if ( misc_pwr & (1 << 8))
			return true;
	}
1708

1709 1710
	if (acpi_disabled ||
	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1711 1712 1713
		return false;

	for (v_info = vendor_info; v_info->valid; v_info++) {
1714
		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1715 1716 1717 1718 1719 1720
			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
						ACPI_OEM_TABLE_ID_SIZE))
			switch (v_info->oem_pwr_table) {
			case PSS:
				return intel_pstate_no_acpi_pss();
			case PPC:
1721 1722
				return intel_pstate_has_acpi_ppc() &&
					(!force_load);
1723
			}
1724 1725 1726 1727 1728 1729
	}

	return false;
}
#else /* CONFIG_ACPI not enabled */
static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1730
static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1731 1732
#endif /* CONFIG_ACPI */

1733 1734 1735 1736 1737
static const struct x86_cpu_id hwp_support_ids[] __initconst = {
	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
	{}
};

1738 1739
static int __init intel_pstate_init(void)
{
1740
	int cpu, rc = 0;
1741
	const struct x86_cpu_id *id;
1742
	struct cpu_defaults *cpu_def;
1743

1744 1745 1746
	if (no_load)
		return -ENODEV;

1747 1748 1749 1750 1751 1752
	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
		copy_cpu_funcs(&core_params.funcs);
		hwp_active++;
		goto hwp_cpu_matched;
	}

1753 1754 1755 1756
	id = x86_match_cpu(intel_pstate_cpu_ids);
	if (!id)
		return -ENODEV;

1757
	cpu_def = (struct cpu_defaults *)id->driver_data;
1758

1759 1760
	copy_pid_params(&cpu_def->pid_policy);
	copy_cpu_funcs(&cpu_def->funcs);
1761

1762 1763 1764
	if (intel_pstate_msrs_not_valid())
		return -ENODEV;

1765 1766 1767 1768 1769 1770 1771 1772
hwp_cpu_matched:
	/*
	 * The Intel pstate driver will be ignored if the platform
	 * firmware has its own power management modes.
	 */
	if (intel_pstate_platform_pwr_mgmt_exists())
		return -ENODEV;

J
Joe Perches 已提交
1773
	pr_info("Intel P-state driver initializing\n");
1774

1775
	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1776 1777 1778
	if (!all_cpu_data)
		return -ENOMEM;

1779 1780 1781
	if (!hwp_active && hwp_only)
		goto out;

1782 1783 1784 1785 1786 1787
	rc = cpufreq_register_driver(&intel_pstate_driver);
	if (rc)
		goto out;

	intel_pstate_debug_expose_params();
	intel_pstate_sysfs_expose_params();
1788

1789
	if (hwp_active)
J
Joe Perches 已提交
1790
		pr_info("HWP enabled\n");
1791

1792 1793
	return rc;
out:
1794 1795 1796
	get_online_cpus();
	for_each_online_cpu(cpu) {
		if (all_cpu_data[cpu]) {
1797
			intel_pstate_clear_update_util_hook(cpu);
1798 1799 1800 1801 1802 1803
			kfree(all_cpu_data[cpu]);
		}
	}

	put_online_cpus();
	vfree(all_cpu_data);
1804 1805 1806 1807
	return -ENODEV;
}
device_initcall(intel_pstate_init);

1808 1809 1810 1811 1812 1813 1814
static int __init intel_pstate_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "disable"))
		no_load = 1;
1815
	if (!strcmp(str, "no_hwp")) {
J
Joe Perches 已提交
1816
		pr_info("HWP disabled\n");
D
Dirk Brandewie 已提交
1817
		no_hwp = 1;
1818
	}
1819 1820
	if (!strcmp(str, "force"))
		force_load = 1;
1821 1822
	if (!strcmp(str, "hwp_only"))
		hwp_only = 1;
1823 1824 1825 1826 1827 1828

#ifdef CONFIG_ACPI
	if (!strcmp(str, "support_acpi_ppc"))
		acpi_ppc = true;
#endif

1829 1830 1831 1832
	return 0;
}
early_param("intel_pstate", intel_pstate_setup);

1833 1834 1835
MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
MODULE_LICENSE("GPL");