core.c 96.8 KB
Newer Older
1 2 3 4
/*
 * core.c  --  Voltage/Current Regulator framework.
 *
 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5
 * Copyright 2008 SlimLogic Ltd.
6
 *
7
 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 9 10 11 12 13 14 15 16 17
 *
 *  This program is free software; you can redistribute  it and/or modify it
 *  under  the terms of  the GNU General  Public License as published by the
 *  Free Software Foundation;  either version 2 of the  License, or (at your
 *  option) any later version.
 *
 */

#include <linux/kernel.h>
#include <linux/init.h>
18
#include <linux/debugfs.h>
19
#include <linux/device.h>
20
#include <linux/slab.h>
21
#include <linux/async.h>
22 23 24
#include <linux/err.h>
#include <linux/mutex.h>
#include <linux/suspend.h>
25
#include <linux/delay.h>
26
#include <linux/gpio.h>
27
#include <linux/of.h>
28
#include <linux/regmap.h>
29
#include <linux/regulator/of_regulator.h>
30 31 32
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
33
#include <linux/module.h>
34

35 36 37
#define CREATE_TRACE_POINTS
#include <trace/events/regulator.h>

38 39
#include "dummy.h"

M
Mark Brown 已提交
40 41
#define rdev_crit(rdev, fmt, ...)					\
	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 43 44 45 46 47 48 49 50
#define rdev_err(rdev, fmt, ...)					\
	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_warn(rdev, fmt, ...)					\
	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_info(rdev, fmt, ...)					\
	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
#define rdev_dbg(rdev, fmt, ...)					\
	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)

51 52 53
static DEFINE_MUTEX(regulator_list_mutex);
static LIST_HEAD(regulator_list);
static LIST_HEAD(regulator_map_list);
54
static LIST_HEAD(regulator_ena_gpio_list);
55
static bool has_full_constraints;
56

57 58
static struct dentry *debugfs_root;

59
/*
60 61 62 63 64 65
 * struct regulator_map
 *
 * Used to provide symbolic supply names to devices.
 */
struct regulator_map {
	struct list_head list;
66
	const char *dev_name;   /* The dev_name() for the consumer */
67
	const char *supply;
68
	struct regulator_dev *regulator;
69 70
};

71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * struct regulator_enable_gpio
 *
 * Management for shared enable GPIO pin
 */
struct regulator_enable_gpio {
	struct list_head list;
	int gpio;
	u32 enable_count;	/* a number of enabled shared GPIO */
	u32 request_count;	/* a number of requested shared GPIO */
	unsigned int ena_gpio_invert:1;
};

84 85 86 87 88 89 90 91
/*
 * struct regulator
 *
 * One for each consumer device.
 */
struct regulator {
	struct device *dev;
	struct list_head list;
92
	unsigned int always_on:1;
93
	unsigned int bypass:1;
94 95 96 97 98 99
	int uA_load;
	int min_uV;
	int max_uV;
	char *supply_name;
	struct device_attribute dev_attr;
	struct regulator_dev *rdev;
100
	struct dentry *debugfs;
101 102 103
};

static int _regulator_is_enabled(struct regulator_dev *rdev);
104
static int _regulator_disable(struct regulator_dev *rdev);
105 106 107 108 109
static int _regulator_get_voltage(struct regulator_dev *rdev);
static int _regulator_get_current_limit(struct regulator_dev *rdev);
static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data);
110 111
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV);
112 113 114
static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name);
115

116 117 118 119 120 121 122 123 124 125
static const char *rdev_get_name(struct regulator_dev *rdev)
{
	if (rdev->constraints && rdev->constraints->name)
		return rdev->constraints->name;
	else if (rdev->desc->name)
		return rdev->desc->name;
	else
		return "";
}

126 127 128 129 130 131
/**
 * of_get_regulator - get a regulator device node based on supply name
 * @dev: Device pointer for the consumer (of regulator) device
 * @supply: regulator supply name
 *
 * Extract the regulator device node corresponding to the supply name.
132
 * returns the device node corresponding to the regulator if found, else
133 134 135 136 137 138 139 140 141 142 143 144 145
 * returns NULL.
 */
static struct device_node *of_get_regulator(struct device *dev, const char *supply)
{
	struct device_node *regnode = NULL;
	char prop_name[32]; /* 32 is max size of property name */

	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);

	snprintf(prop_name, 32, "%s-supply", supply);
	regnode = of_parse_phandle(dev->of_node, prop_name, 0);

	if (!regnode) {
146
		dev_dbg(dev, "Looking up %s property in node %s failed",
147 148 149 150 151 152
				prop_name, dev->of_node->full_name);
		return NULL;
	}
	return regnode;
}

153 154 155 156 157 158 159 160 161 162 163
static int _regulator_can_change_status(struct regulator_dev *rdev)
{
	if (!rdev->constraints)
		return 0;

	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
		return 1;
	else
		return 0;
}

164 165 166 167 168 169 170
/* Platform voltage constraint check */
static int regulator_check_voltage(struct regulator_dev *rdev,
				   int *min_uV, int *max_uV)
{
	BUG_ON(*min_uV > *max_uV);

	if (!rdev->constraints) {
171
		rdev_err(rdev, "no constraints\n");
172 173 174
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175
		rdev_err(rdev, "operation not allowed\n");
176 177 178 179 180 181 182 183
		return -EPERM;
	}

	if (*max_uV > rdev->constraints->max_uV)
		*max_uV = rdev->constraints->max_uV;
	if (*min_uV < rdev->constraints->min_uV)
		*min_uV = rdev->constraints->min_uV;

184 185
	if (*min_uV > *max_uV) {
		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186
			 *min_uV, *max_uV);
187
		return -EINVAL;
188
	}
189 190 191 192

	return 0;
}

193 194 195 196 197 198 199 200 201
/* Make sure we select a voltage that suits the needs of all
 * regulator consumers
 */
static int regulator_check_consumers(struct regulator_dev *rdev,
				     int *min_uV, int *max_uV)
{
	struct regulator *regulator;

	list_for_each_entry(regulator, &rdev->consumer_list, list) {
202 203 204 205 206 207 208
		/*
		 * Assume consumers that didn't say anything are OK
		 * with anything in the constraint range.
		 */
		if (!regulator->min_uV && !regulator->max_uV)
			continue;

209 210 211 212 213 214
		if (*max_uV > regulator->max_uV)
			*max_uV = regulator->max_uV;
		if (*min_uV < regulator->min_uV)
			*min_uV = regulator->min_uV;
	}

215
	if (*min_uV > *max_uV) {
216 217
		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
			*min_uV, *max_uV);
218
		return -EINVAL;
219
	}
220 221 222 223

	return 0;
}

224 225 226 227 228 229 230
/* current constraint check */
static int regulator_check_current_limit(struct regulator_dev *rdev,
					int *min_uA, int *max_uA)
{
	BUG_ON(*min_uA > *max_uA);

	if (!rdev->constraints) {
231
		rdev_err(rdev, "no constraints\n");
232 233 234
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
235
		rdev_err(rdev, "operation not allowed\n");
236 237 238 239 240 241 242 243
		return -EPERM;
	}

	if (*max_uA > rdev->constraints->max_uA)
		*max_uA = rdev->constraints->max_uA;
	if (*min_uA < rdev->constraints->min_uA)
		*min_uA = rdev->constraints->min_uA;

244 245
	if (*min_uA > *max_uA) {
		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
246
			 *min_uA, *max_uA);
247
		return -EINVAL;
248
	}
249 250 251 252 253

	return 0;
}

/* operating mode constraint check */
254
static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
255
{
256
	switch (*mode) {
257 258 259 260 261 262
	case REGULATOR_MODE_FAST:
	case REGULATOR_MODE_NORMAL:
	case REGULATOR_MODE_IDLE:
	case REGULATOR_MODE_STANDBY:
		break;
	default:
263
		rdev_err(rdev, "invalid mode %x specified\n", *mode);
264 265 266
		return -EINVAL;
	}

267
	if (!rdev->constraints) {
268
		rdev_err(rdev, "no constraints\n");
269 270 271
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
272
		rdev_err(rdev, "operation not allowed\n");
273 274
		return -EPERM;
	}
275 276 277 278 279 280 281 282

	/* The modes are bitmasks, the most power hungry modes having
	 * the lowest values. If the requested mode isn't supported
	 * try higher modes. */
	while (*mode) {
		if (rdev->constraints->valid_modes_mask & *mode)
			return 0;
		*mode /= 2;
283
	}
284 285

	return -EINVAL;
286 287 288 289 290 291
}

/* dynamic regulator mode switching constraint check */
static int regulator_check_drms(struct regulator_dev *rdev)
{
	if (!rdev->constraints) {
292
		rdev_err(rdev, "no constraints\n");
293 294 295
		return -ENODEV;
	}
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
296
		rdev_err(rdev, "operation not allowed\n");
297 298 299 300 301 302 303 304
		return -EPERM;
	}
	return 0;
}

static ssize_t regulator_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
305
	struct regulator_dev *rdev = dev_get_drvdata(dev);
306 307 308 309 310 311 312 313
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
	mutex_unlock(&rdev->mutex);

	return ret;
}
314
static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
315 316 317 318

static ssize_t regulator_uA_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
319
	struct regulator_dev *rdev = dev_get_drvdata(dev);
320 321 322

	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
}
323
static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
324

325 326
static ssize_t name_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
327 328 329
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);

330
	return sprintf(buf, "%s\n", rdev_get_name(rdev));
331
}
332
static DEVICE_ATTR_RO(name);
333

D
David Brownell 已提交
334
static ssize_t regulator_print_opmode(char *buf, int mode)
335 336 337 338 339 340 341 342 343 344 345 346 347 348
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return sprintf(buf, "fast\n");
	case REGULATOR_MODE_NORMAL:
		return sprintf(buf, "normal\n");
	case REGULATOR_MODE_IDLE:
		return sprintf(buf, "idle\n");
	case REGULATOR_MODE_STANDBY:
		return sprintf(buf, "standby\n");
	}
	return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
349 350
static ssize_t regulator_opmode_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
351
{
352
	struct regulator_dev *rdev = dev_get_drvdata(dev);
353

D
David Brownell 已提交
354 355
	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
}
356
static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
D
David Brownell 已提交
357 358 359

static ssize_t regulator_print_state(char *buf, int state)
{
360 361 362 363 364 365 366 367
	if (state > 0)
		return sprintf(buf, "enabled\n");
	else if (state == 0)
		return sprintf(buf, "disabled\n");
	else
		return sprintf(buf, "unknown\n");
}

D
David Brownell 已提交
368 369 370 371
static ssize_t regulator_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
372 373 374 375 376
	ssize_t ret;

	mutex_lock(&rdev->mutex);
	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
	mutex_unlock(&rdev->mutex);
D
David Brownell 已提交
377

378
	return ret;
D
David Brownell 已提交
379
}
380
static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
D
David Brownell 已提交
381

D
David Brownell 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
static ssize_t regulator_status_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	int status;
	char *label;

	status = rdev->desc->ops->get_status(rdev);
	if (status < 0)
		return status;

	switch (status) {
	case REGULATOR_STATUS_OFF:
		label = "off";
		break;
	case REGULATOR_STATUS_ON:
		label = "on";
		break;
	case REGULATOR_STATUS_ERROR:
		label = "error";
		break;
	case REGULATOR_STATUS_FAST:
		label = "fast";
		break;
	case REGULATOR_STATUS_NORMAL:
		label = "normal";
		break;
	case REGULATOR_STATUS_IDLE:
		label = "idle";
		break;
	case REGULATOR_STATUS_STANDBY:
		label = "standby";
		break;
415 416 417
	case REGULATOR_STATUS_BYPASS:
		label = "bypass";
		break;
418 419 420
	case REGULATOR_STATUS_UNDEFINED:
		label = "undefined";
		break;
D
David Brownell 已提交
421 422 423 424 425 426 427 428
	default:
		return -ERANGE;
	}

	return sprintf(buf, "%s\n", label);
}
static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);

429 430 431
static ssize_t regulator_min_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
432
	struct regulator_dev *rdev = dev_get_drvdata(dev);
433 434 435 436 437 438

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
}
439
static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440 441 442 443

static ssize_t regulator_max_uA_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
444
	struct regulator_dev *rdev = dev_get_drvdata(dev);
445 446 447 448 449 450

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
}
451
static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452 453 454 455

static ssize_t regulator_min_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
456
	struct regulator_dev *rdev = dev_get_drvdata(dev);
457 458 459 460 461 462

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
}
463
static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464 465 466 467

static ssize_t regulator_max_uV_show(struct device *dev,
				    struct device_attribute *attr, char *buf)
{
468
	struct regulator_dev *rdev = dev_get_drvdata(dev);
469 470 471 472 473 474

	if (!rdev->constraints)
		return sprintf(buf, "constraint not defined\n");

	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
}
475
static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476 477 478 479

static ssize_t regulator_total_uA_show(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
480
	struct regulator_dev *rdev = dev_get_drvdata(dev);
481 482 483 484 485
	struct regulator *regulator;
	int uA = 0;

	mutex_lock(&rdev->mutex);
	list_for_each_entry(regulator, &rdev->consumer_list, list)
486
		uA += regulator->uA_load;
487 488 489
	mutex_unlock(&rdev->mutex);
	return sprintf(buf, "%d\n", uA);
}
490
static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491

492 493
static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
			      char *buf)
494
{
495
	struct regulator_dev *rdev = dev_get_drvdata(dev);
496 497
	return sprintf(buf, "%d\n", rdev->use_count);
}
498
static DEVICE_ATTR_RO(num_users);
499

500 501
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
			 char *buf)
502
{
503
	struct regulator_dev *rdev = dev_get_drvdata(dev);
504 505 506 507 508 509 510 511 512

	switch (rdev->desc->type) {
	case REGULATOR_VOLTAGE:
		return sprintf(buf, "voltage\n");
	case REGULATOR_CURRENT:
		return sprintf(buf, "current\n");
	}
	return sprintf(buf, "unknown\n");
}
513
static DEVICE_ATTR_RO(type);
514 515 516 517

static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
518
	struct regulator_dev *rdev = dev_get_drvdata(dev);
519 520 521

	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
}
522 523
static DEVICE_ATTR(suspend_mem_microvolts, 0444,
		regulator_suspend_mem_uV_show, NULL);
524 525 526 527

static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
528
	struct regulator_dev *rdev = dev_get_drvdata(dev);
529 530 531

	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
}
532 533
static DEVICE_ATTR(suspend_disk_microvolts, 0444,
		regulator_suspend_disk_uV_show, NULL);
534 535 536 537

static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
538
	struct regulator_dev *rdev = dev_get_drvdata(dev);
539 540 541

	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
}
542 543
static DEVICE_ATTR(suspend_standby_microvolts, 0444,
		regulator_suspend_standby_uV_show, NULL);
544 545 546 547

static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
548
	struct regulator_dev *rdev = dev_get_drvdata(dev);
549

D
David Brownell 已提交
550 551
	return regulator_print_opmode(buf,
		rdev->constraints->state_mem.mode);
552
}
553 554
static DEVICE_ATTR(suspend_mem_mode, 0444,
		regulator_suspend_mem_mode_show, NULL);
555 556 557 558

static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
559
	struct regulator_dev *rdev = dev_get_drvdata(dev);
560

D
David Brownell 已提交
561 562
	return regulator_print_opmode(buf,
		rdev->constraints->state_disk.mode);
563
}
564 565
static DEVICE_ATTR(suspend_disk_mode, 0444,
		regulator_suspend_disk_mode_show, NULL);
566 567 568 569

static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
				struct device_attribute *attr, char *buf)
{
570
	struct regulator_dev *rdev = dev_get_drvdata(dev);
571

D
David Brownell 已提交
572 573
	return regulator_print_opmode(buf,
		rdev->constraints->state_standby.mode);
574
}
575 576
static DEVICE_ATTR(suspend_standby_mode, 0444,
		regulator_suspend_standby_mode_show, NULL);
577 578 579 580

static ssize_t regulator_suspend_mem_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
581
	struct regulator_dev *rdev = dev_get_drvdata(dev);
582

D
David Brownell 已提交
583 584
	return regulator_print_state(buf,
			rdev->constraints->state_mem.enabled);
585
}
586 587
static DEVICE_ATTR(suspend_mem_state, 0444,
		regulator_suspend_mem_state_show, NULL);
588 589 590 591

static ssize_t regulator_suspend_disk_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
592
	struct regulator_dev *rdev = dev_get_drvdata(dev);
593

D
David Brownell 已提交
594 595
	return regulator_print_state(buf,
			rdev->constraints->state_disk.enabled);
596
}
597 598
static DEVICE_ATTR(suspend_disk_state, 0444,
		regulator_suspend_disk_state_show, NULL);
599 600 601 602

static ssize_t regulator_suspend_standby_state_show(struct device *dev,
				   struct device_attribute *attr, char *buf)
{
603
	struct regulator_dev *rdev = dev_get_drvdata(dev);
604

D
David Brownell 已提交
605 606
	return regulator_print_state(buf,
			rdev->constraints->state_standby.enabled);
607
}
608 609 610
static DEVICE_ATTR(suspend_standby_state, 0444,
		regulator_suspend_standby_state_show, NULL);

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
static ssize_t regulator_bypass_show(struct device *dev,
				     struct device_attribute *attr, char *buf)
{
	struct regulator_dev *rdev = dev_get_drvdata(dev);
	const char *report;
	bool bypass;
	int ret;

	ret = rdev->desc->ops->get_bypass(rdev, &bypass);

	if (ret != 0)
		report = "unknown";
	else if (bypass)
		report = "enabled";
	else
		report = "disabled";

	return sprintf(buf, "%s\n", report);
}
static DEVICE_ATTR(bypass, 0444,
		   regulator_bypass_show, NULL);
632

633 634 635 636
/*
 * These are the only attributes are present for all regulators.
 * Other attributes are a function of regulator functionality.
 */
637 638 639 640 641
static struct attribute *regulator_dev_attrs[] = {
	&dev_attr_name.attr,
	&dev_attr_num_users.attr,
	&dev_attr_type.attr,
	NULL,
642
};
643
ATTRIBUTE_GROUPS(regulator_dev);
644 645 646

static void regulator_dev_release(struct device *dev)
{
647
	struct regulator_dev *rdev = dev_get_drvdata(dev);
648 649 650 651 652 653
	kfree(rdev);
}

static struct class regulator_class = {
	.name = "regulator",
	.dev_release = regulator_dev_release,
654
	.dev_groups = regulator_dev_groups,
655 656 657 658 659 660 661 662 663 664 665 666
};

/* Calculate the new optimum regulator operating mode based on the new total
 * consumer load. All locks held by caller */
static void drms_uA_update(struct regulator_dev *rdev)
{
	struct regulator *sibling;
	int current_uA = 0, output_uV, input_uV, err;
	unsigned int mode;

	err = regulator_check_drms(rdev);
	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
667 668 669
	    (!rdev->desc->ops->get_voltage &&
	     !rdev->desc->ops->get_voltage_sel) ||
	    !rdev->desc->ops->set_mode)
670
		return;
671 672

	/* get output voltage */
673
	output_uV = _regulator_get_voltage(rdev);
674 675 676 677
	if (output_uV <= 0)
		return;

	/* get input voltage */
678 679
	input_uV = 0;
	if (rdev->supply)
680
		input_uV = regulator_get_voltage(rdev->supply);
681
	if (input_uV <= 0)
682 683 684 685 686 687
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0)
		return;

	/* calc total requested load */
	list_for_each_entry(sibling, &rdev->consumer_list, list)
688
		current_uA += sibling->uA_load;
689 690 691 692 693 694

	/* now get the optimum mode for our new total regulator load */
	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
						  output_uV, current_uA);

	/* check the new mode is allowed */
695
	err = regulator_mode_constrain(rdev, &mode);
696 697 698 699 700 701 702 703
	if (err == 0)
		rdev->desc->ops->set_mode(rdev, mode);
}

static int suspend_set_state(struct regulator_dev *rdev,
	struct regulator_state *rstate)
{
	int ret = 0;
704 705

	/* If we have no suspend mode configration don't set anything;
706 707
	 * only warn if the driver implements set_suspend_voltage or
	 * set_suspend_mode callback.
708 709
	 */
	if (!rstate->enabled && !rstate->disabled) {
710 711
		if (rdev->desc->ops->set_suspend_voltage ||
		    rdev->desc->ops->set_suspend_mode)
712
			rdev_warn(rdev, "No configuration\n");
713 714 715 716
		return 0;
	}

	if (rstate->enabled && rstate->disabled) {
717
		rdev_err(rdev, "invalid configuration\n");
718 719
		return -EINVAL;
	}
720

721
	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
722
		ret = rdev->desc->ops->set_suspend_enable(rdev);
723
	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
724
		ret = rdev->desc->ops->set_suspend_disable(rdev);
725 726 727
	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
		ret = 0;

728
	if (ret < 0) {
729
		rdev_err(rdev, "failed to enabled/disable\n");
730 731 732 733 734 735
		return ret;
	}

	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
		if (ret < 0) {
736
			rdev_err(rdev, "failed to set voltage\n");
737 738 739 740 741 742 743
			return ret;
		}
	}

	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
		if (ret < 0) {
744
			rdev_err(rdev, "failed to set mode\n");
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
			return ret;
		}
	}
	return ret;
}

/* locks held by caller */
static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
{
	if (!rdev->constraints)
		return -EINVAL;

	switch (state) {
	case PM_SUSPEND_STANDBY:
		return suspend_set_state(rdev,
			&rdev->constraints->state_standby);
	case PM_SUSPEND_MEM:
		return suspend_set_state(rdev,
			&rdev->constraints->state_mem);
	case PM_SUSPEND_MAX:
		return suspend_set_state(rdev,
			&rdev->constraints->state_disk);
	default:
		return -EINVAL;
	}
}

static void print_constraints(struct regulator_dev *rdev)
{
	struct regulation_constraints *constraints = rdev->constraints;
775
	char buf[80] = "";
776 777
	int count = 0;
	int ret;
778

779
	if (constraints->min_uV && constraints->max_uV) {
780
		if (constraints->min_uV == constraints->max_uV)
781 782
			count += sprintf(buf + count, "%d mV ",
					 constraints->min_uV / 1000);
783
		else
784 785 786 787 788 789 790 791 792 793 794 795
			count += sprintf(buf + count, "%d <--> %d mV ",
					 constraints->min_uV / 1000,
					 constraints->max_uV / 1000);
	}

	if (!constraints->min_uV ||
	    constraints->min_uV != constraints->max_uV) {
		ret = _regulator_get_voltage(rdev);
		if (ret > 0)
			count += sprintf(buf + count, "at %d mV ", ret / 1000);
	}

796 797 798 799
	if (constraints->uV_offset)
		count += sprintf(buf, "%dmV offset ",
				 constraints->uV_offset / 1000);

800
	if (constraints->min_uA && constraints->max_uA) {
801
		if (constraints->min_uA == constraints->max_uA)
802 803
			count += sprintf(buf + count, "%d mA ",
					 constraints->min_uA / 1000);
804
		else
805 806 807 808 809 810 811 812 813
			count += sprintf(buf + count, "%d <--> %d mA ",
					 constraints->min_uA / 1000,
					 constraints->max_uA / 1000);
	}

	if (!constraints->min_uA ||
	    constraints->min_uA != constraints->max_uA) {
		ret = _regulator_get_current_limit(rdev);
		if (ret > 0)
814
			count += sprintf(buf + count, "at %d mA ", ret / 1000);
815
	}
816

817 818 819 820 821 822 823 824 825
	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
		count += sprintf(buf + count, "fast ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
		count += sprintf(buf + count, "normal ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
		count += sprintf(buf + count, "idle ");
	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
		count += sprintf(buf + count, "standby");

826 827 828
	if (!count)
		sprintf(buf, "no parameters");

M
Mark Brown 已提交
829
	rdev_info(rdev, "%s\n", buf);
830 831 832 833 834

	if ((constraints->min_uV != constraints->max_uV) &&
	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
		rdev_warn(rdev,
			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
835 836
}

837
static int machine_constraints_voltage(struct regulator_dev *rdev,
838
	struct regulation_constraints *constraints)
839
{
840
	struct regulator_ops *ops = rdev->desc->ops;
841 842 843 844
	int ret;

	/* do we need to apply the constraint voltage */
	if (rdev->constraints->apply_uV &&
845 846 847 848 849 850 851 852 853
	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
		ret = _regulator_do_set_voltage(rdev,
						rdev->constraints->min_uV,
						rdev->constraints->max_uV);
		if (ret < 0) {
			rdev_err(rdev, "failed to apply %duV constraint\n",
				 rdev->constraints->min_uV);
			return ret;
		}
854
	}
855

856 857 858 859 860 861 862 863 864 865 866
	/* constrain machine-level voltage specs to fit
	 * the actual range supported by this regulator.
	 */
	if (ops->list_voltage && rdev->desc->n_voltages) {
		int	count = rdev->desc->n_voltages;
		int	i;
		int	min_uV = INT_MAX;
		int	max_uV = INT_MIN;
		int	cmin = constraints->min_uV;
		int	cmax = constraints->max_uV;

867 868
		/* it's safe to autoconfigure fixed-voltage supplies
		   and the constraints are used by list_voltage. */
869
		if (count == 1 && !cmin) {
870
			cmin = 1;
871
			cmax = INT_MAX;
872 873
			constraints->min_uV = cmin;
			constraints->max_uV = cmax;
874 875
		}

876 877
		/* voltage constraints are optional */
		if ((cmin == 0) && (cmax == 0))
878
			return 0;
879

880
		/* else require explicit machine-level constraints */
881
		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
882
			rdev_err(rdev, "invalid voltage constraints\n");
883
			return -EINVAL;
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
		}

		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
		for (i = 0; i < count; i++) {
			int	value;

			value = ops->list_voltage(rdev, i);
			if (value <= 0)
				continue;

			/* maybe adjust [min_uV..max_uV] */
			if (value >= cmin && value < min_uV)
				min_uV = value;
			if (value <= cmax && value > max_uV)
				max_uV = value;
		}

		/* final: [min_uV..max_uV] valid iff constraints valid */
		if (max_uV < min_uV) {
903 904 905
			rdev_err(rdev,
				 "unsupportable voltage constraints %u-%uuV\n",
				 min_uV, max_uV);
906
			return -EINVAL;
907 908 909 910
		}

		/* use regulator's subset of machine constraints */
		if (constraints->min_uV < min_uV) {
911 912
			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
				 constraints->min_uV, min_uV);
913 914 915
			constraints->min_uV = min_uV;
		}
		if (constraints->max_uV > max_uV) {
916 917
			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
				 constraints->max_uV, max_uV);
918 919 920 921
			constraints->max_uV = max_uV;
		}
	}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	return 0;
}

/**
 * set_machine_constraints - sets regulator constraints
 * @rdev: regulator source
 * @constraints: constraints to apply
 *
 * Allows platform initialisation code to define and constrain
 * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
 * Constraints *must* be set by platform code in order for some
 * regulator operations to proceed i.e. set_voltage, set_current_limit,
 * set_mode.
 */
static int set_machine_constraints(struct regulator_dev *rdev,
937
	const struct regulation_constraints *constraints)
938 939 940 941
{
	int ret = 0;
	struct regulator_ops *ops = rdev->desc->ops;

942 943 944 945 946 947
	if (constraints)
		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
					    GFP_KERNEL);
	else
		rdev->constraints = kzalloc(sizeof(*constraints),
					    GFP_KERNEL);
948 949
	if (!rdev->constraints)
		return -ENOMEM;
950

951
	ret = machine_constraints_voltage(rdev, rdev->constraints);
952 953 954
	if (ret != 0)
		goto out;

955
	/* do we need to setup our suspend state */
956
	if (rdev->constraints->initial_state) {
957
		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
958
		if (ret < 0) {
959
			rdev_err(rdev, "failed to set suspend state\n");
960 961 962
			goto out;
		}
	}
963

964
	if (rdev->constraints->initial_mode) {
965
		if (!ops->set_mode) {
966
			rdev_err(rdev, "no set_mode operation\n");
967 968 969 970
			ret = -EINVAL;
			goto out;
		}

971
		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
972
		if (ret < 0) {
973
			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
974 975 976 977
			goto out;
		}
	}

978 979 980
	/* If the constraints say the regulator should be on at this point
	 * and we have control then make sure it is enabled.
	 */
981 982
	if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
	    ops->enable) {
983 984
		ret = ops->enable(rdev);
		if (ret < 0) {
985
			rdev_err(rdev, "failed to enable\n");
986 987 988 989
			goto out;
		}
	}

990 991
	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
		&& ops->set_ramp_delay) {
992 993 994 995 996 997 998
		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
		if (ret < 0) {
			rdev_err(rdev, "failed to set ramp_delay\n");
			goto out;
		}
	}

999
	print_constraints(rdev);
1000
	return 0;
1001
out:
1002 1003
	kfree(rdev->constraints);
	rdev->constraints = NULL;
1004 1005 1006 1007 1008
	return ret;
}

/**
 * set_supply - set regulator supply regulator
1009 1010
 * @rdev: regulator name
 * @supply_rdev: supply regulator name
1011 1012 1013 1014 1015 1016
 *
 * Called by platform initialisation code to set the supply regulator for this
 * regulator. This ensures that a regulators supply will also be enabled by the
 * core if it's child is enabled.
 */
static int set_supply(struct regulator_dev *rdev,
1017
		      struct regulator_dev *supply_rdev)
1018 1019 1020
{
	int err;

1021 1022 1023
	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));

	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1024 1025
	if (rdev->supply == NULL) {
		err = -ENOMEM;
1026
		return err;
1027
	}
1028
	supply_rdev->open_count++;
1029 1030

	return 0;
1031 1032 1033
}

/**
1034
 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1035
 * @rdev:         regulator source
1036
 * @consumer_dev_name: dev_name() string for device supply applies to
1037
 * @supply:       symbolic name for supply
1038 1039 1040 1041 1042 1043 1044
 *
 * Allows platform initialisation code to map physical regulator
 * sources to symbolic names for supplies for use by devices.  Devices
 * should use these symbolic names to request regulators, avoiding the
 * need to provide board-specific regulator names as platform data.
 */
static int set_consumer_device_supply(struct regulator_dev *rdev,
1045 1046
				      const char *consumer_dev_name,
				      const char *supply)
1047 1048
{
	struct regulator_map *node;
1049
	int has_dev;
1050 1051 1052 1053

	if (supply == NULL)
		return -EINVAL;

1054 1055 1056 1057 1058
	if (consumer_dev_name != NULL)
		has_dev = 1;
	else
		has_dev = 0;

1059
	list_for_each_entry(node, &regulator_map_list, list) {
1060 1061 1062 1063
		if (node->dev_name && consumer_dev_name) {
			if (strcmp(node->dev_name, consumer_dev_name) != 0)
				continue;
		} else if (node->dev_name || consumer_dev_name) {
1064
			continue;
1065 1066
		}

1067 1068 1069
		if (strcmp(node->supply, supply) != 0)
			continue;

1070 1071 1072 1073 1074 1075
		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
			 consumer_dev_name,
			 dev_name(&node->regulator->dev),
			 node->regulator->desc->name,
			 supply,
			 dev_name(&rdev->dev), rdev_get_name(rdev));
1076 1077 1078
		return -EBUSY;
	}

1079
	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1080 1081 1082 1083 1084 1085
	if (node == NULL)
		return -ENOMEM;

	node->regulator = rdev;
	node->supply = supply;

1086 1087 1088 1089 1090 1091
	if (has_dev) {
		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
		if (node->dev_name == NULL) {
			kfree(node);
			return -ENOMEM;
		}
1092 1093
	}

1094 1095 1096 1097
	list_add(&node->list, &regulator_map_list);
	return 0;
}

1098 1099 1100 1101 1102 1103 1104
static void unset_regulator_supplies(struct regulator_dev *rdev)
{
	struct regulator_map *node, *n;

	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
		if (rdev == node->regulator) {
			list_del(&node->list);
1105
			kfree(node->dev_name);
1106 1107 1108 1109 1110
			kfree(node);
		}
	}
}

1111
#define REG_STR_SIZE	64
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

static struct regulator *create_regulator(struct regulator_dev *rdev,
					  struct device *dev,
					  const char *supply_name)
{
	struct regulator *regulator;
	char buf[REG_STR_SIZE];
	int err, size;

	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
	if (regulator == NULL)
		return NULL;

	mutex_lock(&rdev->mutex);
	regulator->rdev = rdev;
	list_add(&regulator->list, &rdev->consumer_list);

	if (dev) {
1130 1131
		regulator->dev = dev;

1132
		/* Add a link to the device sysfs entry */
1133 1134 1135
		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
				 dev->kobj.name, supply_name);
		if (size >= REG_STR_SIZE)
1136
			goto overflow_err;
1137 1138 1139

		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1140
			goto overflow_err;
1141 1142 1143 1144

		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
					buf);
		if (err) {
1145 1146
			rdev_warn(rdev, "could not add device link %s err %d\n",
				  dev->kobj.name, err);
1147
			/* non-fatal */
1148
		}
1149 1150 1151
	} else {
		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
		if (regulator->supply_name == NULL)
1152
			goto overflow_err;
1153 1154 1155 1156
	}

	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
						rdev->debugfs);
1157
	if (!regulator->debugfs) {
1158 1159 1160 1161 1162 1163 1164 1165
		rdev_warn(rdev, "Failed to create debugfs directory\n");
	} else {
		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
				   &regulator->uA_load);
		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
				   &regulator->min_uV);
		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
				   &regulator->max_uV);
1166
	}
1167

1168 1169 1170 1171 1172 1173 1174 1175 1176
	/*
	 * Check now if the regulator is an always on regulator - if
	 * it is then we don't need to do nearly so much work for
	 * enable/disable calls.
	 */
	if (!_regulator_can_change_status(rdev) &&
	    _regulator_is_enabled(rdev))
		regulator->always_on = true;

1177 1178 1179 1180 1181 1182 1183 1184 1185
	mutex_unlock(&rdev->mutex);
	return regulator;
overflow_err:
	list_del(&regulator->list);
	kfree(regulator);
	mutex_unlock(&rdev->mutex);
	return NULL;
}

1186 1187 1188
static int _regulator_get_enable_time(struct regulator_dev *rdev)
{
	if (!rdev->desc->ops->enable_time)
1189
		return rdev->desc->enable_time;
1190 1191 1192
	return rdev->desc->ops->enable_time(rdev);
}

1193
static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1194 1195
						  const char *supply,
						  int *ret)
1196 1197 1198
{
	struct regulator_dev *r;
	struct device_node *node;
1199 1200
	struct regulator_map *map;
	const char *devname = NULL;
1201 1202 1203 1204

	/* first do a dt based lookup */
	if (dev && dev->of_node) {
		node = of_get_regulator(dev, supply);
1205
		if (node) {
1206 1207 1208 1209
			list_for_each_entry(r, &regulator_list, list)
				if (r->dev.parent &&
					node == r->dev.of_node)
					return r;
1210 1211 1212 1213 1214 1215 1216 1217 1218
		} else {
			/*
			 * If we couldn't even get the node then it's
			 * not just that the device didn't register
			 * yet, there's no node and we'll never
			 * succeed.
			 */
			*ret = -ENODEV;
		}
1219 1220 1221
	}

	/* if not found, try doing it non-dt way */
1222 1223 1224
	if (dev)
		devname = dev_name(dev);

1225 1226 1227 1228
	list_for_each_entry(r, &regulator_list, list)
		if (strcmp(rdev_get_name(r), supply) == 0)
			return r;

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	list_for_each_entry(map, &regulator_map_list, list) {
		/* If the mapping has a device set up it must match */
		if (map->dev_name &&
		    (!devname || strcmp(map->dev_name, devname)))
			continue;

		if (strcmp(map->supply, supply) == 0)
			return map->regulator;
	}


1240 1241 1242
	return NULL;
}

1243 1244
/* Internal regulator request function */
static struct regulator *_regulator_get(struct device *dev, const char *id,
1245
					bool exclusive, bool allow_dummy)
1246 1247
{
	struct regulator_dev *rdev;
1248
	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1249
	const char *devname = NULL;
1250
	int ret = 0;
1251 1252

	if (id == NULL) {
1253
		pr_err("get() with no identifier\n");
1254 1255 1256
		return regulator;
	}

1257 1258 1259
	if (dev)
		devname = dev_name(dev);

1260 1261
	mutex_lock(&regulator_list_mutex);

1262
	rdev = regulator_dev_lookup(dev, id, &ret);
1263 1264 1265
	if (rdev)
		goto found;

1266 1267 1268 1269
	/*
	 * If we have return value from dev_lookup fail, we do not expect to
	 * succeed, so, quit with appropriate error value
	 */
1270
	if (ret && ret != -ENODEV) {
1271 1272 1273 1274
		regulator = ERR_PTR(ret);
		goto out;
	}

1275 1276 1277
	if (!devname)
		devname = "deviceless";

1278 1279 1280
	/*
	 * Assume that a regulator is physically present and enabled
	 * even if it isn't hooked up and just provide a dummy.
1281
	 */
1282 1283 1284 1285 1286 1287 1288 1289 1290
	if (has_full_constraints && allow_dummy) {
		/*
		 * Log the substitution if regulator configuration is
		 * not complete to help development.
		 */
		if (!has_full_constraints)
			pr_warn("%s supply %s not found, using dummy regulator\n",
				devname, id);

1291 1292
		rdev = dummy_regulator_rdev;
		goto found;
1293 1294
	} else {
		dev_err(dev, "dummy supplies not allowed\n");
1295 1296
	}

1297 1298 1299 1300
	mutex_unlock(&regulator_list_mutex);
	return regulator;

found:
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	if (rdev->exclusive) {
		regulator = ERR_PTR(-EPERM);
		goto out;
	}

	if (exclusive && rdev->open_count) {
		regulator = ERR_PTR(-EBUSY);
		goto out;
	}

1311 1312 1313
	if (!try_module_get(rdev->owner))
		goto out;

1314 1315 1316 1317
	regulator = create_regulator(rdev, dev, id);
	if (regulator == NULL) {
		regulator = ERR_PTR(-ENOMEM);
		module_put(rdev->owner);
1318
		goto out;
1319 1320
	}

1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	rdev->open_count++;
	if (exclusive) {
		rdev->exclusive = 1;

		ret = _regulator_is_enabled(rdev);
		if (ret > 0)
			rdev->use_count = 1;
		else
			rdev->use_count = 0;
	}

1332
out:
1333
	mutex_unlock(&regulator_list_mutex);
1334

1335 1336
	return regulator;
}
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352

/**
 * regulator_get - lookup and obtain a reference to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get(struct device *dev, const char *id)
{
1353
	return _regulator_get(dev, id, false, true);
1354
}
1355 1356
EXPORT_SYMBOL_GPL(regulator_get);

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static void devm_regulator_release(struct device *dev, void *res)
{
	regulator_put(*(struct regulator **)res);
}

/**
 * devm_regulator_get - Resource managed regulator_get()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get(). Regulators returned from this function are
 * automatically regulator_put() on driver detach. See regulator_get() for more
 * information.
 */
struct regulator *devm_regulator_get(struct device *dev, const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get);

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
/**
 * regulator_get_exclusive - obtain exclusive access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers which cannot tolerate shared
 * use of the regulator such as those which need to force the
 * regulator off for correct operation of the hardware they are
 * controlling.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
{
1414
	return _regulator_get(dev, id, true, false);
1415 1416 1417
}
EXPORT_SYMBOL_GPL(regulator_get_exclusive);

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/**
 * regulator_get_optional - obtain optional access to a regulator.
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Returns a struct regulator corresponding to the regulator producer,
 * or IS_ERR() condition containing errno.  Other consumers will be
 * unable to obtain this reference is held and the use count for the
 * regulator will be initialised to reflect the current state of the
 * regulator.
 *
 * This is intended for use by consumers for devices which can have
 * some supplies unconnected in normal use, such as some MMC devices.
 * It can allow the regulator core to provide stub supplies for other
 * supplies requested using normal regulator_get() calls without
 * disrupting the operation of drivers that can handle absent
 * supplies.
 *
 * Use of supply names configured via regulator_set_device_supply() is
 * strongly encouraged.  It is recommended that the supply name used
 * should match the name used for the supply and/or the relevant
 * device pins in the datasheet.
 */
struct regulator *regulator_get_optional(struct device *dev, const char *id)
{
1443
	return _regulator_get(dev, id, false, false);
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
}
EXPORT_SYMBOL_GPL(regulator_get_optional);

/**
 * devm_regulator_get_optional - Resource managed regulator_get_optional()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get_optional(). Regulators returned from this
 * function are automatically regulator_put() on driver detach. See
 * regulator_get_optional() for more information.
 */
struct regulator *devm_regulator_get_optional(struct device *dev,
					      const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = regulator_get_optional(dev, id);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get_optional);

1477 1478
/* Locks held by regulator_put() */
static void _regulator_put(struct regulator *regulator)
1479 1480 1481 1482 1483 1484 1485 1486
{
	struct regulator_dev *rdev;

	if (regulator == NULL || IS_ERR(regulator))
		return;

	rdev = regulator->rdev;

1487 1488
	debugfs_remove_recursive(regulator->debugfs);

1489
	/* remove any sysfs entries */
1490
	if (regulator->dev)
1491
		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1492
	kfree(regulator->supply_name);
1493 1494 1495
	list_del(&regulator->list);
	kfree(regulator);

1496 1497 1498
	rdev->open_count--;
	rdev->exclusive = 0;

1499
	module_put(rdev->owner);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
/**
 * devm_regulator_get_exclusive - Resource managed regulator_get_exclusive()
 * @dev: device for regulator "consumer"
 * @id: Supply name or regulator ID.
 *
 * Managed regulator_get_exclusive(). Regulators returned from this function
 * are automatically regulator_put() on driver detach. See regulator_get() for
 * more information.
 */
struct regulator *devm_regulator_get_exclusive(struct device *dev,
					       const char *id)
{
	struct regulator **ptr, *regulator;

	ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regulator = _regulator_get(dev, id, 1);
	if (!IS_ERR(regulator)) {
		*ptr = regulator;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regulator;
}
EXPORT_SYMBOL_GPL(devm_regulator_get_exclusive);

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
/**
 * regulator_put - "free" the regulator source
 * @regulator: regulator source
 *
 * Note: drivers must ensure that all regulator_enable calls made on this
 * regulator source are balanced by regulator_disable calls prior to calling
 * this function.
 */
void regulator_put(struct regulator *regulator)
{
	mutex_lock(&regulator_list_mutex);
	_regulator_put(regulator);
1544 1545 1546 1547
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_put);

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
static int devm_regulator_match(struct device *dev, void *res, void *data)
{
	struct regulator **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}
	return *r == data;
}

/**
 * devm_regulator_put - Resource managed regulator_put()
 * @regulator: regulator to free
 *
 * Deallocate a regulator allocated with devm_regulator_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_regulator_put(struct regulator *regulator)
{
	int rc;

1570
	rc = devres_release(regulator->dev, devm_regulator_release,
1571
			    devm_regulator_match, regulator);
1572
	if (rc != 0)
1573
		WARN_ON(rc);
1574 1575 1576
}
EXPORT_SYMBOL_GPL(devm_regulator_put);

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
static int regulator_ena_gpio_request(struct regulator_dev *rdev,
				const struct regulator_config *config)
{
	struct regulator_enable_gpio *pin;
	int ret;

	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
		if (pin->gpio == config->ena_gpio) {
			rdev_dbg(rdev, "GPIO %d is already used\n",
				config->ena_gpio);
			goto update_ena_gpio_to_rdev;
		}
	}

	ret = gpio_request_one(config->ena_gpio,
				GPIOF_DIR_OUT | config->ena_gpio_flags,
				rdev_get_name(rdev));
	if (ret)
		return ret;

	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
	if (pin == NULL) {
		gpio_free(config->ena_gpio);
		return -ENOMEM;
	}

	pin->gpio = config->ena_gpio;
	pin->ena_gpio_invert = config->ena_gpio_invert;
	list_add(&pin->list, &regulator_ena_gpio_list);

update_ena_gpio_to_rdev:
	pin->request_count++;
	rdev->ena_pin = pin;
	return 0;
}

static void regulator_ena_gpio_free(struct regulator_dev *rdev)
{
	struct regulator_enable_gpio *pin, *n;

	if (!rdev->ena_pin)
		return;

	/* Free the GPIO only in case of no use */
	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
		if (pin->gpio == rdev->ena_pin->gpio) {
			if (pin->request_count <= 1) {
				pin->request_count = 0;
				gpio_free(pin->gpio);
				list_del(&pin->list);
				kfree(pin);
			} else {
				pin->request_count--;
			}
		}
	}
}

1636
/**
1637 1638 1639 1640
 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
 * @rdev: regulator_dev structure
 * @enable: enable GPIO at initial use?
 *
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
 * GPIO is enabled in case of initial use. (enable_count is 0)
 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
 */
static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
{
	struct regulator_enable_gpio *pin = rdev->ena_pin;

	if (!pin)
		return -EINVAL;

	if (enable) {
		/* Enable GPIO at initial use */
		if (pin->enable_count == 0)
			gpio_set_value_cansleep(pin->gpio,
						!pin->ena_gpio_invert);

		pin->enable_count++;
	} else {
		if (pin->enable_count > 1) {
			pin->enable_count--;
			return 0;
		}

		/* Disable GPIO if not used */
		if (pin->enable_count <= 1) {
			gpio_set_value_cansleep(pin->gpio,
						pin->ena_gpio_invert);
			pin->enable_count = 0;
		}
	}

	return 0;
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
static int _regulator_do_enable(struct regulator_dev *rdev)
{
	int ret, delay;

	/* Query before enabling in case configuration dependent.  */
	ret = _regulator_get_enable_time(rdev);
	if (ret >= 0) {
		delay = ret;
	} else {
		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
		delay = 0;
	}

	trace_regulator_enable(rdev_get_name(rdev));

1690 1691 1692 1693
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, true);
		if (ret < 0)
			return ret;
1694 1695
		rdev->ena_gpio_state = 1;
	} else if (rdev->desc->ops->enable) {
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		ret = rdev->desc->ops->enable(rdev);
		if (ret < 0)
			return ret;
	} else {
		return -EINVAL;
	}

	/* Allow the regulator to ramp; it would be useful to extend
	 * this for bulk operations so that the regulators can ramp
	 * together.  */
	trace_regulator_enable_delay(rdev_get_name(rdev));

	if (delay >= 1000) {
		mdelay(delay / 1000);
		udelay(delay % 1000);
	} else if (delay) {
		udelay(delay);
	}

	trace_regulator_enable_complete(rdev_get_name(rdev));

	return 0;
}

1720 1721 1722
/* locks held by regulator_enable() */
static int _regulator_enable(struct regulator_dev *rdev)
{
1723
	int ret;
1724 1725

	/* check voltage and requested load before enabling */
1726 1727 1728
	if (rdev->constraints &&
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
		drms_uA_update(rdev);
1729

1730 1731 1732 1733 1734 1735 1736
	if (rdev->use_count == 0) {
		/* The regulator may on if it's not switchable or left on */
		ret = _regulator_is_enabled(rdev);
		if (ret == -EINVAL || ret == 0) {
			if (!_regulator_can_change_status(rdev))
				return -EPERM;

1737
			ret = _regulator_do_enable(rdev);
1738 1739 1740
			if (ret < 0)
				return ret;

1741
		} else if (ret < 0) {
1742
			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1743 1744
			return ret;
		}
1745
		/* Fallthrough on positive return values - already enabled */
1746 1747
	}

1748 1749 1750
	rdev->use_count++;

	return 0;
1751 1752 1753 1754 1755 1756
}

/**
 * regulator_enable - enable regulator output
 * @regulator: regulator source
 *
1757 1758 1759 1760
 * Request that the regulator be enabled with the regulator output at
 * the predefined voltage or current value.  Calls to regulator_enable()
 * must be balanced with calls to regulator_disable().
 *
1761
 * NOTE: the output value can be set by other drivers, boot loader or may be
1762
 * hardwired in the regulator.
1763 1764 1765
 */
int regulator_enable(struct regulator *regulator)
{
1766 1767
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1768

1769 1770 1771
	if (regulator->always_on)
		return 0;

1772 1773 1774 1775 1776 1777
	if (rdev->supply) {
		ret = regulator_enable(rdev->supply);
		if (ret != 0)
			return ret;
	}

1778
	mutex_lock(&rdev->mutex);
D
David Brownell 已提交
1779
	ret = _regulator_enable(rdev);
1780
	mutex_unlock(&rdev->mutex);
1781

1782
	if (ret != 0 && rdev->supply)
1783 1784
		regulator_disable(rdev->supply);

1785 1786 1787 1788
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_enable);

1789 1790 1791 1792 1793 1794
static int _regulator_do_disable(struct regulator_dev *rdev)
{
	int ret;

	trace_regulator_disable(rdev_get_name(rdev));

1795 1796 1797 1798
	if (rdev->ena_pin) {
		ret = regulator_ena_gpio_ctrl(rdev, false);
		if (ret < 0)
			return ret;
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
		rdev->ena_gpio_state = 0;

	} else if (rdev->desc->ops->disable) {
		ret = rdev->desc->ops->disable(rdev);
		if (ret != 0)
			return ret;
	}

	trace_regulator_disable_complete(rdev_get_name(rdev));

	_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
			     NULL);
	return 0;
}

1814
/* locks held by regulator_disable() */
1815
static int _regulator_disable(struct regulator_dev *rdev)
1816 1817 1818
{
	int ret = 0;

D
David Brownell 已提交
1819
	if (WARN(rdev->use_count <= 0,
1820
		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
D
David Brownell 已提交
1821 1822
		return -EIO;

1823
	/* are we the last user and permitted to disable ? */
1824 1825
	if (rdev->use_count == 1 &&
	    (rdev->constraints && !rdev->constraints->always_on)) {
1826 1827

		/* we are last user */
1828 1829
		if (_regulator_can_change_status(rdev)) {
			ret = _regulator_do_disable(rdev);
1830
			if (ret < 0) {
1831
				rdev_err(rdev, "failed to disable\n");
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
				return ret;
			}
		}

		rdev->use_count = 0;
	} else if (rdev->use_count > 1) {

		if (rdev->constraints &&
			(rdev->constraints->valid_ops_mask &
			REGULATOR_CHANGE_DRMS))
			drms_uA_update(rdev);

		rdev->use_count--;
	}
1846

1847 1848 1849 1850 1851 1852 1853
	return ret;
}

/**
 * regulator_disable - disable regulator output
 * @regulator: regulator source
 *
1854 1855 1856
 * Disable the regulator output voltage or current.  Calls to
 * regulator_enable() must be balanced with calls to
 * regulator_disable().
1857
 *
1858
 * NOTE: this will only disable the regulator output if no other consumer
1859 1860
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
1861 1862 1863
 */
int regulator_disable(struct regulator *regulator)
{
1864 1865
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;
1866

1867 1868 1869
	if (regulator->always_on)
		return 0;

1870
	mutex_lock(&rdev->mutex);
1871
	ret = _regulator_disable(rdev);
1872
	mutex_unlock(&rdev->mutex);
1873

1874 1875
	if (ret == 0 && rdev->supply)
		regulator_disable(rdev->supply);
1876

1877 1878 1879 1880 1881
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_disable);

/* locks held by regulator_force_disable() */
1882
static int _regulator_force_disable(struct regulator_dev *rdev)
1883 1884 1885 1886 1887 1888 1889 1890
{
	int ret = 0;

	/* force disable */
	if (rdev->desc->ops->disable) {
		/* ah well, who wants to live forever... */
		ret = rdev->desc->ops->disable(rdev);
		if (ret < 0) {
1891
			rdev_err(rdev, "failed to force disable\n");
1892 1893 1894
			return ret;
		}
		/* notify other consumers that power has been forced off */
1895 1896
		_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
			REGULATOR_EVENT_DISABLE, NULL);
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	}

	return ret;
}

/**
 * regulator_force_disable - force disable regulator output
 * @regulator: regulator source
 *
 * Forcibly disable the regulator output voltage or current.
 * NOTE: this *will* disable the regulator output even if other consumer
 * devices have it enabled. This should be used for situations when device
 * damage will likely occur if the regulator is not disabled (e.g. over temp).
 */
int regulator_force_disable(struct regulator *regulator)
{
1913
	struct regulator_dev *rdev = regulator->rdev;
1914 1915
	int ret;

1916
	mutex_lock(&rdev->mutex);
1917
	regulator->uA_load = 0;
1918
	ret = _regulator_force_disable(regulator->rdev);
1919
	mutex_unlock(&rdev->mutex);
1920

1921 1922 1923
	if (rdev->supply)
		while (rdev->open_count--)
			regulator_disable(rdev->supply);
1924

1925 1926 1927 1928
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_force_disable);

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
static void regulator_disable_work(struct work_struct *work)
{
	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
						  disable_work.work);
	int count, i, ret;

	mutex_lock(&rdev->mutex);

	BUG_ON(!rdev->deferred_disables);

	count = rdev->deferred_disables;
	rdev->deferred_disables = 0;

	for (i = 0; i < count; i++) {
		ret = _regulator_disable(rdev);
		if (ret != 0)
			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
	}

	mutex_unlock(&rdev->mutex);

	if (rdev->supply) {
		for (i = 0; i < count; i++) {
			ret = regulator_disable(rdev->supply);
			if (ret != 0) {
				rdev_err(rdev,
					 "Supply disable failed: %d\n", ret);
			}
		}
	}
}

/**
 * regulator_disable_deferred - disable regulator output with delay
 * @regulator: regulator source
 * @ms: miliseconds until the regulator is disabled
 *
 * Execute regulator_disable() on the regulator after a delay.  This
 * is intended for use with devices that require some time to quiesce.
 *
 * NOTE: this will only disable the regulator output if no other consumer
 * devices have it enabled, the regulator device supports disabling and
 * machine constraints permit this operation.
 */
int regulator_disable_deferred(struct regulator *regulator, int ms)
{
	struct regulator_dev *rdev = regulator->rdev;
1976
	int ret;
1977

1978 1979 1980
	if (regulator->always_on)
		return 0;

1981 1982 1983
	if (!ms)
		return regulator_disable(regulator);

1984 1985 1986 1987
	mutex_lock(&rdev->mutex);
	rdev->deferred_disables++;
	mutex_unlock(&rdev->mutex);

1988 1989 1990
	ret = queue_delayed_work(system_power_efficient_wq,
				 &rdev->disable_work,
				 msecs_to_jiffies(ms));
1991 1992 1993 1994
	if (ret < 0)
		return ret;
	else
		return 0;
1995 1996 1997
}
EXPORT_SYMBOL_GPL(regulator_disable_deferred);

1998 1999
static int _regulator_is_enabled(struct regulator_dev *rdev)
{
2000
	/* A GPIO control always takes precedence */
2001
	if (rdev->ena_pin)
2002 2003
		return rdev->ena_gpio_state;

2004
	/* If we don't know then assume that the regulator is always on */
2005
	if (!rdev->desc->ops->is_enabled)
2006
		return 1;
2007

2008
	return rdev->desc->ops->is_enabled(rdev);
2009 2010 2011 2012 2013 2014
}

/**
 * regulator_is_enabled - is the regulator output enabled
 * @regulator: regulator source
 *
2015 2016 2017 2018 2019 2020 2021
 * Returns positive if the regulator driver backing the source/client
 * has requested that the device be enabled, zero if it hasn't, else a
 * negative errno code.
 *
 * Note that the device backing this regulator handle can have multiple
 * users, so it might be enabled even if regulator_enable() was never
 * called for this particular source.
2022 2023 2024
 */
int regulator_is_enabled(struct regulator *regulator)
{
2025 2026
	int ret;

2027 2028 2029
	if (regulator->always_on)
		return 1;

2030 2031 2032 2033 2034
	mutex_lock(&regulator->rdev->mutex);
	ret = _regulator_is_enabled(regulator->rdev);
	mutex_unlock(&regulator->rdev->mutex);

	return ret;
2035 2036 2037
}
EXPORT_SYMBOL_GPL(regulator_is_enabled);

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
/**
 * regulator_can_change_voltage - check if regulator can change voltage
 * @regulator: regulator source
 *
 * Returns positive if the regulator driver backing the source/client
 * can change its voltage, false otherwise. Usefull for detecting fixed
 * or dummy regulators and disabling voltage change logic in the client
 * driver.
 */
int regulator_can_change_voltage(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	if (rdev->constraints &&
2052 2053 2054 2055 2056 2057 2058 2059 2060
	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
			return 1;

		if (rdev->desc->continuous_voltage_range &&
		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
		    rdev->constraints->min_uV != rdev->constraints->max_uV)
			return 1;
	}
2061 2062 2063 2064 2065

	return 0;
}
EXPORT_SYMBOL_GPL(regulator_can_change_voltage);

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
/**
 * regulator_count_voltages - count regulator_list_voltage() selectors
 * @regulator: regulator source
 *
 * Returns number of selectors, or negative errno.  Selectors are
 * numbered starting at zero, and typically correspond to bitfields
 * in hardware registers.
 */
int regulator_count_voltages(struct regulator *regulator)
{
	struct regulator_dev	*rdev = regulator->rdev;

	return rdev->desc->n_voltages ? : -EINVAL;
}
EXPORT_SYMBOL_GPL(regulator_count_voltages);

/**
 * regulator_list_voltage - enumerate supported voltages
 * @regulator: regulator source
 * @selector: identify voltage to list
 * Context: can sleep
 *
 * Returns a voltage that can be passed to @regulator_set_voltage(),
T
Thomas Weber 已提交
2089
 * zero if this selector code can't be used on this system, or a
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
 * negative errno.
 */
int regulator_list_voltage(struct regulator *regulator, unsigned selector)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			ret;

	if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
		return -EINVAL;

	mutex_lock(&rdev->mutex);
	ret = ops->list_voltage(rdev, selector);
	mutex_unlock(&rdev->mutex);

	if (ret > 0) {
		if (ret < rdev->constraints->min_uV)
			ret = 0;
		else if (ret > rdev->constraints->max_uV)
			ret = 0;
	}

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_list_voltage);

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/**
 * regulator_get_linear_step - return the voltage step size between VSEL values
 * @regulator: regulator source
 *
 * Returns the voltage step size between VSEL values for linear
 * regulators, or return 0 if the regulator isn't a linear regulator.
 */
unsigned int regulator_get_linear_step(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;

	return rdev->desc->uV_step;
}
EXPORT_SYMBOL_GPL(regulator_get_linear_step);

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
/**
 * regulator_is_supported_voltage - check if a voltage range can be supported
 *
 * @regulator: Regulator to check.
 * @min_uV: Minimum required voltage in uV.
 * @max_uV: Maximum required voltage in uV.
 *
 * Returns a boolean or a negative error code.
 */
int regulator_is_supported_voltage(struct regulator *regulator,
				   int min_uV, int max_uV)
{
2143
	struct regulator_dev *rdev = regulator->rdev;
2144 2145
	int i, voltages, ret;

2146 2147 2148 2149
	/* If we can't change voltage check the current voltage */
	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
		ret = regulator_get_voltage(regulator);
		if (ret >= 0)
2150
			return (min_uV <= ret && ret <= max_uV);
2151 2152 2153 2154
		else
			return ret;
	}

2155 2156 2157 2158 2159
	/* Any voltage within constrains range is fine? */
	if (rdev->desc->continuous_voltage_range)
		return min_uV >= rdev->constraints->min_uV &&
				max_uV <= rdev->constraints->max_uV;

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
	ret = regulator_count_voltages(regulator);
	if (ret < 0)
		return ret;
	voltages = ret;

	for (i = 0; i < voltages; i++) {
		ret = regulator_list_voltage(regulator, i);

		if (ret >= min_uV && ret <= max_uV)
			return 1;
	}

	return 0;
}
2174
EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2175

2176 2177 2178 2179
static int _regulator_do_set_voltage(struct regulator_dev *rdev,
				     int min_uV, int max_uV)
{
	int ret;
2180
	int delay = 0;
2181
	int best_val = 0;
2182
	unsigned int selector;
2183
	int old_selector = -1;
2184 2185 2186

	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);

2187 2188 2189
	min_uV += rdev->constraints->uV_offset;
	max_uV += rdev->constraints->uV_offset;

2190 2191 2192 2193
	/*
	 * If we can't obtain the old selector there is not enough
	 * info to call set_voltage_time_sel().
	 */
2194 2195
	if (_regulator_is_enabled(rdev) &&
	    rdev->desc->ops->set_voltage_time_sel &&
2196 2197 2198 2199 2200 2201
	    rdev->desc->ops->get_voltage_sel) {
		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
		if (old_selector < 0)
			return old_selector;
	}

2202 2203 2204
	if (rdev->desc->ops->set_voltage) {
		ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
						   &selector);
2205 2206 2207 2208 2209 2210 2211 2212 2213

		if (ret >= 0) {
			if (rdev->desc->ops->list_voltage)
				best_val = rdev->desc->ops->list_voltage(rdev,
									 selector);
			else
				best_val = _regulator_get_voltage(rdev);
		}

2214
	} else if (rdev->desc->ops->set_voltage_sel) {
2215
		if (rdev->desc->ops->map_voltage) {
2216 2217
			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
							   max_uV);
2218 2219 2220 2221 2222 2223 2224 2225 2226
		} else {
			if (rdev->desc->ops->list_voltage ==
			    regulator_list_voltage_linear)
				ret = regulator_map_voltage_linear(rdev,
								min_uV, max_uV);
			else
				ret = regulator_map_voltage_iterate(rdev,
								min_uV, max_uV);
		}
2227

2228
		if (ret >= 0) {
2229 2230 2231
			best_val = rdev->desc->ops->list_voltage(rdev, ret);
			if (min_uV <= best_val && max_uV >= best_val) {
				selector = ret;
2232 2233 2234 2235 2236
				if (old_selector == selector)
					ret = 0;
				else
					ret = rdev->desc->ops->set_voltage_sel(
								rdev, ret);
2237 2238 2239
			} else {
				ret = -EINVAL;
			}
2240
		}
2241 2242 2243
	} else {
		ret = -EINVAL;
	}
2244

2245
	/* Call set_voltage_time_sel if successfully obtained old_selector */
2246 2247
	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
		&& old_selector != selector) {
2248

2249 2250 2251 2252 2253 2254
		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
						old_selector, selector);
		if (delay < 0) {
			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
				  delay);
			delay = 0;
2255
		}
2256

2257 2258 2259 2260 2261 2262 2263
		/* Insert any necessary delays */
		if (delay >= 1000) {
			mdelay(delay / 1000);
			udelay(delay % 1000);
		} else if (delay) {
			udelay(delay);
		}
2264 2265
	}

2266 2267 2268
	if (ret == 0 && best_val >= 0) {
		unsigned long data = best_val;

2269
		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2270 2271
				     (void *)data);
	}
2272

2273
	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2274 2275 2276 2277

	return ret;
}

2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
/**
 * regulator_set_voltage - set regulator output voltage
 * @regulator: regulator source
 * @min_uV: Minimum required voltage in uV
 * @max_uV: Maximum acceptable voltage in uV
 *
 * Sets a voltage regulator to the desired output voltage. This can be set
 * during any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the voltage will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new voltage when enabled.
 *
 * NOTE: If the regulator is shared between several devices then the lowest
 * request voltage that meets the system constraints will be used.
2293
 * Regulator system constraints must be set for this regulator before
2294 2295 2296 2297 2298
 * calling this function otherwise this call will fail.
 */
int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
{
	struct regulator_dev *rdev = regulator->rdev;
2299
	int ret = 0;
2300
	int old_min_uV, old_max_uV;
2301 2302 2303

	mutex_lock(&rdev->mutex);

2304 2305 2306 2307 2308 2309 2310
	/* If we're setting the same range as last time the change
	 * should be a noop (some cpufreq implementations use the same
	 * voltage for multiple frequencies, for example).
	 */
	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
		goto out;

2311
	/* sanity check */
2312 2313
	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
2314 2315 2316 2317 2318 2319 2320 2321
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;
2322 2323 2324 2325
	
	/* restore original values in case of error */
	old_min_uV = regulator->min_uV;
	old_max_uV = regulator->max_uV;
2326 2327
	regulator->min_uV = min_uV;
	regulator->max_uV = max_uV;
2328

2329 2330
	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
2331
		goto out2;
2332

2333
	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2334 2335 2336
	if (ret < 0)
		goto out2;
	
2337 2338 2339
out:
	mutex_unlock(&rdev->mutex);
	return ret;
2340 2341 2342 2343
out2:
	regulator->min_uV = old_min_uV;
	regulator->max_uV = old_max_uV;
	mutex_unlock(&rdev->mutex);
2344 2345 2346 2347
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_voltage);

2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
/**
 * regulator_set_voltage_time - get raise/fall time
 * @regulator: regulator source
 * @old_uV: starting voltage in microvolts
 * @new_uV: target voltage in microvolts
 *
 * Provided with the starting and ending voltage, this function attempts to
 * calculate the time in microseconds required to rise or fall to this new
 * voltage.
 */
int regulator_set_voltage_time(struct regulator *regulator,
			       int old_uV, int new_uV)
{
	struct regulator_dev	*rdev = regulator->rdev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int old_sel = -1;
	int new_sel = -1;
	int voltage;
	int i;

	/* Currently requires operations to do this */
	if (!ops->list_voltage || !ops->set_voltage_time_sel
	    || !rdev->desc->n_voltages)
		return -EINVAL;

	for (i = 0; i < rdev->desc->n_voltages; i++) {
		/* We only look for exact voltage matches here */
		voltage = regulator_list_voltage(regulator, i);
		if (voltage < 0)
			return -EINVAL;
		if (voltage == 0)
			continue;
		if (voltage == old_uV)
			old_sel = i;
		if (voltage == new_uV)
			new_sel = i;
	}

	if (old_sel < 0 || new_sel < 0)
		return -EINVAL;

	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
}
EXPORT_SYMBOL_GPL(regulator_set_voltage_time);

2393
/**
2394 2395
 * regulator_set_voltage_time_sel - get raise/fall time
 * @rdev: regulator source device
2396 2397 2398 2399 2400 2401
 * @old_selector: selector for starting voltage
 * @new_selector: selector for target voltage
 *
 * Provided with the starting and target voltage selectors, this function
 * returns time in microseconds required to rise or fall to this new voltage
 *
2402
 * Drivers providing ramp_delay in regulation_constraints can use this as their
2403
 * set_voltage_time_sel() operation.
2404 2405 2406 2407 2408
 */
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
				   unsigned int old_selector,
				   unsigned int new_selector)
{
2409
	unsigned int ramp_delay = 0;
2410
	int old_volt, new_volt;
2411 2412 2413 2414 2415 2416 2417

	if (rdev->constraints->ramp_delay)
		ramp_delay = rdev->constraints->ramp_delay;
	else if (rdev->desc->ramp_delay)
		ramp_delay = rdev->desc->ramp_delay;

	if (ramp_delay == 0) {
2418
		rdev_warn(rdev, "ramp_delay not set\n");
2419
		return 0;
2420
	}
2421

2422 2423 2424
	/* sanity check */
	if (!rdev->desc->ops->list_voltage)
		return -EINVAL;
2425

2426 2427 2428 2429
	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);

	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2430
}
2431
EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2432

2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
/**
 * regulator_sync_voltage - re-apply last regulator output voltage
 * @regulator: regulator source
 *
 * Re-apply the last configured voltage.  This is intended to be used
 * where some external control source the consumer is cooperating with
 * has caused the configured voltage to change.
 */
int regulator_sync_voltage(struct regulator *regulator)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret, min_uV, max_uV;

	mutex_lock(&rdev->mutex);

	if (!rdev->desc->ops->set_voltage &&
	    !rdev->desc->ops->set_voltage_sel) {
		ret = -EINVAL;
		goto out;
	}

	/* This is only going to work if we've had a voltage configured. */
	if (!regulator->min_uV && !regulator->max_uV) {
		ret = -EINVAL;
		goto out;
	}

	min_uV = regulator->min_uV;
	max_uV = regulator->max_uV;

	/* This should be a paranoia check... */
	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
	if (ret < 0)
		goto out;

	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);

out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_sync_voltage);

2480 2481
static int _regulator_get_voltage(struct regulator_dev *rdev)
{
2482
	int sel, ret;
2483 2484 2485 2486 2487

	if (rdev->desc->ops->get_voltage_sel) {
		sel = rdev->desc->ops->get_voltage_sel(rdev);
		if (sel < 0)
			return sel;
2488
		ret = rdev->desc->ops->list_voltage(rdev, sel);
2489
	} else if (rdev->desc->ops->get_voltage) {
2490
		ret = rdev->desc->ops->get_voltage(rdev);
2491 2492
	} else if (rdev->desc->ops->list_voltage) {
		ret = rdev->desc->ops->list_voltage(rdev, 0);
2493
	} else {
2494
		return -EINVAL;
2495
	}
2496

2497 2498
	if (ret < 0)
		return ret;
2499
	return ret - rdev->constraints->uV_offset;
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
}

/**
 * regulator_get_voltage - get regulator output voltage
 * @regulator: regulator source
 *
 * This returns the current regulator voltage in uV.
 *
 * NOTE: If the regulator is disabled it will return the voltage value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_voltage(struct regulator *regulator)
{
	int ret;

	mutex_lock(&regulator->rdev->mutex);

	ret = _regulator_get_voltage(regulator->rdev);

	mutex_unlock(&regulator->rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_get_voltage);

/**
 * regulator_set_current_limit - set regulator output current limit
 * @regulator: regulator source
2528
 * @min_uA: Minimum supported current in uA
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
 * @max_uA: Maximum supported current in uA
 *
 * Sets current sink to the desired output current. This can be set during
 * any regulator state. IOW, regulator can be disabled or enabled.
 *
 * If the regulator is enabled then the current will change to the new value
 * immediately otherwise if the regulator is disabled the regulator will
 * output at the new current when enabled.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_current_limit(struct regulator *regulator,
			       int min_uA, int max_uA)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	/* constraints check */
	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_current_limit);

static int _regulator_get_current_limit(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_current_limit) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_current_limit(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_current_limit - get regulator output current
 * @regulator: regulator source
 *
 * This returns the current supplied by the specified current sink in uA.
 *
 * NOTE: If the regulator is disabled it will return the current value. This
 * function should not be used to determine regulator state.
 */
int regulator_get_current_limit(struct regulator *regulator)
{
	return _regulator_get_current_limit(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_current_limit);

/**
 * regulator_set_mode - set regulator operating mode
 * @regulator: regulator source
 * @mode: operating mode - one of the REGULATOR_MODE constants
 *
 * Set regulator operating mode to increase regulator efficiency or improve
 * regulation performance.
 *
 * NOTE: Regulator system constraints must be set for this regulator before
 * calling this function otherwise this call will fail.
 */
int regulator_set_mode(struct regulator *regulator, unsigned int mode)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret;
2615
	int regulator_curr_mode;
2616 2617 2618 2619 2620 2621 2622 2623 2624

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->set_mode) {
		ret = -EINVAL;
		goto out;
	}

2625 2626 2627 2628 2629 2630 2631 2632 2633
	/* return if the same mode is requested */
	if (rdev->desc->ops->get_mode) {
		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
		if (regulator_curr_mode == mode) {
			ret = 0;
			goto out;
		}
	}

2634
	/* constraints check */
2635
	ret = regulator_mode_constrain(rdev, &mode);
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
	if (ret < 0)
		goto out;

	ret = rdev->desc->ops->set_mode(rdev, mode);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_mode);

static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
{
	int ret;

	mutex_lock(&rdev->mutex);

	/* sanity check */
	if (!rdev->desc->ops->get_mode) {
		ret = -EINVAL;
		goto out;
	}

	ret = rdev->desc->ops->get_mode(rdev);
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}

/**
 * regulator_get_mode - get regulator operating mode
 * @regulator: regulator source
 *
 * Get the current regulator operating mode.
 */
unsigned int regulator_get_mode(struct regulator *regulator)
{
	return _regulator_get_mode(regulator->rdev);
}
EXPORT_SYMBOL_GPL(regulator_get_mode);

/**
 * regulator_set_optimum_mode - set regulator optimum operating mode
 * @regulator: regulator source
 * @uA_load: load current
 *
 * Notifies the regulator core of a new device load. This is then used by
 * DRMS (if enabled by constraints) to set the most efficient regulator
 * operating mode for the new regulator loading.
 *
 * Consumer devices notify their supply regulator of the maximum power
 * they will require (can be taken from device datasheet in the power
 * consumption tables) when they change operational status and hence power
 * state. Examples of operational state changes that can affect power
 * consumption are :-
 *
 *    o Device is opened / closed.
 *    o Device I/O is about to begin or has just finished.
 *    o Device is idling in between work.
 *
 * This information is also exported via sysfs to userspace.
 *
 * DRMS will sum the total requested load on the regulator and change
 * to the most efficient operating mode if platform constraints allow.
 *
 * Returns the new regulator mode or error.
 */
int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
{
	struct regulator_dev *rdev = regulator->rdev;
	struct regulator *consumer;
2706
	int ret, output_uV, input_uV = 0, total_uA_load = 0;
2707 2708
	unsigned int mode;

2709 2710 2711
	if (rdev->supply)
		input_uV = regulator_get_voltage(rdev->supply);

2712 2713
	mutex_lock(&rdev->mutex);

2714 2715 2716 2717
	/*
	 * first check to see if we can set modes at all, otherwise just
	 * tell the consumer everything is OK.
	 */
2718 2719
	regulator->uA_load = uA_load;
	ret = regulator_check_drms(rdev);
2720 2721
	if (ret < 0) {
		ret = 0;
2722
		goto out;
2723
	}
2724 2725 2726 2727

	if (!rdev->desc->ops->get_optimum_mode)
		goto out;

2728 2729 2730 2731 2732 2733
	/*
	 * we can actually do this so any errors are indicators of
	 * potential real failure.
	 */
	ret = -EINVAL;

2734 2735 2736
	if (!rdev->desc->ops->set_mode)
		goto out;

2737
	/* get output voltage */
2738
	output_uV = _regulator_get_voltage(rdev);
2739
	if (output_uV <= 0) {
2740
		rdev_err(rdev, "invalid output voltage found\n");
2741 2742 2743
		goto out;
	}

2744
	/* No supply? Use constraint voltage */
2745
	if (input_uV <= 0)
2746 2747
		input_uV = rdev->constraints->input_uV;
	if (input_uV <= 0) {
2748
		rdev_err(rdev, "invalid input voltage found\n");
2749 2750 2751 2752 2753
		goto out;
	}

	/* calc total requested load for this regulator */
	list_for_each_entry(consumer, &rdev->consumer_list, list)
2754
		total_uA_load += consumer->uA_load;
2755 2756 2757 2758

	mode = rdev->desc->ops->get_optimum_mode(rdev,
						 input_uV, output_uV,
						 total_uA_load);
2759
	ret = regulator_mode_constrain(rdev, &mode);
2760
	if (ret < 0) {
2761 2762
		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
			 total_uA_load, input_uV, output_uV);
2763 2764 2765 2766
		goto out;
	}

	ret = rdev->desc->ops->set_mode(rdev, mode);
2767
	if (ret < 0) {
2768
		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2769 2770 2771 2772 2773 2774 2775 2776 2777
		goto out;
	}
	ret = mode;
out:
	mutex_unlock(&rdev->mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);

2778 2779 2780 2781
/**
 * regulator_allow_bypass - allow the regulator to go into bypass mode
 *
 * @regulator: Regulator to configure
2782
 * @enable: enable or disable bypass mode
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
 *
 * Allow the regulator to go into bypass mode if all other consumers
 * for the regulator also enable bypass mode and the machine
 * constraints allow this.  Bypass mode means that the regulator is
 * simply passing the input directly to the output with no regulation.
 */
int regulator_allow_bypass(struct regulator *regulator, bool enable)
{
	struct regulator_dev *rdev = regulator->rdev;
	int ret = 0;

	if (!rdev->desc->ops->set_bypass)
		return 0;

	if (rdev->constraints &&
	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
		return 0;

	mutex_lock(&rdev->mutex);

	if (enable && !regulator->bypass) {
		rdev->bypass_count++;

		if (rdev->bypass_count == rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count--;
		}

	} else if (!enable && regulator->bypass) {
		rdev->bypass_count--;

		if (rdev->bypass_count != rdev->open_count) {
			ret = rdev->desc->ops->set_bypass(rdev, enable);
			if (ret != 0)
				rdev->bypass_count++;
		}
	}

	if (ret == 0)
		regulator->bypass = enable;

	mutex_unlock(&rdev->mutex);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_allow_bypass);

2831 2832 2833
/**
 * regulator_register_notifier - register regulator event notifier
 * @regulator: regulator source
2834
 * @nb: notifier block
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
 *
 * Register notifier block to receive regulator events.
 */
int regulator_register_notifier(struct regulator *regulator,
			      struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&regulator->rdev->notifier,
						nb);
}
EXPORT_SYMBOL_GPL(regulator_register_notifier);

/**
 * regulator_unregister_notifier - unregister regulator event notifier
 * @regulator: regulator source
2849
 * @nb: notifier block
2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
 *
 * Unregister regulator event notifier block.
 */
int regulator_unregister_notifier(struct regulator *regulator,
				struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
						  nb);
}
EXPORT_SYMBOL_GPL(regulator_unregister_notifier);

2861 2862 2863
/* notify regulator consumers and downstream regulator consumers.
 * Note mutex must be held by caller.
 */
2864 2865 2866 2867
static void _notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	/* call rdev chain first */
2868
	blocking_notifier_call_chain(&rdev->notifier, event, data);
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
}

/**
 * regulator_bulk_get - get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation.  If any of the regulators cannot be
 * acquired then any regulators that were allocated will be freed
 * before returning to the caller.
 */
int regulator_bulk_get(struct device *dev, int num_consumers,
		       struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = regulator_get(dev,
						      consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
2899 2900
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
2901 2902 2903 2904 2905 2906 2907 2908
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
2909
	while (--i >= 0)
2910 2911 2912 2913 2914 2915
		regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_get);

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
/**
 * devm_regulator_bulk_get - managed get multiple regulator consumers
 *
 * @dev:           Device to supply
 * @num_consumers: Number of consumers to register
 * @consumers:     Configuration of consumers; clients are stored here.
 *
 * @return 0 on success, an errno on failure.
 *
 * This helper function allows drivers to get several regulator
 * consumers in one operation with management, the regulators will
 * automatically be freed when the device is unbound.  If any of the
 * regulators cannot be acquired then any regulators that were
 * allocated will be freed before returning to the caller.
 */
int devm_regulator_bulk_get(struct device *dev, int num_consumers,
			    struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].consumer = NULL;

	for (i = 0; i < num_consumers; i++) {
		consumers[i].consumer = devm_regulator_get(dev,
							   consumers[i].supply);
		if (IS_ERR(consumers[i].consumer)) {
			ret = PTR_ERR(consumers[i].consumer);
			dev_err(dev, "Failed to get supply '%s': %d\n",
				consumers[i].supply, ret);
			consumers[i].consumer = NULL;
			goto err;
		}
	}

	return 0;

err:
	for (i = 0; i < num_consumers && consumers[i].consumer; i++)
		devm_regulator_put(consumers[i].consumer);

	return ret;
}
EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);

2962 2963 2964 2965 2966 2967 2968
static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
{
	struct regulator_bulk_data *bulk = data;

	bulk->ret = regulator_enable(bulk->consumer);
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
/**
 * regulator_bulk_enable - enable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to enable multiple regulator
 * clients in a single API call.  If any consumers cannot be enabled
 * then any others that were enabled will be disabled again prior to
 * return.
 */
int regulator_bulk_enable(int num_consumers,
			  struct regulator_bulk_data *consumers)
{
2984
	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2985
	int i;
2986
	int ret = 0;
2987

2988 2989 2990 2991 2992 2993 2994
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].consumer->always_on)
			consumers[i].ret = 0;
		else
			async_schedule_domain(regulator_bulk_enable_async,
					      &consumers[i], &async_domain);
	}
2995 2996 2997 2998

	async_synchronize_full_domain(&async_domain);

	/* If any consumer failed we need to unwind any that succeeded */
2999
	for (i = 0; i < num_consumers; i++) {
3000 3001
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
3002
			goto err;
3003
		}
3004 3005 3006 3007 3008
	}

	return 0;

err:
3009 3010 3011 3012 3013 3014 3015
	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret < 0)
			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
			       consumers[i].ret);
		else
			regulator_disable(consumers[i].consumer);
	}
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_enable);

/**
 * regulator_bulk_disable - disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to disable multiple regulator
3029 3030
 * clients in a single API call.  If any consumers cannot be disabled
 * then any others that were disabled will be enabled again prior to
3031 3032 3033 3034 3035 3036
 * return.
 */
int regulator_bulk_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
3037
	int ret, r;
3038

3039
	for (i = num_consumers - 1; i >= 0; --i) {
3040 3041 3042 3043 3044 3045 3046 3047
		ret = regulator_disable(consumers[i].consumer);
		if (ret != 0)
			goto err;
	}

	return 0;

err:
3048
	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3049 3050 3051 3052 3053 3054
	for (++i; i < num_consumers; ++i) {
		r = regulator_enable(consumers[i].consumer);
		if (r != 0)
			pr_err("Failed to reename %s: %d\n",
			       consumers[i].supply, r);
	}
3055 3056 3057 3058 3059

	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_disable);

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
/**
 * regulator_bulk_force_disable - force disable multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 * @return         0 on success, an errno on failure
 *
 * This convenience API allows consumers to forcibly disable multiple regulator
 * clients in a single API call.
 * NOTE: This should be used for situations when device damage will
 * likely occur if the regulators are not disabled (e.g. over temp).
 * Although regulator_force_disable function call for some consumers can
 * return error numbers, the function is called for all consumers.
 */
int regulator_bulk_force_disable(int num_consumers,
			   struct regulator_bulk_data *consumers)
{
	int i;
	int ret;

	for (i = 0; i < num_consumers; i++)
		consumers[i].ret =
			    regulator_force_disable(consumers[i].consumer);

	for (i = 0; i < num_consumers; i++) {
		if (consumers[i].ret != 0) {
			ret = consumers[i].ret;
			goto out;
		}
	}

	return 0;
out:
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);

3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
/**
 * regulator_bulk_free - free multiple regulator consumers
 *
 * @num_consumers: Number of consumers
 * @consumers:     Consumer data; clients are stored here.
 *
 * This convenience API allows consumers to free multiple regulator
 * clients in a single API call.
 */
void regulator_bulk_free(int num_consumers,
			 struct regulator_bulk_data *consumers)
{
	int i;

	for (i = 0; i < num_consumers; i++) {
		regulator_put(consumers[i].consumer);
		consumers[i].consumer = NULL;
	}
}
EXPORT_SYMBOL_GPL(regulator_bulk_free);

/**
 * regulator_notifier_call_chain - call regulator event notifier
3120
 * @rdev: regulator source
3121
 * @event: notifier block
3122
 * @data: callback-specific data.
3123 3124 3125
 *
 * Called by regulator drivers to notify clients a regulator event has
 * occurred. We also notify regulator clients downstream.
3126
 * Note lock must be held by caller.
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
 */
int regulator_notifier_call_chain(struct regulator_dev *rdev,
				  unsigned long event, void *data)
{
	_notifier_call_chain(rdev, event, data);
	return NOTIFY_DONE;

}
EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);

3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
/**
 * regulator_mode_to_status - convert a regulator mode into a status
 *
 * @mode: Mode to convert
 *
 * Convert a regulator mode into a status.
 */
int regulator_mode_to_status(unsigned int mode)
{
	switch (mode) {
	case REGULATOR_MODE_FAST:
		return REGULATOR_STATUS_FAST;
	case REGULATOR_MODE_NORMAL:
		return REGULATOR_STATUS_NORMAL;
	case REGULATOR_MODE_IDLE:
		return REGULATOR_STATUS_IDLE;
3153
	case REGULATOR_MODE_STANDBY:
3154 3155
		return REGULATOR_STATUS_STANDBY;
	default:
3156
		return REGULATOR_STATUS_UNDEFINED;
3157 3158 3159 3160
	}
}
EXPORT_SYMBOL_GPL(regulator_mode_to_status);

3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
/*
 * To avoid cluttering sysfs (and memory) with useless state, only
 * create attributes that can be meaningfully displayed.
 */
static int add_regulator_attributes(struct regulator_dev *rdev)
{
	struct device		*dev = &rdev->dev;
	struct regulator_ops	*ops = rdev->desc->ops;
	int			status = 0;

	/* some attributes need specific methods to be displayed */
3172
	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3173 3174
	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
		status = device_create_file(dev, &dev_attr_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->get_current_limit) {
		status = device_create_file(dev, &dev_attr_microamps);
		if (status < 0)
			return status;
	}
	if (ops->get_mode) {
		status = device_create_file(dev, &dev_attr_opmode);
		if (status < 0)
			return status;
	}
3189
	if (rdev->ena_pin || ops->is_enabled) {
3190 3191 3192 3193
		status = device_create_file(dev, &dev_attr_state);
		if (status < 0)
			return status;
	}
D
David Brownell 已提交
3194 3195 3196 3197 3198
	if (ops->get_status) {
		status = device_create_file(dev, &dev_attr_status);
		if (status < 0)
			return status;
	}
3199 3200 3201 3202 3203
	if (ops->get_bypass) {
		status = device_create_file(dev, &dev_attr_bypass);
		if (status < 0)
			return status;
	}
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

	/* some attributes are type-specific */
	if (rdev->desc->type == REGULATOR_CURRENT) {
		status = device_create_file(dev, &dev_attr_requested_microamps);
		if (status < 0)
			return status;
	}

	/* all the other attributes exist to support constraints;
	 * don't show them if there are no constraints, or if the
	 * relevant supporting methods are missing.
	 */
	if (!rdev->constraints)
		return status;

	/* constraints need specific supporting methods */
3220
	if (ops->set_voltage || ops->set_voltage_sel) {
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
		status = device_create_file(dev, &dev_attr_min_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microvolts);
		if (status < 0)
			return status;
	}
	if (ops->set_current_limit) {
		status = device_create_file(dev, &dev_attr_min_microamps);
		if (status < 0)
			return status;
		status = device_create_file(dev, &dev_attr_max_microamps);
		if (status < 0)
			return status;
	}

	status = device_create_file(dev, &dev_attr_suspend_standby_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_mem_state);
	if (status < 0)
		return status;
	status = device_create_file(dev, &dev_attr_suspend_disk_state);
	if (status < 0)
		return status;

	if (ops->set_suspend_voltage) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_microvolts);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_microvolts);
		if (status < 0)
			return status;
	}

	if (ops->set_suspend_mode) {
		status = device_create_file(dev,
				&dev_attr_suspend_standby_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_mem_mode);
		if (status < 0)
			return status;
		status = device_create_file(dev,
				&dev_attr_suspend_disk_mode);
		if (status < 0)
			return status;
	}

	return status;
}

3280 3281 3282
static void rdev_init_debugfs(struct regulator_dev *rdev)
{
	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3283
	if (!rdev->debugfs) {
3284 3285 3286 3287 3288 3289 3290 3291
		rdev_warn(rdev, "Failed to create debugfs directory\n");
		return;
	}

	debugfs_create_u32("use_count", 0444, rdev->debugfs,
			   &rdev->use_count);
	debugfs_create_u32("open_count", 0444, rdev->debugfs,
			   &rdev->open_count);
3292 3293
	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
			   &rdev->bypass_count);
3294 3295
}

3296 3297
/**
 * regulator_register - register regulator
3298
 * @regulator_desc: regulator to register
3299
 * @config: runtime configuration for regulator
3300 3301
 *
 * Called by regulator drivers to register a regulator.
3302 3303
 * Returns a valid pointer to struct regulator_dev on success
 * or an ERR_PTR() on error.
3304
 */
3305 3306
struct regulator_dev *
regulator_register(const struct regulator_desc *regulator_desc,
3307
		   const struct regulator_config *config)
3308
{
3309
	const struct regulation_constraints *constraints = NULL;
3310
	const struct regulator_init_data *init_data;
3311 3312
	static atomic_t regulator_no = ATOMIC_INIT(0);
	struct regulator_dev *rdev;
3313
	struct device *dev;
3314
	int ret, i;
3315
	const char *supply = NULL;
3316

3317
	if (regulator_desc == NULL || config == NULL)
3318 3319
		return ERR_PTR(-EINVAL);

3320
	dev = config->dev;
3321
	WARN_ON(!dev);
3322

3323 3324 3325
	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
		return ERR_PTR(-EINVAL);

3326 3327
	if (regulator_desc->type != REGULATOR_VOLTAGE &&
	    regulator_desc->type != REGULATOR_CURRENT)
3328 3329
		return ERR_PTR(-EINVAL);

3330 3331 3332
	/* Only one of each should be implemented */
	WARN_ON(regulator_desc->ops->get_voltage &&
		regulator_desc->ops->get_voltage_sel);
3333 3334
	WARN_ON(regulator_desc->ops->set_voltage &&
		regulator_desc->ops->set_voltage_sel);
3335 3336 3337 3338 3339 3340

	/* If we're using selectors we must implement list_voltage. */
	if (regulator_desc->ops->get_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3341 3342 3343 3344
	if (regulator_desc->ops->set_voltage_sel &&
	    !regulator_desc->ops->list_voltage) {
		return ERR_PTR(-EINVAL);
	}
3345

3346 3347
	init_data = config->init_data;

3348 3349 3350 3351 3352 3353 3354
	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
	if (rdev == NULL)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&regulator_list_mutex);

	mutex_init(&rdev->mutex);
3355
	rdev->reg_data = config->driver_data;
3356 3357
	rdev->owner = regulator_desc->owner;
	rdev->desc = regulator_desc;
3358 3359
	if (config->regmap)
		rdev->regmap = config->regmap;
3360
	else if (dev_get_regmap(dev, NULL))
3361
		rdev->regmap = dev_get_regmap(dev, NULL);
3362 3363
	else if (dev->parent)
		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3364 3365 3366
	INIT_LIST_HEAD(&rdev->consumer_list);
	INIT_LIST_HEAD(&rdev->list);
	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3367
	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3368

3369
	/* preform any regulator specific init */
3370
	if (init_data && init_data->regulator_init) {
3371
		ret = init_data->regulator_init(rdev->reg_data);
D
David Brownell 已提交
3372 3373
		if (ret < 0)
			goto clean;
3374 3375 3376
	}

	/* register with sysfs */
3377
	rdev->dev.class = &regulator_class;
3378
	rdev->dev.of_node = config->of_node;
3379
	rdev->dev.parent = dev;
3380 3381
	dev_set_name(&rdev->dev, "regulator.%d",
		     atomic_inc_return(&regulator_no) - 1);
3382
	ret = device_register(&rdev->dev);
3383 3384
	if (ret != 0) {
		put_device(&rdev->dev);
D
David Brownell 已提交
3385
		goto clean;
3386
	}
3387 3388 3389

	dev_set_drvdata(&rdev->dev, rdev);

3390
	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3391
		ret = regulator_ena_gpio_request(rdev, config);
3392 3393 3394
		if (ret != 0) {
			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
				 config->ena_gpio, ret);
3395
			goto wash;
3396 3397 3398 3399 3400
		}

		if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
			rdev->ena_gpio_state = 1;

3401
		if (config->ena_gpio_invert)
3402 3403 3404
			rdev->ena_gpio_state = !rdev->ena_gpio_state;
	}

3405
	/* set regulator constraints */
3406 3407 3408 3409
	if (init_data)
		constraints = &init_data->constraints;

	ret = set_machine_constraints(rdev, constraints);
3410 3411 3412
	if (ret < 0)
		goto scrub;

3413 3414 3415 3416 3417
	/* add attributes supported by this regulator */
	ret = add_regulator_attributes(rdev);
	if (ret < 0)
		goto scrub;

3418
	if (init_data && init_data->supply_regulator)
3419 3420 3421 3422 3423
		supply = init_data->supply_regulator;
	else if (regulator_desc->supply_name)
		supply = regulator_desc->supply_name;

	if (supply) {
3424 3425
		struct regulator_dev *r;

3426
		r = regulator_dev_lookup(dev, supply, &ret);
3427

3428 3429 3430 3431 3432 3433 3434 3435
		if (ret == -ENODEV) {
			/*
			 * No supply was specified for this regulator and
			 * there will never be one.
			 */
			ret = 0;
			goto add_dev;
		} else if (!r) {
3436
			dev_err(dev, "Failed to find supply %s\n", supply);
3437
			ret = -EPROBE_DEFER;
3438 3439 3440 3441 3442 3443
			goto scrub;
		}

		ret = set_supply(rdev, r);
		if (ret < 0)
			goto scrub;
3444 3445

		/* Enable supply if rail is enabled */
3446
		if (_regulator_is_enabled(rdev)) {
3447 3448 3449 3450
			ret = regulator_enable(rdev->supply);
			if (ret < 0)
				goto scrub;
		}
3451 3452
	}

3453
add_dev:
3454
	/* add consumers devices */
3455 3456 3457 3458
	if (init_data) {
		for (i = 0; i < init_data->num_consumer_supplies; i++) {
			ret = set_consumer_device_supply(rdev,
				init_data->consumer_supplies[i].dev_name,
3459
				init_data->consumer_supplies[i].supply);
3460 3461 3462 3463 3464
			if (ret < 0) {
				dev_err(dev, "Failed to set supply %s\n",
					init_data->consumer_supplies[i].supply);
				goto unset_supplies;
			}
3465
		}
3466
	}
3467 3468

	list_add(&rdev->list, &regulator_list);
3469 3470

	rdev_init_debugfs(rdev);
3471
out:
3472 3473
	mutex_unlock(&regulator_list_mutex);
	return rdev;
D
David Brownell 已提交
3474

3475 3476 3477
unset_supplies:
	unset_regulator_supplies(rdev);

D
David Brownell 已提交
3478
scrub:
3479
	if (rdev->supply)
3480
		_regulator_put(rdev->supply);
3481
	regulator_ena_gpio_free(rdev);
3482
	kfree(rdev->constraints);
3483
wash:
D
David Brownell 已提交
3484
	device_unregister(&rdev->dev);
3485 3486 3487 3488
	/* device core frees rdev */
	rdev = ERR_PTR(ret);
	goto out;

D
David Brownell 已提交
3489 3490 3491 3492
clean:
	kfree(rdev);
	rdev = ERR_PTR(ret);
	goto out;
3493 3494 3495 3496 3497
}
EXPORT_SYMBOL_GPL(regulator_register);

/**
 * regulator_unregister - unregister regulator
3498
 * @rdev: regulator to unregister
3499 3500 3501 3502 3503 3504 3505 3506
 *
 * Called by regulator drivers to unregister a regulator.
 */
void regulator_unregister(struct regulator_dev *rdev)
{
	if (rdev == NULL)
		return;

3507 3508 3509
	if (rdev->supply) {
		while (rdev->use_count--)
			regulator_disable(rdev->supply);
3510
		regulator_put(rdev->supply);
3511
	}
3512
	mutex_lock(&regulator_list_mutex);
3513
	debugfs_remove_recursive(rdev->debugfs);
3514
	flush_work(&rdev->disable_work.work);
3515
	WARN_ON(rdev->open_count);
3516
	unset_regulator_supplies(rdev);
3517
	list_del(&rdev->list);
3518
	kfree(rdev->constraints);
3519
	regulator_ena_gpio_free(rdev);
3520
	device_unregister(&rdev->dev);
3521 3522 3523 3524 3525
	mutex_unlock(&regulator_list_mutex);
}
EXPORT_SYMBOL_GPL(regulator_unregister);

/**
3526
 * regulator_suspend_prepare - prepare regulators for system wide suspend
3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
 * @state: system suspend state
 *
 * Configure each regulator with it's suspend operating parameters for state.
 * This will usually be called by machine suspend code prior to supending.
 */
int regulator_suspend_prepare(suspend_state_t state)
{
	struct regulator_dev *rdev;
	int ret = 0;

	/* ON is handled by regulator active state */
	if (state == PM_SUSPEND_ON)
		return -EINVAL;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {

		mutex_lock(&rdev->mutex);
		ret = suspend_prepare(rdev, state);
		mutex_unlock(&rdev->mutex);

		if (ret < 0) {
3549
			rdev_err(rdev, "failed to prepare\n");
3550 3551 3552 3553 3554 3555 3556 3557 3558
			goto out;
		}
	}
out:
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_prepare);

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
/**
 * regulator_suspend_finish - resume regulators from system wide suspend
 *
 * Turn on regulators that might be turned off by regulator_suspend_prepare
 * and that should be turned on according to the regulators properties.
 */
int regulator_suspend_finish(void)
{
	struct regulator_dev *rdev;
	int ret = 0, error;

	mutex_lock(&regulator_list_mutex);
	list_for_each_entry(rdev, &regulator_list, list) {
		struct regulator_ops *ops = rdev->desc->ops;

		mutex_lock(&rdev->mutex);
		if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
				ops->enable) {
			error = ops->enable(rdev);
			if (error)
				ret = error;
		} else {
			if (!has_full_constraints)
				goto unlock;
			if (!ops->disable)
				goto unlock;
3585
			if (!_regulator_is_enabled(rdev))
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
				goto unlock;

			error = ops->disable(rdev);
			if (error)
				ret = error;
		}
unlock:
		mutex_unlock(&rdev->mutex);
	}
	mutex_unlock(&regulator_list_mutex);
	return ret;
}
EXPORT_SYMBOL_GPL(regulator_suspend_finish);

3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
/**
 * regulator_has_full_constraints - the system has fully specified constraints
 *
 * Calling this function will cause the regulator API to disable all
 * regulators which have a zero use count and don't have an always_on
 * constraint in a late_initcall.
 *
 * The intention is that this will become the default behaviour in a
 * future kernel release so users are encouraged to use this facility
 * now.
 */
void regulator_has_full_constraints(void)
{
	has_full_constraints = 1;
}
EXPORT_SYMBOL_GPL(regulator_has_full_constraints);

3617 3618
/**
 * rdev_get_drvdata - get rdev regulator driver data
3619
 * @rdev: regulator
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
 *
 * Get rdev regulator driver private data. This call can be used in the
 * regulator driver context.
 */
void *rdev_get_drvdata(struct regulator_dev *rdev)
{
	return rdev->reg_data;
}
EXPORT_SYMBOL_GPL(rdev_get_drvdata);

/**
 * regulator_get_drvdata - get regulator driver data
 * @regulator: regulator
 *
 * Get regulator driver private data. This call can be used in the consumer
 * driver context when non API regulator specific functions need to be called.
 */
void *regulator_get_drvdata(struct regulator *regulator)
{
	return regulator->rdev->reg_data;
}
EXPORT_SYMBOL_GPL(regulator_get_drvdata);

/**
 * regulator_set_drvdata - set regulator driver data
 * @regulator: regulator
 * @data: data
 */
void regulator_set_drvdata(struct regulator *regulator, void *data)
{
	regulator->rdev->reg_data = data;
}
EXPORT_SYMBOL_GPL(regulator_set_drvdata);

/**
 * regulator_get_id - get regulator ID
3656
 * @rdev: regulator
3657 3658 3659 3660 3661 3662 3663
 */
int rdev_get_id(struct regulator_dev *rdev)
{
	return rdev->desc->id;
}
EXPORT_SYMBOL_GPL(rdev_get_id);

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
struct device *rdev_get_dev(struct regulator_dev *rdev)
{
	return &rdev->dev;
}
EXPORT_SYMBOL_GPL(rdev_get_dev);

void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
{
	return reg_init_data->driver_data;
}
EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);

3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705
#ifdef CONFIG_DEBUG_FS
static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
				    size_t count, loff_t *ppos)
{
	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	ssize_t len, ret = 0;
	struct regulator_map *map;

	if (!buf)
		return -ENOMEM;

	list_for_each_entry(map, &regulator_map_list, list) {
		len = snprintf(buf + ret, PAGE_SIZE - ret,
			       "%s -> %s.%s\n",
			       rdev_get_name(map->regulator), map->dev_name,
			       map->supply);
		if (len >= 0)
			ret += len;
		if (ret > PAGE_SIZE) {
			ret = PAGE_SIZE;
			break;
		}
	}

	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);

	kfree(buf);

	return ret;
}
3706
#endif
3707 3708

static const struct file_operations supply_map_fops = {
3709
#ifdef CONFIG_DEBUG_FS
3710 3711 3712
	.read = supply_map_read_file,
	.llseek = default_llseek,
#endif
3713
};
3714

3715 3716
static int __init regulator_init(void)
{
3717 3718 3719 3720
	int ret;

	ret = class_register(&regulator_class);

3721
	debugfs_root = debugfs_create_dir("regulator", NULL);
3722
	if (!debugfs_root)
3723
		pr_warn("regulator: Failed to create debugfs directory\n");
3724

3725 3726
	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
			    &supply_map_fops);
3727

3728 3729 3730
	regulator_dummy_init();

	return ret;
3731 3732 3733 3734
}

/* init early to allow our consumers to complete system booting */
core_initcall(regulator_init);
3735 3736 3737 3738 3739 3740 3741 3742

static int __init regulator_init_complete(void)
{
	struct regulator_dev *rdev;
	struct regulator_ops *ops;
	struct regulation_constraints *c;
	int enabled, ret;

3743 3744 3745 3746 3747 3748 3749 3750 3751
	/*
	 * Since DT doesn't provide an idiomatic mechanism for
	 * enabling full constraints and since it's much more natural
	 * with DT to provide them just assume that a DT enabled
	 * system has full constraints.
	 */
	if (of_have_populated_dt())
		has_full_constraints = true;

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
	mutex_lock(&regulator_list_mutex);

	/* If we have a full configuration then disable any regulators
	 * which are not in use or always_on.  This will become the
	 * default behaviour in the future.
	 */
	list_for_each_entry(rdev, &regulator_list, list) {
		ops = rdev->desc->ops;
		c = rdev->constraints;

3762
		if (!ops->disable || (c && c->always_on))
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
			continue;

		mutex_lock(&rdev->mutex);

		if (rdev->use_count)
			goto unlock;

		/* If we can't read the status assume it's on. */
		if (ops->is_enabled)
			enabled = ops->is_enabled(rdev);
		else
			enabled = 1;

		if (!enabled)
			goto unlock;

		if (has_full_constraints) {
			/* We log since this may kill the system if it
			 * goes wrong. */
3782
			rdev_info(rdev, "disabling\n");
3783 3784
			ret = ops->disable(rdev);
			if (ret != 0) {
3785
				rdev_err(rdev, "couldn't disable: %d\n", ret);
3786 3787 3788 3789 3790 3791 3792
			}
		} else {
			/* The intention is that in future we will
			 * assume that full constraints are provided
			 * so warn even if we aren't going to do
			 * anything here.
			 */
3793
			rdev_warn(rdev, "incomplete constraints, leaving on\n");
3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
		}

unlock:
		mutex_unlock(&rdev->mutex);
	}

	mutex_unlock(&regulator_list_mutex);

	return 0;
}
late_initcall(regulator_init_complete);